The model

Noisy factors

Week 3: Adventures in simulation

Department of Psychology Northwestern University Evanston, Illinois USA

January, 2011

Outline

- The model
- Pure data
 - Exploratory Factor Analysis
 - Confirmatory Factor Analysis Using lavaan
 - Effect of sample size
- Noisy factors
 - Exploratory analysis
 - Confirmatory factor analysis and sample size
- Other sources of misfit
 - discrete items
 - Confirmatory Factor Analysis of circumplex data

Adventures in simulation

- To understand particular structures, it is useful to know "truth".
- Can generate a particular structure and see how various algorithms recover it.
 - Exploratory factoring
 - Confirmatory factoring
 - For more complicated structures, structural equation modeling

Noisy factors

- For all models, we can evaluate the various goodness of fit statistics
- What happens if we create data that intentionally violate the assumptions

The basic model

- Factor model: $\mathbf{R} = \mathbf{F}\phi\mathbf{F'} + \mathbf{U}^2$
- Covariance model: $\mathbf{C} = \mathbf{P} \phi \mathbf{P'} + \mathbf{U}^2$
 - Model is Pattern * Phi * t(Pattern) + error
- Let **S** represent the observed covariance matrix,
- Let Σ be the modeled matrix with $\Sigma = \mathbf{FF'} + \mathbf{U^2}$, then minimize

$$E = \frac{1}{2}tr(\mathbf{S} - \Sigma)^2 \tag{1}$$

Noisy factors

Varieties of minimization

$$E = \frac{1}{2}tr((\mathbf{S} - \Sigma)\mathbf{S}^{-1})^2 = \frac{1}{2}tr(\mathbf{I} - \Sigma\mathbf{S}^{-1})^2.$$
 (2)

Noisy factors

This is known as generalized least squares (GLS) or weighted least squares (WLS).

Similarly, if the residuals are weighted by the inverse of the model, Σ , minimizing

$$E = \frac{1}{2}tr((\mathbf{S} - \Sigma)\Sigma^{-1})^2 = \frac{1}{2}tr(\mathbf{S}\Sigma^{-1} - I)^2$$
 (3)

will result in a model that maximizes the likelihood of the data. This procedure, maximum likelihood estimation (MLE) is also seen as finding the minimum of

$$E = \frac{1}{2} \left(tr(\Sigma^{-1} \mathbf{S}) - ln \left| \Sigma^{-1} \mathbf{S} \right| - p \right) \tag{4}$$

Simulate the model using sim function

```
> fx <- matrix(c(.9,.8,.7,rep(0,9),.9,.8,.7,rep(0,9),.9,.8,.7),9,3)
> fx
                                            Call: sim(fx = fx, Phi = Phi)
       [,1] [,2] [,3]
 [1,]
       0.9 0.0 0.0
                                             $model (Population correlation matrix)
                                                 V1 V2 V3 V4 V5 V6 V7 V8
 [2,] 0.8 0.0 0.0
                                            V1 1.00 0.72 0.63 0.00 0.00 0.00 0.00 0.00 0.00
 [3,] 0.7 0.0 0.0
                                            V2 0.72 1.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00
                                            V3 0.63 0.56 1.00 0.00 0.00 0.00 0.00 0.00 0.00
 [4,]
       0.0 0.9 0.0
                                            V4 0.00 0.00 0.00 1.00 0.72 0.63 0.00 0.00 0.00
 [5,] 0.0 0.8 0.0
                                            V5 0.00 0.00 0.00 0.72 1.00 0.56 0.00 0.00 0.00
 [6,] 0.0 0.7 0.0
                                            V6 0.00 0.00 0.00 0.63 0.56 1.00 0.00 0.00 0.00
                                            V7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.72 0.63
 [7,]
       0.0 0.0 0.9
                                            V8 0.00 0.00 0.00 0.00 0.00 0.00 0.72 1.00 0.56
 [8,] 0.0 0.0 0.8
                                            V9 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.56 1.00
 [9.] 0.0 0.0 0.7
                                            $reliability (population reliability)
> Phi <- diag(3)
                                            [1] 0.81 0.64 0.49 0.81 0.64 0.49 0.81 0.64 0.49
> R <- sim(fx,Phi)
> R
```

