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Overview
I. Goals

A.To understand the fundamental concepts in 
latent variable modeling

B. To understand how to evaluate the quality 
of models when applied to data by 
understanding various threats to validity

C. To learn how to apply these concepts to 
real data sets using a variety of standard 
statistical packages 
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Texts and readings
I. Loehlin, J. C. Latent Variable Models (4th 

ed). Lawrence Erlbaum Associates, Mahwah, 
N.J. 2004

II. multiple web based readings 

A.e.g., Shrout, Widaman, etc.

III.syllabus and handouts available at 
http:personality-project.org/revelle/syllabi/
454/454.syllabus.pdf
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Overview
I. Observed Variables, Latent Variables, and theory

A.Path models with observed variables (regression)

B. Path models with observed and latent variables (sem)

II. Review of correlation, regression, reliability and matrix 
algebra

III.Estimation of models (OLS, WLS, ML)

A.Evaluation of models

IV.Complex models

A.multiple time points

B. multiple groups 4



Overview - continued
I. Theory and estimation

A.Application of particular computer programs

B. Open Source (my preference)

1. R  (download or use through SSCC)

2.  Mx (download or use through SSCC)

C. Proprietary (if you want)

1. LISREL, Prelis (available through SSCC)

2.  EQS, AMOS
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Requirements/Evaluation
I. Basic knowledge of psychometrics

II. Familiarity with basic matrix algebra (or, at 
least, a willingness to learn)

III.Willingness to use computer programs - 
comparing alternative solutions, playing with 
data

IV.Willingness to ask questions

V.Weekly problem sets/final brief paper
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Overview: Outline
I. Review of correlation/regression/reliability/

matrix algebra (405 in a day)

II. Basic model fitting/path analysis

III.Simple models

IV.Goodness of fit- what is it all about

V.Exploratory Factor Analysis

VI.Confirmatory Factor Analysis

VII.Multiple groups/multiple occasions

VIII. Further topics
7



Psychometric Theory: 405 in a day
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It all started with Plato



The modern day Cave?

faculty.frostberg.edu/phil/forum/TheCave.htm



Constructs/Latent Variables 
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Examples of psychological constructs

• Anxiety
– Trait
– State

• Love
• Conformity
• Intelligence
• Learning and memory

– Procedural  - memory for how
– Episodic  -- memory for what

• Implicit
• explicit

• ...



Theory as organization of constructs
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Theories as metaphors 
and analogies-1

• Physics
– Planetary motion

• Ptolemy
• Galileo
• Einstein

– Springs, pendulums, and electrical circuits
– The Bohr atom

• Biology
– Evolutionary theory
– Genetic transmission



Models and theory
• Formal models

– Mathematical models
– Dynamic models - simulations

• Conceptual models
– As guides to new research
– As ways of telling a story

• Organizational devices
• Shared set of assumptions



Observable or measured variables
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Observed Variables
I. Psychological

A. Item Endorsement
1. Choice/Preference
2. Reaction time

B. Physiological
1. Blood Oxygen Level Dependent Response
2. Skin Conductance/Heart Rate

II. Sociological/economic
A. Income
B. Education
C. Mortality 17



Theory development and 
testing

• Theories as organizations of observable variables
• Constructs, latent variables and observed variables

– Observable variables
• Multiple levels of description and abstraction
• Multiple levels of inference about observed variables

– Latent Variables
• Latent variables as the common theme of a set of observables
• Central tendency across time, space, people, situations

– Constructs as organizations of latent variables and observed 
variables

18



Psychometric Theory: 405 in a day
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Variance, Covariance, and Correlation
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Classic Reliability Theory: How well do 
we measure what ever we are 
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Techniques of Data Reduction: 
Factor and Components Analysis
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Structural Equation Modeling: 
Combining Measurement and Structural 
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Correlation and Regression

rab= Cab/sqrt(VaVb)
 

ßb.a = Cab/Va

Vb = ßb.aVa +b2e  

A B

r
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A Bß
b.a

b

A Bß
b.a

b

E
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Joint distribution of X 
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BDI x Trait Anx (raw)
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Regression lines depend upon scale
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Beck Depression * Trait Anxiety 
z scores

traitanx
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Transforming can help
epiNeur
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Alternative forms of r
r=covxy/Sqrt(Vx*Vy) = 
(∑xy/N)(sqrt(∑x2/N*∑y2/N)= (∑xy)(sqrt(∑x2*∑y2)

