Exploratory and
Confirmatory Factor
models: Continued

Factors as models of data




Weighting 1tems as
summaries of data

I. Conceptually, combine items/variables into
weighted linear composites to allow simpler
description of data

II. Scale scores are just unit weighted items

III.Component scores are “optimally weighted”

IV .Factor scores are estimates of scores based
upon a latent model




Components as data summaries

I. Data level
A.Components = XW or CW-1 =X
1. X 1s the matrix of data
2. W 1s a matrix of component weights
B. 1Cm = nXm mW'm

C. This 1s a rotation of the data to allow for composite
summaries

D. Weights can be -1, 0, 1 (item composites)

E. Weights can be found to maximize variance of C .




Principal Components as
summaries of data

I. Principal Components are those weighted components
such that successive components have maximum
variance

. Structure Level

A.Let X be zero centered (i.e., subtract means)
B.Cov=X’X/(n-1) =CC’
C. mCOVm — mX,n nXm /(Il—l) — mCm mC’m

D.If k < m then we can approximate nCovm= mCk kC'm
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Factors as models of data

I. Data level
A X=SF+E
1. S 1s the matrix of factor scores
2. F 1s a matrix of factor loadings
3. E 1s a matrix of residuals
B. 1 Xm = 0S5k kF’'m + nEm

C. This 1s a regression model with two unknowns, the
factor scores and the factor weights




Factors as models of data

I. Structure Level

A.Let X be zero centered (1.e., subtract
means)

B.C = X’X/(n-1) = FF’
C. mCm = mX,n nXm /(n'l) ~ ka kF,m+ U2




Determining
communalities

I. Communality of an item 1s amount of
variance that all of the factors account for in
that 1tem

I1. If we know the communalities, then
extracting the factors 1s straightforward
(eigen value decomposition), but what 1s the
communality?




Alternative
Communality estimates

I. Highest correlation
II. Squared multiple R (SMC) =1 - diag(R-1)
III.Iterative
A.1nitial estimate
B. extract F, then find FF’ and use those values
C. extraction using eigen value decomposition

IV.Anything (for larger problems)




The number of factors

I. Kaiser-Guttman rule: eigen value > 1

A.logic 1s that a component should account
for more variance than a single variable

B. tends to suggest nv/3 and not be sensitive
to the data

C. tends to be the default for many programs
(but not R)




Number of factors:
continued

I. scree test

II. Parallel analysis

III. Velicer’s MAP (minimum average partial)

IV. Revelle/Rocklin Very Simple Structure
A.designed for low complexity problems

B. (e.g., items with simple structure, perhaps
circumplex structure)
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Harmon’s 24 variables
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Real vs. Random

r.nar$values
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Eigen values of a random matrix
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Very Simple Structure Fit
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Plots of scree

test.data <- Harman74.cor$cov
VSS.scree(test.data)

r.data <- cor(matrix(rnorm(24*145),ncol=24))
VSS.scree(r.data)

r.pc <- principal(r.data,24)

r.har <- principal(test.data,24)
plot(1:24,r.har$values,type="b")
points(1:24,r.pc$values,type="b",lty="dashed")

VSS.plot(VSS(test.data))




Rotation: Transtformation

I. Factors as extracted are in order of variance
accounted for.

A.optimal ordering for accounting for
variance of covariance/correlation matrix

B. non-optimal for interpretability

I1. Rotation to “Simple Structure”
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What 1s simple structure?

I. Simple 1n the eye of the beholder

II. Minimize number of paths

III. Maximize number of zero (or very small)
loadings

IV.Orthogonal? Oblique?

18




Rotation to simple structure
Original




Rotation to simple structure
Simple Structure
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Rotation to simple structure
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Orthogonal rotations

I. Find a T such that
A.Fi=TF
B.TT’ =1 (orthogonal rotations)

C. some function of F; 1s maximized

. Quartimax: > > p* = where p = loading

A.Maximizes variance of squared loadings

.VARIMAX = >>p*- (1/k)2#(2vp?)?

A.maximizes column (factor) variance of loadings
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Orthogonal rotations

I. VARIMAX tends to equalize factors and will
obscure a general factor

II. Quartimax tends to produce general factors

III.Neither tend to produce bi-factor solutions

IV.Hand rotations can be done easily
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Why hand rotate?