Noisy factors

Simulate 400 subjects

```
> R < - sim(fx,Phi,n=400)
> R
Call: sim(fx = fx, Phi = Phi, n = 400)
. . .
$r
    (Sample correlation matrix for sample size =
                                                     400 )
        V1
                V2
                       V3
                               ٧4
                                       V5
                                              V6
                                                     ٧7
                                                             V8
                                                                     V9
    1.0000
            0.6839
                    0.609 -0.020 -0.0328
                                           0.024
                                                  0.093
۷1
                                                          0.074
                                                                 0.0061
٧2
    0.6839
            1.0000
                    0.532 -0.025 -0.0093 -0.025
                                                  0.143
                                                          0.111
                                                                 0.0726
VЗ
    0.6088
            0.5316
                    1.000 -0.040 -0.0362
                                           0.062
                                                  0.073
                                                          0.030
                                                                 0.0070
V4 -0.0196 -0.0253 -0.040
                          1.000
                                   0.7379
                                           0.646
                                                  0.066
                                                          0.093
                                                                 0.0113
V5 -0.0328 -0.0093 -0.036
                           0.738
                                   1.0000
                                           0.581
                                                  0.058
                                                          0.096
                                                                 0.0840
۷6
    0.0245 - 0.0247
                    0.062
                           0.646
                                   0.5813
                                           1.000 -0.038 -0.043 -0.0636
۷7
    0.0927
            0.1434
                    0.073
                           0.066
                                   0.0580 -0.038
                                                  1.000
                                                          0.721
                                                                 0.6193
٧8
    0.0738
            0.1111
                    0.030
                           0.093
                                   0.0962 -0.043
                                                  0.721
                                                          1.000
                                                                 0.5460
۷9
    0.0061
            0.0726
                    0.007
                           0.011
                                   0.0840 - 0.064
                                                  0.619
                                                          0.546
                                                                 1.0000
>
```

Noisy factors

> summarv(fa(R\$observed))

factor it nf=1

```
Factor analysis with Call: fa(r = R$observed)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 27 and the
objective function was 2.9

The number of observations was 400 with Chi Square =
1144.98 with prob < 4.2e-224
```

The df corrected root mean square of the residuals is 0.31

The root mean square of the residuals is 0.19

Tucker Lewis Index of factoring reliability = -0.002 RMSEA index = 0.324 and the 90 % confidence intervals are 0.323 0.325 BIC = 983.21

Try two factors

```
> f2 <- fa(R$observed,2)
> summarv(f2)
Factor analysis with Call: fa(r = R\$observed, nfactors = 2)
Test of the hypothesis that 2 factors are sufficient.
The degrees of freedom for the model is 19 and the
                            objective function was 1.18
The number of observations was 400 with Chi Square =
                                  465.42 with prob < 9.8e-87
The root mean square of the residuals is 0.12
The df corrected root mean square of the residuals is 0.24
Tucker Lewis Index of factoring reliability = 0.431
RMSEA index = 0.244 and the 90 % confidence intervals are 0.243 0.246
BIC = 351.59
>
```

How about 3

```
> f3 <- fa(R$observed.3)
> summary(f3)
```

```
Factor analysis with Call: fa(r = R\$observed, nfactors = 3)
```

Test of the hypothesis that 3 factors are sufficient. The degrees of freedom for the model is 12 and the objective function was 0.05 The number of observations was 400 with Chi Square = 18.96 with prob < 0.089

The root mean square of the residuals is 0.01 The df corrected root mean square of the residuals is 0.03

Tucker Lewis Index of factoring reliability = 0.986 RMSEA index = 0.039 and the 90 % confidence intervals are 0.039 0.043 BIC = -52.93

That looks better, lets look at the structure

```
> f3
Factor Analysis using method = minres
Call: fa(r = R\$observed, nfactors = 3)
Standardized loadings based upon correlation matrix
    MR.1
          MR.2
                MR.3 h2 112
V1 0.01 -0.02 0.89 0.78 0.22
V2 -0.01 0.06 0.77 0.60 0.40
V3 -0.01 -0.02 0.69 0.48 0.52
V4 0.90 0.02 -0.01 0.82 0.18
V5 0.81 0.04 -0.02 0.66 0.34
V6 0.72 -0.10 0.05 0.53 0.47
V7 -0.01 0.89 0.03 0.80 0.20
V8 0.03 0.80 0.00 0.65 0.35
V9 -0.03 0.70 -0.05 0.48 0.52
```

