Psychology 454: Latent Variable Modeling Adventures in good and bad modeling

William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA

November, 2015

Outline

Reading sem articles critically

GFP articles as examples of what not to do

Structural Equation Modeling of these data

Dimensionality of Self Esteem

Examples taken from the general factor of personality controversy

- 1. The great debate: How many factors of personality?
 - Two-Three factor models Eysenck (1952, 1967, 1981)
 - 12-16+ Cattell (1956, 1957)
 - Comrey (1995)
 - Five factors Tupes & Christal (1961); Norman (1963); Digman (1990); Goldberg (1990); Costa & McCrae (1992)
- 2. Plasticity and Stability
 - Digman (1997)
 - DeYoung, Peterson & Higgins (2002); DeYoung (2010)
- 3. The Great One: a general factor of personality
 - Original meta-analysis by Musek (2007) of Big 5 data claimed a General Factor of Personality (GFP). This was followed by a torrent of research by Rushton and his associates (Rushton & Irwing, 2008; Rushton, Bons & Hur, 2008; Rushton & Irwing, 2009).
 - Review articles in the Handbook of Individual Differences (Ferguson, Chamorro-Premuzic, Pickering & Weiss, 2011; Rushton & Irwing, 2011) and elsewhere (Just, 2011).

Erdle example

- 1. Erdle, Irwing, Rushton & Park (2010) The general factor of personality and its relation to self-esteem in 628,640 internet respondents.
 - 628,640 subjects taken from a web survey.
 - Big Five Inventory John, Donahue & Kentle (1991);
 Benet-Martínez & John (1998); John, Naumann & Soto (2008)
 - note that these are not the references given in the article, which cites another paper (John & Srivastava, 1999)).
 - Self esteem was measured by one item: "I see myself as someone who has high self esteem" with a five point scale (strongly disagree—strongly agree).
- 2. Based upon a prior paper (Erdle, Gosling & Potter, 2009) reporting the same data set with two "factors", although they actually did a principal components analysis!
 - · Lets first look at that paper.

V6 0.18 0.40 0.13 0.26 0.48 1.00

The basic data as reported

```
C ES
                        SE
  .19
       .09
            .07
                .08
                       .18
       15
             .12
                  .26
                        .40
                                                > colnames(es) <- rownames(es) <-
Α
             . 26
                  .30
                                                                c("O", "E", "A", "C", "S", "ES")
                  .27
                        .26
                                                > pr <- partial.r(es,1:5,6) #partial out self es
                        .48
                                                > es
                                                >pr
#select just the numbers
.19 .09 .07 .08 .18
                                                           Ε
                                                               Α
                                                                   C
      .15
            .12 .26
                       .40
                                               0 1.00 0.19 0.09 0.07 0.08 0.18
            .26
                 .30
                       .13
                                               E 0.19 1.00 0.15 0.12 0.26 0.40
                 .27
                                               A 0.09 0.15 1.00 0.26 0.30 0.13
                       .26
                                               C 0.07 0.12 0.26 1.00 0.27 0.26
                       .48
                                                S 0.08 0.26 0.30 0.27 1.00 0.48
 > es <- read.clipboard.upper(FALSE, FALSE)
                                                ES 0.18 0.40 0.13 0.26 0.48 1.00
                                               > pr
Read 15 items
> es
                                               partial correlations
         V2
             V3
                  V4
                       V5
                                                        E
                                                             A
V1 1.00 0.19 0.09 0.07 0.08 0.18
                                               0 1.00 0.13 0.07 0.02 -0.01
                                               E 0.13 1.00 0.11 0.02 0.08
V2 0.19 1.00 0.15 0.12 0.26 0.40
                                               A 0.07 0.11 1.00 0.24 0.27
V3 0.09 0.15 1.00 0.26 0.30 0.13
V4 0.07 0.12 0.26 1.00 0.27 0.26
                                               C 0.02 0.02 0.24 1.00 0.17
                                                S -0.01 0.08 0.27 0.17 1.00
V5 0.08 0.26 0.30 0.27 1.00 0.48
```

Erdle et al. (2009) claims to have done a "principal components factor analysis"

```
> p2 <- principal(es[-6,-6],2,n.obs=628240) #this will do a varimax rotation
> p2
Principal Components Analysis
Call: principal(r = es[-6, -6], nfactors = 2, n.obs = 628240)
Standardized loadings (pattern matrix) based upon correlation matrix
    PC1
       PC2 h2 112
0 -0.07 0.83 0.70 0.30
E 0.26 0.68 0.53 0.47
A 0.71 0.07 0.51 0.49
C 0.71 -0.02 0.50 0.50
S 0.70 0.21 0.54 0.46
                     PC1 PC2
SS loadings
                    1.57 1.21
Proportion Var 0.31 0.24
Cumulative Var
               0.31 0.56
Proportion Explained 0.57 0.43
Cumulative Proportion 0.57 1.00
Test of the hypothesis that 2 components are sufficient.
```

The degrees of freedom for the null model are 10 and the objective function was 0.33 The degrees of freedom for the model are 1 and the objective function was 0.56 The number of observations was 628240 with Chi Square = 350853.6 with prob < 0

Fit based upon off diagonal values = 0.17

Two factors show a very clear solution – but what is it?

