Notes for a course in Latent Variable Modeling to accompany

Psychometric Theory with Applications in R

William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA

September, 2016

erview Latent variables r and R Path models Measurement models Structural Models Reference

Outline

Overview

Text and Readings and Requirements

Overview

Latent and Observed Variables

Observations, Constructs, Theory

Putting it together

Correlation and Regression

Bivariate correlations

Multivariate Regression and Partial Correlation

Path models and path algebra

Wright's rules

Applying path models to regression

Measurement models

Reliability models

Multiple factor models

Structural Models

Regression models – multiple predictors, single criterion

Overview

Texts and readings

- Loehlin, J. C. Latent Variable Models (4th ed). Lawrence Erlbaum Associates, Mahwah, N.J. 2004 (recommended)
- Revelle, W. (in prep) An introduction to Psychometric Theory with Applications in R. Springer. Chapters available at http://personality-project.org/r/book
- Various web based readings about SEM
 - e.g., Barrett (2007), Bollen (2002), McArdle (2009), Widaman
 & Thompson (2003), Preacher (2015)
- Syllabus and handouts are available at http:personality-project.org/revelle/syllabi/454/ 454.syllabus.pdf
 - Syllabus is subject to modification as we go through the course.
 - Lecture notes will appear no later than 3 hours before class.
- R tutorial is at http:personality-project.org/r

Overview

Requirements and Evaluation

- 1. Basic knowledge of psychometrics
 - Preferably have taken 405 or equivalent course.
 - Alternatively, willing to read some key chapters and catch up
 - Chapters available at http://personality-project.org/r/book/
 - Basic concepts of measurement and scaling (Chapters 1-3)
 - Correlation and Regression (Chapters 4 & 5)
 - Factor Analysis (Chapter 6)
 - Reliability (Chapter 7)
- 2. Familiarity with basic linear algebra (Appendix E) (or, at least, a willingness to learn)
- 3. Willingness to use computer programs, particularly R, comparing alternative solutions, playing with data.
- 4. Willingness to ask questions
- 5. Weekly problem sets/final brief paper

- 1. Review of correlation/regression/reliability/matrix algebra (405 in a week)
- 2. Basic model fitting/path analysis
- 3. Simple models

Overview •00

- 4. Goodness of fit—what is it all about?
- 5. Exploratory Factor Analysis
- 6. Confirmatory Factor Analysis
- 7. Multiple groups/multiple occasions
- 8. Further topics

Overview

Data = Model + Residual

- The fundamental equations of statistics are that
 - Data = Model + Residual
 - Residual = Data Model
- The problem is to specify the model and then evaluate the fit of the model to the data as compared to other models
 - Fit = f(Data, Residual)
 - Typically: Fit $\alpha 1 \frac{Residual^2}{Rata^2}$
 - $Fit = \frac{(Data Model)^2}{Data^2}$
- This is a course in developing, evaluating, and comparing models of data.
- This is not a course in how to use any particular program (e.g., MPlus, LISREL, AMOS, or even R) to do latent variable analysis, but rather in how and why to think about latent variables when thinking about data.

Latent Variable Modeling

- Two kinds of variables
 - 1. Observed Variables (X, Y)
 - 2. Latent Variables $(\xi \eta \epsilon \zeta)$
- Three kinds of variance/covariances
 - 1. Observed with Observed C_{xy} or σ_{xy}
 - 2. Observed with Latent λ
 - 3. Latent with Latent ϕ
- Three kinds of algebra
 - 1. Path algebra
 - 2. Linear algebra
 - 3. Computer syntax
 - R packages e.g., psych, lavaan, sem, and OpenMx and associated functions
 - Commercial packages: MPlus (available through SSCC)
 - AMOS, EQS (if licensed)

Latent and Observed variables

- The distinction between what we see (observe) versus what is really there goes back at least to Plato in the Allegory of the Cave.
 - Prisoners in a cave observe shadows on the walls of the cave.
 - These are caused by people and objects behind them, but in front of a fire
 - Movements of the shadows are caused by, but not the same as the movements of the people and objects.
- In psychology we sometimes make the distinction between surface traits and source traits.
- A major breakthrough in psychological theorizing was the willingness to consider latent constructs.
 - Operational definitions are associated with the observed (surface) measures.
 - Unobserved, latent constructs are now part of our theoretical armamentarium.

