More Latent Models




SEM as one of a family

of latent models
I. Data = Model + Error
II. sems are models of covariance structures
A .typical sems model covariaces

B.change models are models of moments
and include means

II1.Several alternative latent models




Alternative latent models

I. Item Response Theory (IRT)
A.1, 2 and 3 parameter models

II. Latent Class Analysis (LCA)




CTT vs. IRT

I. Classical Test Theory as a covariance-
structure model

II.IRT as a data model




Classical Test Theory

I. Classical test theory 1s a model of covariances
A.1tems are sampled from larger domain
B.1tems are random replicates of each other

C.difficulty of the item 1s not included in the
model




Classical Test Theory

[. X as data matrix with elements x;j;
A.X 1s N subjects by k items nXk

II. Covariance of items 18 X’ X/N = Cxx

III.Item covariances reflect domain or true score

IV Item variances reflect domain + specific + error
scores

V.Reliability of a test X 1s the amount of true score 1n
the test




Classical Reliabilty

I. rxx =1 - 02 /02« or (02%-02)/0%
A.problem is how to estimate 02,
B. 0% is the sum of error variances for all items
C. Multiple estimates of 02
1. 1-average correlation (used for alpha)
2. 1 - squared multiple correlation (Guttman L)

3. 1 - communality (McDonald omegasotal)




I.

CTT and rehability

Congeneric reliability -- factor model

II. Reliability as the squared correlation with a

I

latent factor

.Can be estimated 1f we have at least 3 tests

IV .Can be tested if we have four tests




Congeneric test model

Congeneric Model




Bifactor and

hierarchical models
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Reliability of
hierarchical models

I. Omegahierarchica] 1S 02g / 02x or the amount Of
general factor saturation

I1. Omegasotar is (02g+0211+0212+0%3) /G2 or the total
common variance divided by the total variance




CTT and rehability

I. Reliability 1s a sample concept

A.Sample of people

B.Sample of items
II. As person variance increases, so will reliability

III.As 1item homogeneity increases, so will
reliability

IV .Does not tell reliability for a single person




[tem Response Theory

I. model the response to individual items

II. As a function of person parameter and item
parameters

A.Difficulty
B. Discriminability

C. Guessing




The New Psychometrics- Item
Response Theory

 Classical theory estimates the correlation of
item responses (and sums of 1items responses,
1.e., tests) with domains.

 Classical theory treats items as random
replicates but 1ignores the specific difficulty of
the 1tem, nor attempts to estimate the
probability of endorsing (passing) a particular
1tem




Item Response Theory

» Consider the person’s value on an attribute
dimension (0,).

» Consider an item as having a difficulty o;

* Then the probability of endorsing (passing) an
item j for person i= f(6; 0;)

® p(COIT@Ct | ei’ 6j) — f(@i, 6J)
 What 1s an appropriate function?
» Should reflect 6;- 6; and yet be bounded 0,1.




Item Response Theory

® p(COITeCt | ei, 6J) = f(@i, 6j) — f(éj‘ 61)
* Two logical functions:

— Cumulative normal (see, e.g., Thurstonian scaling)
— Logistic = 1/(1+exp(9;- 6;)) (the Rasch model)

— Logistic with weight of 1.7
o 1/(1+exp(1.7*(0;- B, ))) approximates cumulative normal
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Item difficulty and ability

e Consider the probability of endorsing an item
for different levels of ability and for items of
different difficulty.

o Eagy items (0; = -1)
» Moderate items (0= 0)
o Difficulty items (6;= 1)




observed probability

1.0

0.8

0.6

0.4

0.2

0.0

IRT of three item difficulties

moderate difficult

latent variable




observed probability

1.0

0.8

0.6

0.4

0.2

0.0

item difficulties=-2,-1,0,1,2

very easy

moderate

difficult

very hard

latent variable




Estimation of ability for a particular
person for known item difficulty

* The probability of any pattern of responses (x1, x2,
X3, .... Xn) 1s the product of the probabilities of
each response [[(p(x1)).

