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Abstract

Seduced by their mathematical beauty, psychologists have been
using latent variable models for more than a century. Whether
discussing a general factor of cognitive ability, personality, or
psychopathology there has been an unfortunate tendency to reify
hierarchical structures without examining the utility of alternative
models. To some of us, the use of latent variables was an
unfortunate mistake. By emphasizing internal consistency rather
than validity, parsimony of fit rather than function, the use of
latent variables has led psychological measurement and theory
down a beautifully seductive garden path rather than focusing on
the real problem of actually being useful. I will address some of
these alternatives and suggest that it is time to think more
critically of the use of latent variable models in our theorizing and
applications.
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Prologue

The importance of luck over a lifetime

1. As I have said at another occasion reviewing my career the
secrets for success over a lifetime are very easy:

2. Good luck

3. Great mentors

4. Great colleagues

5. Great students

6. Live long enough

7. Good luck (Having just read an article about the importance
of luck in a career (Pluchino, Biondo & Rapisarda, 2018)) I
emphasize this again.
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ISSID and latent variables

1. To challenge latent
variable models at an
ISSID meeting is a
daunting (foolish?) task.

2. The three prior recipients
of this award were leaders
in promoting the power of
latent variable models.

3. Hans Eysenck, Arthur
Jensen were and Ian
Deary is truly giants in
our field and their
contributions to the study
of individual differences
has been enormous.

The first meeting of ISSID was held in
London 40 years ago. A few of us here
remember the excitement of that
meeting. (Photo from Robert
Stelmack).
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Hans Eysenck
Hans Eysenck, as a student of
Cyril Burt, searched for the
latent variables of personality.
One of his earliest studies was of
the factor structure of behavioral
measures among hospitalized
soldiers (Eysenck, 1944). He was
the founder of ISSID.

I944-] BY H. J. EYSENCK, PH.D. 855

The second, bipolar factor presents us with a dichotomy which contrasts, on
the one hand, anxiety, depression, obsessional, apathy, irritability, and on the
other, hysterical conversion symptoms, narrow interests, little energy, sex anomalies,
hysterical attitude, no group membership, and unskilled. This differentiationbears out Jung's well-known statement that " medical experience has taught us
that there are two large groups of functional nervous disordersâ¤”the one embraces
all those forms of disease which are designated hysterical, the other all those forms
which the French school had designated psychasthenia The hysteric
belongs to the type of Extraversion, the psychasthenic to the type of Introversion " (43).

BADLY
ORGANIZED Â©
PERSONALITY

DEPENDENT
Â©

ABNORMAL BEFOREÂ©
fc ILLNESS

Q Â© UNEMPLOYMENTÂ©
LITTLE ENERGY SCHIZOIDÂ©

NO GROUP 0 POOR.Â©
MEMBERSHIP MUSCULAR TONE

HYSTERICAL O HYPOCHONDRIASIS
ATTITUDE Q

LOW00HYPOCHON-
INTELLI6ENCE DRIACAL

Â©FAINTINGUNSKILLED Â©

Â© Â©
HYSTERICAL SEX
CONVERSATION ANOMALIES

Â©DEGRADED
WORK HISTORY

ALCOHOL O

BOARDED
Â©OUT Â©DYSPEPSIA

ABNORMALITY
INPARENTS0 0CYCLOTHYMIC

UNSATISFACTORY
HOME Â©WARTIME SEPARATION

EFFORT
INTOLERANCE

0TREMOR
Â©HEADACHE

MARRIEDÂ© 0
IPPITABII ITY Â® Â© ANXIETYDPAIN 1RRITABIUTY APATHY

AbE Â©Â©DOMESTICPROBLEMS
30+ Â© DEPRESSION

Â©BOMB EXPOSURE Q f ,

HYSTERIA DYSTHYMIA
FIG. i.

Similarly, McDougall writes: "There are . . . two great categories of
disorder under one or other of which we may attempt to place many of the cases,
though without confidence in respect to many of them. . . . These two
categories are the dissociative or the hysteric class, on the one hand ; the neuras
thenic or anxiety class, on the other. The liability to disorder of one or other of
these two great types seems to be a matter mainly of innate constitution ; persons
of the extravert temperament seem more liable, under strain, to disorder of the
hysteric or dissociative type ; those of introvert . . . temperament to disorders of the neurasthenic type " (52). (McDougall uses " neurasthenia " in the
sense in which the French writers use " psychasthenia " ; we have preferred in
this paper to use neither of these obsolescent terms. Instead, the term " affective
disorder " or " dysthymia " is suggested for the anxiety-depression-obsessional
group).. As will be argued in the next section, we consider this bipolar " type " factor*
to be identical with the introvert-extravert dichotomy, with Cattell's factor of
" surgency," and with Pavlov's concept of " inhibition." In this paper, therefore,
we shall refer to the first factor as one of Integration as opposed to Neuroticism ;

* By calling this factor a " type " factor I do not mean to imply a himodal distribution of
persons belonging to the two sides of the dichotomy in the general population ; the actual dis
tribution of the general trait of which hysterics and affectives form the extremes cannot be
determined without further investigation.
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Arthur Jensen

Arthur Jensen (1998) emphasized
the g factor of cognitive ability
and discussed what makes a good
g factor (Jensen & Weng, 1994).
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Ian Deary

Ian Deary (2001) remains a
leader in intelligence research,
with his collaborators on the
MidLothian study of cognition
over the life span. He is both a
critic and a supporter of factorial
models of cognition.

The Midlothian participants
8 / 68
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Latent variable models have a long and distinguished history

1. The distinction between manifest and latent variables was
perhaps first made by Plato (nd) in his Allegory of the Cave.
• Prisoners confined in a cave observe only shadows on the wall.
• These shadows represent unseen people moving in front of an

unseen fire.
• As the people move closer to the fire, shadow lengths increase.

2. By “correcting” for the attenuation due to unreliability
(Spearman, 1904, p 253) converted observed correlations into
estimates of the “true” (latent) correlation between various
measures of cognitive ability.

rpq =
rp′q′

√rp′1p′2rq′1q′2
(1)
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The factor model

“We therefore bring our general
theorem to the following form.
Whenever branches of intellectual
activity are at all dissimilar, then their
correlations with one another appear
wholly due to their being all variously
saturated with some common
fundamental Function (or group of
Functions) (Spearman, 1904, 273)
This has become known as the factor
model, which models Covariance
matrices by

C ≈ ΛΛ′ + Θ2. (2)
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Latent variables and test theory in the 20th century

The basic model of test theory for the next 120 years continued to
use Spearman’s idea of observed scores, true scores, and error.

• X = T + E

This led to the the various derivations of test reliability (internal
consistency) as a function of item intercorrelation with formulae
known as KR-20 (Kuder & Richardson, 1937), λ3 (Guttman, 1945), and α (Cronbach, 1951).

• Because of computational
constraints, although derivations of
these formulae were based upon
covariances, the calculations were
done on test and item variances.
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Latent variables and test theory in the 21st century

1. With the introduction of “high speed” computers, these
techniques were elaborated with factor models of the
correlations and coefficients such as ωh, and ωt (McDonald,
1999) could be calculated.

2. By using computers, Item Response Theory went from a
theory (Lord, 1952; Lord & Novick, 1968) to an explosion of
computer algorithms.