Observed Variables

 X_1

X

 X_2

 X_3

 X_4

 X_5

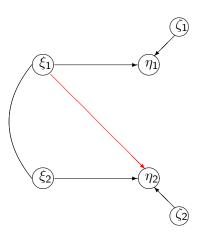
 X_6

 Y_5

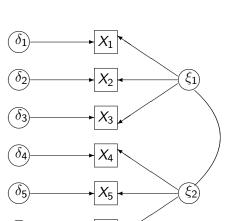
 Y_6

$\begin{array}{c} \textbf{Latent Variables} \\ \xi & \eta \end{array}$

Theory: A regression model of latent variables ξ



A measurement model for X



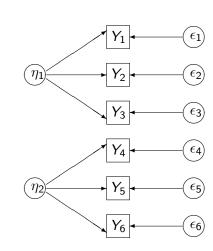
 X_6

δ

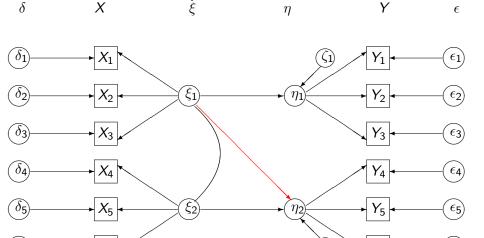
A measurement model for Y

 η

 ϵ



A complete structural model



 ϵ_6

- 1. Requires measuring observed variables
 - Requires defining what is relevant and irrelevant to our theory.
 - Issues in quality of scale information, levels of measurement.
- 2. Formulating a measurement model of the data: estimating latent constructs
 - Perhaps based upon exploratory and then confirmatory factor analysis, definitely based upon theory.
 - Includes understanding the reliability of the measures.
- 3. Modeling the structure of the constructs
 - This is a combination of theory and fitting. Do the data fit the theory.
 - Comparison of models. Does one model fit better than alternative models?

Data Analysis: using R to analyze Graduate School Applicants

The data are taken from an Excel file downloaded from the Graduate School. They were then copied into R and saved as a .rds file. First, get the file and download to your machine. Use your browser:

http://personality-project.org/revelle/syllabi/454/grad.rds Then, load the file using read.file.

First. examine the data to remove outliers.

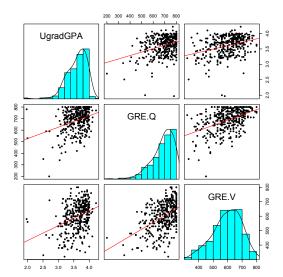
```
> library(psych) #necessary first time you use psych package
                       #find the grad.rds file using your finder
> grad <- read.file()
> describe(grad)
      vars
                 mean
                          sd median trimmed
                                              mad
                                                     min max range skew kurtosis
V.Gre
         1 256 587.23 103.54 590.0 591.41 103.78 300.00 800 500.00 -0.33
                                                                             -0.43 6.47
         2 256 626.48 113.10 640.0 636.65 103.78 220.00 800 580.00 -1.04
Q.Gre
                                                                              1.49 7.07
A Gre
         3 256 626.84 116.31
                              650.0 635.44 118.61 310.00 800 490.00 -0.60
                                                                             -0.37 7.27
P.Gre
         4 213 617.79 82.42
                              640.0 622.46 74.13 350.00 780 430.00 -0.55
                                                                             -0.125.65
X2.GPA
         5 217
                        0.37
                                3.7
                 3.61
                                       3.66
                                             0.34
                                                    2.15
                                                               1.85 -1.25
                                                                              1.47 0.03
X4 GPA
         6 218
                 3.45
                        0.38
                                3.5
                                       3.47
                                             0.43
                                                    2.17
                                                               1.83 -0.62
                                                                             -0.100.03
#clean up the data, remove GPA > 5
> grad1 <- scrub(grad,1,max=5)
```

Then, draw a Scatter Plot Matrix of the data.

