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Introduction

Why linear algebra?

+ Linear algebra is the fundamental notational technique used
in multiple correlation, factor analysis, and structural equation
modeling.

+ Although it is possible to do psychometrics or latent variable
modeling without understanding linear algebra, it is helpful to
do so.

+ Linear algebra is a convenient notational system that allows
us to think about data at a higher (broader) level rather than
data point by data point.

* When using languages such as use R or MatLab,
understanding linear algebra is very helpful.



Introduction

Linear Algebra

+ Matrices were used by the Babylonians and Chinese (ca. 100

BCE) to do basic calculations and solve simultaneous
equations but were not introduced into Western mathematics
until the early 19th century.
Introduced to psychologists by Thurstone in 1933 who had
learned about them from a mathematician colleague.

+ Until then, all analysis was done on “tables” with fairly

laborious ad hoc procedures.

Matrices may be thought of as “spreadsheets” but with their
own algebra.

Commercial stats programs do their calculations in linear
algebra but “protect” the user from their seeming complexity.

* Ris explicit in its use of matrices, so am I.



Vectors

Scalers, Vectors and Matrices

A scaleris just a single value, an integer or a real number.

A vector is a one dimensional array of n elements where the
most frequently used elements are integers, reals (numeric),
characters, or logical.
- vectorshave lengthx = ( 42 17 3 2 9 4)
« elements are indexed by location in the vector. x; is the i
element. x, =17
A matrix is a two dimensional array of m vectors, each with n
elements.
+ Matrices have 2 dimensions (rows and columns) . X; e.g.,
Xo — < 42 17 3 2 9 4
276~ 39 21 7 4 8 6
* elements are indexed by location in the matrix. X;; is the
element in the i row and j* column. X, 3 =7

(In an attempt at consistent notation, vectors will be bold
faced lower case letters, matrices will be CAPITALIZED).

o



Vectors
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Basic operations

+ Basic operations on a vector or a MATRIX are addition,
subtraction and multiplication.

* First consider addition, subtraction and multiplication by
scalers.

+ Consider v1 = the first 6 integers, and v2 = the next 6
integers:
> vl <- seqg(l, 6)

> v2 <- seq(7, 12)

> v3 <- vl + 20

> vl

[11 1 2 3 4 5 6

> v2

(1] 7 8 9 10 11 12

> v3

[1]1 21 22 23 24 25 26
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Vectors
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Basic operations
We can add a constant to each element in a vector, add each
element of the first vector to the corresponding element of the
second vector, multiply each element by a scaler, or multiply each
element in the first by the corresponding element in the second:

> v3 <= vl + 20

> v4 <- vl + v2

> vh <- vl * 3

> v6e <—- vl * v2

> v3

[1] 21 22 23 24 25 26
> v4d

[1] 8 10 12 14 16 18
> v5

[1] 3 6 9 12 15 18
> V6

[11] 7 16 27 40 55 72
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row and column vectors and the transpose operator

 vectors can be either row vectors or column vectors.

* the transpose, t, of a row vector is a column vector and vice
versa

vi=(1 2 3 45 6)

t(v1) =

[e2T& ) IE ~ N CO I \O I



Vectors
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Outer product = multiplication of a column vector by a row vector

Although addition and subtraction are straightforward,

multiplication is somewhat more complicated, for the order in which

two vectors are multiplied changes the result. That is ab # ba. A

column vector times a row vector (also known as the outer product
or the tensor product) yields a matrix but a row vector times a

column vectors (the dot product) yields a scaler. Consider v2 )

v
7 7 14
8 8 16
9 1o .0 | 9 18
10 %x% (1 2 3 4 5 6)= 10 20
11 11 22

21
24
27
30
33
36

o8
32
36
40
44
48

35
40
45
50
55
60

42
48
54
60
66
72
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Vector multiplication of a row vector by a column vector

But the dot product (or inner product) of a row vector by a column
vector is a scaler. Consider v1 - v2

7
8
9 n n
(1 23 45 6)%% 10 = viv2i=) v6 =217
i=1 i=1
11
12

It is this operation, the dot product,which is a very powerful matrix
operation, for it does summations of products in one line. This
inner product will become even more useful with matrices. In both
the inner and outer product, the same rule is followed: the i, j
element of the result is the sum of the products of the i row of the

first vector and the j column of the second vector.
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Vectors
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More on outer products

It is important to realize that the dimensions of the vectors must

match to do either inner or outer products. Consider
vi ® v7 and v7 @ v1’) which can be done,
6

(6x1) (1x4) (4x1) (1x
1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
vl %+« %v7 = %+x%(1 2 3 4)= — v8
(6x1) o O(1)(4) 4 o 0( ) 4 8 12 16 (6x4)
5 5 10 15 20
6 6 12 18 24
(1)
and
1 1 2 3 4 5 6
045" | 2 |y _| 2 4 6 8 10 12 |_
(‘:171)4 A;(v1)_(3 %«%( 1 2 3 4 5 6) (3 6 9 12 15 18) (4ng6)
4 4 8 12 16 20 24

but that v1 & v7 can not.
(6x1) (4x1)
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Matrices

Matrices and data

* A matrix is just a two dimensional (rectangular) organization
of numbers.