> f2 <- fa(es[-6,-6],2,n.obs=628240) #this will do an oblique rotation

> f2 Test of the hypothesis that 2 factors are sufficient. Factor Analysis using method = minres Call: fa(r = es[-6, -6], nfactors = 2, The degrees of freedom for the null model are 10 and the second sen.obs = 628240)objective function was 0.33 with Standardized loadings (pattern matrix) Chi Square of 206317.6 based upon correlation matrix The degrees of freedom for the model are 1 and the MR1 MR2 h2 112 objective function was 0 0 0.16 0.10 0.045 0.955 E 1.00 0.00 0.995 0.005 The root mean square of the residuals (RMSR) is 0 A -0.03 0.55 0.292 0.708 The df corrected root mean square of the residuals is 0 C -0.05 0.50 0.237 0.763 The number of observations was 628240 with S 0.08 0.53 0.320 0.680 Chi Square = 440.62 with prob < 7.96Tucker Lewis Index of factoring reliability = 0.979 MR1 MR2 SS loadings 1.04 0.85 RMSEA index = 0.026 and the 90Proportion Var 0.21 0.17 % confidence intervals are 0.024 0.029 Cumulative Var 0.21 0.38 BTC = 427.27Proportion Explained 0.55 0.45 Fit based upon off diagonal values = 1 Cumulative Proportion 0.55 1.00 Measures of factor score adequacy MR1 MR2 With factor correlations of Correlation of scores with factors 1.00 0.75 MR1 MR2 Multiple R square of scores with factors 1.00 0.57 MR1 1.00 0.33 Minimum correlation of possible factor scores 0.99 0.13 MR2 0.33 1.00

Compare the factor and components solutions

```
#the component loadings
```

PC2 h2 PC1 u2 0 - 0.070.83 0.70 0.30 E 0.26 0.68 0.53 0.47 A 0.71 0.07 0.51 0.49 C 0.71 -0.02 0.50 0.50 S 0.70 0.21 0.54 0.46

PC1 PC2 SS loadings 1.57 1.21 Proportion Var 0.31 0.24 0.31 0.56 Cumulative Var Proportion Explained 0.57 0.43 Cumulative Proportion 0.57 1.00

#think about the raw correlations #and examine the commonalities

С ES 0 1.00 0.19 0.09 0.07 0.08 0.18 E 0.19 1.00 0.15 0.12 0.26 0.40 A 0.09 0.15 1.00 0.26 0.30 0.13 C 0.07 0.12 0.26 1.00 0.27 0.26 S 0.08 0.26 0.30 0.27 1.00 0.48 ES 0.18 0.40 0.13 0.26 0.48 1.00

```
Call: fa(r = es[-6, -6], nfactors = 2, n.obs = 6
Standardized loadings (pattern matrix) based upo
   MR1 MR2
              h2
                    112
0 0.18 0.11 0.045 0.955
E 0.99 0.09 0.995 0.005
A 0.10 0.53 0.292 0.708
C 0.08 0.48 0.237 0.763
S 0.22 0.52 0.320 0.680
                      MR1 MR2
SS loadings
                     1.08 0.80
Proportion Var
                     0.22 0.16
Cumulative Var
                    0.22 0.38
Proportion Explained 0.57 0.43
Cumulative Proportion 0.57 1.00
   MR1 MR2
              h2
                    112
0 0.16 0.10 0.045 0.955
E 1.00 0.00 0.995 0.005
A -0.03 0.55 0.292 0.708
C -0.05 0.50 0.237 0.763
S 0.08 0.53 0.320 0.680
                      MR1 MR2
SS loadings
                    1.04 0.85
Proportion Var
                    0.21 0.17
Cumulative Var
                    0.21 0.38
Proportion Explained 0.55 0.45
Cumulative Proportion 0.55 1.00
With factor correlations of
    MR1 MR2
MR1 1.00 0.33
```

MR2 0.33 1.00

Compare the residuals from the factor and component models

```
> resid(p2)
                                  > resid(f2)
                                                           S
 0.30
                                  0 0.96
E -0.36 0.47
                                     0.00 0.00
A 0.07 -0.09 0.49
                                     0.01 0.00 0.71
  0.13 -0.05 -0.24
                   0.50
                                     0.00 0.00 0.00 0.76
S -0.05 -0.07 -0.21 -0.22 0.46
                                  S -0.02 0.00 0.00
                                                      0.00
                                                            0.68
```

Components fits the entire matrix, factors fit the off diagonal elements.

Components for the data with self esteem partialled out

These match what is reported

```
> class(pr) <- NULL
> pc2p <- principal(pr,2)
> pc2p
Principal Components Analysis
Call: principal(r = pr, nfactors = 2)
Standardized loadings (pattern matrix) based upon correlation matrix
   PC1 PC2 h2 112
0 -0.05 0.77 0.59 0.41
E 0.11 0.72 0.53 0.47
A 0.72 0.17 0.56 0.44
C 0.66 -0.07 0.44 0.56
S 0.70 0.01 0.49 0.51
                    PC1 PC2
                 1.46 1.15
SS loadings
Proportion Var 0.29 0.23
Cumulative Var 0.29 0.52
Proportion Explained 0.56 0.44
Cumulative Proportion 0.56 1.00
```

Test of the hypothesis that 2 components are sufficient.

The degrees of freedom for the null model are 10 and the objective function was 0.19 The degrees of freedom for the model are 1 and the objective function was 0.58

Fit based upon off diagonal values = -0.91

> f2p <- fa(pr,2,n.obs=628240)

Factors on the partialed data

```
> f2p
                                          Test of the hypothesis that 2 factors are sufficien
Factor Analysis using method = minres
                                          The degrees of freedom for the null model are 10
Call: fa(r = pr, nfactors = 2, n.obs = 628240)
                                                 and the objective function was 0.19
Standardized loadings (pattern matrix)
                                                        with Chi Square of 116266.5
       based upon correlation matrix
                                          The degrees of freedom for the model are 1
   MR1 MR2
               h2
                      112
                                                     and the objective function was 0
0 1.00 0.00 0.995 0.005
E 0.12 0.15 0.039 0.961
                                          The root mean square of the residuals (RMSR) is 0.
A 0.02 0.62 0.390 0.610
                                          The df corrected root mean square
C -0.01 0.37 0.139 0.861
                                                              of the residuals is 0.05
s -0.04 0.45 0.202 0.798
                                          The number of observations was 628240
                                               with Chi Square = 1658.93 with prob < 0
                       MR1 MR2
SS loadings
                      1.01 0.75
                                          Tucker Lewis Index of factoring reliability = 0.85
                     0.20 0.15
Proportion Var
                                          RMSEA index = 0.051 and the
Cumulative Var
                      0.20 0.35
                                                 90 % confidence intervals are 0.049 0.053
Proportion Explained 0.57 0.43
                                          BIC = 1645.58
Cumulative Proportion 0.57 1.00
                                          Fit based upon off diagonal values = 0.99
                                          Measures of factor score adequacy
 With factor correlations of
                                                                                          MR1
    MR1 MR2
                                          Correlation of scores with factors
                                                                                         1.00
MR1 1.00 0.08
                                          Multiple R square of scores with factors
                                                                                         1.00
MR2 0.08 1.00
                                          Minimum correlation of possible factor scores
                                                                                         0.99
```