• Although initially seen as an
alternative to factor analysis, IRT
could be shown to be just
“non-linear” factor analysis
(McDonald, 1999) applied to
tetrachoric or polychoric correlation
matrices.
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Test theory

1. Classical and “Modern” psychometrics (IRT) treats items as
mainly noise.

2. Our goal is to estimate the True (latent score) from manifest
(observed) scores which are “befuddled with error”.

3. Item variance = True Score Variance + Error (Spearman, 1904)

4. Item variance = General Factor variance + Group Variance +
Error (McDonald, 1999) (σ2

e = 1− h2)
5. Item variance = General Factor variance + Group Variance +

Specific Variance + Error
• Specific and error are confounded unless we have test-retest

measures.
• Items tend to have communalities of .2 - .3 but short term

stabilities of ≈ .8, thus specific variance ≈ .5.

generalgeneral group specific error
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Construct Validity as an extension of True Score Theory

1. Construct validity in terms of the structure of
latent variables was introduced by Cronbach
& Meehl (1955). This was probably partly as
a counter to behaviorism.

2. Elaborated by Loevinger (1957) who
dismissed the idea of mere “practical”
validity.

3. Construct validity could be conceptualized
• Convergent: different measures of the same

construct should go together
• Divergent: measures of different constructs

should not go together
• Incremental: a measure should add

something .

A test should be defined by what it measures
and what it does not measure. 14 / 68
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Construct validity and the “Nomological Net”

1. Tests did not have validity, they were part of a network of
validity.

2. Best exemplified in the Multi-Trait – Multi-Method Matrix of
Campbell & Fiske (1959).
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Agreement between Self Report and Peer Ratings
An example of a Multi-Trait–Multi-Method Matrix

Table: Self report and peer report from the SAPA-project. Correlations
reported by Zola et al. (2021). Reliabilities on the main diagonal. Raw
correlations below the diagonal. Correlations corrected for reliability
above the diagonal. Upper left quadrant reflects SAPA Personality
Inventory scores (Condon, 2018) for 158,631 participants, mean n/item
= 18,180. Other quadrants reflect 908 peer rated participants. Data
from the zola dataset in the psychTools package.

Self Report Peer Ratings
Variable Agrbl Cnscn Nrtcs Extrv Opnnn Agrbl Cnscn Stblt Extrv IntlO
Agreeableness 0.87 0.32 -0.14 0.28 0.09 0.75 0.21 0.18 0.34 0.22
Conscientiousness 0.28 0.87 -0.20 0.13 0.06 0.16 0.78 0.22 0.42 0.13
Neuroticism -0.12 -0.18 0.90 -0.28 -0.10 -0.01 -0.16 -0.78 -0.40 -0.25
Extraversion 0.25 0.12 -0.25 0.90 0.14 0.01 -0.01 0.07 0.71 0.14
Opennness 0.08 0.05 -0.09 0.13 0.86 -0.14 -0.06 0.10 0.17 0.49
Agreeableness 0.47 0.10 -0.01 0.00 -0.09 0.45 0.36 0.47 0.15 0.44
Conscientiousness 0.15 0.55 -0.12 -0.01 -0.04 0.18 0.58 0.42 0.41 0.47
Stability 0.13 0.16 -0.58 0.05 0.07 0.25 0.25 0.60 0.38 0.52
Extraversion 0.23 0.28 -0.27 0.49 0.11 0.07 0.23 0.22 0.52 0.32
IntellectOpenness 0.14 0.08 -0.15 0.09 0.30 0.19 0.24 0.27 0.15 0.44
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The unfortunate emphasis upon construct validity reduced the
emphasis upon the practical use of tests

1. In a response to operationalism, construct validity was in
strong contrast to three other approaches.

2. Constructs, as embedded in nomological networks, were seen
as theoretical concepts and could only be evaluated in terms
of the pattern of correlations.

3. Criterion-oriented validation procedures, on the other hand,
harkened back to the operational definitions of behaviorism.
• Concurrent validity is the correlation with a current criterion.
• Predictive validity is the correlation with a future criterion.

4. Content validity was established by showing that the test
items were a sample of a universe in which the investigator is
interested.

17 / 68
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Loevinger and the boiling of eggs

1. Favorably quoting Marschak, Loevinger said: (p 641) “A
theory provides us with solutions which are potentially useful
for a large class of decisions.

2. Hence, the more we know about its properties the better. If
we merely want to know how long it takes to boil an egg, the
best is to boil one or two without going into the chemistry of
protein molecules. The need for chemistry is due to our want
to do other and new things ”

3. She goes on to say “The argument against classical
criterion-oriented psychometrics is thus two-fold: it
contributes no more to the science of psychology than rules
for boiling an egg contribute to the science of chemistry.

4. And the number of genuine egg-boiling decisions which
clinicians and psychotechnologists face is small compared with
the number of situations where a deeper knowledge of
psychological theory would be helpful.” 18 / 68
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In case we did not understand

“the most fruitful direction for the development of psychometric
devices, and hence of psychometric theory, is toward measurement
of traits which have real existence in some sense;
that this orientation is antithetical to one which places first
emphasis on prediction, decisions, or ”utility;” that most
decision-oriented psychometric studies would be more fruitfully
formulated as trait-oriented studies;
and that such legitimately pressing decisions as must inevitably be
made will also best be served by a predominantly trait-oriented
psychometrics.” Loevinger (1957)
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In defense of predictive validity

Believing in latent variables is like believing in the Easter Bunny

1. Although the Cronbach & Meehl
(1955) and Loevinger (1957)
papers were (and are) required
reading in most personality
programs

2. Not everyone accepted that
construct validity was the ultimate
goal.

3. The pragmatically oriented wanted
tests to be useful.

4. To them, to believe in latent
variables and construct validity was
to believe in the Easter Bunny.
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In defense of predictive validity

In defense of predictive validity

1. Perhaps reflecting their training at the University of
Minnesota where the Strong Vocational Interest (Strong Jr., 1927)

and the MMPI (Hathaway & McKinley, 1943) were developed. Harrison
Gough and John Holland developed criterion based tests.

2. Gough developed the CPI and the Adjective Check List.

3. Holland is well known for his theory of vocational interests.
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Successful application of predictive validity

1. The California Psychological Inventory (Gough, 1957), the
Adjective Check List (Gough, 1960) and the Holland Coding
system of the RIASEC have been very successful publications.

2. More well known to members of ISSID is the success of the
Hogan Personality Inventory (Hogan & Hogan, 1995)
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Test construction with and without latent variables

1. An unfortunate amount of effort
was devoted in the 1950’s, 60’s
and 70’s to the debate about how
to construct tests.

2. Proponents of factor based tests
(e.g., the EPI, EPQ, the 16PF)
included Hans and Sybil Eysenck
(Eysenck & Eysenck, 1964) and Raymond
Cattell (Cattell & Stice, 1957)

3. Proponents of empirically keyed
tests, included e.g., the Strong,
(Strong Jr., 1927), the MMPI (Hathaway &

McKinley, 1943) and the JPI (Jackson, 1983) .

4. Rational based tests were
developed by Gough (e.g., 1957). 23 / 68
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1. In a monumental work comparing
these various approaches, Lew
Goldberg compared these methods,
as well as random keying.

2. The initial report (Hase & Goldberg, 1967)

suggested no difference on the
average of keying methods when
comparing the validity for 13
criteria for factor, empirical,
rational and theoretically derived
keys.

