
Exploratory and 
Confirmatory Factor 
models: Continued

Factors as models of data



Weighting items as 
summaries of data 

I. Conceptually, combine items/variables into 
weighted linear composites to allow simpler 
description of data

II. Scale scores are just unit weighted items

III.Component scores are “optimally weighted”

IV.Factor scores are estimates of scores based 
upon a latent model  
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Components as data summaries
I. Data level  

A.Components = XW  or CW-1 = X  

1. X is the matrix of data

2. W is a matrix of component weights

B. nCm = nXm mW’m 

C. This is a rotation of the data to allow for composite 
summaries

D.Weights can be -1, 0, 1 (item composites)

E. Weights can be found to maximize variance of C 3



Principal Components as 
summaries of data

I. Principal Components are those weighted components 
such that successive components have maximum 
variance 

II. Structure Level

A.Let X be zero centered (i.e., subtract means)

B. Cov = X’X/(n-1) = CC’

C. mCovm = mX’n nXm /(n-1) = mCm mC’m

D. If k < m then we can approximate  mCovm ≈ mCk kC’m
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Factors as models of data
I. Data level  

A.X ≈ S F + E

1. S is the matrix of factor scores

2. F is a matrix of factor loadings

3. E is a matrix of residuals 

B. nXm ≈ nSk kF’m + nEm

C. This is a regression model with two unknowns, the 
factor scores and the factor weights
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Factors as models of data

I. Structure Level

A.Let X be zero centered (i.e., subtract 
means)

B. C = X’X/(n-1) = FF’

C. mCm = mX’n nXm /(n-1) ≈ mFk kF’m + U2
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Determining 
communalities

I. Communality of an item is amount of 
variance that all of the factors account for in 
that item

II. If we know the communalities, then 
extracting the factors is straightforward 
(eigen value decomposition), but what is the 
communality?
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Alternative 
Communality estimates

I. Highest correlation

II. Squared multiple R (SMC) = 1 - diag(R-1)

III.Iterative 

A. initial estimate

B. extract F, then  find FF’ and use those values

C. extraction using eigen value decomposition

IV.Anything (for larger problems)
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The number of factors
I. Kaiser-Guttman rule: eigen value > 1

A. logic is that a component should account 
for more variance than a single variable

B. tends to suggest nv/3 and not be sensitive 
to the data

C. tends to be the default for many programs 
(but not R)
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Number of factors: 
continued

I. scree test

II. Parallel analysis

III. Velicer’s MAP (minimum average partial)

IV. Revelle/Rocklin Very Simple Structure

A.designed for low complexity problems 

B. (e.g., items with simple structure, perhaps 
circumplex structure)
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Real vs. Random
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Very Simple Structure
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Plots of scree
test.data <- Harman74.cor$cov
VSS.scree(test.data)

r.data <- cor(matrix(rnorm(24*145),ncol=24))
VSS.scree(r.data)

r.pc <- principal(r.data,24)
r.har <- principal(test.data,24)
plot(1:24,r.har$values,type="b")
points(1:24,r.pc$values,type="b",lty="dashed")

VSS.plot(VSS(test.data))



Rotation:Transformation

I. Factors as extracted are in order of variance 
accounted for.

A.optimal ordering for accounting for 
variance of covariance/correlation matrix

B. non-optimal for interpretability

II. Rotation to “Simple Structure”
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What is simple structure?

I. Simple in the eye of the beholder

II. Minimize number of paths

III. Maximize number of zero (or very small) 
loadings

IV.Orthogonal? Oblique?
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Rotation to simple structure
Original



Rotation to simple structure
Simple Structure



Rotation to simple structure
Original                 Rotated



Orthogonal rotations
I. Find a T such that 

A.Ft = T F

B. TT’ = I  (orthogonal rotations)

C. some function of Ft is maximized  

II. Quartimax: ∑∑p4 = where p = loading

A.Maximizes variance of squared loadings

III.VARIMAX = ∑∑p4 -  (1/k)∑f(∑vp2)2 

A.maximizes column (factor) variance of loadings
22



Orthogonal rotations

I. VARIMAX tends to equalize factors and will 
obscure a general factor

II. Quartimax tends to produce general factors 

III.Neither tend to produce bi-factor solutions

IV.Hand rotations can be done easily
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Why hand rotate?