MR1 MR2 MR3

SS loadings 2.00 1.94 1.86 Proportion Var 0.22 0.22 0.21 Cumulative Var 0.22 0.44 0.64 With factor correlations of

MR1 MR2 MR3
MR1 1.00 0.06 -0.02
MR2 0.06 1.00 0.11
MR3 -0.02 0.11 1.00

The model

Try a confirmatory - using lavaan

```
libary(lavaan)
my.data <- data.frame(R$observed) #weird but necessary
model <- 'F1 =~ V1 + V2 + V3
                F2 = V4 + V5 + V6
                F3 = V7 + V8 + V9'
fit <- cfa(model.data = mv.data)
> fit
Lavaan (0.4-5) converged normally after 25 iterations
  Number of observations
                                                    400
  Estimator
                                                     MT.
                                                 37.832
  Minimum Function Chi-square
  Degrees of freedom
                                                     24
  P-value
                                                  0.036
```

Compare this to the exploratory - more df, not quite as good a fit.

Examine the structure

> summary(fit)

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
V1	1.000			
V2	0.905	0.064	14.226	0.000
V3	0.753	0.057	13.180	0.000
F2 =~				
V4	1.000			
V5	0.920	0.055	16.762	0.000
V6	0.736	0.049	14.939	0.000
F3 =~				
V7	1.000			
V8	0.831	0.054	15.414	0.000
V9	0.734	0.054	13.690	0.000
Covariances:				
F1 ~~				
F2	-0.021	0.045	-0.463	0.643
F3	0.093	0.044	2.098	0.036
F2 ~~				
F3	0.056	0.047	1.205	0.228
Variances:				
V1	0.208	0.042	4.912	0.000
V2	0.388	0.043	9.099	0.000
V9	0.495	0.041	11.991	0.000
F1	0.721	0.075	9.562	0.000
EO	0.026	0 000	10 121	0.000

Different ways of fixing variances

```
fit <- cfa(model,data =my.data,std.lv=TRUE) #set latents to have variance 1
                  Estimate Std.err Z-value P(>|z|)
Latent variables:
 F1 =~
    V1
                      0.849
                                0.044
                                        19.124
                                                   0.000
    V2
                      0.768
                                0.046
                                        16.539
                                                   0.000
    V3
                      0.640
                                0.044
                                        14.450
                                                   0.000
 F2 =~
    ۷4
                      0.915
                                0.044
                                        20.868
                                                   0.000
    V5
                      0.841
                                0.046
                                        18.187
                                                   0.000
    V6
                      0.673
                                0.044
                                        15.438
                                                   0.000
 F3 =~
    ٧7
                      0.896
                                0.044
                                        20.300
                                                   0.000
    ٧8
                      0.744
                                0.043
                                        17.336
                                                   0.000
    V9
                      0.657
                                0.045
                                        14.504
                                                   0.000
Covariances:
 F1 ~~
    F2
                     -0.027
                                0.057
                                        -0.464
                                                   0.643
    F3
                      0.122
                                0.057
                                         2.142
                                                   0.032
 F2 ~~
    F3
                      0.069
                                0.057
                                         1.213
                                                   0.225
Variances:
    V1
                      0.208
                                0.042
                                         4.912
                                                   0.000
    V2
                      0.388
                                0.043
                                         9.099
                                                   0.000
   . . .
    ٧8
                      0.320
                                0.036
                                         8.898
                                                   0.000
    V9
                      0.495
                                0.041
                                        11.991
                                                   0.000
    F1
                      1.000
    F2
                      1.000
    ---
```

Goodness of fit and sample size

- If the model actually fits, increasing sample size does not harm goodness of fit
 - This is if the model is in fact a perfect model of the data

Noisy factors

- If the model does not fit, then χ^2 will get worse
- Other goodness of fit statistics are not as sensitive to sample size.
 - But this is relevant if the model is in fact incorrect.