3. In followup, however, Goldberg
(1972) found that factorial
procedures were best for easily
predicted criteria, but worst for
hard to predict criteria.
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Comparing the power of items to factorially derived scales

1. We recently compared factor based
(5 and 27) scales to empirically
derived scales for 135 items
(N=4,000) as well as 696 items
(N= 126,884) (Revelle, Dworak &
Condon, 2021)

2. Using data from the spi dataset in
the psych package in R and from
Dataverse (Condon & Revelle, 2015; Condon, Roney

& Revelle, 2017a,b), we compared cross
validated multiple regressions for
factor based, Machine Learning
based (i.e., the bestScales

algorithm), and raw items.
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Empirical scales dominate latent factor score estimates

1. Cross validated latent factor based scores for 5 factors were
uniformly dominated by those for 27 lower level factor based
scales which were in turn dominated by just using the
empirically based scales themselves.
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But what are the items that predict?

1. The supposed advantage of factor based scores, is that we can
understand the prediction.

2. And when we do the multiple regression, we can examine the
β weights to “understand” the predictive model.

Table: Standardized coefficients from the Big 5 with spi data

Variable p1edu p2edu ER wllns smoke edctn exer age sex helth
((Intercept) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Agree 0.02 0.01 -0.03 0.06 -0.08 0.12 -0.01 0.16 0.16 0.01
Consc -0.03 -0.05 0.02 0.11 -0.08 0.06 0.16 0.13 0.10 0.17
Neuro -0.04 -0.03 0.13 0.03 0.06 -0.15 -0.12 -0.14 0.29 -0.27
Extra 0.05 0.06 0.05 0.09 0.08 -0.09 0.09 -0.11 0.09 0.14
Open 0.06 0.06 -0.01 0.00 0.09 0.14 0.07 0.12 -0.12 0.01
R 0.10 0.11 0.13 0.17 0.18 0.26 0.27 0.31 0.36 0.41
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We can also examine the items that are most predictive.R code

bs <- bestScales(spi[11:145],spi[1:10],
dictionary=spi.dictionary[,c(2,6),drop=FALSE])

health item L27
q_820 0.35 Feel comfortable with myself. WellBeing
q_2765 0.34 Am happy with my life. WellBeing
q_811 -0.34 Feel a sense of worthlessness or hopelessness. WellBeing
q_578 -0.34 Dislike myself. WellBeing
q_1371 0.31 Love life. WellBeing
q_56 0.28 Am able to control my cravings. SelfControl
q_1505 -0.27 Panic easily. Anxiety
q_4249 -0.26 Would call myself a nervous person. Anxiety
q_808 -0.26 Fear for the worst. Anxiety
q_1452 -0.25 Neglect my duties. Industry

exer item L27
q_1024 -0.24 Hang around doing nothing. EasyGoingness
q_1052 -0.22 Have a slow pace to my life. EasyGoingness
q_1444 -0.20 Need a push to get started. Industry
q_1452 -0.20 Neglect my duties. Industry
q_811 -0.19 Feel a sense of worthlessness or hopelessness. WellBeing
q_1371 0.18 Love life. WellBeing
q_2765 0.18 Am happy with my life. WellBeing
q_820 0.18 Feel comfortable with myself. WellBeing
q_56 0.17 Am able to control my cravings. SelfControl
q_1662 0.17 Seek adventure. SensationSeeking

28 / 68
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Validity and reliability: a short digression

1. Although we know from Spearman that we can correct for
reliability to find the “True” relationship between two
variables, this does not help us in the real world.

2. Reliability is incorrectly associated with internal consistency
which leads to such derivations as coefficients KR20 (Kuder &

Richardson, 1937), λ3 (Guttman, 1945) or α (Cronbach, 1951).

3. Expressed terms of inter-item correlations, this is just
kr̄

1+(k−1)r̄ and increases with test length (k) and the average

interitem correlation (r̄)

4. However, validity of a k item test (ryk ) or the correlation with
an external criterion, Y, also increases with test length, and
the average item validity (r̄y ) but decreases as the inter-item

correlation increases ryk =
kr̄y
σx

=
kr̄y√

k+k∗(k−1)r̄
.
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Reliability and Validity

1. Lets unpack these two equations.
Internal consistency

λ3 = α =
kr̄

1 + (k − 1)r̄
(3)

2. but validity

ryk =
kr̄y
σx

=
kr̄y√

k + k ∗ (k − 1)r̄
. (4)
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The trade off between test consistency and test validity
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Increasing validity implies increasing the diversity of the item content

1. The goal of construct validity is have pure measures with high
internal consistency

2. And highly correlated constructs.

3. But if the goal is predictive validity, we should minimize
internal consistency and have independent predictors

4. By emphasizing practical validity, we are ignoring most of
what we have been taught (and teach) about reliability (Revelle &

Condon, 2018, 2019) and scale construction (Revelle & Garner, 2023).

5. Variations on this theme have been discussed before by (Condon,

Wood, Möttus, Booth, Costani, Greiff, Johnson, Lukaszesksi, Murray, Revelle, Wright, Ziegler &

Zimmerman, 2021; Möttus, Wood, Condon, Back, Baumert, Costani, Epskamp, Greiff, Johnson,

Lukaszesksi, Murray, Revelle, Wright, Yarkoni, Ziegler & Zimmerman, 2020).
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Real data

Two real life example of validity with low internal consistency

1. Alice Eagly and I (Eagly & Revelle, 2022) have recently
reviewed how there are multiple perspectives to sex/gender
differences.
• There is a great number of studies showing small gender

differences on many different measures.
• There are also many studies showing large differences.

2. How can this be?

3. We suggest one should look both at the trees as well as the
forests of sex differences.

4. That is, by properly aggregating data at the item level (the
trees which show small differences) into composite scales (the
forest), we showed some very large differences.

33 / 68



ISSID Latent variables Prediction g Structure Conclusions References

Real data

The power of aggregation

1. But this effect was not merely a large effect associated with
aggregation.

2. The utility of aggregation has been known since (Spearman,
1910; Brown, 1910), and rediscovered by Fishbein & Ajzen
(1974) with respect to attitudes and by Epstein (1983) with
respect to personality.

3. (The power of aggregation was not forgotten by members of
ISSID, but seems to have been forgotten by many others.)

4. We used data from Athenstaedt (2003) and Gruber,
Distlberger, Scherndl, Ortner & Pletzer (2020) to show this
effect most clearly.

