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Outline
Overview

Text and Readings and Requirements
Overview

Latent and Observed Variables
Observations, Constructs, Theory
Putting it together

Correlation and Regression
Bivariate correlations
Multivariate Regression and Partial Correlation

Path models and path algebra
Wright’s rules
Applying path models to regression

Measurement models
Reliability models
Multiple factor models

Structural Models
Regression models – multiple predictors, single criterion
Beyond regression models– multiple predictors, multiple criteria
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Texts and readings

• Loehlin, J. C. Latent Variable Models (4th ed). Lawrence
Erlbaum Associates, Mahwah, N.J. 2004 (recommended)

• Revelle, W. (in prep) An introduction to Psychometric Theory
with Applications in R. Springer. Chapters available at
http://personality-project.org/r/book

• Various web based readings about SEM
• e.g., Barrett (2007), Bollen (2002), McArdle (2009), Widaman

& Thompson (2003), Preacher (2015)

• Syllabus and handouts are available at
http:personality-project.org/revelle/syllabi/454/
454.syllabus.pdf

• Syllabus is subject to modification as we go through the course.
• Lecture notes will appear no later than 3 hours before class.

• R tutorial is at http:personality-project.org/r
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Requirements and Evaluation

1. Basic knowledge of psychometrics
• Preferably have taken 405 or equivalent course.
• Alternatively, willing to read some key chapters and catch up

• Chapters available at
http://personality-project.org/r/book/

• Basic concepts of measurement and scaling (Chapters 1-3)
• Correlation and Regression (Chapters 4 & 5)
• Factor Analysis (Chapter 6)
• Reliability (Chapter 7)

2. Familiarity with basic linear algebra (Appendix E) (or, at least,
a willingness to learn)

3. Willingness to use computer programs, particularly R,
comparing alternative solutions, playing with data.

4. Willingness to ask questions

5. Weekly problem sets/final brief paper
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Outline of Course

1. Review of correlation/regression/reliability/matrix algebra
(405 in a week)

2. Basic model fitting/path analysis

3. Simple models

4. Goodness of fit–what is it all about?

5. Exploratory Factor Analysis

6. Confirmatory Factor Analysis

7. Multiple groups/multiple occasions

8. Further topics
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Data = Model + Residual

• The fundamental equations of statistics are that
• Data = Model + Residual
• Residual = Data - Model

• The problem is to specify the model and then evaluate the fit
of the model to the data as compared to other models

• Fit = f(Data, Residual)

• Typically: Fit α 1− Residual2

Data2

• Fit = (Data−Model)2

Data2

• This is a course in developing, evaluating, and comparing
models of data.

• This is not a course in how to use any particular program
(e.g., MPlus, LISREL, AMOS, or even R) to do latent variable
analysis, but rather in how and why to think about latent
variables when thinking about data.
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Latent Variable Modeling

• Two kinds of variables

1. Observed Variables (X, Y)
2. Latent Variables(ξ η ε ζ)

• Three kinds of variance/covariances

1. Observed with Observed Cxy or σxy
2. Observed with Latent λ
3. Latent with Latent φ

• Three kinds of algebra

1. Path algebra
2. Linear algebra
3. Computer syntax

• R packages e.g., psych, lavaan, sem, and OpenMx and
associated functions

• Commercial packages: MPlus (available through SSCC)
• AMOS, EQS (if licensed)
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Latent and Observed variables

• The distinction between what we see (observe) versus what is
really there goes back at least to Plato in the Allegory of the
Cave.

• Prisoners in a cave observe shadows on the walls of the cave.
• These are caused by people and objects behind them, but in

front of a fire.
• Movements of the shadows are caused by, but not the same as

the movements of the people and objects.

• In psychology we sometimes make the distinction between
surface traits and source traits.

• A major breakthrough in psychological theorizing was the
willingness to consider latent constructs.

• Operational definitions are associated with the observed
(surface) measures.