The model

Vary the sample size

```
> set.seed(42)
> R < - sim(fx,Phi,n=100)
> summary(fa(R$observed,3))
Factor analysis with Call: fa(r = R\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
       objective function was 0.11
The number of observations was 100 with
       Chi Square = 10.42 with prob < 0.58
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.04
Tucker Lewis Index of factoring reliability = 1.013
RMSEA index = 0 and the 90 % confidence intervals are 0 0.034
BIC = -44.84
```

BTC = -45.72

```
> set.seed(42)
> R < - sim(fx,Phi,n=400)
> summarv(fa(R$observed.3))
Factor analysis with Call: fa(r = R\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
       objective function was 0.07
The number of observations was 400 with
       Chi Square = 26.18 with prob < 0.01
The root mean square of the residuals is 0.01
The df corrected root mean square of the residuals is 0.03
```

Tucker Lewis Index of factoring reliability = 0.971

RMSEA index = 0.055 and the 90 % confidence intervals are 0.055 0.059

BTC = -57.82

The model

```
> set.seed(42)
> R < - sim(fx,Phi,n=800)
> summarv(fa(R$observed.3))
Factor analysis with Call: fa(r = R\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
       objective function was 0.03
The number of observations was 800 with
      Chi Square = 22.4 with prob < 0.033
The root mean square of the residuals is 0.01
The df corrected root mean square of the residuals is 0.02
```

Tucker Lewis Index of factoring reliability = 0.99

RMSEA index = 0.033 and the 90 % confidence intervals are 0.033 0.036

Effect of sample size N = 1600

BTC = -66.89

```
> set.seed(42)
> R \leftarrow sim(fx,Phi,n=1600)
> summarv(fa(R$observed.3))
Factor analysis with Call: fa(r = R\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
       objective function was 0.01
The number of observations was 1600 with
       Chi Square = 21.65 with prob < 0.042
The root mean square of the residuals is 0.01
The df corrected root mean square of the residuals is 0.01
```

Tucker Lewis Index of factoring reliability = 0.995

RMSEA index = 0.023 and the 90 % confidence intervals are 0.022 0.025

Major and minor factors

- Real data are normally a mix of major factors plus many small factors.
- Variously called "correlated errors", "nuisance factors", "minor factors", real data are messy.
- Factor model: $\mathbf{R} = \mathbf{F}\phi\mathbf{F'} + \mathbf{mm'U}^2$
- These data can be simulated with sim.minor
 - Need to specify the major factor loadings, the minors default to have loadings = +/- .2
 - Also need to specify the number of variables
- Examine the various goodness of fit statistics as sample size increases

The model

```
> set.seed(42)
> P \leftarrow sim.minor(9,3,fbig=c(.9,.8,.7),n=100)
> summary(fa(P$observed,3))
Factor analysis with Call: fa(r = P\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
       objective function was 0.07
The number of observations was 100 with
      Chi Square = 6.2 with prob < 0.91
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.04
Tucker Lewis Index of factoring reliability = 1.068
RMSEA index = 0 and the 90 % confidence intervals are 0 0.034
BTC = -49.07
```

•00000000

The model

Simulating major and minor N = 400

```
> set.seed(42)
P \leftarrow sim.minor(9,3,fbig=c(.9,.8,.7),n=400)
> P
Call: sim(fx = fload, n = n)
 $model (Population correlation matrix)
     V1
           ٧2
                 VЗ
                      ۷4
                            ۷5
                                  ۷6
                                       ۷7
                                             ٧8
                                                   ۷9
        0.49 0.63 0.04 0.00 -0.04 0.00 -0.04
V1
   1.00
                                                 0.00
V2
   0.49
        1.00 0.71 -0.04 0.00 0.00 0.04 0.00 0.00
V3 0.63 0.71 1.00 -0.04 -0.04 0.00 0.00 -0.04 0.00
V4 0.04 -0.04 -0.04 1.00 -0.49 0.55 0.00 -0.04 0.00
V5
   0.00 0.00 -0.04 -0.49 1.00 -0.63 0.04 0.04 0.00
V6 -0.04 0.00 0.00 0.55 -0.63 1.00 -0.04 0.04
                                                 0.00
٧7
   0.00 0.04 0.00 0.00 0.04 -0.04 1.00 -0.45 0.63
        0.00 -0.04 -0.04 0.04 0.04 -0.45 1.00 -0.63
V8 -0.04
V9 0.00 0.00 0.00 0.00 0.00 0.00 0.63 -0.63 1.00
$reliability (population reliability)
 V1
      V2
         V3
                ٧4
                    ۷5
                         ۷6
                              ٧7
                                   V8
0.53 0.57 0.93 0.57 0.53 0.93 0.57 0.57 0.81
```