I. Fun?

II. Maximize a particular criterion not available in
standard packages

III.Create new criteria for structural test

A.e.g. Acton and Revelle tests for circumplex
structure

B. http://personality-project.org/r/circumplex.html
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Hand Rotation
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Hand rotation

function(f,angle,coll,col2) {
#hand rotate two factors from a loading matrix
#see the GPArotation package for much more elegan
procedures
nvar<- dim(f)[2]
rot<- matrix(rep(0,nvar*nvar),ncol=nvar)
rot[cbind(l:nvar, l:nvar)] <- 1
theta<- 2*pi*angle/360
rot[coll,coll]<- cos(theta)
rot[col2,co0l2]<- cos(theta)
rot[coll,col2]<- -sin(theta)
rot[col2,coll]<- sin(theta)
result <- f %*% rot
return(result) }




Simple data, not rotated
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Simple Structure
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Circumplex structure
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Dimensions of boxes
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Factors of boxes

Factorl Factor2 Factor3

V1
V2
V3
V4
V5
Vo6
V7
V8
V9

V10 0.79 0.43

0.08
0.10
0.95
0.10
0.89
0.84
0.17
0.20
0.95

0.06
0.94
0.08
0.77
0.05
0.50
0.22
0.95
0.02

0.96
0.16

-0.02

0.60
0.36
0.05
0.92
0.02
0.02
0.39




Orthogonal vs. Oblique

Factorl Factor2 Factor3 Factorl Factor2 Factor3
vVl 0.08 0.06 0.96 Vvl 0.00 -0.08 0.99
V2 0.10 0.949 0.16 V2 -0.03 0.96 0.03
V3 0.95 0.08 -0.02 V3 0.99 -0.05 -0.12
V4 0.10 0.77 0.60 V4 -0.05 0.72 0.51
V5 0.89 0.05 0.36 V5 0.89 -0.12 0.29
V6 0.84 0.50 0.05 ve 0.81 0.40 -0.09
V7 0.17 0.22 0.92 V7 0.07 0.08 0.91
V8 0.20 0.95 0.02 Vv8 0.08 0.98 -0.12
V9 0.95 0.02 0.02 v9 0.99 -0.11 -0.07
V10 0.79 0.43 0.39 V10 0.74 0.29 0.28




Box problem suggests tactors are
interpretable

e Thurston/Cattell showed that factors boxes
and “plasmodes” recovered interpretable
structure

e Overall showed that factor structure of books
in his office had 3 factors, but simple
structure suggested:

— text books (fat and big (X +Y + 7))
— art books (more square, but big on X/Y)
— novels (thin, X /Y = 5/9) 33




Factor analysis of mood

e What is the structure of affect?

e Limited number of variables taken from a

larger set
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Structure of mood -
how not to display data

AFRAID AT_EASE CALM ENERGETI HAPPY LIVELY SLEEPY TENSE TIRED

AFRAID 1.000

AT_EASE -0.209 1.000

CALM -0.157 0.586 1.000
ENERGETI 0.019 0.230 0.056 1.000

HAPPY -0.070 0.452 0.294 0.595 1.000

LIVELY 0.018 0.255 0.073 0.778 0.609 1.000

SLEEPY 0.087 -0.112 0.031 -0.457 -0.264 -0.405 1.000

TENSE 0.397 -0.337 -0.332 0.088 -0.103 0.084 0.044 1.000

TIRED 0.082 -0.141 0.012 -0.484 -0.297 -0.439 0.808 0.044 1.000
UNHAPPY 0.350 -0.283 -0.187 -0.185 -0.314 -0.187 0.202 0.360 0.235




Structure of mood:
“Alabama need not come first”

AFRAID AT_EASE CALM ENERGETI HAPPY LIVELY SLEEPY TENSE TIRED
AFRAID 1.0
AT_EASE -0.2 1.0
CALM  -0.2 0.6 1.0
ENERGETI 0.0 0.2 0.1 1.0
HAPPY  -0.1 0.5 0.3 0.0 1.0
LIVELY 0.0 0.3 0.1 0.8 0.6 1.0
SLEEPY 0.1 -0.1 0.0 -0.5 -0.3 -0.4 1.0
TENSE 0.4 -0.3 -0.3 0.1 -0.1 0.1 0.0 1.0
TIRED 0.1 -0.1 0.0 -0.5 -0.3 -0.4 0.8 0.0 1.0
UNHAPPY 0.3 -0.3 -0.2 -0.2 -0.3 -0.2 0.2 0.4 0.2




