
Appendix–1

Matrix Algebra in R

William Revelle
Northwestern University

January 2, 2007

Prepared as part of a course on Latent Variable Modeling, Winter, 2007
and as a supplement to the Guide to R for psychologists.
email comments to: revelle@northwestern.edu

1 Vectors 2
1.1 vector multiplication . 3
1.2 Simple statistics using vectors . 4
1.3 Combining vectors . 5

2 Matrices 6
2.1 Matrix addition . 7
2.2 Matrix multiplication . 8
2.3 Finding and using the diagonal . 9
2.4 The Identity Matrix . 10
2.5 Matrix Inversion . 10

3 Matrix operations for data manipulation 11
3.1 matrix operations on the raw data . 12
3.2 matrix operations on the correlation matrix . 13
3.3 Using matrices to find test reliability . 13

4 Multiple correlation 14
4.1 Non optimal weights and the goodness of fit . 15

1

http://personality-project.org/revelle.html
http://personality-project.org/revelle/syllabi/454.syllabus
http://personality-project.org/r/r.guide.html
mailto:revelle@northwestern.edu

Much of psychometrics in particular, and psychological data analysis in general consists of
operations on vectors and matrices. This appendix offers a quick review of matrix operations with
a particular emphasis upon how to do matrix operations in R. For more information on how to
use R, consult the short guide to R for psychologists (at http://personality-project.org/r/
r.guide.html) or the even shorter guide

1 Vectors

A vector is a one dimensional array of n numbers. Basic operations on a vector are addition and
subtraction. Multiplication is somewhat more complicated, for the order in which two vectors are
multiplied changes the result. That is AB 6= BA.

Consider V1 = the first 10 integers, and V2 = the next 10 integers:

> V1 <- as.vector(seq(1, 10))

[1] 1 2 3 4 5 6 7 8 9 10

> V2 <- as.vector(seq(11, 20))

[1] 11 12 13 14 15 16 17 18 19 20

We can add a constant to each element in a vector

> V4 <- V1 + 20

[1] 21 22 23 24 25 26 27 28 29 30

or we can add each element of the first vector to the corresponding element of the second vector

> V3 <- V1 + V2

[1] 12 14 16 18 20 22 24 26 28 30

Strangely enough, a vector in R is dimensionless, but it has a length. If we want to multiply
two vectors, we first need to think of the vector either as row or as a column. A column vector
can be made into a row vector (and vice versa) by the transpose operation. While a vector has
no dimensions, the transpose of a vector is two dimensional! It is a matrix with with 1 row and
n columns. (Although the dim command will return no dimensions, in terms of multiplication, a
vector is a matrix of n rows and 1 column.)

Consider the following:

> dim(V1)

NULL

> length(V1)

[1] 10

> dim(t(V1))

[1] 1 10

> dim(t(t(V1)))

[1] 10 1

> TV <- t(V1)

2

http://personality-project.org/r/r.guide.html
http://personality-project.org/r/r.guide.html
http://personality-project.org/r/r.guide.html
http://personality-project.org/r/r.205.tutorial.html

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10

> t(TV)

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10

1.1 vector multiplication

Just as we can add a number to every element in a vector, so can we multiply a number (a ”scaler”)
by every element in a vector.

> V2 <- 4 * V1

[1] 4 8 12 16 20 24 28 32 36 40

To multiply two vectors, we can find either the ”inner” or the ”outer” product. If we multiple a
row vector by a column vector, we find the ”inner-product” which will be the sum of the products
of the corresponding elements:

∑N
i=1 V 1i ∗ V 2i =

> t(V1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 4 8 12 16 20 24 28 32 36 40

> in.prod <- t(V1) %*% V2

[,1]
[1,] 1540

Note that the inner product of two vectors is of length =1 but is a matrix with 1 row and 1 column.
But a column vector by a row vector produces the ”outer product”which will be a matrix where

each element is the product of the corresponding rows and columns of the two vectors. (Known
to most school children as a multiplication table.)