* Consider the odds ratio of a response
—p/(1-p) = U(1+exp(1.7%(3- 6,))) /(1- 1/(1+exp(1.7%(5- 6,)))) =
—p/(1-p) = exp(1.7*(0;- ©;))) and therefore:

—Ln(odds) = 1.7* (6, -9,) and
—Ln (odds of a pattern ) = 1.7X (6; - 9;) for known
difficulty




Unknown difficulty

e Initial estimate of ability for each subject
(based upon total score)

e Initial estimate of difficulty for each item
(based upon percent passing)

e [terative solution to estimate ability and
difficulty (with at least one item difficulty
fixed.




IRT using R

e Use the 1tm package (requires MASS)

e example data sets include LSAT and Abortion
attitudes

e [ sat[1:10,] shows some data
e describe(LSAT) (means and sd)
e ml <- rasch(Lsat)

23




Consider data from the LSAT

Item 1 Item 2 Item 3 Item 4 Item 5
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Item
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Descriptive stats

describe(Lsat)
n mean sd median min max range skew

1000 0.92 0.27 1 0 1 1 -3.20
1000 0.71 0.45 0 1 1 -0.92
1000 0.55 0.50 1 0 1 1 -0.21
1000 0.76 0.43 1 0 1 1 -1.24
1000 0.87 0.34 1 0 1 1 -2.20

O O O O O

se

.01
.01
.02
.01
.01




Correlations and alpha

Item 1 Item 2 Item 3 Item 4 Item 5
Item1 1.00 0.07 0.10 0.04 0.02
Item?2 0.07 1.00 0.11 0.06 0.09
Item3 0.10 0.11 1.00 0.11 0.05
Item4 004 0.06 0.11 1.00 0.10
[tem5 0.02 0.09 0.05 0.10 1.00

cl <- cor(Lsat)
Vt <- sum(cl)
iv <- sum(diag(cl))
alpha <- ((Vt-iv)/Vt)*(5/4)
alpha
[1] 0.29




Rasch model

ml <- rasch(Lsat)

coef (ml, TRUE)

beta.1
Item 1 2.730
Item 2 0.999
Item 3 0.240
Item 4 1.306
Item 5 2.099

O O O O O

beta P(x=1]|z=0)
. 755
. 755
. 755
. 755
. 755

0.939
0.731
0.560
0.787
0.891
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Classical versus the “new’”

e Ability estimates are logistic transform of total score
and are thus highly correlated with total scores, so
why bother?

e IRT allows for more efficient testing, because items
can be tailored to the subject.

 Maximally informative items have p(passing given
ability and difficulty) of .5

e With tailored tests, each person can be given items of
difficulty appropriate for them.




Computerized adaptive testing

o CAT allows for equal precision at all levels of ability

o CAT/IRT allows for individual confidence intervals
for individuals

e Can have more precision at specific cut points
(people close to the passing grade for an exam can be
measured more precisely than those far (above or
below) the passing point.




Psychological (non-psychometric)
problems with CAT

e CAT items have difficulty level tailored to individual
so that each person passes about 50% of the items.

* This increases the subjective feeling of failure and
interacts with test anxiety

* Anxious people quit after failing and try harder after
success -- their pattern on CAT 1s to do progressively
worse as test progresses (Gershon, 199x, in
preparation)




Generalizations of IRT to 2 and 3
item parameters
e [tem difficulty

e [tem discrimination (roughly equivalent to
correlation of 1item with total score)

e Guessing (a problem with multiple choice tests)

e 2 and 3 parameter models are harder to get
consistent estimates and results do not necessarily
have monotonic relationship with total score
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Item Response Theory

e Can be seen as a generalization of classical test
theory, for it is possible to estimate the correlations
between items given assumptions about the
distribution of individuals taking the test

* Allows for expressing scores in terms of probability
of passing rather than merely rank orders (or even
standard scores). Thus, a 1 sigma difference between
groups might be seen as more or less important when
we know how this reflects chances of success on an
1tem

 Emphasizes non-linear nature of response scores.




IRT and 1tems

I. Advantage of fitting the raw data rather than
the structure.

II. As a sem, 1t 1s a latent variable of the
moments as well as the means.

ITI.Nonlinear structure model




I

I

Latent Variables in
psychopathology

. Tendency to apply categorical diagnoses

II. But these diagnoses are “comorbid”

.Can we find a latent model to account for

them?