I. Fun?

II. Maximize a particular criterion not available in 
standard packages

III.Create new criteria for structural test

A.e.g. Acton and Revelle tests for circumplex 
structure

B. http://personality-project.org/r/circumplex.html
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Hand rotation
function(f,angle,col1,col2)  {
   #hand rotate two factors from a loading matrix
   #see the GPArotation package for much more elegant 
procedures
     nvar<- dim(f)[2]
     rot<- matrix(rep(0,nvar*nvar),ncol=nvar)
     rot[cbind(1:nvar, 1:nvar)] <- 1
     theta<- 2*pi*angle/360
     rot[col1,col1]<- cos(theta)
     rot[col2,col2]<- cos(theta)
     rot[col1,col2]<- -sin(theta)
     rot[col2,col1]<- sin(theta)
     result <- f %*% rot
     return(result) }



Simple data, not rotated

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

Factor1

F
a
c
to
r2



Simple Structure
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Circumplex structure
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Dimensions of boxes
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Factors of boxes
    Factor1 Factor2 Factor3

V1   0.08    0.06    0.96  
V2   0.10    0.94    0.16  
V3   0.95    0.08   -0.02  
V4   0.10    0.77    0.60  
V5   0.89    0.05    0.36  
V6   0.84    0.50    0.05  
V7   0.17    0.22    0.92  
V8   0.20    0.95    0.02  
V9   0.95    0.02    0.02  
V10  0.79    0.43    0.39  



Orthogonal vs. Oblique
   Factor1 Factor2 Factor3
V1     0.00   -0.08    0.99
V2    -0.03    0.96    0.03
V3     0.99   -0.05   -0.12
V4    -0.05    0.72    0.51
V5     0.89   -0.12    0.29
V6     0.81    0.40   -0.09
V7     0.07    0.08    0.91
V8     0.08    0.98   -0.12
V9     0.99   -0.11   -0.07
V10    0.74    0.29    0.28

    Factor1 Factor2 Factor3
V1   0.08    0.06    0.96  
V2   0.10    0.94    0.16  
V3   0.95    0.08   -0.02  
V4   0.10    0.77    0.60  
V5   0.89    0.05    0.36  
V6   0.84    0.50    0.05  
V7   0.17    0.22    0.92  
V8   0.20    0.95    0.02  
V9   0.95    0.02    0.02  
V10  0.79    0.43    0.39  
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Box problem suggests factors are 
interpretable

• Thurston/Cattell showed that factors boxes 
and “plasmodes” recovered interpretable 
structure

• Overall showed that factor structure of books 
in his office had 3 factors, but simple 
structure suggested:
– text books (fat and big  (X + Y + Z)
– art books  (more square, but big on X/Y)
– novels (thin, X /Y  ≈ 5/9) 33



Factor analysis of mood

• What is the structure of affect?
• Limited number of variables taken from a 

larger set
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Structure of mood -
 how not to display data


 AFRAID     AT_EASE
   CALM    ENERGETI
  HAPPY
 LIVELY
 SLEEPY
  TENSE
  TIRED

    AFRAID
    1.000
   AT_EASE
   -0.209
  1.000
    CALM
   -0.157
  0.586
  1.000
  ENERGETI     0.019
  0.230
  0.056
  1.000
     HAPPY    -0.070
  0.452
  0.294
  0.595
  1.000
    LIVELY
    0.018
  0.255
  0.073
  0.778
  0.609
  1.000
    SLEEPY
    0.087
 -0.112
  0.031
 -0.457
 -0.264
 -0.405
  1.000
     TENSE
    0.397
 -0.337
 -0.332
  0.088
 -0.103
  0.084
  0.044
  1.000
     TIRED
    0.082
 -0.141
  0.012
 -0.484
 -0.297
 -0.439
  0.808
  0.044
  1.000
   UNHAPPY     0.350
 -0.283
 -0.187
 -0.185
 -0.314
 -0.187
  0.202
  0.360
  0.235



Structure of mood:
“Alabama need not come first”

 
 AFRAID     AT_EASE
   CALM    ENERGETI
  HAPPY
 LIVELY
 SLEEPY
  TENSE
  TIRED

    AFRAID    1.0
   AT_EASE   -0.2
    1.0
      CALM   -0.2
    0.6
    1.0
  ENERGETI    0.0
    0.2
    0.1
    1.0
     HAPPY   -0.1
    0.5
    0.3
    0.6
    1.0
    LIVELY    0.0
    0.3
    0.1
    0.8
    0.6
    1.0
    SLEEPY    0.1
   -0.1
    0.0
   -0.5
   -0.3
   -0.4
    1.0
     TENSE    0.4
   -0.3
   -0.3
    0.1
   -0.1
    0.1
    0.0
    1.0
     TIRED    0.1
   -0.1
    0.0
   -0.5
   -0.3
   -0.4
    0.8
    0.0
    1.0
   UNHAPPY    0.3
   -0.3
   -0.2
   -0.2
   -0.3
   -0.2
    0.2
    0.4
    0.2