Correlation X Y
Pearson Continuous Continuous
Spearman Ranks ranks
Point biserial Dichotomous Continuous
Phi Dichotomous Dichotomous
Biserial Dichotomous 

(assumed normal)
Continuous

Tetrachoric Dichotomous 
(assumed normal)

Dichotomous 
(assumed normal

Polychoric categorical
(assumed normal)

categorical
(assumed normal)



The effect of restriction of range
on regression slopes vs. correlations
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Caution with 
correlation

and Standard deviations

 x1  x2  x3  x4  y1  y2  y3  y4 
9.0 9.0 9.0 9.0 7.5 7.5 7.5 7.5 

Consider 8 variables with means:

 x1   x2   x3   x4   y1   y2   y3   y4 
3.32 3.32 3.32 3.32 2.03 2.03 2.03 2.03 

 and correlations between xi and yi of

0.82 0.82 0.82 0.82



Caution with Correlation



Variance, Covariance, and Correlation
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But first, a word from 
our sponsor:

I. Matrix algebra is the fundamental notational technique 
used in multiple correlation, factor analysis, and 
structural equation modeling

II. Although it is possible to use sem programs without 
understanding matrix algebra, it is much harder to do 
so.

III. Matrix algebra is a convenient notational system that 
allows us to think about data at a higher (broader) 
level rather than data point by data point.
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Review of Matrix Algebra

I. scalers, vectors, and matrices

A. scalers: simple numbers 

B. vectors: ordered sets of numbers
1. V1 = {1 2 3 4 5 6 7 8 9 10 }
2. V2 =  { 11 12 13 14 15 16 17 18 19 20 }
3. V2[3] = 13

C. Matrices (vectors of vectors)

37
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Matrices

38

 Xij
    V1 V2 V3 V4
S1   9  4  9  7
S2   9  7  1  8
S3   2  9  9  3
S4   8  2  9  6
S5   6  4  0  0
S6   5  9  5  8
S7   7  9  3  0
S8   1  1  9  2
S9   6  4  4  9
S10  7  5  8  6

R
     x1   x2   x3

x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

nXm ={ }x11 x12 ... x1m

x21 x22 ... x2m

... ... ... ...
xn1 xn2 ... xnm



Vector operations
I. addition

A. V3 <-   V1 + V2   
B. V3 =   {12 14 16 18 20 22 24 26 28 30}

II. multiplication 

A.element by element

1. V1*V2 = 11  24  39  56  75  96 119 144 171 200

B. inner product of vector (Sums of products)

C. outer product of vectors (matrix of products)
39



Inner and outer products

> outer.prod <- V1 %*% t(V1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10
[2,] 2 4 6 8 10 12 14 16 18 20
[3,] 3 6 9 12 15 18 21 24 27 30
[4,] 4 8 12 16 20 24 28 32 36 40
[5,] 5 10 15 20 25 30 35 40 45 50
[6,] 6 12 18 24 30 36 42 48 54 60
[7,] 7 14 21 28 35 42 49 56 63 70
[8,] 8 16 24 32 40 48 56 64 72 80
[9,] 9 18 27 36 45 54 63 72 81 90
[10,] 10 20 30 40 50 60 70 80 90 100

The “inner product” is perhaps a more useful operation, for it not only multiplies each
corresponding element of two vectors, but also sums the resulting product:

inner.product =
N∑

i=1

V 1i ∗ V 2i (2)

> V1 <- seq(1, 10)
> V2 <- seq(11, 20)
> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 11 12 13 14 15 16 17 18 19 20

> in.prod <- t(V1) %*% V2
> in.prod

[,1]
[1,] 935

Note that the inner product of two vectors is of length =1 but is a matrix with 1 row and
1 column. (This is the dimension of the inner dimensions (1) of the two vectors.)