> in.prod <- V1 %*% t(V2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 4 8 12 16 20 24 28 32 36 40
[2,] 8 16 24 32 40 48 56 64 72 80
[3,] 12 24 36 48 60 72 84 96 108 120
[4,] 16 32 48 64 80 96 112 128 144 160
[5,] 20 40 60 80 100 120 140 160 180 200
[6,] 24 48 72 96 120 144 168 192 216 240
[7,] 28 56 84 112 140 168 196 224 252 280
[8,] 32 64 96 128 160 192 224 256 288 320
[9,] 36 72 108 144 180 216 252 288 324 360
[10,] 40 80 120 160 200 240 280 320 360 400

3

1.2 Simple statistics using vectors

Although there are built in functions in R to do most of our statistics, it is useful to understand
how these operations can be done using vector and matrix operations. Here we consider how to
find the mean of a vector, remove it from all the numbers, and then find the average squared
deviation from the mean (the variance).

Consider the mean of all numbers in a vector. To find this we just need to add up the numbers
(the inner product of the vector with a vector of 1’s) and then divide by n (multiply by the scaler
1/n). First we create a vector of 1s by using the repeat operation.

> V <- V1

[1] 1 2 3 4 5 6 7 8 9 10

> one <- rep(1, length(V))

[1] 1 1 1 1 1 1 1 1 1 1

> sum.V <- t(one) %*% V

[,1]
[1,] 55

> mean.V <- sum.V * (1/length(V))

[,1]
[1,] 5.5

> mean.V <- t(one) %*% V * (1/length(V))

[,1]
[1,] 5.5

> mean.V <- t(one) %*% V/length(V)

[,1]
[1,] 5.5

The variance is the average squared deviation from the mean. To find the variance, we first
find deviation scores by subtracting them mean from each value of the vector. Then, to find the
sum of the squared deviations take the inner product of the result. This Sum of Squares becomes a
variance if we divide by the degrees of freedom (n-1) to get an unbiased estimate of the population
variance). First we find the mean centered vector:

> V - mean.V

[1] -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5

And then we find the variance as the mean square by taking the inner product:

> Var.V <- t(V - mean.V) %*% (V - mean.V) * (1/(length(V) - 1))

[,1]
[1,] 9.166667

Compare these results with the more typical scale, mean and var operations:

> scale(V, scale = FALSE)

4

[,1]
[1,] -4.5
[2,] -3.5
[3,] -2.5
[4,] -1.5
[5,] -0.5
[6,] 0.5
[7,] 1.5
[8,] 2.5
[9,] 3.5
[10,] 4.5
attr(,"scaled:center")
[1] 5.5

> mean(V)

[1] 5.5

> var(V)

[1] 9.166667

1.3 Combining vectors

We can form more complex data structures than vectors by combining the vectors, either by
columns or by rows. The resulting data structure is a matrix.

> Xc <- cbind(V1, V2, V3)

V1 V2 V3
[1,] 1 4 12
[2,] 2 8 14
[3,] 3 12 16
[4,] 4 16 18
[5,] 5 20 20
[6,] 6 24 22
[7,] 7 28 24
[8,] 8 32 26
[9,] 9 36 28
[10,] 10 40 30

> Xr <- cbind(V1, V2, V3)

V1 V2 V3
[1,] 1 4 12
[2,] 2 8 14
[3,] 3 12 16
[4,] 4 16 18
[5,] 5 20 20
[6,] 6 24 22
[7,] 7 28 24
[8,] 8 32 26
[9,] 9 36 28
[10,] 10 40 30

> dim(Xc)

5

[1] 10 3

> dim(Xr)

[1] 10 3

2 Matrices

A matrix is just a two dimensional (rectangular) organization of numbers. It is a vector of vectors.
For data analysis, the typical data matrix is organized with columns representing different variables
and rows containing the responses of a particular subject. Thus, a 10 x 4 data matrix (10 rows,
4 columns) would contain the data of 10 subjects on 4 different variables. Note that the matrix
operation has taken the numbers 1 through 40 and organized them column wise. That is, a matrix
is just a way (and a very convenient one at that) of organizing a vector.

R provides numeric row and column names (e.g., [1,] is the first row, [,4] is the fourth column,
but it is useful to label the rows and columns to make the rows (subjects) and columns (variables)
distinction more obvious.