Structure of mood data

ENERGETI LIVELY TIRED SLEEPY AFRAID TENSE AT_EASE CALM HAPPY
  ENERGETI 1
    LIVELY 0.8 1
     TIRED -0.5 -0.4 1
    SLEEPY -0.5 -0.4 0.8 1
    AFRAID 0 0 0.1 0.1 1
     TENSE 0.1 0.1 0 0 0.4 1
   AT_EASE 0.2 0.3 -0.1 -0.1 -0.2 -0.3 1
      CALM 0.1 0.1 0 0 -0.2 -0.3 0.6 1
     HAPPY 0.6 0.6 -0.3 -0.3 -0.1 -0.1 0.5 0.3 1
   UNHAPPY -0.2 -0.2 0.2 0.2 0.3 0.4 -0.3 -0.2 -0.3

NUMBER OF OBSERVATIONS: 3748



Correlation of mood data
possible structure

ENERGETI LIVELY TIRED SLEEPY AFRAID TENSE AT_EASE CALM HAPPY
  ENERGETI 1.0
    LIVELY 0.8 1.0
     TIRED -0.5 -0.4 1.0
    SLEEPY -0.5 -0.4 0.8 1.0
    AFRAID 0.0 0.0 0.1 0.1 1.0
     TENSE 0.1 0.1 0.0 0.0 0.4 1.0
   AT_EASE 0.2 0.3 -0.1 -0.1 -0.2 -0.3 1.0
      CALM 0.1 0.1 0.0 0.0 -0.2 -0.3 0.6 1.0
     HAPPY 0.6 0.6 -0.3 -0.3 -0.1 -0.1 0.5 0.3 1.0
   UNHAPPY -0.2 -0.2 0.2 0.2 0.3 0.4 -0.3 -0.2 -0.3

NUMBER OF OBSERVATIONS: 3748



Factor analysis 2 factor solution
FACTOR PATTERN

1 2 h2

ENERGETI -0.8 0.3 0.73
LIVELY -0.8 0.3 0.73
HAPPY -0.7 -0.1 0.50
TIRED 0.6 -0.3 0.45
SLEEPY 0.6 -0.3 0.45
TENSE 0.2 0.6 0.40
CALM -0.3 -0.6 0.45
AT_EASE -0.5 -0.5 0.50
AFRAID 0.2 0.4 0.20
UNHAPPY 0.4 0.3 0.25

VARIANCE EXPLAINED BY FACTORS3.0 1.50



2 factors of mood 
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2 factors of mood (rotated)
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Rotation as orthogonal 
transformation

                        1           2F1 F2 F1' F2'

ENERGETI -0.8 0.3 0.8 0.0
LIVELY -0.8 0.3 0.8 -0.1
HAPPY -0.7 -0.1 0.6 -0.4
TIRED 0.6 -0.3 -0.7 0.0
SLEEPY 0.6 -0.3 -0.6 0.0
TENSE 0.2 0.6 0.1 0.6
CALM -0.3 -0.6 0.0 -0.6
AT_EASE -0.5 -0.5 0.2 -0.7
AFRAID 0.2 0.4 0.0 0.4
UNHAPPY 0.4 0.3 -0.2 0.5

eigen values 3 1.5 2.7 1.8



Structure of Affect

• Is happy the opposite of sad?

• Is Positive Affect = - Negative Affect

• What are the dimensions of Affect

• 75 affect words collected over multiple 
studies for > 3800 subjects



AlertFull of Pep Lively EnergeticHappy Delighted Pleased SatisfiedAt EaseRelaxed Calm Content

Sleepy Sluggish Tired DrowsySad Blue Unhappy DepressedAfraid Scared Tense Nervous

Energetic 

Arousal

Low Energetic 

Arousal

Positive 

Affect

Negative 

Affect

Tense 

Arousal

Low Tense 

Arousal

.76.88 .89 .87

.92 .75 .88 .90

.86 .70 .82 .73

.84 .84 .81 .84.78 .80 .61 .70

.80.72 .65 .75

-.59-.38

-.36

.72 .77

.55 .29
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-.24-.39

-.09 .07 -.17



Structure of Affect
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Converting Cartesian loadings 
to  polar coordinates 

I. Sometimes simpler to organize factor pattern matrix if 
we think of it in polar coordinates

A.vector length (communality) = F12 + F22

B. vector angle (in a two space) =

1. angle = arccosine (F1/sqrt(F12 + F22) * sign (F2)

46



Representative MSQ items 
(arranged by angular location)

Item EA-PA TA-NA Angle
energetic 0.8 0.0 1
elated 0.7 0.0 2
excited 0.8 0.1 6
anxious 0.2 0.6 70
tense 0.1 0.7 85
distressed 0.0 0.8 93
frustrated -0.1 0.8 98
sad -0.1 0.7 101
irritable -0.3 0.6 114
sleepy -0.5 0.1 164
tired -0.5 0.2 164
inactive -0.5 0.0 177
calm 0.2 -0.4 298
relaxed 0.4 -0.5 307
at ease 0.4 -0.5 312
attentive 0.7 0.0 357
enthusiastic 0.8 0.0 358
lively 0.9 0.0 360



Threats to interpreting correlation 
and the benefits of structure 

• Correlations can be attenuated due to differences in skew 
(and error)

• Bi polar versus unipolar scales (e.g., of affect)
• How happy do you feel?