5. Both sets of investigators asked gender specific questions.
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Real data

The first 20 items from Athenstaedt (2003)
Var # Item
V1 To pay attention to ones appearance in the office
V2 Offer fire to somebody
V3 Paint an Apartment
V4 Mow the Lawn
V5 Make the Bed
V6 Hold the Door Open for your Partner
V7 Do the Dishes
V8 Do Extreme Sports
V9 Tinker with the Car
V10 Talk about Sports
V11 Assemble Prefabricated Furniture
V12 Drive a Car in a Risky Way
V13 Listen Attentively to Others
V14 Tell your Partner about Problems at Work
V15 Play on a Computer
V16 Set the Table
V17 Watch ones Weight
V18 Care for a Partner if he/she is Ill
V19 Play Chess
V20 Meet with friends at a Regulars Table
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Real data

10 items from Athenstaedt (2003)

Ten items from Athenstaedt

V30

V57

V54

V29

V32

V71

V38

V72

V45

V46

V46 V45 V72 V38 V71 V32 V29 V54 V57 V30

0.06 0.05 0.00 0.03 0.14 0.51 0.58 0.35 0.36 1.00

-0.01 -0.09 -0.12 -0.09 0.01 0.61 0.47 0.42 1.00 0.36

-0.02 -0.01 -0.07 0.01 0.10 0.46 0.43 1.00 0.42 0.35

-0.11 -0.10 -0.14 -0.17 -0.02 0.66 1.00 0.43 0.47 0.58

-0.06 -0.11 -0.15 -0.12 0.00 1.00 0.66 0.46 0.61 0.51

0.51 0.53 0.54 0.59 1.00 0.00 -0.02 0.10 0.01 0.14

0.47 0.58 0.48 1.00 0.59 -0.12 -0.17 0.01 -0.09 0.03

0.61 0.50 1.00 0.48 0.54 -0.15 -0.14 -0.07 -0.12 0.00

0.56 1.00 0.50 0.58 0.53 -0.11 -0.10 -0.01 -0.09 0.05

1.00 0.56 0.61 0.47 0.51 -0.06 -0.11 -0.02 -0.01 0.06

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Clearly a two factor solution (using the inter-ocular trauma test).
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Real data

10 items from Athenstaedt (2003) with gender

10 items from Athenstaedt

gender

clean_drain

home_improve

shovel_snow

change_fuses

repair_work

wash_windows

dust

iron

change_bed

sew_button

se
w_
bu
tto
n

ch
an
ge
_b
ed

iro
n

du
st

wa
sh
_w
ind
ow
s

rep
air
_w
ork

ch
an
ge
_fu
se
s

sh
ov
el_
sn
ow

ho
me
_im
pro
ve

cle
an
_d
rai
n

ge
nd
er

0.50 0.42 0.53 0.42 0.35 -0.47 -0.52 -0.38 -0.35 -0.27 1.00

0.06 0.05 0.00 0.03 0.14 0.51 0.58 0.35 0.36 1.00 -0.27

-0.01 -0.09 -0.12 -0.09 0.01 0.61 0.47 0.42 1.00 0.36 -0.35

-0.02 -0.01 -0.07 0.01 0.10 0.46 0.43 1.00 0.42 0.35 -0.38

-0.11 -0.10 -0.14 -0.17 -0.02 0.66 1.00 0.43 0.47 0.58 -0.52

-0.06 -0.11 -0.15 -0.12 0.00 1.00 0.66 0.46 0.61 0.51 -0.47

0.51 0.53 0.54 0.59 1.00 0.00 -0.02 0.10 0.01 0.14 0.35

0.47 0.58 0.48 1.00 0.59 -0.12 -0.17 0.01 -0.09 0.03 0.42

0.61 0.50 1.00 0.48 0.54 -0.15 -0.14 -0.07 -0.12 0.00 0.53

0.56 1.00 0.50 0.58 0.53 -0.11 -0.10 -0.01 -0.09 0.05 0.42

1.00 0.56 0.61 0.47 0.51 -0.06 -0.11 -0.02 -0.01 0.06 0.50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Clearly a two factor solution but with some interesting correlations
with gender.
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Real data

Factor Analysis using method = minres
Call: fa(r = select.items[1:10], nfactors = 2)
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 h2 com Item
V71 0.76 0.12 0.58 1.05 Wash Windows
V45 0.74 -0.03 0.55 1.00 Change Bed Sheets
V46 0.73 0.01 0.53 1.00 Sew on a Button
V38 0.72 -0.05 0.53 1.01 Dust the Furniture
V72 0.72 -0.09 0.53 1.03 Do the Ironing
V32 -0.03 0.84 0.72 1.00 Do Repair Work
V29 -0.06 0.78 0.63 1.01 Change Fuses
V57 -0.02 0.66 0.43 1.00 Do Home Improvement Jobs
V30 0.14 0.65 0.42 1.10 Clean a Drain
V54 0.06 0.57 0.32 1.02 Shovel Snow

MR1 MR2
SS loadings 2.72 2.52
Proportion Var 0.27 0.25
Cumulative Var 0.27 0.52
Proportion Explained 0.52 0.48
Cumulative Proportion 0.52 1.00

With factor correlations of
MR1 MR2

MR1 1.0 -0.1
MR2 -0.1 1.0

Mean item complexity = 1
Test of the hypothesis that 2 factors are sufficient.
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Real data

Find the regression of the gender on the factor score estimates –
using biserial correlations

R code

select <- selectFromKeys(Athenstaedt.keys$MF10)
f2 <- fa(Athenstaedt[select],2)
temp <- cbind(gender=Athenstaedt$gender, f2$scores)
R <- mixedCor(temp)$rho
lmCor(gender ˜ MR1 + MR2, data=R) #biserial
lmCor(gender ˜ MR1 + MR2, data=temp) #Pearson

Call: lmCor(y = gender ˜ MR1 + MR2, data = R)

Multiple Regression from matrix input

DV = gender
slope VIF Vy.x

MR1 0.63 1.01 0.44
MR2 -0.61 1.01 0.41

Multiple Regression
R R2 Ruw R2uw

gender 0.93 0.86 0.93 0.86
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Real data

But biserial correlation is actually a latent model

What would the correlation be if Y were not dichotomous but
rather a latent normal distribution. Same problem with logistic
regression, which is also a latent model.
Try just normal regression.

R code

lmCor(gender ˜ MR1 + MR2, data=temp)

Multiple Regression from raw data

DV = gender
slope se t p lower.ci upper.ci VIF Vy.x

(Intercept) 0.00 0.03 0.00 1.0e+00 -0.06 0.06 1.00 0.00
MR1 0.51 0.03 17.85 5.2e-57 0.45 0.56 1.01 0.28
MR2 -0.49 0.03 -17.13 2.0e-53 -0.54 -0.43 1.01 0.26

Residual Standard Error = 0.68 with 573 degrees of freedom

Multiple Regression
R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

gender 0.74 0.55 0.74 0.55 0.54 0.03 343.73 2 573 8.14e-99
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Real data

20 items ωh = .14, α = .85, ωt = .89, rv = .77

Correlations of 20 items from Athenstaedt

V36
V9
V33
V39
V4
V30
V57
V54
V29
V32
V23
V7
V52
V73
V16
V71
V38
V72
V45
V46

V46 V45 V72 V38 V71 V16 V73 V52 V7 V23 V32 V29 V54 V57 V30 V4 V39 V33 V9 V36

0.01 0.02 0.00 0.05 0.09 0.14 -0.00 0.08 -0.03 -0.05 0.33 0.36 0.34 0.34 0.30 0.35 0.38 0.30 0.27 1.00

-0.17 -0.24 -0.21 -0.18 -0.05 -0.11 -0.23 -0.11 -0.20 -0.25 0.49 0.41 0.35 0.44 0.34 0.33 0.30 0.26 1.00 0.27

0.07 0.07 -0.02 0.03 0.10 0.04 -0.03 0.01 0.06 -0.08 0.57 0.55 0.32 0.35 0.46 0.31 0.39 1.00 0.26 0.30

0.00 -0.03 -0.05 0.07 0.10 0.03 -0.03 0.05 0.01 -0.10 0.45 0.48 0.35 0.38 0.37 0.33 1.00 0.39 0.30 0.38