> Xij <- matrix(seq(1:40), ncol = 4)

[,1] [,2] [,3] [,4]
[1,] 1 11 21 31
[2,] 2 12 22 32
[3,] 3 13 23 33
[4,] 4 14 24 34
[5,] 5 15 25 35
[6,] 6 16 26 36
[7,] 7 17 27 37
[8,] 8 18 28 38
[9,] 9 19 29 39
[10,] 10 20 30 40

> rownames(Xij) <- paste("S", seq(1, dim(Xij)[1]), sep = "")

[1] "S1" "S2" "S3" "S4" "S5" "S6" "S7" "S8" "S9" "S10"

> colnames(Xij) <- paste("V", seq(1, dim(Xij)[2]), sep = "")

[1] "V1" "V2" "V3" "V4"

> Xij

V1 V2 V3 V4
S1 1 11 21 31
S2 2 12 22 32
S3 3 13 23 33
S4 4 14 24 34
S5 5 15 25 35
S6 6 16 26 36
S7 7 17 27 37
S8 8 18 28 38
S9 9 19 29 39
S10 10 20 30 40

Just as the transpose of a vector makes a column vector into a row vector, so does the transpose
of a matrix swap the rows for the columns. Note that now the subjects are columns and the
variables are the rows.

6

> t(Xij)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
V1 1 2 3 4 5 6 7 8 9 10
V2 11 12 13 14 15 16 17 18 19 20
V3 21 22 23 24 25 26 27 28 29 30
V4 31 32 33 34 35 36 37 38 39 40

2.1 Matrix addition

The previous matrix is rather uninteresting, in that all the columns are simple linear sums of the
first column. A more typical matrix might be formed by sampling from the digits 0-9. For the
purpose of this demonstration, we will set the random number seed to a memorable number so
that it will yield the same answer each time.

> set.seed(42)

> Xij <- matrix(sample(seq(0, 9), 40, replace = TRUE), ncol = 4)

> rownames(Xij) <- paste("S", seq(1, dim(Xij)[1]), sep = "")

> colnames(Xij) <- paste("V", seq(1, dim(Xij)[2]), sep = "")

> print(Xij)

V1 V2 V3 V4
S1 9 4 9 7
S2 9 7 1 8
S3 2 9 9 3
S4 8 2 9 6
S5 6 4 0 0
S6 5 9 5 8
S7 7 9 3 0
S8 1 1 9 2
S9 6 4 4 9
S10 7 5 8 6

Just as we could with vectors, we can add, subtract, muliply or divide the matrix by a scaler
(a number with out a dimension).

> Xij + 4

V1 V2 V3 V4
S1 13 8 13 11
S2 13 11 5 12
S3 6 13 13 7
S4 12 6 13 10
S5 10 8 4 4
S6 9 13 9 12
S7 11 13 7 4
S8 5 5 13 6
S9 10 8 8 13
S10 11 9 12 10

> round((Xij + 4)/3, 2)

V1 V2 V3 V4
S1 4.33 2.67 4.33 3.67
S2 4.33 3.67 1.67 4.00
S3 2.00 4.33 4.33 2.33

7

S4 4.00 2.00 4.33 3.33
S5 3.33 2.67 1.33 1.33
S6 3.00 4.33 3.00 4.00
S7 3.67 4.33 2.33 1.33
S8 1.67 1.67 4.33 2.00
S9 3.33 2.67 2.67 4.33
S10 3.67 3.00 4.00 3.33

We can also multiply each row (or column, depending upon order) by a vector.

> V

[1] 1 2 3 4 5 6 7 8 9 10

> Xij * V

V1 V2 V3 V4
S1 9 4 9 7
S2 18 14 2 16
S3 6 27 27 9
S4 32 8 36 24
S5 30 20 0 0
S6 30 54 30 48
S7 49 63 21 0
S8 8 8 72 16
S9 54 36 36 81
S10 70 50 80 60

2.2 Matrix multiplication

Matrix multiplication is a combination of multiplication and addition. Consider our matrix Xij
with 10 rows of 4 columns. Call an individual element in this matrix xij. We can find the sums
for each column of the matrix by multiplying the matrix by our ”one” vector with Xij. That is,
we can find

∑N
i=1 Xij for the j columns, and then divide by the number (n) of rows. (Note that

we can get the same result by finding colMeans(Xij).
We can use the dim function to find out how many cases (the number of rows) or the number of

variables (number of columns). dim has two elements: dim(Xij)[1] = number of rows, dim(Xij)[2]
is the number of columns.