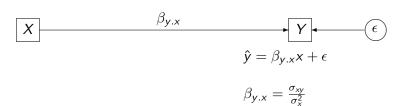
> describe(grad1)

Scatter Plot Matrix of Psychology Graduate Applicants

pairs.panels(grad1,cor=FALSE,ellipses=FALSE,smooth=FALSE,lm=TRUE)

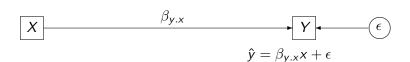


X



Bivariate Regression

 ϵ



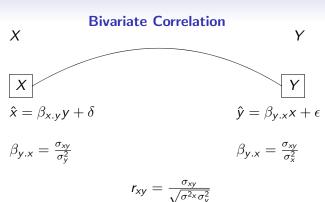
$$\beta_{y.x} = \frac{\sigma_{xy}}{\sigma_y^2}$$

$$\hat{\mathbf{x}} = \beta_{\mathbf{x},\mathbf{v}}\mathbf{y} + \delta$$

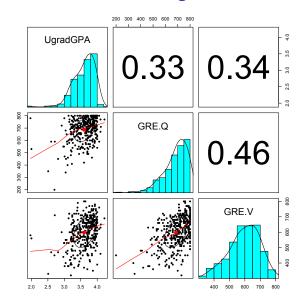
$$\beta_{y.x} = \frac{\sigma_{xy}}{\sigma_y^2}$$

X

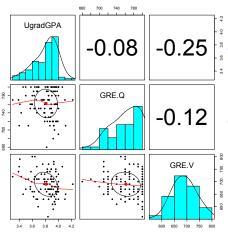
δ



Scatter Plot Matrix showing correlation and LOESS regression



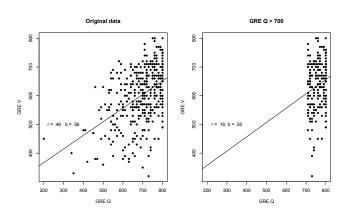
The effect of selection on the correlation



Consider what happens if we select a subset

- The "Oregon" model
- (GPA + (V+Q)/200) > 11.6
- The range is truncated, but even more important, by using a compensatory selection model, we have changed the sign of the correlations.

Regression and restriction of range



Although the correlation is very sensitive, regression slopes are relatively insensitive to restriction of range.

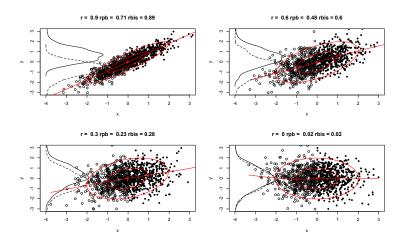
```
gradq <- subset(gradf,gradf[2]>700) #choose the subset
with(gradq,lm(GRE.V ~ GRE.Q)) #do the regression
Call:
lm(formula = GRE.V ~ GRE.Q)
Coefficients:
(Intercept)
               GRE.Q
  258.1549 0.4977
#show the graphic
op <- par(mfrow=c(1,2)) #two panel graph
 with(gradf,{
 plot(GRE.V ~ GRE.Q,xlim=c(200,800), main="Original data", pch=16)
 abline(lm(GRE.V ~ GRE.Q))
 } )
 text(300.500."r = .46 b = .56")
 with(gradg,{
 plot(GRE.V ~ GRE.Q,xlim=c(200,800),main="GRE Q > 700",pch=16)
 abline(lm(GRE.V ~ GRE.Q))
} )
text(300.500."r = .18 b = .50")
 op <- par(mfrow=c(1,1)) #switch back to one panel
```

Alternative versions of the correlation coefficient

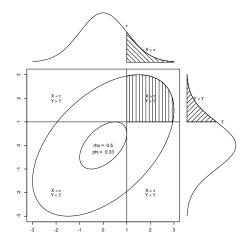
Table: A number of correlations are Pearson r in different forms, or with particular assumptions. If $r = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}}$, then depending upon the type of data being analyzed, a variety of correlations are found.