Compare component and factor solutions of the residualized Big 5 data

> f2p Factor Analysis using method = minres Call: fa(r = pr, nfactors = 2, n.obs = 628240)Standardized loadings (pattern matrix) Principal Components Analysis based upon correlation matrix

> MR1 MR2 h2 u2 0 1.00 0.00 0.995 0.005 E 0.12 0.15 0.039 0.961 A 0.02 0.62 0.390 0.610 C -0.01 0.37 0.139 0.861

S -0.04 0.45 0.202 0.798

MR1 MR2 SS loadings 1.01 0.75 Proportion Var 0.20 0.15

Cumulative Var 0.20 0.35 Proportion Explained 0.57 0.43 Cumulative Proportion 0.57 1.00 With factor correlations of

MR1 MR2 MR1 1.00 0.08

MR2 0.08 1.00

Test of the hypothesis that 2 factors are suffic The degrees of freedom for the null model are 1 and the objective function was 0.19

The degrees of freedom for the null model are and the objective function was 0.19 The degrees of freedom for the model are 1 and the objective function was 0.58

components are sufficient.

The degrees of freedom for the model are 1 and the objective function was 0

with Chi Square of 116266.5

Call: principal(r = pr, nfactors = 2)

h2 u2

Standardized loadings (pattern matrix)

based upon correlation matrix

PC1 PC2

1.46 1.15

0.29 0.23

0.29 0.52

Reading sem articles critically 0000000000000

PC1 PC2

SS loadings

Proportion Var

Cumulative Var

0 -0.05 0.77 0.59 0.41

E 0.11 0.72 0.53 0.47

A 0.72 0.17 0.56 0.44 C 0.66 -0.07 0.44 0.56

S 0.70 0.01 0.49 0.51

Proportion Explained 0.56 0.44

Cumulative Proportion 0.56 1.00

Test of the hypothesis that 2

> pc2p

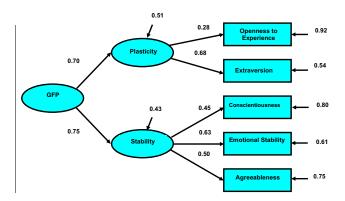
Factor analysis vs. components analysis of Big5 data

Factor Analysis

Principal Components

How similar are these four solutions: Factor Congruence

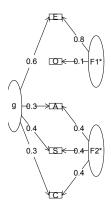
$$r_{c} = \frac{\sum_{1}^{n} F_{xi} F_{y_{i}}}{\sqrt{\sum_{1}^{n} F_{xi}^{2} \sum_{1}^{n} F_{yi}^{2}}}$$


> factor.congruence(list(f2,p2,f2p,pc2p))

```
MR1 MR2 PC1 PC2 MR1 MR2 PC1 PC2
MR1 1.00 0.02 0.20 0.74 0.27 0.17 0.08 0.77
MR2 0.02 1.00 0.96 0.22 0.09 0.96 0.98 0.15
PC1 0.20 0.96 1.00 0.22 -0.05 0.98 0.99 0.17
PC2 0.74 0.22 0.22 1.00 0.82 0.24 0.16 0.98
MR1 0.27 0.09 -0.05 0.82 1.00 0.01 -0.05 0.79
MR2 0.17 0.96 0.98 0.24 0.01 1.00 0.98 0.21
PC1 0.08 0.98 0.99 0.16 -0.05 0.98 1.00 0.10
PC2 0.77 0.15 0.17 0.98 0.79 0.21 0.10 1.00
```

Subsequent paper (Erdle et al., 2010) looks for a general factor

- Same data set as before, but using sem
 - Two different models
 - One without Self Esteem
 - One with Self Esteem
- Lets redo their analyses
 - Examine model and alternative models
- Also, do the analysis as an exploratory higher level model


Erdle Model 1 – Is it actually defined?

Erdle data with an exploratory Omega solution

mega with Schmid Leiman Transform

Hierarchical (multilevel) Structure

Comparative Fit Index (CFI)

Tucker-Lewis Index (TLI)

Fitting the model, part 1: Two correlated factors

> se.mod <- Plasticity =~ O + E		
+ Stability =~ C + S + A		
+ '	Loglikelihood and Information Criteria:	
> fit.se <- cfa(se.mod,sample.cov=es,samp	ole.nobs=628640)	
> summary(fit.se,fit.measures=TRUE)	Loglikelihood user model (HO)	-43
	Loglikelihood unrestricted model (H1)	-43
lavaan (0.4-14) converged normally after	38 iteratNomber of free parameters	
	Akaike (AIC)	871
Number of observations	62 Báýe sian (BIC)	871
	Sample-size adjusted Bayesian (BIC)	871
Estimator	ML	
Minimum Function Chi-square	6123005Mean Square Error of Approximation:	
Degrees of freedom	4	
P-value	0r mse a	
	90 Percent Confidence Interval	0.048
Chi-square test baseline model:	P-value RMSEA <= 0.05	
Minimum Function Chi-square	2064 50an668 rdized Root Mean Square Residual:	
Degrees of freedom	10	
P-value	OSRMR	
Full model versus baseline model:	Parameter estimates:	

010f0rmation

0S926dard Errors

Εx

St

With raw and standardized values that match Erdle et al. (2010)