> dim(Xij)

[1] 10 4

> n <- dim(Xij)[1]

[1] 10

> X.means <- t(one) %*% Xij/n

V1 V2 V3 V4
[1,] 6 5.4 5.7 4.9

> colMeans(Xij)

V1 V2 V3 V4
6.0 5.4 5.7 4.9

8

Variances and covariances are measures of dispersion around the mean. We find these by first
subtracting the means from all the observations. This means centered matrix is the original matrix
minus a matrix of means. To make them have the same dimensions we premultiply the means
vector by a vector of ones.

> one %*% X.means

V1 V2 V3 V4
[1,] 6 5.4 5.7 4.9
[2,] 6 5.4 5.7 4.9
[3,] 6 5.4 5.7 4.9
[4,] 6 5.4 5.7 4.9
[5,] 6 5.4 5.7 4.9
[6,] 6 5.4 5.7 4.9
[7,] 6 5.4 5.7 4.9
[8,] 6 5.4 5.7 4.9
[9,] 6 5.4 5.7 4.9
[10,] 6 5.4 5.7 4.9

To find the variance/covariance matrix, we can first find the the inner product of the means
centered matrix Xij - X.means t(Xij-X.means) with (Xij-X.means) and divide by n-1. We can
compare this result to the result of the cov function (the normal way to find covariances).

> X.cov <- t(Xij - one %*% X.means) %*% (Xij - one %*% X.means)/(n - 1)

> round(X.cov, 2)

V1 V2 V3 V4
V1 7.33 0.11 -3.00 3.67
V2 0.11 8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68 1.63
V4 3.67 -0.18 1.63 11.43

> round(cov(Xij), 2)

V1 V2 V3 V4
V1 7.33 0.11 -3.00 3.67
V2 0.11 8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68 1.63
V4 3.67 -0.18 1.63 11.43

2.3 Finding and using the diagonal

Some operations need to find just the diagonal. For instance, the diagonal of the matrix X.cov
(found above) contains the variances of the items. To extract just the diagonal, or create a
matrix with a particular diagonal we use the diag command. We can convert the covariance
matrix X.cov to a correlation matrix X.cor by pre and post multiplying the covariance matrix
with a diagonal matrix containing the reciprocal of the standard deviations (square roots of the
variances). Compare this to the standard command for finding correlations.

> round(X.cov, 2)

V1 V2 V3 V4
V1 7.33 0.11 -3.00 3.67
V2 0.11 8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68 1.63
V4 3.67 -0.18 1.63 11.43

9

> round(diag(X.cov), 2)

V1 V2 V3 V4
7.33 8.71 12.68 11.43

> sdi <- diag(1/sqrt(diag(X.cov)))

> round(sdi, 2)

[,1] [,2] [,3] [,4]
[1,] 0.37 0.00 0.00 0.0
[2,] 0.00 0.34 0.00 0.0
[3,] 0.00 0.00 0.28 0.0
[4,] 0.00 0.00 0.00 0.3

> X.cor <- sdi %*% X.cov %*% sdi

> round(X.cor, 2)

[,1] [,2] [,3] [,4]
[1,] 1.00 0.01 -0.31 0.40
[2,] 0.01 1.00 -0.30 -0.02
[3,] -0.31 -0.30 1.00 0.14
[4,] 0.40 -0.02 0.14 1.00

> round(cor(Xij), 2)

V1 V2 V3 V4
V1 1.00 0.01 -0.31 0.40
V2 0.01 1.00 -0.30 -0.02
V3 -0.31 -0.30 1.00 0.14
V4 0.40 -0.02 0.14 1.00

2.4 The Identity Matrix

The identity matrix is merely that matrix, which when multiplied by another matrix, yields the
other matrix. (The equivalent of 1 in normal arithmetic.) It is a diagonal matrix with 1 on the
diagonal I <- diag(1,nrow=dim(X.cov)[1],ncol=dim(X.cov)[2])

2.5 Matrix Inversion

The inverse of a square matrix is the matrix equivalent of dividing by that matrix. That is,
either pre or post multiplying a matrix by its inverse yields the identity matrix. The inverse is
particularly important in multiple regression, for it provides the beta weights.