-0.03 -0.01 -0.03 -0.01 0.10 0.07 -0.08 0.05 -0.03 -0.13 0.40 0.39 0.63 0.37 0.36 1.00 0.33 0.31 0.33 0.35

0.06 0.05 0.00 0.03 0.14 0.04 0.06 0.08 0.07 -0.16 0.51 0.58 0.35 0.36 1.00 0.36 0.37 0.46 0.34 0.30

-0.01 -0.09 -0.12 -0.09 0.01 -0.04 -0.09 0.04 -0.14 -0.11 0.61 0.47 0.42 1.00 0.36 0.37 0.38 0.35 0.44 0.34

-0.02 -0.01 -0.07 0.01 0.10 0.05 -0.13 0.02 -0.08 -0.18 0.46 0.43 1.00 0.42 0.35 0.63 0.35 0.32 0.35 0.34

-0.11 -0.10 -0.14 -0.17 -0.02 -0.07 -0.10 -0.08 -0.09 -0.24 0.66 1.00 0.43 0.47 0.58 0.39 0.48 0.55 0.41 0.36

-0.06 -0.11 -0.15 -0.12 0.00 -0.05 -0.10 -0.04 -0.06 -0.22 1.00 0.66 0.46 0.61 0.51 0.40 0.45 0.57 0.49 0.33

0.42 0.34 0.38 0.38 0.27 0.35 0.27 0.30 0.25 1.00 -0.22 -0.24 -0.18 -0.11 -0.16 -0.13 -0.10 -0.08 -0.25 -0.05

0.35 0.47 0.40 0.49 0.41 0.47 0.46 0.29 1.00 0.25 -0.06 -0.09 -0.08 -0.14 0.07 -0.03 0.01 0.06 -0.20 -0.03

0.41 0.43 0.34 0.40 0.43 0.37 0.39 1.00 0.29 0.30 -0.04 -0.08 0.02 0.04 0.08 0.05 0.05 0.01 -0.11 0.08

0.56 0.53 0.66 0.43 0.45 0.38 1.00 0.39 0.46 0.27 -0.10 -0.10 -0.13 -0.09 0.06 -0.08 -0.03 -0.03 -0.23 -0.00

0.39 0.46 0.44 0.43 0.42 1.00 0.38 0.37 0.47 0.35 -0.05 -0.07 0.05 -0.04 0.04 0.07 0.03 0.04 -0.11 0.14

0.51 0.53 0.54 0.59 1.00 0.42 0.45 0.43 0.41 0.27 0.00 -0.02 0.10 0.01 0.14 0.10 0.10 0.10 -0.05 0.09

0.47 0.58 0.48 1.00 0.59 0.43 0.43 0.40 0.49 0.38 -0.12 -0.17 0.01 -0.09 0.03 -0.01 0.07 0.03 -0.18 0.05

0.61 0.50 1.00 0.48 0.54 0.44 0.66 0.34 0.40 0.38 -0.15 -0.14 -0.07 -0.12 0.00 -0.03 -0.05 -0.02 -0.21 0.00

0.56 1.00 0.50 0.58 0.53 0.46 0.53 0.43 0.47 0.34 -0.11 -0.10 -0.01 -0.09 0.05 -0.01 -0.03 0.07 -0.24 0.02

1.00 0.56 0.61 0.47 0.51 0.39 0.56 0.41 0.35 0.42 -0.06 -0.11 -0.02 -0.01 0.06 -0.03 0.00 0.07 -0.17 0.01

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Clearly a two factor solution (using the inter-ocular trauma test).
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Real data

2 factors of the Athenstaedt (2003) data
MR1 MR2 h2 com Item

V45 0.75 -0.01 0.57 1.00 Change Bed Sheets
V72 0.73 -0.07 0.55 1.02 Do the Ironing
V46 0.73 0.01 0.53 1.00 Sew on a Button
V71 0.72 0.14 0.53 1.08 Wash Windows
V38 0.72 -0.01 0.52 1.00 Dust the Furniture
V73 0.70 -0.06 0.50 1.02 Do the Laundry
V16 0.62 0.05 0.38 1.01 Set the Table
V7 0.60 -0.03 0.36 1.00 Do the Dishes
V52 0.56 0.06 0.31 1.02 Take Care of Flowers
V23 0.47 -0.20 0.28 1.37 Wrap Presents Beautifully
V32 -0.05 0.80 0.65 1.01 Do Repair Work
V29 -0.08 0.77 0.61 1.02 Change Fuses
V30 0.13 0.65 0.42 1.08 Clean a Drain
V57 -0.04 0.65 0.43 1.01 Do Home Improvement Jobs
V54 0.03 0.63 0.40 1.00 Shovel Snow
V33 0.10 0.62 0.39 1.06 Change Light Bulbs
V4 0.05 0.60 0.36 1.01 Mow the Lawn
V39 0.07 0.60 0.35 1.03 Buy Electric Appliances
V9 -0.21 0.54 0.36 1.29 Tinker with the Car
V36 0.10 0.51 0.26 1.08 Cook Meat on the Grill

MR1 MR2
SS loadings 4.54 4.22
Proportion Var 0.23 0.21
Cumulative Var 0.23 0.44
Proportion Explained 0.52 0.48
Cumulative Proportion 0.52 1.00
With factor correlations of

MR1 MR2
MR1 1.00 -0.09
MR2 -0.09 1.00 42 / 68
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Real data

Wait, aren’t we doing latent variable modeling?
I thought we didn’t believe in the Easter Bunny

1. We were finding two latent factors of 20 items.

2. Showing how these two linear composites could predict the
criterion better than either separately.

3. Lets try simple “dustbowl empiricism” (now known as
“Supervised Machine Learning”).

4. We have known since the 50’s (e.g., Cureton, 1950) that we
need to cross validate all regression models for they overfit the
data.

5. We use the bestScales function (aka BISCUIT (Elleman, McDougald,

Revelle & Condon, 2020)) to do K-fold cross validation.

6. BISCUIT: Best Item Scales that are Cross-validated,
Unit-weighted, Informative and Transparent.
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Real data

BISCUIT algorithm is a very simple procedure

1. For k = e.g. 10, and N subjects, find the items that most
correlate with the criterion for N

k−1 , and then validate these on

the remaining N
k .

2. Repeat this k times.

3. Count how many times each item is the top n.items.

4. Form a scale of those top items.

5. Elleman et al. (2020) compared BISCUIT to more elegant
Machine Learning Algorithms (e.g. Lasso, Elastic Net, and
Random Forest) (James, Witten, Hastie & Tibshirani, 2022).