	Estimate	Std.err	Z-value	P (> z)						ŀ
Latent variables:											ľ
Plasticity =~				> 51	tandardizec	den	lution(fit.s	se)			,
0	1.000				candararac	400.	1401011(110.1	,,,			
E	2.399	0.028	86.318	0.0	000						,
Stability =~					lhs	go	rhs	est.std	se	Z	pvalue
C	1.000			1 1	Plasticity	-					-
S	1.404	0.007	195.667		Plasticity			0.675			
A	1.114	0.006	199.323	30.	09@ability	=~	С	0.447			
				4	Stability			0.627			
Covariances:				5	Stability			0.498			
Plasticity ~~				6	_	~~	0	0.921	NA	NA	
Stability	0.066	0.001	82.587	70.		~ ~	E	0.544			
				8	С	~~	С	0.800			
Variances:				9	S	~~	S	0.607	NA	NA	NA
0	0.921	0.002		10	A	~~	A				
E	0.544	0.005		11 1	Plasticity	~~	Plasticity	1.000	NA	NA	NA
С	0.800	0.002					Stability				
S	0.607	0.002			Plasticity						
A	0.752	0.002			•		•				ļ
Plasticity	0.079	0.001									ļ
Stability	0.200	0.002									ļ

Ex St

Fitting the model: part 2 – one higher order factor

```
> se.modg <- 'Plasticity =~ O + E
                                                          Stability =\sim C + S + A
                                                          qfp =~ Plasticity + Stability
> fit.se <- cfa(se.modg,sample.cov=es,sample.nobBegD8Mqqn,sEquareTRpEgr of Approximation:
Error in solve.default(E) :
                                                                                                                                                                                                                                  RMSEA
        system is computationally singular:
                                                                                                                                                                                                                                  90 Percent Confidence Interval
                                                                                                                                                                                                                                                                                                                                                                                                                         0.056
        reciprocal condition number = 4.16726e-18
                                                                                                                                                                                                                                  P-value RMSEA <= 0.05
Warning message:
In estimateVCOV(lavaanModel,
                      samplestats = lavaanSampleStats, options = $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}
        lavaan WARNING: could not compute standard errors!
        > summarv(fit.se,fit.measures=TRUE)
```

lavaan (0.4-14) converged normally after 28 iterBarameter estimates:

Number of observations	62 86f0 rmation	62 86f0 rmation						
	Standard Errors							
Estimator	ML							
Minimum Function Chi-square	6123.056	Estimate	Std.err	Z-value				
Degrees of freedom	Latenß variables:							
P-value	OPD@Sticity =~							
	0	0.194						
Chi-square test baseline model:	E	0.464						
	Stability =~							
Minimum Function Chi-square	206450.068	0.308						
Degrees of freedom	\$0	0.433						
P-value	0.040	0.343						
	gfp =~							
Full model versus baseline model:	Plasticity	1.055						
	Stability	1.048						
Comparative Fit Index (CFI)	0.970							
Tucker-Lewis Index (TLI)	Var9ances:			20 / 34				
				,				

With standardized coefficients that partly match Erdle et al. (2010)

> standardizedsolution(fit.se)

```
lhs op
                       rhs est.std se z pvalue
  Plasticity =~
                         \cap
                             0.281 NA NA
                                             NΑ
  Plasticity =~
                         E 0.675 NA NA
                                             NA
3
   Stability =~
                         C 0.447 NA NA
                                             NA
    Stability =~
                         S 0.627 NA NA
                                             NA
5
    Stability =~
                         A 0.498 NA NA
                                             NA
6
          gfp =~ Plasticity 0.726 NA NA
                                             NA
                                                  <-
                 Stability 0.724 NA NA
          afp =~
                                             NA
                                                  <-
8
            0 ~~
                            0.921 NA NA
                                             NA
9
                         E 0.544 NA NA
            F. ~~
                                             NΑ
1.0
           C ~~
                            0.800 NA NA
                                             NA
11
            S ~~
                           0.607 NA NA
                                             NA
12
           A ~~
                         A 0.752 NA NA
                                             NA
13 Plasticity ~~ Plasticity 0.473 NA NA
                                             NA
                                                 <-
    Stability ~~ Stability 0.476 NA NA
                                             NA <-
14
15
          qfp ~~
                       qfp 1.000 NA NA
                                             NA
```

But the two loadings on the GFP are flexible

```
> se.modg <- 'Plasticity =~ O + E > se.modg <- 'Plasticity =~ O + E
          Stability =~ C + S + A +
                                              Stability =~ C + S + A
          qfp =~ 1* Plasticity + Stability +
                                             gfp =~ Plasticity + 1*Stability
> fit.se <- cfa(se.modq, sample.cov=es, sample.nob%=628650, $tdcfa+5RUMpdq, sample.cov=es, sample.nob
> summary(fit.se, fit.measures=TRUE) > summary(fit.se, fit.measures=TRUE)
> standardizedsolution(fit.se)
                                     > standardizedsolution(fit.se)
       lhs op rhs est.std se z pvalue
                                            lhs op rhs est.std se z pvalue
  Plasticity =~ 0 0.281 NA NA
                                   NA1
                                       Plasticity =~ O 0.281 NA NA
                                                                        NA
  Plasticity =~ E 0.675 NA NA
                                   NA2 Plasticity =~ E 0.675 NA NA
                                                                        NA
 Stability =~ C 0.447 NA NA
                                   NA3 Stability =~ C 0.447 NA NA
                                                                        NA
 Stability =~ S 0.627 NA NA
                                   NA4 Stability =~ S 0.627 NA NA
                                                                        NA
                                       Stability =~ A 0.498 NA NA
  Stability =~ A 0.498 NA NA
                                   NA5
                                                                        NA
                                          gfp =~ Plasticity 0.743 NA NA
      gfp =~ Plasticity 0.707 NA NA
                                   NA6
                                                                        NA
7
      gfp =~ Stability 0.743 NA NA
                                   NA7
                                           gfp =~ Stability 0.707 NA NA
                                                                        NA
        0 ~~
                   O 0.921 NA NA
                                   NA8
                                            O ~~ O 0.921 NA NA
                                                                        NA
                                            E ~~
                  E 0.544 NA NA
        F. ~~
                                   NA9
                                                       E 0.544 NA NA
                                                                        NA
     C ~~ C 0.800 NA NA NA10 C ~~ C 0.800 NA NA
10
                                                                        NA
     S ~~ S 0.607 NA NA
                                   NA11
                                          S ~~ S 0.607 NA NA
11
                                                                        NA
     A ~~ A 0.752 NA NA
12
                                   NA12
                                          A ~~ A 0.752 NA NA
                                                                        NA
13 Plasticity ~~ Plasticity 0.500 NA NA
                                   NA13 Plasticity ~~ Plasticity 0.448 NA NA
                                                                        NA
   Stability ~~ Stability 0.448 NA NA
                                   NA14 Stability ~~ Stability 0.500 NA NA
                                                                        NA
15
       gfp ~~ gfp 1.000 NA NA
                                   NA15
                                       gfp ~~ gfp 1.000 NA NA
                                                                        NA
```