+ Itis a vector of vectors.
For data analysis, the typical data matrix is organized with

rows containing the responses of a particular subject and the
columns representing different variables.

* Thus, a 6 x 4 data matrix (6 rows, 4 columns) would contain
the data of 6 subjects on 4 different variables.

In the example below the matrix operation has taken the
numbers 1 through 24 and organized them column wise. That
is, a matrix is just a way (and a very convenient one at that) of
organizing a data vector in a way that highlights the
correspondence of multiple observations for the same
individual. (Formally, the matrix is an ordered n-tuplet where n
is the number of columns).



Matrices

Matrices in R

R provides numeric row and column names (e.g., [1,] is the first
row, [,4] is the fourth column, but it is useful to label the rows and
columns to make the rows (subjects) and columns (variables)
distinction more obvious. We do this using the rownames and
colnames functions, combined with the paste and seq functions.
> Xij <- matrix(seq(l1:24), ncol = 4)

rownames (Xij) <- paste("S", seq(l, dim(Xij)[1]), sep = "")
colnames (Xij) <- paste("V", seqg(l, dim(Xij)[2]), sep = "")

# or, slightly easier, use pastel

rownames (X1ij) <- pasteO("S", seq(l, dim(Xij)[1]))

vV Vv Vv Vv

\%

Xij

V1 v2 V3 V4
7 13 19
8 14 20
9 15 21
10 16 22
11 17 23
12 18 24

s1
s2
S3
sS4
S5
S6

o U W N
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Matrices

Transpose of a matrix

Just as the transpose of a vector makes a column vector into a row
vector, so does the transpose of a matrix swap the rows for the
columns. Applying the t function to the matrix Xij produces Xij’.
Note that now the subjects are columns and the variables are the
rows.

> t(Xi7)

S1 S2 S3 sS4 S5 S6
vi 1 2 3 4 5 6
vz 7 8 9 10 11 12
v3 13 14 15 16 17 18
v4 19 20 21 22 23 24

14/54



Introduction

Just as we could with vectors, we can add, subtract, multiply or
divide the matrix by a scalar (a number without a dimension).
+ 4

> Xij

V1
S1 5
S2 6
s3 7
sS4 8
S5 9
S6 10

> round((Xij + 4)/3, 2)

Sl
s2
S3
sS4
S5
S6

w W NN N

v2
11
12
13
14
15
16

V1

.67
.00
.33
.67
.00
.33

Vectors

000
[e]e]e}

G s s W

v3
17
18
19
20
21
22

v2
.67
.00
.33
.67
.00
.33

v4
23
24
25
26
27
28

~ J oo o

Adding or multiplying by a scaler

V3

.67
.00
.33
.67
.00
.33

Matrices

@000
0000

O W 0 0 0 J

V4

.67
.00
.33
.67
.00
.33

Descriptive statistics

Advanced topics
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> v <- 1:4

[1] 1 2 3 4

> Xij + v

vl
s1 2
S2 4
S3 6
sS4 8
S5 6
S6 8
> Xij

V1
sl 1
S2 4
S3 9
S4 16
S5 5
S6 12

v2
10
12
10
12
14
16

*

v2
21
32

20
33
48

V3
14
16
18
20
18
20

V3
13
28
45
64
17
36

Matrices
000

Descriptive statistics

Multiplying by a vector, caution required

v4
22
24
22
24
26
28

V4
57
80
21
44
69
96

* We can also add or multiply each
row (or column, depending upon
order) by a vector.

+ This is more complicated that it
would appear, for R does the
operations columnwise.

» This is best seen in an example:

+ This is not what we expected!

ed topics

16/54



Introduction

>

Vectors Matrices Descriptive statistics nced topics

Inversion
00e0 00

Multiplying by a vector, transpose and then transpose again

t(t(Xif) + v)

V1

V2

9
10
11
12
13
14

<—

v2
14
16
18
20
22
24

V3 va * These are not the expected results
16 23 if the intent was to add or multiply a
.o different number to each column!
19 26 * R operates on the columns and
20 27
21 28 wraps around to the next column to
(e (xXis) + ) complete the operation.