Structure of mood data

ENERGET] LIVELY TIRED SLEEPY AFRAID TENSE AT_EASE CALM HAPPY

ENERGETI 1

LIVELY 0.8 1

TIRED -0.5 -0.4 1

SLEEPY -0.5 -0.4 0.8 1

AFRAID 0 0 0.1 0.1 1

TENSE 0.1 0.1 0 0 0.4
AT_EASE 0.2 0.3 -0.1 -0.1 -0.2

CALM 0.1 0.1 0 0 -0.2

HAPPY 0.6 0.6 -0.3 -0.3 -0.1
UNHAPPY -0.2 -0.2 0.2 0.2 0.3

NUMBER OF OBSERVATIONS: 3748
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ENERGETI
LIVELY
TIRED
SLEEPY
AFRAID
TENSE
AT_EASE
CALM
HAPPY
UNHAPPY

NUMBER OF OBSERVATIONS: 3748

Correlation of mood data
possible structure

ENERGET] LIVELY TIRED

SLEEPY AFRAID TENSE AT_EASE CALM HAPPY

1.0

0.8 1.0

-0.5 -0.4 1.0

-0.5 -0.4 0.8 1.0

0.0 0.0 0.1 0.1 1.0

0.1 0.1 0.0 0.0 0.4 1.0

0.2 0.3 -0.1 -0.1 -0.2 -0.3 1.0
0.1 0.1 0.0 0.0 -0.2 -0.3 0.6 1.0
0.6 0.6 -0.3 -0.3 -0.1 -0.1 0.5 0.3
-0.2 -0.2 0.2 0.2 0.3 0.4 -0.3 -0.2

1.0
-0.3




Factor analysis 2 factor solution
FACTOR PATTERN

1 2 h2
ENERGETI -0.8 0.3 0.73
LIVELY -0.8 0.3 0.73
HAPPY -0.7 -0.1 0.50
TIRED 0.6 -0.3 0.45
SLEEPY 0.6 -0.3 0.45
TENSE 0.2 0.6 0.40
CALM -0.3 -0.0 0.45
AT_EASE -0.5 -0.5 0.50
AFRAID 0.2 0.4 Q.20
UNHAPPY 0.4 0.3 Q.25
VARIANCE EXP 3.0 1.50
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2 factors of mood (rotated)
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Rotation as orthogonal

transformation

F1 F2 F1' F2'
ENERGETI -0.8 0.3 0.8 0.0
LIVELY -0.8 0.3 0.8 -0.1
HAPPY -0.7 -0.1 0.6 -0.4
TIRED 0.6 -0.3 -0.7 0.0
SLEEPY 0.6 -0.3 -0.6 0.0
TENSE 0.2 0.6 0.1 0.6
CALM -0.3 -0.6 0.0 -0.6
AT_EASE -0.5 -0.5 0.2 -0.7
AFRAID 0.2 0.4 0.0 0.4
UNHAPPY 0.4 0.3 -0.2 0.5

eigen values 3 1.5 2.7 1.8




Structure of Affect

® Is happy the opposite of sad?
@ Is Positive Affect = - Negative Affect
® What are the dimensions of Affect

@ /5 affect words collected over multiple
studies for > 3800 subjects




Relaxed | | Calm | | Content ” At Ease | | Happy | | Delighted | | Pleased | | Satisfied Full of Pep | | Lively | | Energetic | |Alen|
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Affect

Low Tense
Arousal
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Structure of Affect
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Converting Cartesian loadings
to polar coordinates

I. Sometimes simpler to organize factor pattern matrix if
we think of i1t in polar coordinates

A.vector length (communality) = Fi2 + F»?2
B. vector angle (in a two space) =

1. angle = arccosine (Fi1/sqrt(Fi? + F22) * sign (F»)




Representative MSQ 1tems
(arranged by angular location)

Item EA-PA TA-NA Angle

energetic 0.8 0.0 1
elated 0.7 0.0 2
excited 0.8 0.1 6
anxious 0.2 0.6 70
tense 0.1 0.7 85
distressed 0.0 0.8 93
frustrated -0.1 0.8 98
sad -0.1 0.7 101
irritable -0.3 0.6 114
sleepy -0.5 0.1 164
tired -0.5 0.2 164
inactive -0.5 0.0 177
calm 0.2 -04 298
relaxed 04 -0.5 307
at ease 0.4 -0.5 312
attentive 0.7 0.0 357
enthusiastic 0.8 0.0 358

lively 0.9 0.0 360




Threats to interpreting correlation
and the benefits of structure

e (Correlations can be attenuated due to differences in skew
(and error)

e Bi polar versus unipolar scales (e.g., of affect)

