
More Latent Models



SEM as one of a family 
of latent models

I. Data = Model + Error

II. sems are models of covariance structures

A.typical sems model covariaces

B. change models are models of moments 
and include means 

III.Several alternative latent models



Alternative latent models

I. Item Response Theory  (IRT)

A.1, 2 and 3 parameter models

II. Latent Class Analysis (LCA)  



CTT vs. IRT

I. Classical Test Theory as a covariance-
structure model

II. IRT as a data model



Classical Test Theory

I. Classical test theory is a model of covariances

A.items are sampled from larger domain

B. items are random replicates of each other

C. difficulty of the item is not included in the 
model



Classical Test Theory
I. X as data matrix with elements xij

A.X is N subjects by k items   NXk

II. Covariance of items is X’X/N = Cxx

III.Item covariances reflect domain or true score

IV.Item variances reflect domain + specific + error 
scores

V.Reliability of a test X is the amount of  true score in 
the test 



Classical Reliabilty
I. rxx = 1 - σ2e /σ2x    or   (σ2x - σ2e)/σ2x

A.problem is how to estimate σ2e

B.  σ2e  is the sum of error variances for all items 

C. Multiple estimates of   σ2e

1. 1 - average correlation  (used for alpha)

2. 1 - squared multiple correlation (Guttman L6) 

3. 1 - communality    (McDonald omegatotal)



CTT and reliability

I. Congeneric reliability -- factor model

II. Reliability as the squared correlation with a 
latent factor

III.Can be estimated if we have at least 3 tests

IV.Can be tested if we have four tests 
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Bifactor and 
hierarchical models
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Reliability of 
hierarchical models

I. Omegahierarchical is σ2g /σ2x or the amount of 
general factor saturation

II. Omegatotal  is (σ2g+σ2f1+σ2f2+σ2f3) /σ2x or the total 
common variance divided by the total variance



CTT and reliability
I. Reliability is a sample concept

A.Sample of people

B. Sample of items

II. As person variance increases, so will reliability

III.As item homogeneity increases, so will 
reliability

IV.Does not tell reliability for a single person



Item Response Theory
I. model the response to individual items

II. As a function of person parameter and item 
parameters

A.Difficulty

B. Discriminability

C. Guessing



The New Psychometrics- Item 
Response Theory

• Classical theory estimates the correlation of 
item responses (and sums of items responses, 
i.e., tests) with domains.

• Classical theory treats items as random 
replicates but ignores the specific difficulty of 
the item, nor attempts to estimate the 
probability of endorsing (passing) a particular 
item



Item Response Theory

• Consider the person’s value on an attribute 
dimension (θi).

• Consider an item as having a difficulty δj

• Then the probability of endorsing (passing) an 
item j for person i=  f(θi, δj)

• p(correct | θi, δj) =  f(θi, δj)
• What is an appropriate function?
• Should reflect δj- θi and yet be bounded 0,1.



Item Response Theory

• p(correct | θi, δj) =  f(θi, δj) = f(δj- θi )
• Two logical functions:

– Cumulative normal (see, e.g., Thurstonian scaling)
– Logistic  = 1/(1+exp(δj- θi )) (the Rasch model)
– Logistic with weight of 1.7 

• 1/(1+exp(1.7*(δj- θi ))) approximates cumulative normal



Logistic and cumulative normal
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Item difficulty and ability

• Consider the probability of endorsing an item 
for different levels of ability and for items of 
different difficulty.

• Easy items (δj = -1)
• Moderate items (δj= 0)
• Difficulty items (δj= 1)



IRT of three item difficulties
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item difficulties = -2, -1, 0 , 1, 2
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Estimation of ability for a particular 
person for known item difficulty 

• The probability of any pattern of responses (x1, x2, 
x3, …. Xn) is the product of the probabilities of 
each response ∏(p(xi)).

• Consider the odds ratio of a response
–p/(1-p)  = 1/(1+exp(1.7*(δj- θi ))) /(1- 1/(1+exp(1.7*(δj- θi )))) =
–p/(1-p) = exp(1.7*(δj- θi )))  and therefore:
–Ln(odds) = 1.7* ( θi - δj ) and
–Ln (odds of a pattern ) = 1.7∑ (θi - δj ) for known 

difficulty



Unknown difficulty

• Initial estimate of ability for each subject 
(based upon total score)

• Initial estimate of difficulty for each item 
(based upon percent passing)

• Iterative solution to estimate ability and 
difficulty (with at least one item difficulty 
fixed.