Coefficient	symbol	X	Υ	Assumptions
Pearson	r	continuous	continuous	
Spearman	rho (ho)	ranks	ranks	
Point bi-serial	r_{pb}	dichotomous	continuous	
Phi	$\dot{\phi}$	dichotomous	dichotomous	
Bi-serial	r _{bis}	dichotomous	continuous	normality
Tetrachoric	r_{tet}	dichotomous	dichotomous	bivariate normality
Polychoric	r _{pc}	categorical	categorical	bivariate normality

The biserial correlation estimates the latent correlation

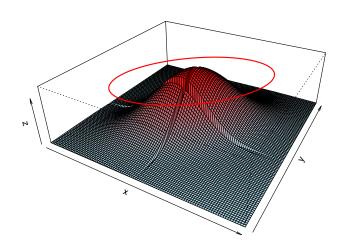


The tetrachoric correlation estimates the latent correlation



The tetrachoric correlation estimates the latent correlation

Bivariate density rho = 0.5



Cautions about correlations—The Anscombe data set

Consider the following 8 variables

```
describe(anscombe)
```

```
vars n mean
                sd median trimmed mad min
                                           max range
                                                     skew kurtosis
                                                                   se
     1 11
          9.0 3.32
                    9.00
                           9.00 4.45 4.00 14.00 10.00
                                                     0.00
                                                            -1.531.00
x1
x2
     2 11
          9.0 3.32
                    9.00
                           9.00 4.45 4.00 14.00 10.00 0.00
                                                            -1.531.00
x3
     3 11 9.0 3.32
                    9.00 9.00 4.45 4.00 14.00 10.00 0.00
                                                            -1.531.00
x4
     4 11
          9.0 3.32
                    8.00
                           8.00 0.00 8.00 19.00 11.00
                                                     2.47
                                                             4.52 1.00
     5 11 7.5 2.03
                    7.58 7.49 1.82 4.26 10.84 6.58 -0.05
                                                            -1.20 0.61
y1
                    8.14
y2
     6 11 7.5 2.03
                           7.79 1.47 3.10 9.26 6.16 -0.98
                                                            -0.510.61
     7 11 7.5 2.03
                    7.11
                           7.15 1.53 5.39 12.74 7.35 1.38
yЗ
                                                             1.24 0.61
     8 11
         7.5 2.03
                    7.04
                           7.20 1.90 5.25 12.50 7.25 1.12
                                                             0.63 0.61
٧4
```

 $\begin{tabular}{ll} summary(lm(y1~x1,data=anscombe)) & \#show one of the regressions \\ Coefficients: \end{tabular}$

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 *
x1 0.5001 0.1179 4.241 0.00217 **
```