rhs est.std se z pvalue

qfp

0.279 NA NA

0

NA

23 / 34

> se.modg <- 'Plasticity =~ O + E

lhs op

Very flexible

> se.modg <- 'Plasticity =~ O + E

Plasticity =~

```
Stability = \sim C + S + A
                                          Stability =\sim C + S + A
                                                                                                                                                                                                        gfp =~ Plasticity + .6*Stability
                                         qfp =~ .6* Plasticity + Stability
> fit.se <- cfa(se.modg, sample.cov=es, sample.nob=528540, std.1v=1se, modg, sample.cov=es, sample.nob=528540, std.1v=1se, modg, sample.cov=es, sample.nob=1se, modg, sample.nob=1se, modg, sample.cov=es, sample.nob=1se, modg, sample.cov=es, sample.nob=1se, modg, sample.nob=1se, modg, sample.nob=1se, modg, sample.nob=1se, modg, sample.cov=es, s
Error in solve.default(E) :
      system is computationally singular: reciprocal condition number = 2.5720be = 1ngular: reciprocal In addition: Warning message:
In addition: Warning message:
In lavaan(model = se.modg, std.lv = TRUE, sample.cqv = es. sample.nobs = %28 40 lv = TRUE, sample
                                                                                                                                                                     lavaan WARNING: model has NOT converged!
      lavaan WARNING: model has NOT converged!
                                                                                                                                                              Warning message:
Warning message:
In estimate/COV(lavaanModel, samplestats = lavaanSampleStats, options = lavaanOptions, := lavaa
      lavaan WARNING: could not compute standard errors.
                                                                                                                                                             > standardizedsolution(fit.se)
> standardizedsolution(fit.se)
                                                                                                                                                                                             lhs op
                                                                                                                                                                                                                                           rhs est.std se z pvalue
```

```
Plasticity =~
                               0.279 NA NA
                           0
                                                      Plasticity =~
                                                                                   0.685 NA NA
                                                                                                    NA
   Plasticity =~
                               0.685 NA NA
                                                       Stability =~
                                                                             C
                                                                                   0.447 NA NA
                                                                                                    NA
    Stability =~
                               0.447 NA NA
                                                 NA
                                                       Stability =~
                                                                                   0.627 NA NA
                                                                                                    NA
                                                 NA4
    Stability =~
                               0.627 NA NA
                                                       Stability =~
                                                                                   0.497 NA NA
                                                                                                    NA
                                                 NA<sup>5</sup>
    Stability =~
                               0.497 NA NA
                                                             gfp =~ Plasticity
                                                                                   1.000 NA NA
                                                                                                    NA
                               0.514 NA NA
          qfp =~ Plasticity
                                                 NA '
                                                             afp =~
                                                                      Stability
                                                                                   0.514 NA NA
                                                                                                    NA
                   Stability
                               1.000 NA NA
                                                 NA
          afp =~
                                                                                   0.922 NA NA
                                                                                                    NA
                                                                0 ~~
                                                NA<sub>9</sub>
                               0.922 NA NA
            0 ~~
                                                                E ~~
                                                                                   0.531 NA NA
                                                                                                    NA
                                                NA-
10
                               0.531 NA NA
                                                                                   0.800 NA NA
                                                                                                    NA
                                                                C ~~
10
                               0.800 NA NA
                                                 NA
                                                                                   0.606 NA NA
                                                                                                    NA
                               0.606 NA NA
11
            S ~~
                                                 NA
                                                                                   0.753 NA NA
                                                                                                    NA
12
                               0.753 NA NA
            A ~~
                                                    3 Plasticity ~~ Plasticity
                                                                                   0.000 NA NA
                                                                                                    NA
13 Plasticity ~~ Plasticity
                               0.735 NA NA
                                                       Stability ~~ Stability
                                                                                   0.735 NA NA
                                                                                                    NA
    Stability ~~
                   Stability
                               0.000 NA NA
                                                 NA
14
                                                                                   1.000 NA NA
                                                              qfp ~~
                                                                            qfp
                                                                                                    NA
15
                                1.000 NA NA
```