 How happy do you feel?
— Not at all A little Somewhat Very

e How sad do you feel?
— Not at all A little Somewhat Very

 How do you feel?
very sad sad happy very happy
Unipolar scales allow data to speak for themselves




Simulated Example of unipolar
scales and the problem of skew

Consider X and Y as random normal variables
Let X+ = X 1f X>0, O elsewhere

Let X- = X if X<0, O elsewhere

Reversed (X+) = - X+

Similarly for Y

Examine the correlational structure

Note that although X and -X correlate -1.0, X+ and X-
correlate only -.43 and that X+ correlates with X+Y+ .66




X+Y+
X-Y-
X+Y-
X-Y+

Determining Structure:

X+

1.00
-0.47
0.03
0.00
0.65
-0.40
0.63
-0.39

zeros and skew

X-

1.00
-0.01
-0.03
-0.39

0.63
-0.40

0.64

Y+

1.00
-0.46
0.66
-0.40
-0.39
0.63

Y-

1.00
-0.39
0.63
0.66
-0.40

X+Y+

1.00
-0.46
0.00
0.00

X-Y-

1.00
0.02
0.00

X+Y-

1.00
-0.47

X-Y+

1.00




Factor analysis shows structure

POSX
NEGX
POSY
NEGY
POSXY
NEGXY
POSXN
NEGXP

1

-0.01
0.04
0.80

-0.80
0.56

-0.55

-0.59
0.58

2

-0.81
0.80
-0.05
0.00
-0.59
0.57
-0.55
0.55

271

87
356
180
314
136
227

43




Structural representation

NEGX
NEGXY NEGXPOSY
0.5 —
2.0 _NEGY i
0.5 OSXNEGY a
POSX .
| |




Skew and zeros:
determining structure

Y+ X+Y+ X+ X+Y-  r(Y-)  r(X-Y-) r(X-) X-Y+

Y 1.00
X+Y+ 0.6 1.00
X+ 0.03 0.65 1.00

X+Y-  -0.39 0.00 0.e3 1.00

r(Y-) 0.46 0.39 0.00 -0.66 1.00

r(Xx-y-) 0.40 0.46 0.40 -0.02 0.63 1.00

r(X-) 0.01 0.39 047 040 -0.03 0.63 1.00
X-Y+ 0.63 0.00 -0.39 -0.47 0.40 0.00 -0.64 1.00




Factor analysis shows structure

T 2 angle

POSX -0.01 0.81 39
POSY 0.80 0.05 4
POSXY 0.56 0.59 46
POSXN -0.59 0.55 137
NEGXP 0.58 -0.55 313
REVNE -0.04 0.80 87
REVNE 0.80 0.00 90
REVNG 0.55 0.57 46




Factor analysis shows structure

1.0 I I
RE V NPEGXK.,
POSXNEGY REwRdXY
0.5 -
P
0.0 -
-0.5 NEGXPOS 7
l l l




Hyperplanes and Zeros:

Defining variables by what they are not

Tendency to interpret variables in terms of their
patterns of high correlations

But large correlations may be attenuated by
skew or error

Correlation of .7 1s an angle of 45 degrees =>
lots of room for misinterpretation!

Z.ero correlations reflect what a variable 1s not
— Zeros provide definition by discriminant validity




Other rotations/extractions

e Extraction
— Maximum Likelihood
— Minimum Residual
— Centroid

— Principal Components (not factors!, not latent!)

e Transformations (not necessarily orthogonal)

— Procrustes (force to a solution)

— Promax
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Factors and Factor scores

* The indeterminacy of factor scores

— at the data level the model is not defined and
factor scores are estimated, not found

— as number of factors increases and sample size
decreases, indeterminacy increases

e components can be found directly from the
data (which appeals to some)
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Hierarchical models

» Ability tests typically analyzed in terms of
hierarchical models
— g -
e of, gc, ...
* matrices, reasoning, working memory, ...
e Hierarchical models becoming more accepted
in non-cognitive domains
— N
* Anxiety, Depression, Anger

59
e test anxiety, public speaking, ...




Hierarchical models

o Allow first order factors to correlate
— find correlations of these factors

— factor the correlation matrix to get second order
factors,

— some (i.e., Cattell) would continue on up to 3rd
and fourth level factors

e In item/scale construction, technique 1s to
form homogeneous item composites and then
factor them
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