6. BISCUIT is particularly appropriated for the case of large
amounts of missing data.

7. BISCUIT is implemented as bestScales in the psych
package.
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Real data
R code

bestScales(Athenstaedt[,2:75],"gender",n.item=20,folds=10,
dictionary=Athenstaedt.dictionary)

Number of iterations set to the number of folds = 10
Call = bestScales(x = Athenstaedt[, 2:75], criteria = "gender", n.item = 20,

folds = 10, dictionary = Athenstaedt.dictionary)
derivation.mean derivation.sd validation.m validation.sd final.valid final.wtd N.wtd

gender 0.83 0.0078 0.82 0.021 0.82 0.81 10

Best items on each scale with counts of replications
Criterion = gender

Freq mean.r sd.r ItemLabel Item
V23 10 0.53 0.01 V23 Wrap Presents Beautifully
V72 10 0.53 0.01 V72 Do the Ironing
V29 10 -0.52 0.01 V29 Change Fuses
V46 10 0.50 0.01 V46 Sew on a Button
V47 10 0.48 0.01 V47 Do Aerobics
V73 10 0.48 0.01 V73 Do the Laundry
V32 10 -0.47 0.01 V32 Do Repair Work
V70 10 -0.45 0.01 V70 Help your Partner Put on His or Her Coat
V9 10 -0.43 0.01 V9 Tinker with the Car
V38 10 0.42 0.02 V38 Dust the Furniture
V45 10 0.42 0.02 V45 Change Bed Sheets
V44 10 0.41 0.01 V44 Do Handiwork (e.g. Knitting)
V52 10 0.38 0.01 V52 Take Care of Flowers
V54 10 -0.38 0.01 V54 Shovel Snow
V21 10 0.37 0.01 V21 Watch Soap Operas
V63 10 0.36 0.01 V63 Decorate the Office with Flowers
V16 10 0.36 0.01 V16 Set the Table
V10 10 -0.36 0.01 V10 Talk about Sports
>
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Real data

The best scales solution

1. What are the items that predict the criterion?

2. Add them up (or find the mean of the items for each person)
and find the correlation of this composite with the criterion.

3. The resulting scale is not necessarily (and probably not)
univocal. It is not a good “latent” variable but is a good
manifest predictor of the criterion (r = .83).

4. The structure of this scale shows that the general factor
saturation ωh = .3 meaning that it is definitely not measuring
one latent variable.
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Real data

ωh = .3, α = .85, ωt = .88, rv = .83 for BISCUIT scale
omega of the BISCUIT based best 20 items for the Athenstaedt data

F1*
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Real data

The data from the Athenstaedt (2003) data set

Table: Choosing the best k items to predict sex in the Athenstaedt
(2003) data set. r is the correlation of a k-item scale with sex, avrg is the
average correlation with the predictor set, alpha is the alpha reliability of
the predictor set. Means show the average validity of the items used in
the scale.

A table from the psych package in R
k scale validity avrg. alpha mean validity
5 0.66 0.14 0.49 0.43

10 0.74 0.13 0.62 0.40
20 0.77 0.11 0.72 0.35
30 0.76 0.10 0.77 0.32
40 0.76 0.09 0.80 0.29
50 0.75 0.08 0.81 0.26
60 0.75 0.06 0.81 0.24
70 0.72 0.05 0.79 0.21
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Real data

The prior analysis was choosing items in terms of their validity.
That is to say, we take the cream first. Compare this to just
randomly choosing items. In this case, as the number of items
being aggregated increases, the validity increases as predicted by
Equation 4.

Table: The item and scale statistics when scales are formed from random
subsets of domain items. The ratio is just the average
validity/sqrt(average item correlation).

Reliability and validity of various length scales when items are chosen randomly.
Variable N.items alpha validity average.r item.validity ratio modeled
r.five 5 0.20 0.43 0.05 0.21 0.96 0.43
r.ten 10 0.51 0.53 0.09 0.23 0.75 0.53
r15 15 0.68 0.56 0.12 0.24 0.69 0.56
r20 20 0.73 0.61 0.12 0.25 0.72 0.61
r30 30 0.80 0.64 0.12 0.25 0.72 0.64
r40 40 0.85 0.68 0.12 0.26 0.74 0.68
r50 50 0.88 0.68 0.13 0.26 0.73 0.68
all.56 56 0.89 0.70 0.12 0.26 0.75 0.70
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Real data

Another data set (GERAS) is from Gruber et al. (2020)

1. Gruber et al. (2020) report on the psychometric properties of
a multifaceted Gender Related Attributes Survey.

2. They included 3 domains (Personality, Cognition and
Activities and Interests ) in their study 2.

3. The data are included in psych as the GERAS data set. N
=471.

4. Try BISCUIT again.
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Real data

The data from the Gruber et al. (2020) data set

Table: Exploring the benefits and costs of aggregation. Although
reliability will increase, because the items were chosen in order of their
validity, scale validity is non-monotonic with the number of items (see
figure). The ratio is just the average validity/sqrt(average item
correlation.

Reliability and validity of various length scales when items are chosen by their validity.
Variable N.items alpha validity average.r item.validity ratio modeled
five 5 0.67 0.65 0.29 0.43 0.80 0.65
ten 10 0.76 0.71 0.24 0.40 0.82 0.71
fifteen 15 0.80 0.73 0.21 0.37 0.81 0.73
twenty 20 0.82 0.74 0.19 0.35 0.82 0.74
thirty 30 0.85 0.73 0.16 0.32 0.79 0.73
fourty 40 0.87 0.73 0.14 0.29 0.78 0.73
fifty 50 0.88 0.72 0.13 0.27 0.77 0.72
fiftysix 56 0.89 0.70 0.12 0.26 0.75 0.70
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Real data

R code

reliability(GERAS.keys,GERAS.items)

Measures of reliability
reliability(keys = GERAS.keys, items = GERAS.items)

omega_h alpha omega.tot Uni r.fit fa.fit max.split min.split mean.r med.r n.items
M.pers 0.01 0.66 0.65 0.31 0.46 0.66 0.81 0.29 0.16 0.14 10
F.pers 0.25 0.80 0.84 0.68 0.73 0.93 0.86 0.65 0.28 0.26 10
M.cog 0.30 0.73 0.84 0.42 0.62 0.68 0.83 0.33 0.28 0.20 7
F.cog 0.42 0.70 0.76 0.65 0.70 0.93 0.80 0.57 0.25 0.20 7
M.act 0.48 0.75 0.78 0.83 0.89 0.94 0.82 0.65 0.27 0.26 8
F.act 0.48 0.75 0.79 0.79 0.87 0.91 0.81 0.59 0.27 0.26 8
Pers 0.09 0.77 0.81 0.25 0.43 0.59 0.89 0.35 0.14 0.11 20
Cog 0.05 0.67 0.74 0.07 0.17 0.39 0.83 0.03 0.13 0.09 14
Act 0.09 0.75 0.79 0.34 0.57 0.59 0.86 0.29 0.16 0.16 16
M 0.25 0.81 0.83 0.36 0.57 0.62 0.89 0.60 0.15 0.13 25
F 0.23 0.83 0.85 0.47 0.62 0.76 0.90 0.66 0.17 0.14 25
MF.all 0.26 0.85 0.86 0.23 0.43 0.52 0.91 0.69 0.10 0.09 50
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Real data

Table: For the three subdomains as well as Masculine and Feminine
subscales of the Gruber et al. (2020) data we found three estimates of
reliability (ωh, α, ωt), average within scale item correlation (r̄i ), average
item validity (r̄y ), observed scale validity, average item Cohen d (d̄) and
Cohen d for the aggregated scale.