Flexible fits that fit!

```
> se.modg <- 'Plasticity =~ O + E
             Stability = \sim C + S + A
                                                 > se.modg <- 'Plasticity =~ O + E
             qfp =~ Plasticity + .62*Stabilit*
                                                              Stability =~ C + S + A
                                                              gfp =~ .62* Plasticity + Stabilit
> fit.se <- cfa(se.modg,sample.cov=es,
     sample.nobs=628640.std.lv=TRUE)
                                                 > fit.se <- cfa(se.modg, sample.cov=es,
> summarv(fit.se,fit.measures=TRUE)
                                                    sample.nobs=628640.std.lv=TRUE)
> standardizedsolution(fit.se)
                                                 > summary(fit.se,fit.measures=TRUE)
                                                 > standardizedsolution(fit.se)
 Estimator
                                                  EsMimator
  Minimum Function Chi-square
                                               6123MD56mum Function Chi-square
                                                                                               61
  Degrees of freedom
                                                  DegMees of freedom
  P-value
                                                  OPAGALIJA
                                                          lhs on
                                                                        rhs est.std se z pvalue
          lhs op
                        rhs est.std se z pvalue1
                                                   Plasticity =~
                                                                           O 0.281 NA NA
                                                                                               NA
  Plasticity =~
                              0.281 NA NA
                                              NA2
                                                   Plasticity =~
                                                                               0.675 NA NA
                                                                                               NA
  Plasticity =~
                                                    Stability =~
                              0.675 NA NA
                                              NA3
                                                                               0.447 NA NA
                                                                                               NA
    Stability =~
                                                    Stability =~
                              0.447 NA NA
                                              NA4
                                                                               0.627 NA NA
                                                                                               NA
4
    Stability =~
                              0.627 NA NA
                                               NA5
                                                    Stability =~
                                                                               0.498 NA NA
                                                                                               NA
5
    Stability =~
                              0.498 NA NA
                                              NA6
                                                           gfp =~ Plasticity
                                                                               0.527 NA NA
                                                                                               NA
6
          gfp =~ Plasticity
                              0.997 NA NA
                                              NA7
                                                           afp =~
                                                                   Stability
                                                                               0.997 NA NA
                                                                                               NA
          afp =~
                  Stability
                              0.527 NA NA
                                              NA8
                                                             0 ~~
                                                                               0.921 NA NA
                                                                                               NA
8
            0 ~~
                              0.921 NA NA
                                              NA9
                                                             E ~~
                                                                               0.544 NA NA
                                                                                               NA
9
                              0.544 NA NA
                                              NA10
                                                                               0.800 NA NA
                                                                                               NA
            F. ~~
                                                             C ~~
10
            C ~~
                              0.800 NA NA
                                              NA11
                                                             S ~~
                                                                           S
                                                                               0.607 NA NA
                                                                                               NA
            S ~~
                          S
                              0.607 NA NA
                                              NA12
                                                             A ~~
                                                                               0.752 NA NA
                                                                                               NA
                              0.752 NA NA
                                              NA13 Plasticity ~~ Plasticity
                                                                               0.722 NA NA
                                                                                               NA
                              0.006 NA NA
                                                     Stability ~~ Stability
                                                                               0.006 NA NA
13 Plasticity ~~ Plasticity
                                              NA14
                                                                                               NA
14
    Stability ~~ Stability
                              0.722 NA NA
                                              NA15
                                                           afp ~~
                                                                         afp
                                                                               1.000 NA NA
                                                                                               NA
15
          gfp ~~
                        qfp
                              1.000 NA NA
                                              NA
```

```
> 1m
  Plasticity Stability
      0.281
                0.000
      0.675
                0.000
Ε
Α
      0.000
               0.447
      0.000
             0.627
      0.000
                0.498
```

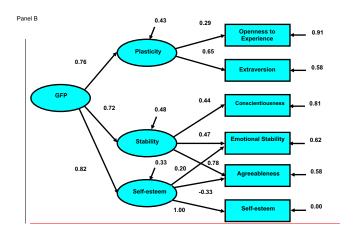
> fm

```
model 1 model 2 model 3 model 4
Plasticity
             0.527
                     0.997
                              0.707
                                      0.743
Stability
             0.997
                     0.527
                              0.743
                                      0.707
```

```
> round(lm %*% fm,2)
 model 1 model 2 model 3 model 4
    0.15
           0.28
                   0.20
                          0.21
    0.36
          0.67
                 0.48
                          0.50
    0.45
          0.24
                 0.33
                         0.32
С
    0.63
          0.33
                 0.47
                         0.44
    0.50
            0.26
                   0.37
                          0.35
S
```

```
> round( colSums(lm%*%fm)^2/sum(es[-6,-6]),2)
model 1 model 2 model 3 model 4
           0.37
   0.50
                   0.40
                           0.39
```

- 1. The factor loadings
- 2. The g loadings
- 3. % g for each item

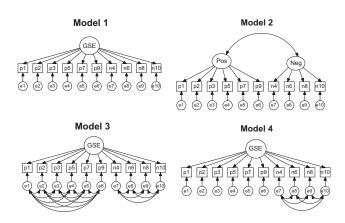

4.
$$\omega = \sum (g)^2 / V_t$$

om <-omega(es[-6,-6],2) > print (om, cut=.1)

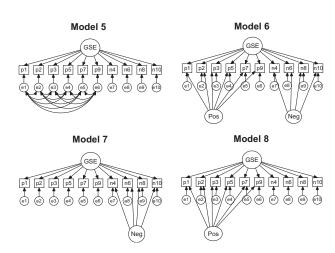
Compare with EFA omega

```
general/max 0.93 max/min = 1.22
                                      mean percent general = 0.36 with sd = 0.08 and cv or
Omega
Call: omega (m = es[-6, -6], nfactors = 2)
                                      The degrees of freedom are 1 and the fit is 0
Alpha:
                      0.52
G.6:
                      0.48
                                      The root mean square of the residuals is 0
                     0.31
Omega Hierarchical:
                                      The df corrected root mean square of the residuals is 0
                     0.49
Omega H asymptotic:
Omega Total
                      0.64
                                      Compare this with the adequacy of just a general factor a
Schmid Leiman Factor loadings greater that degrees of freedom for just the general factor are 5
       F1* F2* h2 u2
                                      The root mean square of the residuals is 0.08
0.0.15 0.13
                 0.04 0.96 0.49
                                      The df corrected root mean square of the residuals is 0
                1.00 0.00 0.33
E 0.58 0.81
A 0.30
           0.45 0.29 0.71 0.31
                                      Measures of factor score adequacy
C 0.26 0.41 0.24 0.76 0.29
                                                                                       q F1*
            0.43 0.32 0.68 0.40
S 0.36
                                      Correlation of scores with factors
                                                                                   0.65 0.84
                                                                                   0.42 0.70
                                      Multiple R square of scores with factors
With eigenvalues of:
                                      Minimum correlation of factor score estimates -0.16 0.41
   a F1* F2*
0.64 0.69 0.56
```