• Unobserved, latent constructs are now part of our theoretical
armamentarium.
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Latent Variables
ξ η
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Theory: A regression model of latent variables
ξ η

�
��

�
��

ξ1

ξ2

�
��

�
��

η1

η2

-

-

@
@
@
@
@
@
@@R

mζ1

�
�	

mζ2
@
@I

11 / 59



Overview Latent variables r and R Path models Measurement models Structural Models References

A measurement model for X
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A measurement model for Y
η Y ε
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A complete structural model
δ X ξ η Y ε
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Latent Variable Modeling

1. Requires measuring observed variables
• Requires defining what is relevant and irrelevant to our theory.
• Issues in quality of scale information, levels of measurement.

2. Formulating a measurement model of the data: estimating
latent constructs

• Perhaps based upon exploratory and then confirmatory factor
analysis, definitely based upon theory.

• Includes understanding the reliability of the measures.

3. Modeling the structure of the constructs
• This is a combination of theory and fitting. Do the data fit the

theory.
• Comparison of models. Does one model fit better than

alternative models?
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Data Analysis: using R to analyze Graduate School Applicants

The data are taken from an Excel file downloaded from the
Graduate School. They were then copied into R and saved as a
.rds file. First, get the file and download to your machine. Use
your browser:
http://personality-project.org/revelle/syllabi/454/

grad.rds Then, load the file using read.file.
First, examine the data to remove outliers.
> library(psych) #necessary first time you use psych package

> grad <- read.file() #find the grad.rds file using your finder

> describe(grad)

vars n mean sd median trimmed mad min max range skew kurtosis se

V.Gre 1 256 587.23 103.54 590.0 591.41 103.78 300.00 800 500.00 -0.33 -0.43 6.47

Q.Gre 2 256 626.48 113.10 640.0 636.65 103.78 220.00 800 580.00 -1.04 1.49 7.07

A.Gre 3 256 626.84 116.31 650.0 635.44 118.61 310.00 800 490.00 -0.60 -0.37 7.27

P.Gre 4 213 617.79 82.42 640.0 622.46 74.13 350.00 780 430.00 -0.55 -0.12 5.65

X2.GPA 5 217 3.61 0.37 3.7 3.66 0.34 2.15 4 1.85 -1.25 1.47 0.03

X4.GPA 6 218 3.45 0.38 3.5 3.47 0.43 2.17 4 1.83 -0.62 -0.10 0.03

#clean up the data, remove GPA > 5

> grad1 <- scrub(grad,1,max=5)

> describe(grad1)

Then, draw a Scatter Plot Matrix of the data.
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Scatter Plot Matrix of Psychology Graduate Applicants

pairs.panels(grad1,cor=FALSE,ellipses=FALSE,smooth=FALSE,lm=TRUE)
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Bivariate Regression
X Y ε

X Y- �
��ε�
βy .x

ŷ = βy .xx + ε

βy .x =
σxy
σ2
x
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Bivariate Regression
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Bivariate Correlation
X Y
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Scatter Plot Matrix showing correlation and LOESS regression
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The effect of selection on the correlation
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• Consider what happens if we
select a subset

• The “Oregon” model
• (GPA + (V+Q)/200) > 11.6

• The range is truncated, but
even more important, by using
a compensatory selection
model, we have changed the
sign of the correlations.
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Regression and restriction of range
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Although the correlation is very sensitive, regression slopes are
relatively insensitive to restriction of range.
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R code for regression figures
gradq <- subset(gradf,gradf[2]>700) #choose the subset

with(gradq,lm(GRE.V ~ GRE.Q)) #do the regression

Call:

lm(formula = GRE.V ~ GRE.Q)

Coefficients:

(Intercept) GRE.Q

258.1549 0.4977

#show the graphic

op <- par(mfrow=c(1,2)) #two panel graph

with(gradf,{

plot(GRE.V ~ GRE.Q,xlim=c(200,800), main="Original data", pch=16)

abline(lm(GRE.V ~ GRE.Q))

} )

text(300,500,"r = .46 b = .56")

with(gradq,{

plot(GRE.V ~ GRE.Q,xlim=c(200,800),main="GRE Q > 700",pch=16)

abline(lm(GRE.V ~ GRE.Q))

} )

text(300,500,"r = .18 b = .50")

op <- par(mfrow=c(1,1)) #switch back to one panel
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Alternative versions of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with
particular assumptions. If r =

∑
xiyi√∑
x2
i

∑
y2
i

, then depending upon the type

of data being analyzed, a variety of correlations are found.