+ To add the n elements of v to the n
V3 va columns of Xij,
39 76 + use the t function to transpose
42 80 Xij
45 84
48 88 + and then transpose the result
51 92 back to the original order:
54 96
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The scale function

To find a matrix of deviation scores, just subtract the means vector
from each cell. The scale function does this with the option
scale=FALSE. The default for scale is to convert a matrix to
standard scores.

> round(scale(v10),2)

> scale(V10, scale=FALSE) V1 V2 V3 V4

S1 -1.34 -1.34 -1.34 -1.34

viwvz. vs o vd S2 -0.80 -0.80 -0.80 -0.80

z; :i:: :i :Z:§ 7f2 S3 -0.27 -0.27 -0.27 -0.27

o3 05 -1 1.5 o sS4 0.27 0.27 0.27 0.27

c2 05 1 1.5 o S5 0.80 0.80 0.80 0.80
S6 1.34 1.34 1.34 1.34

s5 1.5 3 4.5 6 . "

S6 2.5 5 7.5 10 attr(,"scaled:center")

V1 V2 V3 v4
3.5 19.0 46.5 86.0
attr(, "scaled:scale")
V1 V2 V3

attr(,"scaled:center")
V1 V2 V3 v
3.5 19.0 46.5 86.0

Matrices Descriptive statistics Matrix Inversion Advanced topics

V4

1.870829 3.741657 5.612486 7.483315
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Matrices
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Matrix multiplication

Matrix multiplication is a combination of multiplication and addition
and is one of the most used and useful matrix operations. For a
matrix X of dimensions r'pand Y of dimension p * c, the

(rxp) (pxc)
product, X Y ,isar*c matrix where each element is the sum
(rxp)(pxc)

of the products of the rows of the first and the columns of the

second. That is, the matrix (XY) has elements xyj; where each
rxc

n
XYij = Z Xik * Ykj
k=1

19/54
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Matrix multiplication

The resulting x; cells of the product matrix are sums of the
products of the column elements of the first matrix times the row
elements of the second. There will be as many cell as there are
rows of the first matrix and columns of the second matrix.

p p
(Xﬂ X2 Xz X )‘ Yy N2 E X1iyit E XqiYi2
i i

Xy _ Xo1 X2 Xo3 X4 1 Vo1 Yoo _ : :
(rx xp)(px cy) Y31 Y32
a1 Va2 Z X2iYit Z X2iYi2
i i

It should be obvious that matrix multiplication is a very powerful
operation, for it represents in one product the r * ¢ summations
taken over p observations.

20/54
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Matrix addition

Analogous to matrix multiplication is a function to add elements
from row and column vectors to fill a complete matrix. This is a

non-standard function %+

( X111 X12 X13 Xi4 Y11

Xo1  Xoo  Xo3  Xoa \

Xy _ Y21

(e xp)(pxcy) Y31
Va1

P P |
Y12 ZX1/'+Y:'1 ZXH"FYIZ
Y22 i i
Y32

P P
Yao Z Xoj + Vit Z X2itYi2
i i

It should be obvious that matrix addition is a very powerful
operation, for it represents in one operation the r * ¢ summations

taken over p observations.

Note that matrix addition done this way is a function unique to the

psych package.

(Adapted from Krus, D. J. (2001) Matrix addition. Journal of Visual Statistics, 1, (February, 2001)
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Examples of matrix “addid normal matrix addition

x <-¢(1,2,3,4)
Yy <- x + x #normal vector addition adds corresponding elements
y

XX <— X %+% t(x) #"addition" adds row entries to column entries
XX

X %$*% t(x) #matrix multiplication

[1] 2 4 6 8 #normal vector addtion
[,11 [,2] [,3]1 [,4] #special addition
[1,1] 2 3 4 5
[2,1 3 4 5 6
[3,1 4 5 6 7
[4,1 5 6 7 8
[,11 [,2]1 [,3]1 [,4] #matrix multiplication
[1,1 1 2 3 4
[2,1 2 4 6 8
[3,1 3 6 9 12
[4,1 4 8 12 16

22/54



Descriptive statistics

Matrix multiplication can be used with vectors as well as matrices.
Consider the product of a vector of ones, 1, and the matrix Xij

rxc
with 6 rows of 4 columns. Call an individual element in this (ma)trix
xj. Then the sum for each column of the matrix is found multiplying
the matrix by the “one" vector with Xij. Dividing each of these
resulting sums by the number of rows (cases) yields the mean for
each column. That is, find

n
1Xij =Y X
i=1

for the ¢ columns, and then divide by the number (n) of rows. Note
that the same result is found by the colMeans (Xij) function.

7 13 19
8 14 20

9 15 21 1
10 16 22 6
11

12

17 23
18 24

oo hWN =



Descriptive statistics

Means for columns

We can use the dim function to find out how many cases (the
number of rows) or the number of variables (number of columns).
dim has two elements: dim(Xij)[1] = number of rows, dim(Xij)[2] is
the number of columns.