Consider the following
matrix of “comorbidity”

V1l V2 V3 V4
V1l 149 48 28 10
v2 48 102 16 ©
v3 28 16 61 1
vd 10 6 1 19




Consider the following
matrix of “comorbidity”

vl V2 V3 V4 Diagonal reflect

vl 149 48 28 10 diagnoses, off diagonal,
V2 48 102 16 6 comorbidities
v3 28 16 61 1 but what are the

va 10 6 119 marginals?




Need to know the
marginals!

I. Just reporting co-occurrences of two
categories 1s not enough

II. Need to know frequencies of diagnosis and
non diagnosis




V1
V2
V3
V4

var

= w N

Data generating
“comorbidities™

n mean
1000 0.15
1000 0.10
1000 0.06
1000 0.02

o O O O

sd median trimmed mad min max range

.36 0 0.06 0
.30 0 0.00 0
.24 0 0.00 0
.14 0 0.00 0

0

0
0
0

1

1
1
1

1

1
1
1

skew kurtosis

1.97 1.88
2.63 4.90
3.66 11.43
7.04 47.55

o O O O

se

.01
.01
.01
.00




Phi1 coefficients
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Tetrachorics as estimate of
underlying correlation

> xc <- matrix(as.factor(x2),ncol=4)
> rc <- hetcor(xc)

> print(rc,digits=2)

Two-Step Estimates
Correlations/Type of Correlation:

XC X2 X3 X4
XC 1 Polychoric Polychoric Polychoric
X2 0.56 1 Polychoric Polychoric
X3 0.48 0.34 1 Polychoric
X4 0.45 0.33 -0.03 1
Standard Errors:

XC X2 X3
XC
X2 0.056

X3 0.07 0.086
X4 0.1 0.12 0.19
n = 1000




Compare with “true” data

V1

-*Correlations/Type of Correlation:

V2

XC X2 X3 X
XC 1 Polychoric Polychoric Polychori
X2 0.56 1 Polychoric Polychori
X3 0.48 0.34 1 Polychori

X4 0.45 0.33 -0.03

3 -2 -1 0 1 2 3




It diagnoses are not as

extreme, tetrachoric works

better

set.seed(42)

X <- sim.congeneric(N=1000,short=FALSE)
cut <- rep(l,4)

X <- XS$Sobserved

X2 <- t((t(x)>cut)+0)

describe(x2)

var n mean sd median trimmed mad min max range skew kurtosis
V1 1 1000 0.15 0.36 0 0.06 0 0 1 1 1.97 1.88
V2 2 1000 0.16 0.37 0 0.08 0 0 1 1 1.81 1.29
V3 3 1000 0.15 0.36 0 0.06 0 0 1 1 1.98 1.92
2 4 1000 0.16 0.37 0 0.08 0 0 1 1 1.85 1.43

o O O O

se

.01
.01
.01
.01




Underlying distribution
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> xc <- matrix(as.factor(xd),ncol=4)

> rtetra <- hetcor(xc) COnvert tO

> print(rtetra,digits=2)

Two-Step Estimates tetraChOriC S

Correlations/Type of Correlation:

XC X2 X3 X4
XC 1 Polychoric Polychoric Polychoric
X2 0.56 1 Polychoric Polychoric
X3 0.56 0.41 1 Polychoric
X4 0.1 0.19 0.15 1

Standard Errors:
XC X2 X3
XC
X2 0.054
X3 0.059 0.073
X4 0.15 0.15 0.17

n = 1000




Compare to generating data

32101 2 3

0.52

V3

-3

V4

10 1 2 3

2 XC X2 X3 X4
o b-Lo] 1 Polychoric Polychoric Polychoric
T X2 0.56 1 Polychoric Polychoric
o X3 0.56 0.41 1 Polychoric
- - 0.43 0.34 X4 0.1 0.19 0.15 1

X2 <- sim.congeneric(N=1000,short=FALSE)Sobserved

> cut

[1] 1.0 1.2 1.5 2.0

xd <- t((t(x2) > cut)+0)
pairs.panels(x2)




Using tetrachorics

I. Convert comorbidities to correlations

II. find the structure of these correlations

III.Basically convert from categorical into a
continuous model




Krueger and Markon,
2006
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