Coefficient symbol X Y Assumptions
Pearson r continuous continuous
Spearman rho (ρ) ranks ranks
Point bi-serial rpb dichotomous continuous
Phi φ dichotomous dichotomous
Bi-serial rbis dichotomous continuous normality
Tetrachoric rtet dichotomous dichotomous bivariate normality
Polychoric rpc categorical categorical bivariate normality
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The biserial correlation estimates the latent correlation
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The tetrachoric correlation estimates the latent correlation
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The tetrachoric correlation estimates the latent correlation
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Cautions about correlations–The Anscombe data set
Consider the following 8 variables
describe(anscombe)

vars n mean sd median trimmed mad min max range skew kurtosis se

x1 1 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.53 1.00

x2 2 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.53 1.00

x3 3 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.53 1.00

x4 4 11 9.0 3.32 8.00 8.00 0.00 8.00 19.00 11.00 2.47 4.52 1.00

y1 5 11 7.5 2.03 7.58 7.49 1.82 4.26 10.84 6.58 -0.05 -1.20 0.61

y2 6 11 7.5 2.03 8.14 7.79 1.47 3.10 9.26 6.16 -0.98 -0.51 0.61

y3 7 11 7.5 2.03 7.11 7.15 1.53 5.39 12.74 7.35 1.38 1.24 0.61

y4 8 11 7.5 2.03 7.04 7.20 1.90 5.25 12.50 7.25 1.12 0.63 0.61

summary(lm(y1~x1,data=anscombe)) #show one of the regressions

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0001 1.1247 2.667 0.02573 *

x1 0.5001 0.1179 4.241 0.00217 **

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295

F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

Anscombe (1973)
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Cautions, Anscombe continued

With regressions of
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000909 1.1247468 2.667348 0.025734051

x1 0.5000909 0.1179055 4.241455 0.002169629

[[2]]

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000909 1.1253024 2.666758 0.025758941

x2 0.500000 0.1179637 4.238590 0.002178816

[[3]]

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0024545 1.1244812 2.670080 0.025619109

x3 0.4997273 0.1178777 4.239372 0.002176305

[[4]]

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0017273 1.1239211 2.670763 0.025590425

x4 0.4999091 0.1178189 4.243028 0.002164602
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Cautions about correlations: Anscombe data set
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Anscombe's 4 Regression data sets

Moral: Always plot your data!
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Cautions about correlations: Anscombe data set
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The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a
scale free estimate of effect size allows for combining experimental and
correlational data in a metric that is directly interpretable as the effect of
a standardized unit change in x leads to r change in standardized y.

Statistic Estimate r equivalent as a function of r

Pearson correlation rxy =
Cxy

σxσy
rxy

Regression by.x = Cxy
σ2
x

r = by.x
σy
σx

by.x = r σx
σy

Cohen’s d d = X1−X2
σx

r = d√
d2+4

d = 2r√
1−r2

Hedge’s g g = X1−X2
sx

r = g√
g2+4(df /N)

g =
2r
√

df /N√
1−r2

t - test t = d
√
df

2
r =

√
t2/(t2 + df ) t =

√
r2df
1−r2

F-test F = d2df
4

r =
√

F/(F + df ) F = r2df
1−r2

Chi Square r =
√
χ2/n χ2 = r2n

Odds ratio d = ln(OR)
1.81

r = ln(OR)

1.81
√

(ln(OR)/1.81)2+4
ln(OR) = 3.62r√

1−r2

requivalent r with probability p r = requivalent
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Multiple correlations
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Multiple Regression
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Multiple Regression: decomposing correlations
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Multiple Regression: decomposing correlations
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Multiple Regression: decomposing correlations
X Y ε
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Multiple Regression: decomposing correlations
X Y ε

X1

X2

Y-

���
���

���
���

���
���

�:

rx1y

rx2y

βy .x1

βy .x2

rx1x2

�
��ε�

rx1y = +

direct︷︸︸︷
βy .x1

indirect︷ ︸︸ ︷
rx1x2βy .x2

rx2y = +βy .x2︸︷︷︸
direct

rx1x2βy .x1︸ ︷︷ ︸
indirect

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2

R2 = rx1yβy .x1 + rx2yβy .x2
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What happens with 3 predictors? The correlations
X Y

rx1y

rx2y

rx3y

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y
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What happens with 3 predictors? β weights
X Y ε