Given the equation Y = bX + c, we can solve for b by multiplying both sides of the equation
by X−1 or YX−1 = b XX−1 = b

We can find the inverse by using the solve function. To show that XX−1 = X−1X = I, we do
the multiplication.

> X.inv <- solve(X.cov)

V1 V2 V3 V4
V1 0.19638636 0.01817060 0.06024476 -0.07130491
V2 0.01817060 0.12828756 0.03787166 -0.00924279
V3 0.06024476 0.03787166 0.10707738 -0.03402838
V4 -0.07130491 -0.00924279 -0.03402838 0.11504850

> round(X.cov %*% X.inv, 2)

10

V1 V2 V3 V4
V1 1 0 0 0
V2 0 1 0 0
V3 0 0 1 0
V4 0 0 0 1

> round(X.inv %*% X.cov, 2)

V1 V2 V3 V4
V1 1 0 0 0
V2 0 1 0 0
V3 0 0 1 0
V4 0 0 0 1

There are multiple ways of finding the matrix inverse, solve is just one of them.

3 Matrix operations for data manipulation

Using the basic matrix operations of addition and multiplication allow for easy manipulation of
data. In particular, finding subsets of data, scoring multiple scales for one set of items, or finding
correlations and reliabilities of composite scales are all operations that are easy to do with matrix
operations.

In the next example we consider 5 extraversion items for 200 subjects collected as part of the
Synthetic Aperture Personality Assessment project. The items are taken from the International
Personality Item Pool (ipip.ori.org). The data are stored at the personality-project.org web site
and may be retrieved in R.

> datafilename = "http://personality-project.org/R/datasets/extraversion.items.txt"

> items = read.table(datafilename, header = TRUE)

> items <- items[, -1]

> dim(items)

[1] 200 5

We first use functions from the psych package to describe these data both numerically and
graphically.

> library(psych)

[1] "sem" "psych" "methods" "stats" "graphics" "grDevices" "utils" "datasets" "base"

> describe(items)

var n mean sd median min max range se
q_262 1 200 3.07 1.49 3 1 6 5 0.11
q_1480 2 200 2.88 1.38 3 0 6 6 0.10
q_819 3 200 4.57 1.23 5 0 6 6 0.09
q_1180 4 200 3.29 1.49 4 0 6 6 0.11
q_1742 5 200 4.38 1.44 5 0 6 6 0.10

> pairs.panels(items)

NULL

11

http://ipip.ori.org
http://ipip.ori.org
http://personality-project.org
http://personality-project.org/r/psych-manual.pdf

q_262

0 2 4 6

−0.26 0.41

0 2 4 6

−0.51

1
2

3
4

5
6

0.48

0
2

4
6

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●●

●

● ●●

●

●

●●

● ●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

● ●● ●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●●●

q_1480
−0.66 0.52 −0.47

● ●●

●

●

●●

●●

●

●●

● ●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

● ●

●

●●

●●

●

●

●●

● ●

●●

●●

●

●

●●●● ●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●●●● ● ●

●●

●●●

●

●

● ●

●●

●

●●

● ●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●●

●

● ●

●●

●

●

●●

●●

●●

●●

●

●

●●●● ●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●●● ●●

●●

q_819
−0.41

0
2

4
6

0.65

0
2

4
6

●

●●

●

●

●

●

●●

●

●●●

●

●

●● ●●●

●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●●

●

●

●

●

●●

●

●●●

●

●

●● ●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

● ●● ●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●●

●

●

●

●

●●

●

●● ●

●

●

●●●● ●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

● ●● ●

●

●

●

●

●

●

●●

● ●

● ●

●● ●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

q_1180
−0.49

1 2 3 4 5 6

●

●●

●

●

●

●

●●

●

●●

●

●

●

●● ●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

● ●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●● ●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ● ●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

● ●

●●●

●

●

●●

0 2 4 6

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ● ●

●

● ●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

● ●

●●●

●

●

●●

0 2 4 6

0
2

4
6

q_1742

We can form two composite scales, one made up of the first 3 items, the other made up of the
last 2 items. Note that the second (q1480) and fourth (q1180) are negatively correlated with the
remaining 3 items. This implies that we should reverse these items before scoring.