5

> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 4 8 12 16 20 24 28 32 36 40

> V1 * V2

[1] 4 16 36 64 100 144 196 256 324 400

The “outer product” of a n * 1 element vector with a 1 * m element vector will result in
a n * m element matrix. (The dimension of the resulting product is the outer dimensions
of the two vectors in the multiplication). The vector multiply operator is %*%. In the
following equation, the subscripts refer to the dimensions of the variable.

nX1 ∗1 Ym =n (XY )m (1)

> V1 <- seq(1, 10)
> V2 <- seq(1, 4)
> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 1 2 3 4

> outer.prod <- V1 %*% t(V2)
> outer.prod

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16
[5,] 5 10 15 20
[6,] 6 12 18 24
[7,] 7 14 21 28
[8,] 8 16 24 32
[9,] 9 18 27 36
[10,] 10 20 30 40

The outer product of the first ten integers is, of course, the multiplication table known to
all elementary school students:

4
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Outer product (graphically)

> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 4 8 12 16 20 24 28 32 36 40

> V1 * V2

[1] 4 16 36 64 100 144 196 256 324 400

The “outer product” of a n * 1 element vector with a 1 * m element vector will result in
a n * m element matrix. (The dimension of the resulting product is the outer dimensions
of the two vectors in the multiplication). The vector multiply operator is %*%. In the
following equation, the subscripts refer to the dimensions of the variable.

nX1 ∗1 Ym =n (XY )m (1)

> V1 <- seq(1, 10)
> V2 <- seq(1, 4)
> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 1 2 3 4

> outer.prod <- V1 %*% t(V2)
> outer.prod

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16
[5,] 5 10 15 20
[6,] 6 12 18 24
[7,] 7 14 21 28
[8,] 8 16 24 32
[9,] 9 18 27 36
[10,] 10 20 30 40

The outer product of the first ten integers is, of course, the multiplication table known to
all elementary school students:

4
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Matrix Operations

42

I. Addition/Subtraction

A.  (element by element)

B. must be of same dimensions

II. Multiplication 

A. mXn  nYp   =  mXYp where the elements of 
XY, xij are the sums of the products of the 
elements of the ith row and jth column

B. X Y  ≠  Y X   



Matrix multiplication

43

V1 V2 V3 V4
S1 9 4 9 7
S2 18 14 2 16
S3 6 27 27 9
S4 32 8 36 24
S5 30 20 0 0
S6 30 54 30 48
S7 49 63 21 0
S8 8 8 72 16
S9 54 36 36 81
S10 70 50 80 60

2.2 Matrix multiplication

Matrix multiplication is a combination of multiplication and addition. For a matrix X of
dimensions m*n and Y of dimension n * p, the product of XY is a m * p matrix where
each element is the sum of the products of the rows of the first and the columns of the
second. That is, the matrix XY has elements xyij where each

xyij =
N∑

k=1

xik ∗ yjk. (3)

Consider our matrix Xij with 10 rows of 4 columns. Call an individual element in this
matrix xij. We can find the sums for each column of the matrix by multiplying the matrix
by our “one” vector with Xij. That is, we can find

∑N
i=1 Xij for the j columns, and then

divide by the number (n) of rows. (Note that we can get the same result by finding
colMeans(Xij).

We can use the dim function to find out how many cases (the number of rows) or the
number of variables (number of columns). dim has two elements: dim(Xij)[1] = number of
rows, dim(Xij)[2] is the number of columns.

> dim(Xij)

[1] 10 4

> n <- dim(Xij)[1]

[1] 10

> one <- rep(1, n)

[1] 1 1 1 1 1 1 1 1 1 1

> X.means <- t(one) %*% Xij/n

11

mXn  nYp   =  mXYp



Matrix multiplication 
for data
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V1 V2 V3 V4
S1 9 4 9 7
S2 18 14 2 16
S3 6 27 27 9
S4 32 8 36 24
S5 30 20 0 0
S6 30 54 30 48
S7 49 63 21 0
S8 8 8 72 16
S9 54 36 36 81
S10 70 50 80 60

2.2 Matrix multiplication

Matrix multiplication is a combination of multiplication and addition. For a matrix X of
dimensions m*n and Y of dimension n * p, the product of XY is a m * p matrix where
each element is the sum of the products of the rows of the first and the columns of the
second. That is, the matrix XY has elements xyij where each

xyij =
N∑

k=1

xik ∗ yjk. (3)

Consider our matrix Xij with 10 rows of 4 columns. Call an individual element in this
matrix xij. We can find the sums for each column of the matrix by multiplying the matrix
by our “one” vector with Xij. That is, we can find

∑N
i=1 Xij for the j columns, and then

divide by the number (n) of rows. (Note that we can get the same result by finding
colMeans(Xij).