βy .x1

βy .x2

βy .x3

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y

XXXXXXXXXXXXXXXXXXXz
-

��
���

���
���

���
���

��:
�
��ε3�
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What happens with 3 predictors?
X Y ε

rx1y

rx2y

rx3y

βy .x1

βy .x2

βy .x3

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y

XXXXXXXXXXXXXXXXXXXz
-

��
���

���
���

���
���

��:
�
��ε3�

rx1y = +βy .x1︸︷︷︸
direct

rx1x2βy .x1 + rx1x3βy .x3︸ ︷︷ ︸
indirect

rx2y = . . . rx3y = . . .

The math gets tedious
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Multiple regression and linear algebra

• Multiple regression requires solving multiple, simultaneous
equations to estimate the direct and indirect effects.

• Each equation is expressed as a rxiy in terms of direct and
indirect effects.

• Direct effect is βy .xi
• Indirect effect is

∑
j 6=i betay .xj rxjy

• How to solve these equations?

• Tediously, or just use linear algebra
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Wright’s Path model of inheritance in the Guinea Pig (Wright, 1921)
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The basic rules of path analysis–think genetics

�
��

�
��

�
��

C1

C2

C3

A

B

a

b

c

d

e

aAb

bBd
bBc

cd

e

eaAb

X1

X2

X3

X4

X5
- -

-

XXXXXXXXz

��
���

���:

Up ... and down ...

Up ... and over and down ...

No down and up

No double overs

Parents cause children

children do not cause parents
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3 special cases of regression
Orthogonal predictors

X1

X2

Y

rx1y

rx2y

Correlated predictors

X1

X2

Y

rx1y

rx2y

rx1x2

Suppressive predictors

X1

X2

Y

rx1y

rx1x2
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3 special cases of regression
Orthogonal predictors

X1

X2

Y

HHH
HHHj

��
��
��*

rx1y

rx2y

βy .x1

βy .x2

Correlated predictors

X1

X2

Y

HHH
HHHj

��
��

��*

rx1y

rx2y

rx1x2

βy .x1

βy .x2

Suppressive predictors

X1

X2

Y

HH
HHHHj

rx1y

rx1x2

βy .x1

βy .x2

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2

R2 = rx1yβy .x1 + rx2yβy .x2
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A measurement model for X
δ X ξ

�
��
�
��
�
��
�
��
�
��
�
��

δ1

δ2

δ3

δ4

δ5

δ6

-

-

-

-

-

-

X1

X2

X3

X4

X5

X6

�
��

�
��

ξ1

ξ2

Q
Q
Q

QQk

�
�

�
�

��+

Q
Q
Q

QQk

�
�

�
�

��+
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Congeneric Reliability
δ X ξ

�
��
�
��
�
��
δ1

δ2

δ3

-

-

-

X1

X2

X3

�
��ξ1
Q

Q
Q

QQk

�
�

�
�

��+
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Creating a congeneric model

> cong <- sim.congeneric()

> cong

V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40

V2 0.56 1.00 0.42 0.35

V3 0.48 0.42 1.00 0.30

V4 0.40 0.35 0.30 1.00
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Factor a 1 factor model

> cong <- sim.congeneric()

> cong

V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40

V2 0.56 1.00 0.42 0.35

V3 0.48 0.42 1.00 0.30

V4 0.40 0.35 0.30 1.00

> f <- fa(cong)

> f

Factor Analysis using method = minres

Call: fa(r = cong)

Standardized loadings based upon

correlation matrix

MR1 h2 u2 com

V1 0.8 0.64 0.36 1

V2 0.7 0.49 0.51 1

V3 0.6 0.36 0.64 1

V4 0.5 0.25 0.75 1

MR1

SS loadings 1.74

Proportion Var 0.44
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Factoring 6= components !