> dim(Xi7)

[1] 6 4 .

Or, just use the colMeans
#a vector of 1s

o function:
> one <—- rep(l,dim(Xij)[1]) .
#find the column sum > colMeans (Xij)

> t(one) %% Xij vl V2 V3 V4

V1l v2 V3 V4 3.5 9.5 15.5 21.5
[1,] 21 57 93 129

See rowMeans for the equivalent
#find the column average f

> X.means <— t(one) $%+% Xij /dim(Xij r[Eqws'

V1 v2 V3 v4
3.5 9.5 15.5 21.5
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Descriptive statistics

Deviation scores

To form a matrix of deviation scores, where the elements of each
column are deviations from that column mean, it is necessary to
either do the operation on the transpose of the Xij matrix, or to
create a matrix of means by premultiplying the means vector by a
vector of ones and subtracting this from the data matrix.

> X.diff <- Xij - one %x% X.means

> X.diff

V1 V2 \
sl -2.5 -2.5 -2.
s2 -1.5 -1.5 -1.
s3 -0.5 -0.5 -0.
s4 0. 0.
s5 1. 1.
S6 2. 2.

-2.
-1.
-0.

(G ENC BNC ENE B

o v g 0
o

(S NG, BN, RGN, B C, O]

[S2ING2 I G, IN G, NG, BN RN
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Descriptive statistics

Variances and covariances

Variances and covariances are measures of dispersion around the
mean. We find these by first subtracting the means from all the
observations. This means centered matrix is the original matrix
minus a vector of means. To make a more interesting data set,
randomly order (in this case, sample without replacement) from
the items in Xij and then find the X.means and X.diff matrices.

>

vV Vv Vv Vv

s2
S3
sS4
S5
S6

set.seed (42) #set random seed for a repeatable example

Xij <- matrix(sample (Xij),ncol=4) #random sample from Xij
rownames (X13j) <- paste("S", seqg(l, dim(Xij)[1]), sep = "")
colnames (Xij) <- paste("V", seq(1l, dim(Xij)[2]), sep = "")

Xi5
V1
22
24

7
18
13
10

V2 V3
14 12
3 17

11
16
23
19

5

9
8
1

V4
15
6
4
21
2
20
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> X.means <- t(one) $+% Xij /dim(Xij)[1l] #find the column average
> X.diff <- Xij -one $%x% X.means
> X.diff

V1 V2 V3 v4

S1 6.333333 -0.3333333 3.3333333 3.666667
S2  8.333333 -11.3333333 8.3333333 -5.333333
S3 -8.666667 —-3.3333333 -3.6666667 -7.333333
sS4 2.333333 .6666667 0.3333333 9.666667
S5 -2.666667 .6666667 -0.6666667 —-9.333333
56 -5.666667 .6666667 —7.6666667 8.666667

> o

Compare this result to just using the scale function to mean
center the data:

X.cen <- scale(Xij,scale=FALSE).

27/54



Descriptive statistics

Variances and covariances

To find the variance/covariance matrix, find the the matrix product
of the means centered matrix X.diff with itself and divide by n-1.
Compare this result to the result of the cov function (the normal
way to find covariances). The differences between these two
results is the rounding to whole numbers for the first, and to two
decimals in the second.

> X.cov <— t(X.diff) $+% X.diff /(dim(X.diff) [1]-1)
> round (X.cov)

vl Vv2 V3 V4
vl 46 -23 34 8
V2 -23 48 -25 12
V3 34 -25 31 -12
v4 8 12 -12 70

> round(cov (Xij),2)

V1 V2 V3 V4
V1 45.87 -22.67 33.67 8.13
V2 -22.67 47.87 -24.87 11.87
V3 33.67 -24.87 30.67 -12.47
V4 8.13 11.87 -12.47 70.27

28/54



Descriptive statistics
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+ Some operations need to find just the diagonal of the matrix.
+ For instance, the diagonal of the matrix X.cov (found above)
contains the variances of the items.
+ To extract just the diagonal, or create a matrix with a particular
diagonal we use the diag command.

+ We can convert the covariance matrix X.cov to a correlation
matrix X.cor by pre and post multiplying the covariance
matrix with a diagonal matrix containing the reciprocal of the
standard deviations (square roots of the variances).