We can use the dim function to find out how many cases (the number of rows) or the
number of variables (number of columns). dim has two elements: dim(Xij)[1] = number of
rows, dim(Xij)[2] is the number of columns.

> dim(Xij)

[1] 10 4

> n <- dim(Xij)[1]

[1] 10

> one <- rep(1, n)

[1] 1 1 1 1 1 1 1 1 1 1

> X.means <- t(one) %*% Xij/n

11

    V1 V2 V3 V4
S1   9  4  9  7
S2   9  7  1  8
S3   2  9  9  3
S4   8  2  9  6
S5   6  4  0  0
S6   5  9  5  8
S7   7  9  3  0
S8   1  1  9  2
S9   6  4  4  9
S10  7  5  8  6

one Xij

one %*%Xij=
     V1 V2 V3 V4
[1,] 60 54 57 49

 X.means <-  one %*% Xij/n
     V1  V2  V3  V4
[1,]  6 5.4 5.7 4.9



Deviation scores as matrix differences
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    V1   V2   V3   V4
S1   3 -1.4  3.3  2.1
S2   3  1.6 -4.7  3.1
S3  -4  3.6  3.3 -1.9
S4   2 -3.4  3.3  1.1
S5   0 -1.4 -5.7 -4.9
S6  -1  3.6 -0.7  3.1
S7   1  3.6 -2.7 -4.9
S8  -5 -4.4  3.3 -2.9
S9   0 -1.4 -1.7  4.1
S10  1 -0.4  2.3  1.1

X.diff <- Xij - one %*% X.means



Covariance as matrix product

46

X.cov <- t(X.diff) %*% X.diff/(n - 1) 

      V1    V2    V3    V4
V1  7.33  0.11 -3.00  3.67
V2  0.11  8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68  1.63
V4  3.67 -0.18  1.63 11.43

   V1    V2    V3    V4 
 7.33  8.71 12.68 11.43 

X.cov

diag(X.cov)



Correlation = standardized 
covariance

47

sdi <-
 diag(1/sqrt(diag(X.cov)))

    V1   V2   V3  V4
V1 0.37 0.00 0.00 0.0
V2 0.00 0.34 0.00 0.0
V3 0.00 0.00 0.28 0.0
V4 0.00 0.00 0.00 0.3

      V1    V2    V3    V4
V1  1.00  0.01 -0.31  0.40
V2  0.01  1.00 -0.30 -0.02
V3 -0.31 -0.30  1.00  0.14
V4  0.40 -0.02  0.14  1.00

X.cor <- 
sdi %*% X.cov %*% sdi 



The identity matrix

48

     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

I <- diag(1,nrow=4)



Matrix Inverse

49

X’X-1 =   X-1X = I 
      V1    V2    V3    V4

V1  1.00  0.01 -0.31  0.40
V2  0.01  1.00 -0.30 -0.02
V3 -0.31 -0.30  1.00  0.14
V4  0.40 -0.02  0.14  1.00

      V1    V2    V3    V4
V1  1.44  0.15  0.58 -0.65
V2  0.15  1.12  0.40 -0.09
V3  0.58  0.40  1.36 -0.41
V4 -0.65 -0.09 -0.41  1.32

X.cor

X.cor-1



X-1X = XX-1 = I

50

   V1 V2 V3 V4
V1  1  0  0  0
V2  0  1  0  0
V3  0  0  1  0
V4  0  0  0  1

X.inv %*% X.cor

  V1 V2 V3 V4
V1  1  0  0  0
V2  0  1  0  0
V3  0  0  1  0
V4  0  0  0  1

X.cor %*% X.inv



Multiple regresssion

I. At data level

A.Y = Xß + ∂

B. ß = (X’X)-1 X’Y

II. At structure level

A.ß = R-1rxy

51



Multiple Regression:
y = xb  => bxy = R-1rxy  

     y
x1 0.8
x2 0.7
x3 0.6

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

     y
x1 0.8
x2 0.7
x3 0.6

R rxy

R-1 R-1 rxy
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Multiple Regression:
y = xb  -> bxy = R-1rxy 
     x1   x2   x3