The model

Exploratory structure N = 400

> f3 <- fa(P\$observed.3)

> summary(f3)

BIC = -38.98

```
Factor analysis with Call: fa(r = P\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
     objective function was 0.08
The number of observations was 400 with
      Chi Square = 32.91 with prob < 0.001
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.04
```

Tucker Lewis Index of factoring reliability = 0.949

RMSEA index = 0.067 and the 90 % confidence intervals are 0.066 0.07

BTC = -26.16

```
> set.seed(42)
> P \leftarrow sim.minor(9,3,fbig=c(.9,.8,.7),n=800)
> summary(fa(P$observed,3))
Factor analysis with Call: fa(r = P\$observed, nfactors = 3)
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the model is 12 and the
       objective function was 0.07
The number of observations was 800 with
       Chi Square = 54.05 with prob < 2.7e-07
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.04
```

Tucker Lewis Index of factoring reliability = 0.949

RMSEA index = 0.067 and the 90 % confidence intervals are 0.066 0.069

The model

Confirmatory (Using lavaan)

```
> set. seed (42)
> P \leftarrow sim.minor(9,3,fbig=c(.9,.8,.7),n=100)
> my.data <- data.frame(P$observed)
> fit <- cfa(model,data =my.data,std.lv=TRUE)</pre>
> fit
> set.seed(42)
> P <- sim.minor(9,3,fbig=c(.9,.8,.7),n=100)
> my.data <- data.frame(P$observed)</pre>
> fit <- cfa(model,data =my.data,std.lv=TRUE)</pre>
> fit
Lavaan (0.4-5) converged normally after 28 iterations
  Number of observations
                                                       100
  Estimator
                                                        ML.
  Minimum Function Chi-square
                                                    23.210
  Degrees of freedom
                                                        24
  P-value
                                                     0.507
```

400

Number of observations

Lavaan N = 400

The model

```
> set.seed(42)
> P <- sim.minor(9,3,fbig=c(.9,.8,.7),n=400)
> my.data <- data.frame(P$observed)
```

> fit <- cfa(model,data =my.data,std.lv=TRUE)</pre>

> fit

Lavaan (0.4-5) converged normally after 26 iterations

Estimator	ML
Minimum Function Chi-square	45.293
Degrees of freedom	24
P-value	0 005

800

Lavaan N = 800

The model

```
> set.seed(42)
```

- > P <- sim.minor(9,3,fbig=c(.9,.8,.7),n=800)
- > my.data <- data.frame(P\$observed)

Number of observations

- > fit <- cfa(model,data =my.data,std.lv=TRUE)</pre>
- > fit

Lavaan (0.4-5) converged normally after 28 iterations

Estimator	ML
Minimum Function Chi-square	69.159
Degrees of freedom	24
P-value	0.000

> P <- sim.minor(9,3,fbig=c(.9,.8,.7),n=1600)

00000000

24

0.000

Lavaan N = 1600

> set.seed(42)

Degrees of freedom

P-value

The model

```
> my.data <- data.frame(P$observed)</pre>
> fit <- cfa(model,data =my.data,std.lv=TRUE)</pre>
> fit
Lavaan (0.4-5) converged normally after 27 iterations
  Number of observations
                                                      1600
  Estimator
                                                        ML.
  Minimum Function Chi-square
                                                  162,602
```

With parameter estimates

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
V1	0.576	0.048	12.051	0.000
V2	0.634	0.048	13.168	0.000
V3	0.964	0.050	19.447	0.000
F2 =~				
V4	0.776	0.048	16.176	0.000
V5	-0.788	0.048	-16.489	0.000
V6	0.812	0.050	16.379	0.000
F3 =~				
V7	0.621	0.047	13.282	0.000
V8	-0.753	0.054	-14.017	0.000
V9	0.911	0.048	18.838	0.000
Covariances:				
F1 ~~				
F2	0.066	0.055	1.185	0.236
F3	0.004	0.054	0.070	0.945
F2 ~~				
F3	0.011	0.059	0.188	0.851
Variances:				
V1	0.568	0.047	12.072	0.000
V2	0.507	0.046	10.902	0.000
V9	0.142	0.057	2.494	0.013
F1	1.000			
F2	1.000			

Why do models not fit?