IRT using R

• Use the ltm package (requires MASS)
• example data sets include LSAT and Abortion 

attitudes
• Lsat[1:10,] shows some data
• describe(LSAT)  (means and sd)
• m1 <- rasch(Lsat)

23



Consider data from the LSAT

  Item 1 Item 2 Item 3 Item 4 Item 5
1       0      0      0      0      0
2       0      0      0      0      0
3       0      0      0      0      0
4       0      0      0      0      1
5       0      0      0      0      1
6       0      0      0      0      1
7       0      0      0      0      1
8       0      0      0      0      1
9       0      0      0      0      1
10      0      0      0      1      0

...



Descriptive stats

 describe(Lsat)
          n mean   sd median min max range  skew   se
Item 1 1000 0.92 0.27      1   0   1     1 -3.20 0.01
Item 2 1000 0.71 0.45      1   0   1     1 -0.92 0.01
Item 3 1000 0.55 0.50      1   0   1     1 -0.21 0.02
Item 4 1000 0.76 0.43      1   0   1     1 -1.24 0.01
Item 5 1000 0.87 0.34      1   0   1     1 -2.20 0.01



Correlations and alpha

      Item 1 Item 2 Item 3 Item 4 Item 5
Item 1   1.00   0.07   0.10   0.04   0.02
Item 2   0.07   1.00   0.11   0.06   0.09
Item 3   0.10   0.11   1.00   0.11   0.05
Item 4   0.04   0.06   0.11   1.00   0.10
Item 5   0.02   0.09   0.05   0.10   1.00

cl <- cor(Lsat)
 Vt <- sum(cl)
iv <- sum(diag(cl))
alpha <- ((Vt-iv)/Vt)*(5/4)
 alpha 
[1] 0.29



Rasch model

m1 <- rasch(Lsat)
 coef(m1,TRUE)
       beta.i  beta P(x=1|z=0)
Item 1  2.730 0.755      0.939
Item 2  0.999 0.755      0.731
Item 3  0.240 0.755      0.560
Item 4  1.306 0.755      0.787
Item 5  2.099 0.755      0.891



Plot irt
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Classical versus the “new”

• Ability estimates are logistic transform of total score 
and are thus highly correlated with total scores, so 
why bother?

• IRT allows for more efficient testing, because items 
can be tailored to the subject.

• Maximally informative items have p(passing given 
ability and difficulty) of .5

• With tailored tests, each person can be given items of 
difficulty appropriate for them.



Computerized adaptive testing

• CAT allows for equal precision at all levels of ability
• CAT/IRT allows for individual confidence intervals 

for individuals
• Can have more precision at specific cut points 

(people close to the passing grade for an exam can be 
measured more precisely than those far (above or 
below) the passing point. 



Psychological (non-psychometric) 
problems with CAT

• CAT items have difficulty level tailored to individual 
so that each person passes about 50% of the items.

• This increases the subjective feeling of failure and 
interacts with test anxiety

• Anxious people quit after failing and try harder after 
success -- their pattern on CAT is to do progressively 
worse as test progresses (Gershon, 199x, in 
preparation)



Generalizations of IRT to 2 and 3 
item parameters

• Item difficulty  
• Item discrimination  (roughly equivalent to 

correlation of item with total score)
• Guessing (a problem with multiple choice tests) 
• 2 and 3 parameter models are harder to get 

consistent estimates and results do not necessarily 
have monotonic relationship with total score
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Item Response Theory

• Can be seen as a generalization of classical test 
theory, for it is possible to estimate the correlations 
between items given assumptions about the 
distribution of individuals taking the test

• Allows for expressing scores in terms of probability 
of passing rather than merely rank orders (or even 
standard scores). Thus, a 1 sigma difference between 
groups might be seen as more or less important when 
we know how this reflects chances of success on an 
item

• Emphasizes non-linear nature of response scores.



IRT and items

I. Advantage of fitting the raw data rather than 
the structure.

II. As a sem, it is a latent variable of the 
moments as well as the means.

III.Nonlinear structure model



Latent Variables in 
psychopathology

I. Tendency to apply categorical diagnoses

II. But these diagnoses are “comorbid”

III.Can we find a latent model to account for 
them?