x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

     y
x1 0.8
x2 0.7
x3 0.6

R rxy

R-1

      x1    x2    x3
x1  1.63 -0.71 -0.48
x2 -0.71  1.52 -0.30
x3 -0.48 -0.30  1.36

      y
x1 0.52
x2 0.32
x3 0.22

R-1 rxy
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Multiple Regression:
y = xb  -> bxy = R-1rxy 

     y
x1 0.8
x2 0.7
x3 0.6

R rxy

R-1 R-1 rxy

    x1  x2  x3
x1 1.0 0.8 0.8
x2 0.8 1.0 0.8
x3 0.8 0.8 1.0

      x1    x2    x3
x1  3.46 -1.54 -1.54
x2 -1.54  3.46 -1.54
x3 -1.54 -1.54  3.46

      y
x1  0.77
x2  0.27
x3 -0.23
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Solution space is 
relatively flat as f(beta) 

I. Although the optimal beta weights may be 
found precisely by multiple regression, the 
solution space is relatively flat and many 
alternative solutions are almost as good.

II. Iterative solutions can discover local minima 
that are far from the optimal solution

55



Multiple regression 

x1/x3

-3

-2

-1

0

1

2

3

x
2
/x
3

-3

-2

-1

0

1

2

3

E
rro
r

0.0

0.5

~

Error as function of relative weights  min values at x1/x3 =  1.5  x2/x3 =  1.2

   x1 x2 x3
x1  1  0  0
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x3  0  0  1

     y
x1 0.8
x2 0.7
x3 0.6
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Multiple regression 

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

     y
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x3 0.6
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Multiple regression 
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     x1   x2   x3
x1 1.00 0.56 

0.48
x2 0.56 1.00 

0.42
x3 0.48 0.42 

1.00

      y
x1 0.52
x2 0.32
x3 0.22
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Multiple regression 
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x1 1.0 0.8 

0.8
x2 0.8 1.0 

0.8
x3 0.8 0.8 

1.0
       y

x1  0.77
x2  0.27
x3 -0.23
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Multiple Regression as a 
structural relation

60

Pattern Correlation Structure

     X1   X2   X3

X1 1.00 0.00 0.00

X2 0.00 1.00 0.00

X3 0.00 0.00 1.00

y  0.26 0.16 0.11

     x1   x2   x3

x1 1.00 0.56 0.48

x2 0.56 1.00 0.42

x3 0.48 0.42 1.00

     x1   x2   x3

X1 1.00 0.56 0.48

X2 0.56 1.00 0.42

X3 0.48 0.42 1.00

y  0.40 0.35 0.30

Pattern  %*%  Correlation =  Structure
find the  y pattern to best fit structure

=



 Patterns, Structures, and 
models

61

I. P %*% R % P’ = M
II. M - D = E
III.(M - D) %*% (M-D)’ = E2

IV. adjust elements of P and R to minimize E2

V. In case of regression with observed 
variables, the beta weights minimize E2



Pattern, structures, and models
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P %*% R %*% t(P)

     X1   X2   X3    y
X1 1.00 0.56 0.48 0.40
X2 0.56 1.00 0.42 0.35
X3 0.48 0.42 1.00 0.30
y  0.40 0.35 0.30 0.19

     X1   X2   X3

X1 1.00 0.00 0.00

X2 0.00 1.00 0.00

X3 0.00 0.00 1.00

y  0.26 0.16 0.11

     x1   x2   x3

x1 1.00 0.56 0.48

x2 0.56 1.00 0.42

x3 0.48 0.42 1.00

Pattern



Reliabilityand latent traits

63

I. Classic reliability theory distinguishes 
between observed score and “True Score”

A.True score as expectation given infinite 
replication

B. Observed score = True Score + Error

II. True score is an unobservable, latent variable



Classic Reliability Theory: How well do we 
measure what ever we are measuring

X1

X2

X3

L1



Classic Reliability Theory:
 How well do we measure what ever we are measuring 
and what is the relationships between latent variables

X L Y1L

rxy

pxy

pxl1 pyl2e
1

e
2



Classic Reliability Theory:
 How well do we measure what ever we are measuring

X Tpxl1e

What is the relationship between X1 and L1?
What is the variance of X1, L1, and E1?
Let True Score for Subject I  = expected value of Xi. 
 (note that this is not the Platonic Truth, but merely the average 
over an infinite number of trials.)