Variable ωh α ωt r̄ items r̄y Validity d̄ Cd

M.pers 0.01 0.66 0.65 0.16 10 0.14 0.28 0.28 0.57
F.pers 0.25 0.80 0.84 0.28 10 -0.23 -0.39 -0.48 -0.86
M.cog 0.30 0.73 0.84 0.28 7 0.19 0.31 0.39 0.65
F.cog 0.42 0.70 0.76 0.25 7 -0.12 -0.20 -0.24 -0.40
M.act 0.48 0.75 0.78 0.27 8 0.23 0.38 0.48 0.83
F.act 0.48 0.75 0.79 0.27 8 -0.38 -0.63 -0.82 -1.61
Pers 0.09 0.77 0.81 0.14 20 0.18 0.42 0.38 0.93
Cog 0.05 0.67 0.74 0.13 14 0.15 0.36 0.31 0.77
Act 0.09 0.75 0.79 0.16 16 0.30 0.65 0.65 1.73
M 0.25 0.81 0.83 0.15 25 0.18 0.44 0.37 0.97
F 0.23 0.83 0.85 0.17 25 -0.25 -0.58 -0.52 -1.41
MF.all 0.26 0.85 0.86 0.10 50 0.21 0.63 0.45 1.61
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But what about g?

1. One of Spearman’s great contributions was recognizing that
measures of cognitive ability are all correlated positively.

2. However, this positive manifold does not imply a general
causal factor.

3. It is important to remember that factors are (convenient)
fictions Revelle (1983); Revelle & Ellman (2016); Schonemann
(1990)

4. Alternative explanations of the positive manifold include:
• g: a general factor (Spearman, 1904)
• Multiple, independent “bonds” (Bartholomew, Deary & Lawn,

2009; Thomson, 1916)
• Growth influences multiple processes (Kovacs & Conway,

2016, 2019)
• “cluster” psychometrics
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Higher order factors of the ICAR-16

Hierarchical (multilevel) Structure

F1

F2

F3

F4

g

rotate.3

rotate.4

rotate.8

rotate.6

letter.34

letter.7

letter.33

letter.58

matrix.47

reason.17

reason.4

reason.16

reason.19

matrix.45

matrix.46

matrix.55

0.7
0.7
0.6
0.6

0.7

0.6

0.5

0.3

0.2

0.7
0.4
0.3
0.3

0.8

0.3

0.5

0.8

0.8

0.5

1. Clear higher order factor
from the ICAR (Condon &
Revelle, 2014)

2. Data are in the ability

dataset

3. 4000 participants and 16
items from ICAR-16 taken
from the SAPA study
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19 variables show a clear general factor
A hierarchical fit of 19 variables

F1

F2

F3

g

V5

V6

V9

V4

V7

V8

V3

V2

V13

V12

V11

V10

V14

V1

V17

V16

V15

V19

V18

0.9
0.9
0.9
0.9
0.8
0.7
0.2

0.2
0.9
0.9
0.9
0.8
0.8
0.7

1
1
0.8
0.8
0.5

0.5

0.6

0.4

1. Clear higher order factor

2. Just another example of ‘g’

3. g models are typically shown
as g causing the lower order
factors

4. But is this just one
mathematical model?

56 / 68



ISSID Latent variables Prediction g Structure Conclusions References

19 measures from the United States Air Force USAF

A hierarchical fit of 19 variables from the USAF

F1

F2

F3

g

leg

knee

insleeve

height

upper.arm

thumb.tip

grip

weight

thigh

waist

hip

chest

scye

age

head.length

bitragion

head.circ

canthus

glabella

0.9
0.9
0.9
0.9
0.8
0.7
0.2

0.2
0.9
0.9
0.9
0.8
0.8
0.7

1
1
0.8
0.8
0.5

0.5

0.6

0.4

1. Clear higher order factor

2. Is being big a ‘g’ for size?

3. Do we really think that
being big causes longer
arms?
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A general factor from the sim.bonds model
Hierarchical (multilevel) Structure

F1

F2

F3

F4

g

V6

V3

V12

V16

V10

V5

V8

V2

V7

V14

V11

V9

V13

V4

V1

V15

0.8
0.8
0.7
0.7
0.6
0.6
0.50.4

0.4

0.3

0.8

0.8

0.8

0.8

-0.4
-0.4

0.7
0.7
0.7

-0.5

0.6

0.6

0.5

0.4

0.4

0.4

1. Simulation using the
sim.bonds model of
multiple independent causes.

2. ωh = .4, α = .86, ωt = .91

3. See (Bartholomew et al.,
2009; Thomson, 1916) for
elaboration.
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The search for structure is misled by the factor model

1. In cognitive psychology, the search for a single higher order
factor led to such models as the Carroll-Horn-Cattell (CHC)
model (McGrew, 2009, 2023)
• This was an attempt to organize the many lower order factors

of cognitive ability
• But process models account for the structure just as well.

2. In personality we have seen hierarchical models including
• Eysenck’s well known hierarchy
• Attempts to find higher order factors of the Big 5 (Digman,

1997; Loehlin, 2012; Loehlin & Martin, 2011; Revelle & Wilt,
2013)

• Lower order “aspects” of the big 5 (DeYoung, Quilty &
Peterson, 2007)
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Higher order factors versus fewer factors

1. Confusion about hierarchical versus multiple representations

2. Goldberg (2006); Waller (2007) consider ways to represent
multiple factor solutions in terms of factor/component
correlations.

3. This produces what Goldberg described as the Bass-Ackwards
solution .

4. Unfortunately some confuse Bass-Ackwards with a hierarchical
(factors of factors) solution. (But not Waller.)

5. These are not the same.
• Consider 135 items from the SPI (Condon, 2018) spi data set
• Bass-ackwards for 27 and 5 factors
• Hierarchical solution for 27 and 5 factors
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bassAckwards solution of the spi of the spi items
BassAckward

q_565q_1296q_1027q_1416q_1555q_1904q_312q_4243q_1923q_684q_1173q_35q_1424q_4276q_4223q_1045q_1242q_254q_131q_901q_1367q_1664q_1662q_1781q_598q_219q_1081q_803q_1706q_1635q_1243q_1244q_1248q_296q_1685q_4252q_1989q_4249q_808q_1505q_979q_793q_174q_797q_1840q_952q_1357q_1683q_1585q_176q_578q_2765q_820q_811q_1371q_904q_1444q_1744q_1979q_1452q_1254q_1201q_1483q_169q_1290q_369q_398q_1624q_1867q_1609q_1328q_4296q_1812q_2853q_501q_1896q_530q_571q_1915q_1694q_142q_1329q_1281q_1052q_1280q_1024q_736q_56q_1590q_1462q_1461q_660q_345q_1824q_1825q_2745q_128q_2754q_1392q_1058q_1389q_1738q_755q_1880q_1310q_610q_348q_607q_612q_1132q_240q_1253q_493q_422q_1834q_1300q_152q_747q_1653q_2005q_566q_689q_39q_1542q_1303q_1763q_90q_253q_851q_1832q_4289q_1855q_377q_871q_379

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27

-0.820.81-0.81 0.80.45
-0.790.72 -0.650.620.460.8 0.770.690.65 -0.56
0.76-0.750.42 0.31
0.870.84 0.50.480.450.77 -0.660.580.48 -0.44
0.810.630.6 0.48-0.47
0.830.81 0.690.640.56-0.66 -0.660.630.6 0.48
-0.85-0.790.77 0.720.66
-0.760.7 0.67-0.630.610.73 0.63-0.62-0.47 0.44
0.83-0.820.62 0.46-0.39
0.640.61 0.590.49-0.45 0.38