- They are wrong
- The data are more complicated than we thought
 - This is the example of multiple minor factors. Not really part of our model, but there none the less

Noisy factors

- Perhaps the correlated residuals are because of something about the item, or about the way we collect the data.
- Because the data are in fact not normal.
 - Items are discrete, not continuous
 - This affects covariances.
- Once again, lets see this by simulation.

- First think of items as continuos variables
 - Simulate a two dimensional structure
 - Either a simple structure or a circumplex
- Then make the items discrete categories.
- Compare goodness of fits.
- Use the sim.items function

simulate 8 circumplex items, N = 500

```
> set.seed(42)
> X <- sim.item(8,circum=TRUE)
> str(X) #what is the structure of the output?
> round(cor(X).2)
num [1:500, 1:8] 0.136 0.44 -0.791 0.747 -1.068 ...
- attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:8] "V1" "V2" "V3" "V4" ...
> round(cor(X),2)
     V1 V2 V3 V4 V5 V6 V7 V8
V1 1.00 0.25 0.01 -0.27 -0.30 -0.21 0.05 0.24
V2 0.25 1.00 0.22 -0.06 -0.26 -0.29 -0.22 0.11
V3 0.01 0.22 1.00 0.20 -0.02 -0.28 -0.40 -0.23
V4 -0.27 -0.06 0.20 1.00 0.25 0.03 -0.32 -0.34
V5 -0.30 -0.26 -0.02 0.25 1.00 0.26 -0.01 -0.24
V6 -0.21 -0.29 -0.28 0.03 0.26 1.00 0.24 0.07
V7 0.05 -0.22 -0.40 -0.32 -0.01 0.24 1.00 0.21
V8 0.24 0.11 -0.23 -0.34 -0.24 0.07 0.21 1.00>
```

2 factors

```
> f2 < -fa(X,2)
> diagram(f2)
> diagram(f2,cut=.1)
> plot(f2)
> f2
Factor Analysis using method = minres
Factor Analysis using method = minres
Call: fa(r = X, nfactors = 2)
Standardized loadings based upon correlation matrix
    MR.1
           MR.2
                h2
                     u2
V1 0.01 0.55 0.31 0.69
V2 -0.35 0.45 0.32 0.68
V3 -0.61 0.04 0.37 0.63
V4 -0.40 -0.47 0.39 0.61
V5 0.04 -0.58 0.33 0.67
V6 0.43 -0.37 0.31 0.69
V7 0.65 0.05 0.43 0.57
V8 0.35 0.41 0.30 0.70
                MR.1 MR.2
SS loadings
              1.38 1.38
Proportion Var 0.17 0.17
Cumulative Var 0.17 0.35
```

2 factors goodness of fit

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 28 and the objective function was 1.16 with Chi Square of 574.32

Noisy factors

The degrees of freedom for the model are 13 and the objective function was 0.04

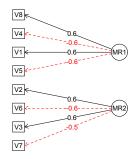
The root mean square of the residuals is 0.02 The df corrected root mean square of the residuals is 0.04 The number of observations was 500 with Chi Square = 19.21 with prob < 0.12

Tucker Lewis Index of factoring reliability = 0.975 RMSEA index = 0.031 and the 90 % confidence intervals are 0.031 0.036 BIC = -61.58

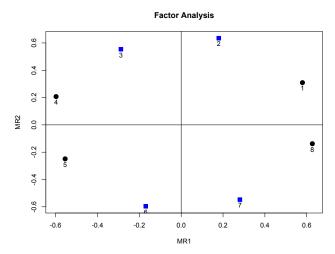
Fit based upon off diagonal values = 0.99 Measures of factor score adequacy

MR1 MR2 Correlation of scores with factors 0.83 0.82 0.69 0.67 Multiple R square of scores with factors