> f <- fa(cong)

> f

Factor Analysis using method = minres

Call: fa(r = cong)

Standardized loadings based

upon correlation matrix

MR1 h2 u2 com

V1 0.8 0.64 0.36 1

V2 0.7 0.49 0.51 1

V3 0.6 0.36 0.64 1

V4 0.5 0.25 0.75 1

MR1

SS loadings 1.74

Proportion Var 0.44

> p <- principal(cong)

> p

Principal Components Analysis

Call: principal(r = cong)

Standardized loadings (pattern matrix) based

upon correlation matrix

PC1 h2 u2 com

V1 0.83 0.69 0.31 1

V2 0.79 0.62 0.38 1

V3 0.73 0.53 0.47 1

V4 0.65 0.43 0.57 1

PC1

SS loadings 2.27

Proportion Var 0.57
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Exploratory factoring a congeneric model

Factor Analysis using method = minres

Call: fa(r = cong)

Standardized loadings based upon correlation matrix

MR1 h2 u2

V1 0.8 0.64 0.36

V2 0.7 0.49 0.51

V3 0.6 0.36 0.64

V4 0.5 0.25 0.75

MR1

SS loadings 1.74

Proportion Var 0.44

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 6 and the objective function was 0.9

The degrees of freedom for the model are 2 and the objective function was 0

The root mean square of the residuals is 0

The df corrected root mean square of the residuals is 0

Fit based upon off diagonal values = 1

Measures of factor score adequacy

MR1

Correlation of scores with factors 0.89

Multiple R square of scores with factors 0.78

Minimum correlation of possible factor scores 0.57

53 / 59



Overview Latent variables r and R Path models Measurement models Structural Models References

Show the structure

Factor Analysis

V1

V2

V3

V4

MR1

0.8

0.7

0.6

0.5
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Congeneric with some noise

> cong1 <- sim.congeneric(N=500,short=FALSE)

> cong1

Call: NULL

$model (Population correlation matrix)

V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40

V2 0.56 1.00 0.42 0.35

V3 0.48 0.42 1.00 0.30

V4 0.40 0.35 0.30 1.00

$r (Sample correlation matrix for sample size = 500 )

V1 V2 V3 V4

V1 1.00 0.55 0.49 0.42

V2 0.55 1.00 0.45 0.38

V3 0.49 0.45 1.00 0.35

V4 0.42 0.38 0.35 1.00
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Add noise to the model

> cong1 <- sim.congeneric(N=500,short=FALSE)

> cong1

Call: NULL

$model (Population correlation matrix)

V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40

V2 0.56 1.00 0.42 0.35

V3 0.48 0.42 1.00 0.30

V4 0.40 0.35 0.30 1.00

$r (Sample correlation matrix

for sample size = 500 )

V1 V2 V3 V4

V1 1.00 0.55 0.49 0.42

V2 0.55 1.00 0.45 0.38

V3 0.49 0.45 1.00 0.35

V4 0.42 0.38 0.35 1.00

> f <- fa(cong1$observed)

> f

Factor Analysis using method = minres

Call: fa(r = cong1$observed)

Standardized loadings based upon correlation matrix

MR1 h2 u2

V1 0.77 0.60 0.40

V2 0.71 0.50 0.50

V3 0.63 0.40 0.60

V4 0.54 0.29 0.71

MR1

SS loadings 1.79

Proportion Var 0.45
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Factor a 1 dimensional model

Factor Analysis using method = minres

Call: fa(r = cong1$observed)

Standardized loadings based upon correlation matrix

MR1 h2 u2

V1 0.77 0.60 0.40

V2 0.71 0.50 0.50

V3 0.63 0.40 0.60

V4 0.54 0.29 0.71

MR1

SS loadings 1.79

Proportion Var 0.45

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 6 and the objective function was 0.95 with Chi Square of 469.68

The degrees of freedom for the model are 2 and the objective function was 0

The root mean square of the residuals is 0

The df corrected root mean square of the residuals is 0.01

The number of observations was 500 with Chi Square = 0.11 with prob < 0.95

Tucker Lewis Index of factoring reliability = 1.012

RMSEA index = 0 and the 90 % confidence intervals are 0 0.034

BIC = -12.32

Fit based upon off diagonal values = 1

Measures of factor score adequacy

MR1

Correlation of scores with factors 0.88

Multiple R square of scores with factors 0.78

Minimum correlation of possible factor scores 0.56
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Factor Analysis
δ X ξ
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A complete structural model
δ X ξ η Y ε
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