Erdle Model 2 – what does this mean wrt a general factor



Try with sem – one negative variance


```
> se.modg <- 'Plasticity =~ O + E
             Stability =\sim C + S + A
             Selfesteem =~ S + A + ES
             qfp =~ Plasticity + Stability + Selfesteem
> fit.se <- cfa(se.modg.sample.cov=es.sample.nobs=628640.std.lv=TRUE)</p>
> summarv(fit.se)
                                                   Selfesteem =~
                                                                        0.115
                                                                                 0.002
                                                                                          71.176
avaan (0.4-14) converged normally after 48 iterations _{\rm ES}^{\rm A}
                                                                       -0.182
                                                                                 0.002
                                                                                         -75.568
                                                                        0.639
                                                                                  0.009
                                                                                          68.334
  Number of observations
                                                                        1.155
                                                                                 0.011
                                                      Pľasticity
                                                                                         104.436
                                                      Stability
                                                                        1.024
                                                                                 0.008
                                                                                         124.115
  Estimator
                                               3370.72Elfesteem
                                                                        1.280
                                                                                  0.020
                                                                                          64.913
  Minimum Function Chi-square
  Degrees of freedom
  P-value
                                                                        0.913
                                                                                  0.002
                                                                        0.583
                                                                                 0.003
Parameter estimates:
                                                                        0.802
                                                                                 0.002
                                                                        0.626
                                                                                 0.002
                                                Expected
  Information
                                                                        0.606
                                                                                 0.004
  Standard Errors
                                                Standard
                                                                       -0.079
                                                                                 0.012
                                                P(>|zPlasticity
                                                                        1.000
                   Estimate Std.err
                                       7-value
                                                      Stability
                                                                        1.000
Latent variables:
                                                      Selfesteem
                                                                        1.000
  Plasticity =~
                                                                        1.000
                                                   0.086P
    0
                       0.193
                                0.002
                                      128.052
                                       115.929
                       0.423
                                0.004
                                                   0.000
  Stability =~
                       0.311
                                0.002 150.473
                                                   0.000
                       0.340
                                0.002 149.506
                                                   0.000
                       0.521
                                       139.974
                                                   0.000
                                0.004
```

```
> standardizedsolution(fit.se)
                        rhs est.std se z pvalue
          lhs op
                              0.294 NA NA
   Plasticity =~
                                               NA
   Plasticity =~
                              0.645 NA NA
                                               NA
   Stability =~
                              0.445 NA NA
                                               NA
   Stability =~
                              0.486 NA NA
                                               NA
   Stability =~
                              0.745 NA NA
                                               NA
   Selfesteem =~
                              0.188 NA NA
                                               NA
   Selfesteem =~
                          A -0.295 NA NA
                                               NA
   Selfesteem =~
                              1.039 NA NA
                         ES
                                               NA
9
          gfp =~ Plasticity
                              0.756 NA NA
                                               NA
10
          gfp =~ Stability
                              0.715 NA NA
                                               NA
11
          qfp =~ Selfesteem
                              0.788 NA NA
                                               NA
12
            0 ~~
                              0.913 NA NA
                                               NA
13
            E ~~
                              0.583 NA NA
                                               NA
                              0.802 NA NA
14
            C ~~
                                               NA
            S ~~
                              0.626 NA NA
                                               NA
16
            A ~~
                              0.606 NA NA
                                               NA
17
                             -0.079 NA NA
           ES ~~
                         ES
                                               NA
18 Plasticity ~~ Plasticity
                              0.429 NA NA
                                               NA
   Stability ~~ Stability 0.488 NA NA
                                               NA
20 Selfesteem ~~ Selfesteem
                              0.379 NA NA
                                               NA
21
                              1.000 NA NA
          qfp ~~
                        qfp
                                               NA
```

Four models of self esteem (from Marsh, Scalas & Nagengast (2010)

Four more models of self esteem (from Marsh et al. (2010)

Models 1 and 2 measurement invariance over 4 time points

Two correlated traits do better than one.

Model	χ^2	df	cf	TLI	CFI	RMSEA
Mo	del 1 (one trait factor, no correl	ated uniquen	ess)			
Single-wave CFAs						
1.1 wave 1	651.57**	35		.700	.767	.089
1.2 wave 2	624.03**	35		.710	.775	.095
1.3 wave 3	539.94**	35		.752	.807	.090
1.4 wave 4	542.04**	35		.753	.808	.095
Longitudinal CFAs (Model 1.5)						
1.5a Unconstrained model (UM)	2,930.10**	674	1.203	.838	.860	.039
1.5b Factor loadings (FL)	2,971.55**	701	1.200	.843	.859	.038
1.5c FL & Variances (Var)	2,975.17**	704	1.199	.844	.859	.038
1.5d FL-Var-Uniquenesses (Uniq)	3,134.95**	724	1.203	.839	.850	.039
Model 2 (t	wo trait factors: positive and neg	gative correla	ited factors)			
Single-wave CFAs						
2.1 wave 1	111.70**	34		.961	.971	.032
2.2 wave 2	120.16**	34		.956	.967	.037
2.3 wave 3	161.46**	34		.936	.951	.046
2.4 wave 4	133.00°°	34		.950	.962	.043
Longitudinal CFAs (Model 2.5)						
2.5a UM	1,116.35**	652	1.199	.965	.971	.018
2.5b FL	1,152.80**	676	1.194	.966	.970	.018
2.5c FL & Var	1,161.67**	682	1.194	.966	.970	.018
2.5d FL-Var-Uniq	1,313.80**	702	1.200	.958	.962	.020

Model 6 measurement invariance over 4 time points

But a general factor + two "method" factors is better. But is this really a method, or is there substance over and beyond general self esteem?

Model 6 (one trait factor pl	us positive and neg	ative latent r	nethod factors)		
Single-wave CFAs						
6.1 wave 1	69.62**	25		.970	.983	.028
6.2 wave 2	70.62**	25		.969	.983	.031
6.3 wave 3	88.48**	25		.956	.976	.038
6.4 wave 4	78.83**	25		.963	.980	.037
Longitudinal CFAs (Model 6.5)						
6.5-0 No correlations for the same method factor over time	1,483.37**	634	1.186	.935	.947	.025
6.5a UM	916.52**	622	1.182	.977	.982	.015
6.5b FL	962.06**	673	1.188	.979	.982	.014
6.5c FL & Var	1,000.90**	682	1.189	.977	.980	.015
6.5d FL-Var-Uniq	1,161.90**	702	1.196	.968	.971	.017

Is it a method or is it substance?