Consider the following 
matrix of “comorbidity”

    V1  V2 V3 V4
V1 149  48 28 10
V2  48 102 16  6
V3  28  16 61  1
V4  10   6  1 19



Consider the following 
matrix of “comorbidity”

    V1  V2 V3 V4
V1 149  48 28 10
V2  48 102 16  6
V3  28  16 61  1
V4  10   6  1 19

Diagonal reflect 
diagnoses, off diagonal, 

comorbidities
but what are the 

marginals?



Need to know the 
marginals!

I. Just reporting co-occurrences of two 
categories is not enough

II. Need to know frequencies of diagnosis and 
non diagnosis



Data generating 
“comorbidities”

   var    n mean   sd median trimmed mad min max range skew kurtosis   se
V1   1 1000 0.15 0.36      0    0.06   0   0   1     1 1.97     1.88 0.01
V2   2 1000 0.10 0.30      0    0.00   0   0   1     1 2.63     4.90 0.01
V3   3 1000 0.06 0.24      0    0.00   0   0   1     1 3.66    11.43 0.01
V4   4 1000 0.02 0.14      0    0.00   0   0   1     1 7.04    47.55 0.00



Phi coefficients
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Tetrachorics as estimate of 
underlying correlation

> xc <- matrix(as.factor(x2),ncol=4)
> rc <- hetcor(xc)
> print(rc,digits=2)
Two-Step Estimates
Correlations/Type of Correlation:
     xc         X2         X3         X4
xc    1 Polychoric Polychoric Polychoric
X2 0.56          1 Polychoric Polychoric
X3 0.48       0.34          1 Polychoric
X4 0.45       0.33      -0.03          1
Standard Errors:
      xc    X2   X3
xc                 
X2 0.056           
X3  0.07 0.086     
X4   0.1  0.12 0.19
n = 1000 



Compare with “true” data
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Correlations/Type of Correlation:
     xc         X2         X3         X4
xc    1 Polychoric Polychoric Polychoric
X2 0.56          1 Polychoric Polychoric
X3 0.48       0.34          1 Polychoric
X4 0.45       0.33      -0.03          1



If diagnoses are not as 
extreme, tetrachoric works 

better
> set.seed(42)
> x <- sim.congeneric(N=1000,short=FALSE)
> cut <- rep(1,4)
> x <- x$observed
> x2 <- t((t(x)>cut)+0)

> describe(x2)
   var    n mean   sd median trimmed mad min max range skew kurtosis   se
V1   1 1000 0.15 0.36      0    0.06   0   0   1     1 1.97     1.88 0.01
V2   2 1000 0.16 0.37      0    0.08   0   0   1     1 1.81     1.29 0.01
V3   3 1000 0.15 0.36      0    0.06   0   0   1     1 1.98     1.92 0.01
V4   4 1000 0.16 0.37      0    0.08   0   0   1     1 1.85     1.43 0.01

> 



Underlying distribution
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Convert to 
tetrachorics

> xc <- matrix(as.factor(xd),ncol=4)
> rtetra <- hetcor(xc)
> print(rtetra,digits=2)

Two-Step Estimates

Correlations/Type of Correlation:
     xc         X2         X3         X4
xc    1 Polychoric Polychoric Polychoric
X2 0.56          1 Polychoric Polychoric
X3 0.56       0.41          1 Polychoric
X4  0.1       0.19       0.15          1

Standard Errors:
      xc    X2   X3
xc                 
X2 0.054           
X3 0.059 0.073     
X4  0.15  0.15 0.17

n = 1000 



Compare to generating data

     xc         X2         X3         X4
xc    1 Polychoric Polychoric Polychoric
X2 0.56          1 Polychoric Polychoric
X3 0.56       0.41          1 Polychoric
X4  0.1       0.19       0.15          1
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x2 <- sim.congeneric(N=1000,short=FALSE)$observed
> cut
[1] 1.0 1.2 1.5 2.0
xd <- t((t(x2) > cut)+0)
pairs.panels(x2)



Using tetrachorics

I. Convert comorbidities to correlations

II. find the structure of these correlations

III.Basically convert from categorical into a 
continuous model



Krueger and Markon, 
2006