0.33
-0.31

0.79-0.71-0.62 0.560.39
0.610.59 0.550.43

0.64 0.60.380.38 0.34
0.560.560.56 0.510.44
-0.810.8 0.45-0.39
0.750.74 0.630.60.510.78 0.750.570.54 0.36
0.84-0.770.74 0.57-0.37
0.84-0.76 0.740.580.540.75 0.690.680.66 0.43
0.850.83-0.43 -0.4-0.36
0.770.76 0.740.690.640.81 0.80.74-0.7 0.63

F1

F2

F3

F4

F5

0.76-0.680.55
0.550.51

0.43 0.43

-0.32

0.81-0.76
-0.71 -0.58

0.39

-0.480.34

0.43
-0.73-0.650.49 -0.470.42

-0.36 0.31

0.36

0.37

-0.35

0.76
0.61 -0.560.54

-0.53
-0.43

-0.34

0.42

0.43

0.32

0.34

-0.47

0.33
0.790.72
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fa.hierarchical solution of the spi of the spi items
Hierarchical (multilevel) Structure
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q_1416
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q_808
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q_1683
q_1585
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q_1424
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F4
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F8-0.80.7-0.60.60.5
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F100.70.70.60.60.5
F110.90.80.50.50.4
F120.70.6-0.6-0.50.4
F13-0.7-0.70.60.60.5
F140.8-0.80.60.5-0.4
F150.8-0.80.70.6-0.4
F160.8-0.7-0.60.60.4
F170.60.60.60.5-0.40.4

0.3-0.3

F180.80.8-0.4-0.4-0.4 F190.70.70.70.70.4
F200.80.60.60.5-0.5 F210.8-0.70.60.5-0.4
F220.8-0.70.40.3
F230.80.80.60.50.4
F240.60.60.60.4 F25-0.80.80.4-0.4
F260.60.60.60.50.4 F270.60.60.40.40.3

MR5

-0.7
0.6
0.4

0.7

-0.3

MR1

0.70.5

-0.6

0.4

0.4

0.3

0.5

MR2

-0.4

-0.7

-0.6

-0.3 0.4

0.3

0.4
-0.3

MR4

0.4

0.7

-0.5

-0.3
-0.5

0.5

MR3

0.3

0.7

0.6

-0.4

0.3

0.3
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2-5-16

Revelle, Furnham & Eagly (2023) have started a joint project

1. Adrian has collected voluminous data sets with various Hogan
Instruments

2. Has reported small sex differences on individual scales
(Furnham & Treglown, 2021)

3. But when empirically (not factor analytically) combining these
scales to find sex differences, two higher order dimensions
appear

4. These can loosely be associated the dimensions of
interpersonal agency and communion.

5. This solution was not a consequence of a higher order model,
but rather going back to the original data.

6. The Agency and Communion dimensions are formed from
lower level HICS but not from any one higher order factor.

7. Agency is also known as Getting Ahead; Communion as
Getting Along
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2-5-16

HICs sorted by Cohen d. From Revelle et al. (2023)

AGENCY
Curiosity
Science_Ability
Good_memory
Calmness
Thrill_Seeking
Self Confident
Leadership
Generates_Ideas
Not_anxious
No_social_anxiety
Competive
Entertaining
No_compliants
Experience_Seeking
Good_Attachment
No_guilt
Even_tempered
Identity
Exhibitionistic
Appearance
Reading
Moralistic 
Likes_Crowds
Accomplished
Empathy
Education
Easy_to_live_witjh
Virtuous
Not_Spontaneous
Impulse_Control
Likes_parties
Intellectual_Games
Trusting
Avoids_Trouble
Mastery
Likes_people
Culture
ImpressionManagment
Validity
Not_Autonomous
No_Hostility
Caring
Self_focus
Sensitive
COMMUNION

-1.0 -0.5 0.0 0.5

Hogan Personality Inventory HICs  (from Furnham)

1. Cohen d
(standardized mean
differences) for sex
differences on 44
HICs

2. Data for Hogan
Personality Inventory
(Hogan & Hogan,
1995, 2007) from
Furnham & Treglown
(2021).
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2-5-16

Table: Cohen ds and 95% confidence intervals select from 44 Hogan
HICs. The Communion and Agency composite scores are also
included.

Variable lower Cohen d upper Name of HIC Domain
H1a 0.11 0.22 0.32 Validity
H2a -0.14 -0.03 0.07 Empathy Adjustment
H5a -0.59 -0.48 -0.38 Calmness
H10a -0.43 -0.32 -0.22 Competive Ambition
H11a -0.51 -0.40 -0.30 Self Confident
H13a -0.51 -0.40 -0.30 Leadership
H16a -0.05 0.06 0.16 Likes parties Sociability
H21a -0.14 -0.03 0.07 Easy to live with Interpersonal Sensivity
H22a 0.36 0.46 0.57 Sensitive
H23a 0.22 0.33 0.43 Caring
H25a 0.16 0.26 0.37 No Hostility
H26a -0.21 -0.10 0.00 Moralistic Prudence
H29a 0.13 0.23 0.34 Not Autonomous
H33a -0.67 -0.57 -0.46 Science Ability Inquisitive
H34a -0.83 -0.72 -0.61 Curiosity
H35a -0.53 -0.42 -0.32 Thrill Seeking
H37a -0.50 -0.40 -0.29 Generates Ideas
H38a 0.10 0.21 0.31 Culture
H39a -0.14 -0.03 0.07 Education Learning Approach
H40a -0.65 -0.55 -0.44 Good memory
Agency -0.97 -0.87 -0.76 AGENCY
Communion 0.55 0.66 0.76 COMMUNION
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2-5-16

Summary of Agency and Communion

Table: Summary of Cohen d for Agency and Communion from each
study. Compare these aggregated scores with the absolute Cohen d. The
last three columns shows the Mahalobinis distances (MD), the common
language effect size (CL), U3 statistic and the correlation of agency and
communion for each study.

Inventory Agency Communion |̄d | MD CL U3 rAC
NEO1 -0.20 0.63 0.21 1.40 0.84 0.92
NEO2 -0.28 0.62 0.23 1.45 0.85 0.93

HPI -0.87 0.66 0.24 1.53 0.86 0.94
16PF -0.31 0.90 0.20 1.2 0.80 0.88 -.25
HPTI 0.54 0.49 0.17 0.96 0.75 0.83 -.29
MVPI -0.67 0.35 0.21 1.30 0.82 0.90

MVPI2 -0.65 0.40 0.20 1.21 0.80 0.89
HDS1 -0.23 0.14 0.08 0.50 0.64 0.69
HDS2 -0.43 0.40 0.19 0.71 0.69 0.76
HDS3 -0.40 0.34 0.17 0.64 0.67 0.74
Mean -0.47 0.44 0.19 1.09 0.77 0.85
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Summary

1. Although emphasized for 120 years, latent variable models are
not particularly helpful.

2. By forcing a true score model they prevent us from
discovering how item/scale specific variance relates to criteria.

3. By emphasizing theoretical purity over empirical utility, they
cause us to ignore the real power and utility of personality and
ability: To predict behavior.

4. It is time for us to abandon our beliefs in the tooth fairy and
the easter bunny and develop a real science of prediction.
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Conclusions

1. Luck, persistence and thinking about thing differently are
important to success.

2. The contributions of many students and colleagues is
greatfully acknowledged.

3. Many of those colleagues are from ISSID and other obscure
societies such as SMEP.

4. Although latent variables have had a long and honored history,
perhaps we should focus on what we we could do well which is
predict behavior.
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