```
Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
```

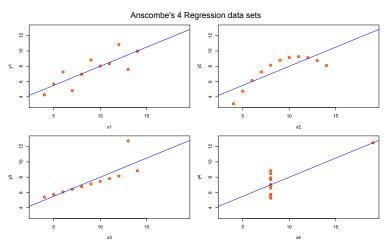
F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

Cautions, Anscombe continued

With regressions of

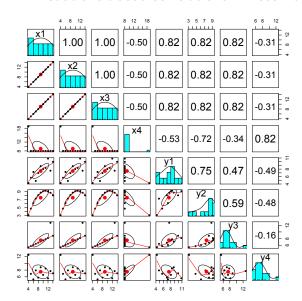
```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0000909 1.1247468 2.667348 0.025734051
x1
           0.5000909 0.1179055 4.241455 0.002169629
[[2]]
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.000909 1.1253024 2.666758 0.025758941
x2
           0.500000 0.1179637 4.238590 0.002178816
[[3]]
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0024545 1.1244812 2.670080 0.025619109
x3
           0.4997273
                      0.1178777 4.239372 0.002176305
[[4]]
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017273 1.1239211 2.670763 0.025590425
x4
           0.4999091 0.1178189 4.243028 0.002164602
```

Cautions about correlations: Anscombe data set



Moral: Always plot your data!

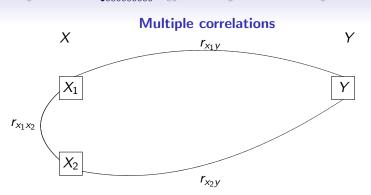
Cautions about correlations: Anscombe data set

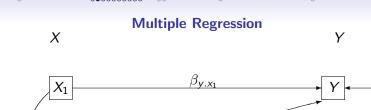


The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a scale free estimate of effect size allows for combining experimental and correlational data in a metric that is directly interpretable as the effect of a standardized unit change in x leads to r change in standardized y.

Statistic	Estimate	r equivalent	as a function of r
Pearson correlation	$r_{xy} = \frac{C_{xy}}{\sigma_{x_z}\sigma_y}$	r _{xy}	
Regression	$b_{y.x} = \frac{Cxy}{\sigma_z^2}$	$r = b_{y.x} \frac{\sigma_y}{\sigma_x}$	$b_{y.x} = r \frac{\sigma_x}{\sigma_y}$
Cohen's d	$d = \frac{X_1 - \hat{X}_2}{\sigma_X}$	$r = \frac{d}{\sqrt{d^2 + 4}}$	$d = \frac{2r}{\sqrt{1 - r^2}}$
Hedge's g	$g=\frac{X_1-X_2}{s_x}$	$r = \frac{g}{\sqrt{g^2 + 4(df/N)}}$	$g = \frac{2r\sqrt{df/N}}{\sqrt{1-r^2}}$
t - test	$t = \frac{d\sqrt{df}}{2}$	$r = \sqrt{t^2/(t^2 + df)}$	$t = \sqrt{\frac{r^2 df}{1 - r^2}}$
F-test	$F = \frac{d^2df}{4}$	$r = \sqrt{F/(F + df)}$	$F = \frac{r^2 df}{1 - r^2}$
Chi Square		$r = \sqrt{\chi^2/n}$	$\chi^2 = r^2 n$
Odds ratio	$d = \frac{\ln(OR)}{1.81}$	$r = \frac{\ln(OR)}{1.81\sqrt{(\ln(OR)/1.81)^2 + 4}}$	$ln(OR) = \frac{3.62r}{\sqrt{1-r^2}}$
r _{equivalent}	r with probability p	$r = r_{equivalent}$	•





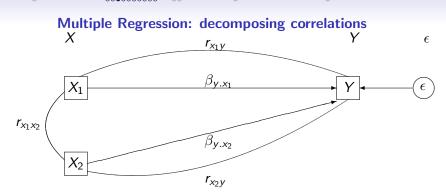
 $\beta_{y.x_2}$

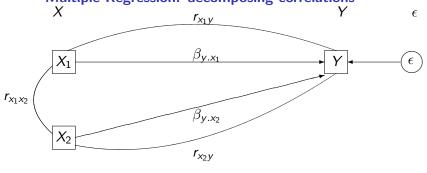
 $r_{x_1x_2}$

 X_2

 ϵ

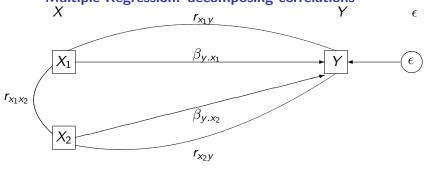
 ϵ





$$r_{x_1y} = \overbrace{\beta_{y.x_1}}^{\text{direct}} + \overbrace{r_{x_1x_2}\beta_{y.x_2}}^{\text{indirect}}$$