- Remember that the correlation, r,y, is the ratio of the
covariance to the squareroot of the product of the variances:

Cxy Cxy

I’X — — .
Y VWV, oxoy

29/54
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Correlations from linear algebra

> X.cor <- sdi %x% X.cov $x% sdi #pre an
> rownames (X.cor) <- colnames (X.cor) <-
> round(X.cor, 2)
> X.var <- diag(X.cov)
Al V2 V3 V4

V1 V2 v3 V41 1.00 -0.48 0.90 0.14
45.86667 47.86667 30.66667 70.266675 _0.48 1.00 -0.65 0.20

> sdi <- diag(1/sqrt (diag(X.cov))) > ©0-90 =0.65 1.00 -0.27

> colnames (sdi) <- colnames (X.cov) 0.14 0.20 -0.27 1.00

> rownames (sdi) <- colnames (X.cov)

> round(sdi, 2) Compare this to the standard command
v v2 vs va for finding correlations cor.

vl 0.15 0.00 0.00 0.00 > round(cor (Xij), 2)

V2 0.00 0.14 0.00 0.00

V3 0.00 0.00 0.18 0.00 Vi V2 V3 vd

V4 0.00 0.00 0.00 0.12 V1 1.00 -0.48 0.90 0.14

v2 -0.48 1.00 -0.65 0.20
v3 0.90 -0.65 1.00 -0.27
v4d 0.14 0.20 -0.27 1.00
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The identity matrix

The identity matrix is merely that matrix, which when multiplied by
another matrix, yields the other matrix. (The equivalent of 1 in
normal arithmetic.) It is a diagonal matrix with 1 on the diagonal.

> I <- diag(l,nrow=dim(X.cov)[1])
(11 I [ [
1
0
0
0

2] [,3]
0 0
1 0
0 1
0 0

r 4]
0
0
0
1

31/54



Descriptive statistics

@000

Simultaneous equations without matrices

Many problems in data analysis require solving a system of
simultaneous equations. For instance, in multiple regression with
two predictors and one criterion with a set of correlations of:

I'ixt Ixix2 Ixty

I'vix2  I'x2x2 rx2y (3)

Iy Ixey Iy
we want to find the find weights, 3;, that when multiplied by x; and
X maximize the correlations with y. That is, we want to solve the
two simultaneous equations

{ Ixixt B1 + IxixeB2 = ey } (4)

rx1x2ﬂ1 + rx2x262 = Ixay

32/54
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Solving two simultaneous equations
We can directly solve these two equations by adding and
subtracting terms to the two such that we end up with a solution to
the first in terms of 8y and to the second in terms of (»:

{ 51 + rx1x262/rx1x1 - rx1y/rx1x1 }

reix2B1/xex2 + B2 = Ixay/Ixax2

()

which becomes

{ B1 = (ra1y — Ieix2B2)/ xix1 } (6)

62 = (rx2y - rx1x251)/rx2x2

Substituting the second row of (6) into the first row, and vice versa
we find

{ ,61 = (rx1y - rx1x2(rx2y - rx1x261)/rx2x2)/rx1x1 }

Bo = (rx2y - rx1x2(rx1y - rx1x252)/rx1x1)/rx2x2
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0000
Solving simultaneous equations — continued
Collecting terms, we find:
/81 I'xix1rxex2 = (rx1yrx2x2 - rx1x2(rx2y - rx1x2/31))
/Ber2x2rx1x1 = (rx2yrx1x1 - rx1x2(rx1y - rx1x252)
and rearranging once again:
/81 I'xix1x2x2 — r§1X2/81 - (rx1yrx2x2 - rx1x2(rx2y)
Borxixixax2 — r§1x262 = (rx2yrx1x1 - rx1x2(rx1y
Struggling on:
2 —
B1(retxt fxexe — rx1x2) = I'xtyIxax2 — I'xix2Ix2y }

2 —
{ 62(rx1x1 I'xox2 — rx1x2) - rx2yrx1x1 - rx1x2rx1y
And finally:

{ B1 = (rx1yrx2X2 — rX1X2rX2y)/(rX1X1 I'yoxo — r31x2) }
/82 = (rx2yrx1x1 - rx1x2rx1y)/(rx1x1fX2X2 — r)%1x2)
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Using matrices to solve simultaneous equations
Alternatively, these two equations (4) may be represented as the
product of a vector of unknowns (the Ss ) and a matrix of
coefficients of the predictors (the ry’s) and a matrix of coefficients
for the criterion (rx;y):

(B182) < Pixt hxe > = (Ix1y  xex2) (7)

I'ix2  Ix2x2

I, I,
lfwe let 5 = (B182), R=( " " Vandry, = (ray rexe)
I'vix2  I'xox2

then equation (7) becomes
BR = Ixy (8)

and we can solve (8) for 5 by multiplying both sides by the inverse
of R.
B = BRR_1 = erR_1 9)