– Not at all 
 A  little

 Somewhat
  Very
• How sad do you feel?

– Not at all
 A little
 
 Somewhat
   Very
• How do you feel?

 very sad
 
 sad
 
 happy
        very happy
Unipolar scales allow data to speak for themselves



Simulated Example of unipolar 
scales and the problem of skew

• Consider X and Y as random normal variables
• Let X+ = X if X>0, 0 elsewhere
• Let X- =  X if X<0, 0 elsewhere
• Reversed (X+) = - X+
• Similarly for Y
• Examine the correlational structure
• Note that although X and -X correlate -1.0, X+ and X- 

correlate only -.43 and that X+ correlates with X+Y+ .66



Determining Structure: 
zeros and skew

X+ X- Y+ Y- X+Y+ X-Y- X+Y- X-Y+

X+ 1.00
X- -0.47 1.00
Y+ 0.03 -0.01 1.00
Y- 0.00 -0.03 -0.46 1.00
X+Y+ 0.65 -0.39 0.66 -0.39 1.00
X-Y- -0.40 0.63 -0.40 0.63 -0.46 1.00
X+Y- 0.63 -0.40 -0.39 0.66 0.00 0.02 1.00
X-Y+ -0.39 0.64 0.63 -0.40 0.00 0.00 -0.47 1.00



Factor analysis shows structure

1 2

POSX -0.01 -0.81 271
NEGX 0.04 0.80 87
POSY 0.80 -0.05 356
NEGY -0.80 0.00 180
POSXY 0.56 -0.59 314
NEGXY -0.55 0.57 136
POSXNEGY-0.59 -0.55 227
NEGXPOSY0.58 0.55 43



Structural representation
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Skew and zeros:
determining structure

Y+ X+Y+ X+ X+Y- r(Y-) r(X-Y-) r(X-) X-Y+

Y 1.00
X+Y+ 0.66 1.00
X+ 0.03 0.65 1.00
X+Y- -0.39 0.00 0.63 1.00
r(Y-) 0.46 0.39 0.00 -0.66 1.00
r(X-Y-) 0.40 0.46 0.40 -0.02 0.63 1.00
r(X-) 0.01 0.39 0.47 0.40 -0.03 0.63 1.00
X-Y+ 0.63 0.00 -0.39 -0.47 0.40 0.00 -0.64 1.00



Factor analysis shows structure

1 2 angle

POSX -0.01 0.81 89
POSY 0.80 0.05 4
POSXY 0.56 0.59 46
POSXNEGY-0.59 0.55 137
NEGXPOSY0.58 -0.55 313
REVNEGX-0.04 0.80 87
REVNEGY0.80 0.00 90
REVNGXY0.55 0.57 46
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Factor analysis shows structure
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Hyperplanes and  Zeros:
Defining variables by what they are not

• Tendency to interpret variables in terms of their 
patterns of high correlations

• But large correlations may be attenuated by 
skew or error

• Correlation of .7 is an angle of 45 degrees => 
lots of room for misinterpretation!

• Zero correlations reflect what a variable is not
– Zeros provide definition by discriminant validity 



Other rotations/extractions

• Extraction
– Maximum Likelihood
– Minimum Residual
– Centroid
– Principal Components (not factors!, not latent!)

• Transformations (not necessarily orthogonal)
– Procrustes (force to a solution) 
– Promax

57



Factors and Factor scores 

• The indeterminacy of factor scores
– at the data level the model is not defined and 

factor scores are estimated, not found
– as number of factors increases and sample size 

decreases, indeterminacy increases

• components can be found directly from the 
data (which appeals to some)
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Hierarchical models

• Ability tests typically analyzed in terms of 
hierarchical models
– g -

• gf, gc, ...
• matrices, reasoning, working memory, ...

• Hierarchical models becoming more accepted 
in non-cognitive domains
– N

• Anxiety, Depression, Anger 
• test anxiety, public speaking, ...
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Hierarchical models

• Allow first order factors to correlate
– find correlations of these factors
– factor the correlation matrix to get second order 

factors,
– some (i.e., Cattell) would continue on up to 3rd 

and fourth level factors
• In item/scale construction, technique is to 

form homogeneous item composites and then 
factor them
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