$$r_{x_2y} = \underbrace{\beta_{y.x_2}}_{direct} + \underbrace{r_{x_1x_2}\beta_{y.x_1}}_{indirect}$$

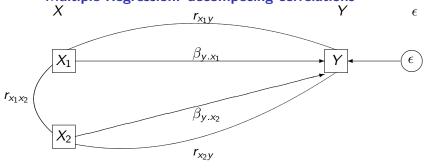


$$r_{x_1y} = \beta_{y.x_1} + r_{x_1x_2} \beta_{y.x_2}$$

$$r_{x_2y} = \underline{\beta_{y.x_2}} + \underbrace{r_{x_1x_2}\beta_{y.x_1}}_{indirect}$$

$$\beta_{y.x_1} = \frac{r_{x_1y} - r_{x_1x_2}r_{x_2y}}{1 - r_{x_1x_2}^2}$$

$$\beta_{y.x_1} = \frac{r_{x_1y} - r_{x_1x_2} r_{x_2y}}{1 - r_{x_1x_2}^2}$$
$$\beta_{y.x_2} = \frac{r_{x_2y} - r_{x_1x_2} r_{x_1y}}{1 - r_{x_1x_2}^2}$$



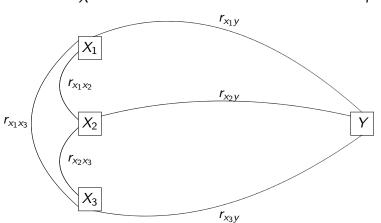
$$r_{x_1y} = \beta_{y.x_1} + r_{x_1x_2}\beta_{y.x_2}$$

$$r_{x_2y} = \underline{\beta_{y.x_2}} + \underbrace{r_{x_1x_2}\beta_{y.x_1}}_{indirect}$$

$$\beta_{y.x_1} = \frac{r_{x_1y} - r_{x_1x_2}r_{x_2y}}{1 - r_{x_1x_2}^2}$$

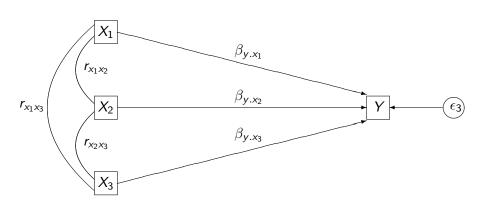
$$\beta_{y.x_2} = \frac{r_{x_2y} - r_{x_1x_2}r_{x_1y}}{1 - r_{x_1x_2}^2}$$

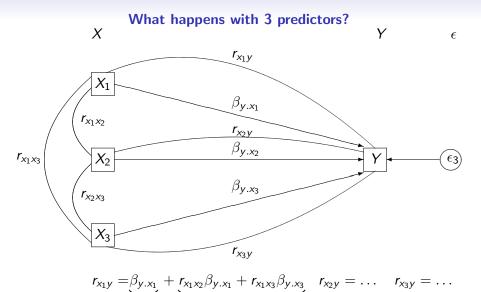
$$R^2 = r_{x_1 y} \beta_{y.x_1} + r_{x_2 y} \beta_{y.x_2}$$



What happens with 3 predictors? β weights Y

 ϵ





indirect

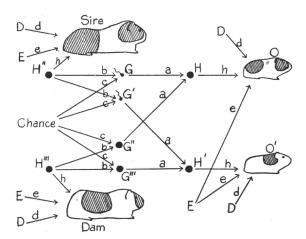
direct

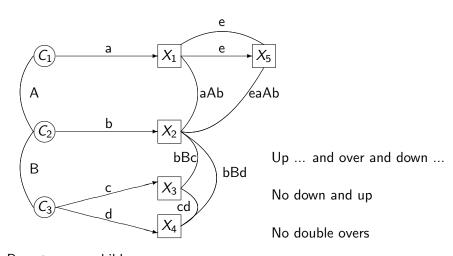
The math gets tedious

Multiple regression and linear algebra

- Multiple regression requires solving multiple, simultaneous equations to estimate the direct and indirect effects.
 - Each equation is expressed as a r_{x,y} in terms of direct and indirect effects.
 - Direct effect is $\beta_{y.x_i}$
 - Indirect effect is $\sum_{j\neq i} beta_{y.x_j} r_{x_j y}$
- How to solve these equations?
- Tediously, or just use linear algebra

Wright's Path model of inheritance in the Guinea Pig (Wright, 1921)

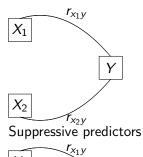


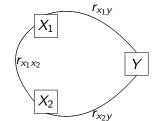


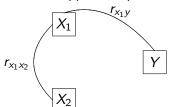
Parents cause children children do not cause parents

Up ... and down ...

Correlated predictors

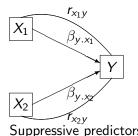


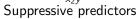


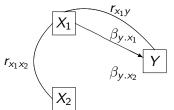


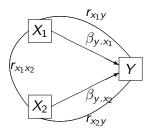
3 special cases of regression Orthogonal predictors

Correlated predictors







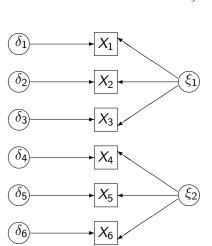


$$\beta_{y.x_1} = \frac{r_{x_1y} - r_{x_1x_2}r_{x_2y}}{1 - r_{x_1x_2}^2}$$

$$\beta_{y,x_2} = \frac{r_{x_2y} - r_{x_1x_2}r_{x_1y}}{1 - r_{x_1x_2}^2}$$

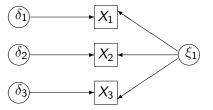
$$R^2 = r_{x_1 y} \beta_{y.x_1} + r_{x_2 y} \beta_{y.x_2}$$

A measurement model for X



δ

Congeneric Reliability