To form the composite scales, reverse the items, and find the covariances and then correlations
between the scales may be done by matrix operations on either the items or on the covariances
between the items. In either case, we want to define a ”keys” matrix describing which items to
combine on which scale. The correlations are, of course, merely the covariances divided by the
square root of the variances.

3.1 matrix operations on the raw data

> keys <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1), ncol = 2)

> X <- as.matrix(items)

> X.ij <- X %*% keys

> n <- dim(X.ij)[1]

> one <- rep(1, dim(X.ij)[1])

> X.means <- t(one) %*% X.ij/n

> X.cov <- t(X.ij - one %*% X.means) %*% (X.ij - one %*% X.means)/(n - 1)

> round(X.cov, 2)

[,1] [,2]
[1,] 10.45 6.09
[2,] 6.09 6.37

> X.sd <- diag(1/sqrt(diag(X.cov)))

> X.cor <- t(X.sd) %*% X.cov %*% (X.sd)

12

> round(X.cor, 2)

[,1] [,2]
[1,] 1.00 0.75
[2,] 0.75 1.00

3.2 matrix operations on the correlation matrix

> keys <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1), ncol = 2)

> X.cor <- cor(X)

> X.cov <- t(keys) %*% X.cor %*% keys

> X.sd <- diag(1/sqrt(diag(X.cov)))

> X.cor <- t(X.sd) %*% X.cov %*% (X.sd)

> round(X.cor, 2)

[,1] [,2]
[1,] 1.00 0.74
[2,] 0.74 1.00

3.3 Using matrices to find test reliability

The reliability of a test may be thought of as the correlation of the test with a test just like it.
One conventional estimate of reliability, based upon the concepts from domain sampling theory,
is coefficient alpha (alpha). For a test with just one factor, α is an estimate of the amount of
the test variance due to that factor. However, if there are multiple factors in the test, α neither
estimates how much the variance of the test is due to one, general factor, nor does it estimate the
correlation of the test with another test just like it. (See Zinbarg et al., 2005 for a discussion of
alternative estimates of reliabiity.)

Given either a covariance or correlation matrix of items, α may be found by simple matrix
operations:

1) V = the correlation or covariance matrix
2) Let Vt = the sum of all the items in the correlation matrix for that scale.
3) Let n = number of items in the scale
3) alpha = (Vt - diag(V))/Vt * n/(n-1)
To demonstrate the use of matrices to find coefficient α, consider five items measuring extraver-

sion taken from the International Personality Item Pool. Two of the items need to be weighted
negatively (reverse scored).

Alpha may be found from either the correlation matrix (standardized alpha) or the covariance
matrix (raw alpha). In the case of standardized alpha, the diag(V) is the same as the number of
items. Using a key matrix, we can find the reliability of 3 different scales, the first is made up of
the first 3 items, the second of the last 2, and the third is made up of all the items.

> datafilename = "http://personality-project.org/R/datasets/extraversion.items.txt"

> items = read.table(datafilename, header = TRUE)

> items <- items[, -1]

> key <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, 1), ncol = 3)

> raw.r <- cor(items)

> V <- t(key) %*% raw.r %*% key

> round(V, 2)

[,1] [,2] [,3]
[1,] 5.66 3.05 8.72
[2,] 3.05 2.97 6.03
[3,] 8.72 6.03 14.75

13

http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf

> n <- diag(t(key) %*% key)

> alpha <- (diag(V) - n)/(diag(V)) * (n/(n - 1))

> round(alpha, 2)

[1] 0.71 0.66 0.83

4 Multiple correlation

Given a set of n predictors of a criterion variable, what is the optimal weighting of the n predictors?
This is, of course, the problem of multiple correlation or multiple regression. Although we would
normally use the linear model (lm) function to solve this problem, we can also do it from the
raw data or from a matrix of covariances or correlations by using matrix operations and the solve
function.

At the data level, with X a matrix of deviation scores, we can write the equation

Ŷ = Xβ + ε (1)

and solve for
β = (XX ′)−1X ′Y (2)

.
At the structure level, R = XX’ and X’Y may be replaced with rxy and we solve the equation

β = R−1rxy (3)

Consider the set of 3 variables with intercorrelations (R)

x1 x2 x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

and correlations of x with y (rxy)

x1 x2 x3
y 0.4 0.35 0.3

From the correlation matrix, we can use the solve function to find the optimal beta weights.