Observed= True + Error

Observed
True

Error



Observed= True + Error

Observed
True

Error



Observed = Truth + Error

• Define True score as expected observed score.  Then Truth 
is uncorrelated with error, since the mean error for any True 
score is 0.

• Variance of Observed = Variance (T+E)=
V(T) + V(E) + 2Cov(T,E) = Vt+Ve

• Covariance O,T = Cov(T+E),T = Vt

• pot= Cot/sqrt(Vo*Vt) = Vt/ sqrt(Vo*Vt) =sqrt(Vt/ Vo)
• p2

ot = Vt/Vo      (the squared correlation between observed 
and truth is the ratio of true score variance to observed 
score variance)



Estimating True score

• Given that p2
ot = Vt/Vo  and pot =sqrt(Vt/ Vo), 

then for an observed score x, the best estimate 
of the true score can be found from the 
prediction equation:

• zt = poxzx  

• The problem is, how do we find the variance of 
true scores and the variance of error scores? 



Estimating true score:
regression artifacts

• Consider the effect of reward and punishment 
upon pilot training:
– From 100 pilots, reward the top 50 flyers, punish 

the worst 50.
– Observation: praise does not work, blame does!
– Explanation?



Parallel Tests

X
T

px1te
1

px2te
2

X

Vx1=Vt+Ve1

Vx2=Vt+Ve2

Cx1x2=Vt+Cte1+Cte2+Ce1e2= Vt

rxx=Cx1x2/Sqrt(Vx1*Vx2) = Vt/Vx

The reliability of a test is the ratio of the true score variance to the 
observed variance = the correlation of a test with a test “just like it”



Reliability and parallel tests
• rx1x2 =Vt/Vx = rxt

2 
• The reliability is the correlation between two 

parallel tests and is equal to the squared 
correlation of the test with the construct.  rxx = 
Vt/Vx= percent of test variance which is 
construct variance.

• rxt = sqrt(rxx) ==> the validity of a test is 
bounded by the square root of the reliability.

• How do we tell if one of the two “parallel” tests 
is not as good as the other?  That is, what if 
the two tests are not parallel?



Congeneric Measurement

X1

X2

X3

X4

e1

e2

e3

e4

Tr23

r34

r14

r13

r24

r12



Observed Variances/Covariances

x1 x2 x3 x4

x1 Vx1

x2 cx1x2 Vx2

x3 cx1x3 cx2x3 Vx3

x4 cx1x4 cx3x4 cx3x4 Vx4



Model Variances/Covariances

x1 x2 x3 x4

x1 Vt+Ve1

x2 cx1tcx2t Vt+ Ve2

x3 cx1tcx3t cx2tcx3t Vt+ Ve3

x4 cx1tcx4t cx3tcx4t cx3tcx4t Vt+ Ve4



Observed and modeled
 Variances/Covariances

x1 x2 x3 x4

x1 Vx1

x2 cx1x2 Vx2

x3 cx1x3 cx2x3 Vx3

x4 cx1x4 cx3x4 cx3x4 Vx4

x1 x2 x3 x4

x1 Vt+Ve1

x2 cx1tcx2t Vt+ Ve2

x3 cx1tcx3t cx2tcx3t Vt+ Ve3

x4 cx1tcx4t cx3tcx4t cx3tcx4t Vt+ Ve4



Estimating parameters of the model

1. Variances: Vt, Ve1, Ve2, Ve3, Ve4

2. Covariances: Ctx1, Ctx2, Ctx3, Ctx4

3. Parallel tests: 2 tests, 3 equations, 5 unknowns, assume     
Ve1= Ve2,  
 
  Ctx1= Ctx2

4. Tau Equivalent tests: 3 tests, 6 equations, 7 unknowns,  
assume

1. Ctx1= Ctx2= Ctx3  but allow unequal error variance

5. Congeneric tests: 4 tests, 10 equations, 9 unknowns!