Factor Analysis



Plot the items in the factor space



Simulate discrete items

```
> set.seed(42)
> X <- sim.item(8,500,TRUE,categorical=TRUE)
> round(cor(X),2)
```

```
V1
          V2
                V3
                      ۷4
                           ۷5
                                 V6
                                      ۷7
                                          V8
V1
   1.00
        0.26 0.02 -0.26 -0.27 -0.19 0.03 0.22
V2
  0.26 1.00 0.21 -0.06 -0.23 -0.28 -0.20 0.12
V3
   0.02 0.21 1.00 0.19 -0.03 -0.26 -0.36 -0.21
V4 -0.26 -0.06 0.19 1.00 0.21 0.01 -0.29 -0.35
V5 -0.27 -0.23 -0.03 0.21 1.00 0.28 -0.01 -0.21
V6 -0.19 -0.28 -0.26 0.01 0.28 1.00 0.19 0.08
V7 0.03 -0.20 -0.36 -0.29 -0.01 0.19 1.00 0.19
V8
   0.22 0.12 -0.21 -0.35 -0.21
                               0.08
                                    0.19 1.00
>
```

Exploratory factoring

```
> f2
Factor Analysis using method = minres
Call: fa(r = X, nfactors = 2)
Standardized loadings based upon correlation matrix
    MR.1
          MR.2
                h2 112
V1 0.24 0.48 0.29 0.71
V2 -0.10 0.54 0.31 0.69
V3 -0.51 0.30 0.35 0.65
V4 -0.58 -0.23 0.39 0.61
V5 -0.19 -0.50 0.29 0.71
V6 0.21 -0.51 0.30 0.70
V7 0.55 -0.21 0.35 0.65
V8 0.51 0.21 0.30 0.70
               MR1 MR2
SS loadings 1.31 1.27
Proportion Var 0.16 0.16
Cumulative Var 0.16 0.32
With factor correlations of
   MR.1 MR.2
MR.1
MR.2
```

Goodness of fit statistics

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 28 and the objective function w The degrees of freedom for the model are 13 and the objective function was 0.

The root mean square of the residuals is 0.02 The df corrected root mean square of the residuals is 0.04 The number of observations was 500 with Chi Square = 24.74 with prob < 0.025

Tucker Lewis Index of factoring reliability = 0.947 RMSEA index = 0.043 and the 90 % confidence intervals are 0.043 0.046 BTC = -56.05Fit based upon off diagonal values = 0.98 Measures of factor score adequacy MR.1 MR.2

Correlation of scores with factors	0.82	0.80
Multiple R square of scores with factors	0.67	0.65
Minimum correlation of possible factor scores	0.33	0.29

Parameter estimates:

The model

CFA of circumplex data - continuous case

```
> set.seed(42)
> X <- sim.item(8,500,TRUE,categorical=FALSE)
> mod.circ <- 'F1 =~ V8 +V4 +V1 +V5
                     F2 = V2 + V6 + V3 + V7'
> fit.circ.c <- cfa(mod.circ,data=X.df,std.lv=TRUE)</pre>
> summary(fit.circ.c)
avaan (0.4-5) converged normally after 31 iterations
  Number of observations
                                                     500
  Estimator
                                                      ML.
  Minimum Function Chi-square
                                                 188.657
  Degrees of freedom
                                                      19
  P-value
                                                   0.000
```

The model

CFA with lavaan of discrete items

```
> mod.circ <- 'F1 =~ V8 +V4 +V1 +V5
                     F2 = V2 + V6 + V3 + V7'
> X.df <- data.frame(X)</pre>
> fit.circ <- cfa(mod.circ,data=X.df,std.lv=TRUE)</pre>
> fit.circ
Lavaan (0.4-5) converged normally after 31 iterations
```

Number of observations 500

Estimator	ML
Minimum Function Chi-square	188.657
Degrees of freedom	19
P-value	0.000

42 / 42

cfa parameters

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
V8	0.589	0.062	9.548	0.000
V4	-0.659	0.064	-10.283	0.000
V1	0.429	0.059	7.238	0.000
V5	-0.375	0.059	-6.317	0.000
F2 =~				
V2	0.339	0.057	5.997	0.000
V6	-0.398	0.059	-6.757	0.000
V3	0.709	0.069	10.214	0.000
V7	-0.609	0.064	-9.453	0.000
Covariances:				
F1 ~~				
F2	-0.268	0.071	-3.757	0.000
Variances:				
V8	0.712	0.070	10.224	0.000
V4	0.622	0.076	8.188	0.000
V1	0.910	0.066	13.692	0.000