This works for any number of variables! But, it requires R~
35/54
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Matrix Inversion
The inverse of a square matrix is the matrix equivalent of dividing
by that matrix. That is, either pre or post multiplying a matrix by its
inverse yields the identity matrix. The inverse is particularly
important in multiple regression, for it allows us to solve for the
beta weights.
Given the equation

y=bX+c

we can solve for b by multiplying both sides of the equation by X’
to form a square matrix XX’ and then take the inverse of that
square matrix:

yX' = bXX' <=> b= yX'(XX")""
If we were to divide each side by N, this is, of course, just
Cony - bCOVXX <=> b = Cony(Cxx)_1 (10)

which, if we standardize x and vy, is just equation 9
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Matrix operations for finding an inverse

But, how do we find the inverse (R~')? As an example we solve
the inverse of a 2 x2 matrix, but the technique may be applied to a
matrix of any size. First, define the identity matrix, I, as

=5 7)

R=1IR

10 I'x1x1 rx1x2>
0 1 I'vix2  I'xax2

and then the equation

may be represented as

'ix1  Ixix2
I'vix2  Ixax2
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Transform both sides of the equation
Dropping the x subscript (for notational simplicity) we have

I f12>:<1 0)<f11 f12> (11)
no e 0 1 N2 e

We may multiply both sides of equation (11) by a simple
transformation matrix (T) without changing the equality. If we do
this repeatedly until the left hand side of equation (11) is the
identity matrix, then the first matrix on the right hand side will be
the inverse of R. We do this in several steps to show the process.

Let 1
L 0
Ty=| ™ 1)
(0&2

then we multiply both sides of equation (11) by T; in order to make
the diagonal elements of the left hand equation = 1 and we have

T\R=T:IR (12)
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Keep transforming

]
O I (’” ”2> (13)
e 1 0 ra I
Then, by letting
1 0
(49
o2

and multiplying T» times both sides of equation (13) we can make
the lower off diagonal element = 0. (Functionally, we are
subtracting g—z times the first row from the second row).

n2 h2 1
( 1 A > - ( 1 I W0 rni n
_ o - nir2—ry, - _ _he2 1
0 1 riqre2 0 rqre Mirz 22 M2 Iz
(14)
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Continue to diagonalize

Then, in order to make the diagonal elements all = 1 , we let

1 0
TS = 0 nireo
f11f22*f122

and multiplying T3 times both sides of equation (14) we have

r 1
T2 " 0 ri ne 15
0 1 - _ 2 1 r I ( )
1 f22—f122 f11f22—f122 12 22

Then, to make the upper off diagonal element = 0, we let

1 _h2
T, = 1
(o 1)
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The inverse by successive transformations

and multiplying T4 times both sides of equation (15) we have

22 _ ro
103 _ M2 —r nir2—rz, i n2
= 3 f
0 1 B - N2 a2

nilr2—ry, nir2—1ry,

That is, the inverse of our original matrix, R, is

rop _ nz
2 2
R—1 _ nilf2—ry, M1r2—r, (16)
- _ N2 5 N1 5
Mir2—ry, Mir2—ry,
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Finding the inverse as a series of transformations

The previous example was drawn out to be easier to follow, and it
would be possible to combine several steps together. The
important point is that by successively multiplying equation 11 by a
series of transformation matrices, we have found the inverse of the
original matrix.

T4T3ToTi{R = T4 T3ToT1IR

or, in other words
T T:T.TsR=1=R'R

T4T3ToTil = R (17)
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Empirical examples of the inverse — use solve

Original matrix Inverse of Matrix
> a > round(solve (a), 2)
11 [, 2] 11 [, 2]
1,7 1.0 0.5 [1,] 1.33 -0.67
, 0.5 1.0 [2,] -0.67 1.33
> b > round(solve (b),2)
[,11 [,2] [,1] [,2]
[1, 1.0 0.8 [1,] 2.78 -2.22
[2,] 0.8 1.0 [2,] -2.22 2.78
> c > round(solve(c),2)
[,11 [,2] [,1] [,2]
[1,7 1.0 0.9 [1,] 5.26 -4.74
[2,7 0.9 1.0 [2,] -4.74 5.26
> B > round(solve (B),2)
11 [,21 [,3] [,1] [,2] [,3]
[1, 1.0 0.0 0.5 [1,] 1.38 0.23 -0.76
[2,7 0.0 1.0 0.3 [2,] 0.23 1.14 -0.45
, 0.5 0.3 1.0 [3,] -0.76 -0.45 1.52
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>C > round(solve (C),2)

[,11 [,21 [,3] [,1] [,21] [,31]
[t,7 1.0 0.8 0.5 [1,] 3.5 -2.50 -1.00
[2, 0.8 1.0 0.3 [2,] -2.5 2.88 0.38
[3,7 0.5 0.3 1.0 [3,] -1.0 0.38 1.38
> D > round(solve (D), 2)