> R <- matrix(c(1, 0.56, 0.48, 0.56, 1, 0.42, 0.48, 0.42, 1), ncol = 3)

> rxy <- matrix(c(0.4, 0.35, 0.3), ncol = 1)

> colnames(R) <- rownames(R) <- c("x1", "x2", "x3")

> rownames(rxy) <- c("x1", "x2", "x3")

> colnames(rxy) <- "y"

> beta <- solve(R, rxy)

> round(beta, 2)

y
x1 0.26
x2 0.16
x3 0.11

14

4.1 Non optimal weights and the goodness of fit

Although the beta weights are optimal given the data, it is well known (e.g., the robust beauty of
linear models by Robyn Dawes) that if the predictors are all adequate, the error in prediction of
Y is rather insensitive to the weights that are used. This can be shown graphically by comparing
varying the weights of x1 and x2 relative to x3 and then finding the error in prediction. Note that
the surface is relatively flat at its minimum.

We show this for sevaral different values of the rxy and R matrix by first defining two functions
(f and g) and then applying these functions with different values of R and rxy. The first, f, finds
the multiple r for values of bx1/bx3and bx2/bx3 for any value or set of values given by the second
function. ranging from low to high and then find the error variance (1− r2) for each case.

> f <- function(x, y) {

+ xy <- diag(c(x, y, 1))

+ c <- rxy %*% xy

+ d <- xy %*% R %*% xy

+ cd <- sum(c)/sqrt(sum(d))

+ return(cd)

+ }

> g <- function(rxy, R, n = 60, low = -2, high = 4, ...) {

+ op <- par(bg = "white")

+ x <- seq(low, high, length = n)

+ y <- x

+ z <- outer(x, y)

+ for (i in 1:n) {

+ for (j in 1:n) {

+ r <- f(x[i], y[j])

+ z[i, j] <- 1 - r^2

+ }

+ }

+ persp(x, y, z, theta = 40, phi = 30, expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.75,

+ ticktype = "detailed", zlim = c(0.5, 1), xlab = "x1/x3", ylab = "x2/x3", zlab = "Error")

+ zmin <- which.min(z)

+ ymin <- trunc(zmin/n)

+ xmin <- zmin - ymin * n

+ xval <- x[xmin + 1]

+ yval <- y[trunc(ymin) + 1]

+ title(paste("Error as function of relative weights min values at x1/x3 = ", round(xval,

+ 1), " x2/x3 = ", round(yval, 1)))

+ }

> R <- matrix(c(1, 0.56, 0.48, 0.56, 1, 0.42, 0.48, 0.42, 1), ncol = 3)

> rxy <- matrix(c(0.4, 0.35, 0.3), nrow = 1)

> colnames(R) <- rownames(R) <- c("x1", "x2", "x3")

> colnames(rxy) <- c("x1", "x2", "x3")

> rownames(rxy) <- "y"

15

Graph of residual error variance as a function of relative weights of bx1/bx3and bx2/bx3 for

> R

x1 x2 x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

> rxy

x1 x2 x3
y 0.4 0.35 0.3

> g(R, rxy)

x1/x3

−2
−1

0

1

2

3

4

x2
/x

3

−2

−1

0

1

2

3
4

E
rror

0.5
0.6

0.7

0.8

0.9

1.0

Error as function of relative weights min values at x1/x3 = 2.5 x2/x3 = 1.5

16

Show the response surface for uncorrelated predictors:

x1 x2 x3
x1 1 0 0
x2 0 1 0
x3 0 0 1

x1 x2 x3
y 0.4 0.35 0.3

x1/x3

−2
−1

0

1

2

3

4

x2
/x

3

−2

−1

0

1

2

3
4

E
rror

0.5
0.6

0.7

0.8

0.9

1.0

Error as function of relative weights min values at x1/x3 = 1.5 x2/x3 = 1.2

17

	Vectors
	vector multiplication
	Simple statistics using vectors
	Combining vectors

	Matrices
	Matrix addition
	Matrix multiplication
	Finding and using the diagonal
	The Identity Matrix
	Matrix Inversion

	Matrix operations for data manipulation
	matrix operations on the raw data
	matrix operations on the correlation matrix
	Using matrices to find test reliability

	Multiple correlation
	Non optimal weights and the goodness of fit