Is the stability over time of the positive and negative factors a sign of method effects being stable, or that there is content in the directionality of the answer?

	GSE1	GSE2	GSE3	GSE4	Pos1	Pos2	Pos3	Pos4	Neg1	Neg2	Neg3	Neg4
Model 6												
GSE1	_											
GSE2	.71	_										
GSE3	.64	.82	_									
GSE4	.55	.68	.80	_								
Pos1					_							
Pos2					.52	_						
Pos3					.48	.60	_					
Pos4					.43	.62	.60	_				
Neg1									_			
Neg2									.49	_		
Neg3									.39	.49	_	
Neg4									.39	.65	.60	_

- Benet-Martínez, V. & John, O. P. (1998). Los Cinco Grandes across cultures and ethnic groups: Multitrait-multimethod analyses of the Big Five in Spanish and English. *Journal of Personality and Social Psychology*, 75(3), 729 750.
- Cattell, R. B. (1956). Validation and intensification of the sixteen personality factor questionnaire. *Journal of Clinical Psychology*, 12(3), 205 214.
- Cattell, R. B. (1957). Personality and motivation structure and measurement. Oxford, England: World Book Co.
- Comrey, A. L. (1995). Revised manual and handbook of interpretations for the Comrey Personality Scales. San Diego, CA: Educational and Industrial Testing Service.
- Costa, P. T. & McCrae, R. R. (1992). Four ways five factors are basic. *Personality and Individual Differences*, 13(6), 653–665.
- DeYoung, C. G. (2010). Toward a theory of the big five. Psychological Inquiry: An International Journal for the Advancement of Psychological Theory, 21(1), 26 – 33.

- DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (2002). Higher-order factors of the big five predict conformity: Are there neuroses of health? *Personality and Individual Differences*, 33(4), 533–552.
- Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. *Annual Review of Psychology*, 41, 417–440.
- Digman, J. M. (1997). Higher-order factors of the big five. *Journal of Personality and Social Psychology*, 73, 1246–1256.
- Erdle, S., Gosling, S. D., & Potter, J. (2009). Does self-esteem account for the higher-order factors of the big five? *Journal of Research in Personality*, 43(5), 921 922.
- Erdle, S., Irwing, P., Rushton, J. P., & Park, J. (2010). The general factor of personality and its relation to self-esteem in 628,640 internet respondents. *Personality and Individual Differences*, 48(3), 343 346.
- Eysenck, H. J. (1952). The scientific study of personality. London,: Routledge & K. Paul.

- Eysenck, H. J. (1967). *The biological basis of personality*. Springfield: Thomas.
- Eysenck, H. J. (1981). General features of the model. In H. J. Eysenck (Ed.), *A Model for Personality* (pp. 1–37). Berlin: Springer-Verlag.
- Ferguson, E., Chamorro-Premuzic, T., Pickering, A., & Weiss, A. (2011). Five into one doesn't go: Critique of the general factor of personality. In T. Chamorro-Premuzic, S. von Stumm, & A. Furnham (Eds.), *The Wiley-Blackwell Handbook of Individual Differences*. London: Wiley-Blackwell.
- Goldberg, L. R. (1990). An alternative "description of personality": The big-five factor structure. *Journal of Personality and Social Psychology*, *59*(6), 1216–1229.
- John, O., Naumann, L., & Soto, C. (2008). Paradigm shift to the integrative big five trait taxonomy. *Handbook of personality: Theory and research*, 114–158.
- John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big

- Five Inventory-Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institue of Personality and Social Research.
- John, O. P. & Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), *Handbook of personality: Theory and research (2nd ed.)* (pp. 102–138). New York, NY: Guilford Press Guilford Press.
- Just, C. (2011). A review of literature on the general factor of personality. *Personality and Individual Differences*, 50(6), 765–771.
- Marsh, H. W., Scalas, L. F., & Nagengast, B. (2010). Longitudinal tests of competing factor structures for the rosenberg self-esteem scale: Traits, ephemeral artifacts, and stable response styles. *Psychological Assessment*, 22(2), 366 381.
- Musek, J. (2007). A general factor of personality: Evidence for the big one in the five-factor model. *Journal of Research in Personality*, 41(6), 1213–1233.

- Norman, W. T. (1963). Toward an adequate taxonomy of personality attributes: Replicated factors structure in peer nomination personality ratings. *Journal of Abnormal and Social Psychology*, 66(6), 574–583.
- Rushton, J. P., Bons, T. A., & Hur, Y.-M. (2008). The genetics and evolution of the general factor of personality. *Journal of Research in Personality*, 42(5), 1173–1185.
- Rushton, J. P. & Irwing, P. (2008). A general factor of personality (GFP) from two meta-analyses of the Big Five: Digman (1997) and Mount, Barrick, Scullen, and Rounds (2005). *Personality and Individual Differences*, 45(7), 679–683.
- Rushton, J. P. & Irwing, P. (2009). A general factor of personality in the Comrey Personality Scales, the Minnesota Multiphasic Personality Inventory-2, and the Multicultural Personality Questionnaire. *Personality and Individual Differences*, 46, 437–442.
- Rushton, J. P. & Irwing, P. (2011). The general factor of personality. In T. Chamorro-Premuzic, S. von Stumm, &

- A. Furnham (Eds.), *The Wiley Blackwell Handbook of Individual Differences* (pp. 132–161). London: Wiley-Blackwell.
- Tupes, E. C. & Christal, R. E. (1961). Recurrent personality factors based on trait ratings. Technical Report 61-97, USAF ASD Technical Report, Lackland Air Force Base (reprinted in Journal of Personality (1992) 60: 225–251. doi: 10.1111/j.1467-6494.1992.tb00973).