[,11 [,21 [,3] [,1] [,21] [,31]
[t,7 1.0 0.9 0.5 [1,] 7.58 -6.25 -1.92
[2,7 0.9 1.0 0.3 [2,] -6.25 6.25 1.25
[3,7 0.5 0.3 1.0 [3,] -1.92 1.25 1.58
> E > round(solve (E),2)

[,11 [,21 [,3] [,1] [,2] [,31]
1,] 1.00 0.95 0.5 [1,] 21.41 -18.82 -5.06
[2,] 0.95 1.00 0.3 [2,] -18.82 17.65 4.12
3,1 0.50 0.30 1.0 [3,] -5.06 4.12 2.29
> F > round(solve (F),2)

[,11 [,2] [,3] [,1] [,2] [,3]
[1,] 1.00 0.99 0.5 [1,] -39.39 36.36 8.79
[2,] 0.99 1.00 0.3 [2,] 36.36 —-32.47 -8.44
[3,] 0.50 0.30 1.0 [3,] 8.79 -8.44 -0.86

As the correlations become bigger, the inverse becomes

numerically less stable, and eventually not positive semidefinite.
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Instability of the inverse with high values of correlations

The problem of collinearity arises when the inverse becomes
unstable. As we shall see, this is when the matrix has 0 or negative
eigenvalues. Consider what happens if one correlation changes in
the 5th decimal place:

> solve (F)

[,1] (21 [,3] [,1] [,2] [,3]
1.0000 0.9761 0.5 [1,] 15478.823 -14051.709 -3523.8986
0.9761 1.0000 0.3 [2,] -14051.709 12757.272 3198.6732
0.5000 0.3000 1.0 [3,] -3523.899 3198.673 803.3473

> solve (F2)

[,1] (21 [,3] [,1] [,2] [,3]
1.00000 0.97613 0.5 [1,] 98665.31 -89571.84 -22461.103
0.97613 1.00000 0.3 [2,] -89571.84 81317.56 20390.650
0.50000 0.30000 1.0 [3,] -22461.10 20390.65 5114.357

> solve (F3)
[,1] [,2] [,3]

[,1] [,21 [,3] [1,] -38199.18 34679.400 8695.771
1.00000 0.97615 0.5 [2,] 34679.40 -31482.842 -7894.847
0.97615 1.00000 0.3 [3,1] 8695.77 -7894.847 -1978.431
0.50000 0.30000 1.0
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Collinearity is not just very high correlations

Collinearity is when one variable is a linear sum of other variables.
Examine what happens when the x; 3 correlation changes.

> F1 > solve (F1l)
11 ,21 [,3] [,1] [,2] [,3]
[1,]1 1.00 0.9 0.43 [1,] 196.07843 -176.47059 -84.31373
[2,7 0.90 1.0 0.00 [2,] -176.47059 159.82353 75.88235
[3,]1 0.43 0.0 1.00 [3,]1] -84.31373 75.88235 37.25490
> F2 > solve (F2)
11 ,21 [,3] [,1] [,2] [,3]
[1,] 1.000 0.9 0.435 [1,] 1290.3226 -1161.2903 -561.2903
[2,]7 0.900 1.0 0.000 [2,] -1161.2903 1046.1613 505.1613
[3,]1 0.435 0.0 1.000 [3,]1] -561.2903 505.1613 245.1613
> F3 > solve (F3)
11,21 [,3] (11 [,2] [,3]
[1,]7 1.00 0.9 0.44 [1,]1 =277.7778 250 122.22222
[2,]7 0.90 1.0 0.00 [2,] 250.0000 -224 -110.00000
[3,] 0.44 0.0 1.00 [3,]1] 122.2222 -110 -52.77778
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Colinearity and computational singularity

> Fl > solve (F1)
11,21 [,3] [,1] [,2] [,3]
[1,] 1.00 0.8 0.59 [1,] 84.03361 -67.22689 -49.57983
[2,] 0.80 1.0 0.00 [2,] —-67.22689 54.78151 39.66387
[3,] 0.59 0.0 1.00 [3,] -49.57983 39.66387 30.25210
> F2 > solve (F2)
[,11 [,2] [,3] [,1] [,2] [,3]
[1,] 1.000 0.8 0.599 [1,] 834.0284 -667.2227 -499.5830
[2,] 0.800 1.0 0.000 [2,] —-667.2227 534.7781 399.6664
[3,] 0.599 0.0 1.000 [3,] —499.5830 399.6664 300.2502
> F3 > solve (F2)
11 [,21 [,3] [,1] [,2] [,3]
1,] 1.000 0.8 0.601 [1,] —-832.6395 666.1116 500.4163
2,7 0.800 1.0 0.000 [2,] 666.1116 -531.8893 -400.3331
,1 0.601 0.0 1.000 [3,] 500.4163 -400.3331 -299.7502
> F
11,21 [,3] > solve (F)
[1, 1.0 0.8 0.6 Error in solve.default (F)
[2,7 0.8 1.0 0.0 system is computationally singular:
, 0.6 0.0 1.0 reciprocal condition number = 9.25186e
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Eigen Values and Eigen Vectors

The eigenvectors of a matrix are said to provide a basis space for
the matrix. This is a set of orthogonal vectors which when
multiplied by the appropriate scaling vector of eigenvalues will
reproduce the matrix.

Given a nx n matrix R, each eigenvector solves the equation

XiR = )\ x;
and the set of n eigenvectors are solutions to the equation
XR = \X

where X is a matrix of orthogonal eigenvectors and A is a diagonal
matrix of the the eigenvalues, A;. Then

XiR — \ixil =0 <=> X,'(R — )\,’I) =0
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Finding eigen values

Finding the eigenvectors and values is computationally tedious, but
may be done using the eigen function which uses a QR
decomposition of the matrix. That the vectors making up X are
orthogonal means that
XX’ =1
and because they form the basis space for R that
R = X\X'.

That is, it is possible to recreate the correlation matrix R in terms of
an orthogonal set of vectors (the eigenvectors) scaled by their
associated eigenvalues.
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Eigen vectors of a 2 x 2 correlation matrix

r=0 r=03
o ] v ; | Q Although the length
. — (eigen values) of

the axes differ, their
_ orientation (eigen
10 05 oo os 1 L s co os 1 vectors) are the

1.0 -05
1
1.0 -05
1

1.0 05 0.0 0.5 1.0 1.0 05 0.0 0.5 1.0
X X Same-
> r2 <- matrix(c(1,.6,.6,1),2,2
r=0.6 r=09 > print (eigen(r2),2)
e g e
$values
g - 2 g - [1] 1.6 0.4
- 2 ~ 2 Svectors
11 2]
v | 0 [1,] 0.71 -0.71
o o
' [2,] 0.71 0.71
o | o |
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Eigenvalue decomposition and matrix inverses

. A correlation matrix can be recreated by its (orthogonal)
eigenvectors and eigen values

« R = X)X’ where
« XX’ = I = X’ X the eigenvectors are orthogonal.
. The inverse of a matrix R~ is that matrix which when
multiplied by R is the Identity matrix /.
RR'"=R'R=1
. Combine these two concepts and we see that the inverse is
X(1/X) X’ since
« RR™" = (XAX')(X(1/A)X") = (XA)(X'X)(1/A)X")
< (XANIA/A)X) = XM/ N)X = XIX =1
. Thus, the problem of a non-semidefinite matrix is really a
problem of 0 or negative eigen values.
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Determinants

+ The determinant of an n * n correlation matrix may be thought
of as the proportion of the possible n-space spanned by the
variable space and is sometimes called the generalized
variance of the matrix. As such, it can also be considered as
the volume of the variable space.

+ If the correlation matrix is thought of a representing vectors
within a n dimensional space, then tthe eigenvalues are the
lengths of the axes of that space. The product of these, the
determinant, is then the volume of the space.

+ It will be a maximum when the axes are all of unit length and
be zero if at least one axis is zero.

+ Think of a three dimensional sphere (and then generalize to a
n dimensional hypersphere.)

« Ifitis squashed in a way that preserves the sum of the lengths
of the axes, then volume of the oblate hyper sphere will be
reduced.
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Determinants and redundancy
The determinant is an inverse measure of the redundancy of the
matrix. The smaller the determinant, the more variables in the
matrix are measuring the same thing (are correlated). The
determinant of the identity matrix is 1, the determinant of a matrix
with at least two perfectly correlated (linearly dependent) rows or
columns will be 0. If the matrix is transformed into a lower diagonal
matrix, the determinant is the product of the diagonals. The
determinant of a n * n square matrix, R is also the product of the n
eigenvalues of that matrix.

det(R) = |[R| = MLy Ai (18)
and the characteristic equation for a square matrix, X, is
IX — || =0

where X is an eigenvalue of X.
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Finding and using the determinant

+ The determinant may be found by the det function.

+ The determinant may be used in estimating the goodness of
fit of a particular model to the data,

- for when the model fits perfectly, then the inverse of the model
times the data will be an identity matrix and the determinant
will be one.

+ Similarly, the inverse of the data times the model will also be
an identity matrix with a determinant of one.

+ A poor model fit will have a determinant of data times inverse
of the model much less than 1.

+ As we shall see, this concept may be used in estimating the
goodness of fit of various models.
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