```
> cong <- sim.congeneric()
> cong
```

```
V1 V2 V3 V4
V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00
```

> f <- fa(cong)

Factor a 1 factor model

```
> f
                                       Factor Analysis using method = minres
> cong <- sim.congeneric()
                                       Call: fa(r = cong)
> cong
                                       Standardized loadings based upon
                                                       correlation matrix
     V1
          V2
               V3
                    ٧4
                                                h2
                                                     u2 com
                                          MR.1
V1 1.00 0.56 0.48 0.40
                                       V1 0.8 0.64 0.36
V2 0.56 1.00 0.42 0.35
                                       V2 0.7 0.49 0.51
V3 0.48 0.42 1.00 0.30
                                       V3 0.6 0.36 0.64
V4 0.40 0.35 0.30 1.00
                                       V4 0.5 0.25 0.75
                                                        MR.1
                                                       1.74
                                       SS loadings
                                       Proportion Var 0.44
```

MR.1

1.74

SS loadings

Proportion Var 0.44

Factoring \neq components!

```
> f <- fa(cong)
                                      > p <- principal(cong)
> f
                                      > p
Factor Analysis using method = minres Principal Components Analysis
                                      Call: principal(r = cong)
Call: fa(r = cong)
Standardized loadings based
                                      Standardized loadings (pattern matrix) based
     upon correlation matrix
                                              upon correlation matrix
   MR1 h2 u2 com
                                          PC1
                                               h2 u2 com
V1 0.8 0.64 0.36
                                      V1 0.83 0.69 0.31
V2 0.7 0.49 0.51
                                      V2 0.79 0.62 0.38
V3 0.6 0.36 0.64
                                      V3 0.73 0.53 0.47
V4 0.5 0.25 0.75
                                      V4 0.65 0.43 0.57
```

SS loadings

Proportion Var 0.57

PC1

2.27

Exploratory factoring a congeneric model

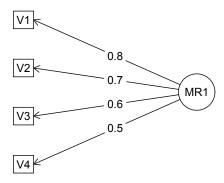
Factor Analysis using method = minres Call: fa(r = cong)Standardized loadings based upon correlation matrix MR.1 h2 u2 V1 0.8 0.64 0.36 V2 0.7 0.49 0.51 V3 0.6 0.36 0.64 V4 0.5 0.25 0.75 MR.1 SS loadings 1.74 Proportion Var 0.44 Test of the hypothesis that 1 factor is sufficient. The degrees of freedom for the null model are 6 and the objective function wa The degrees of freedom for the model are 2 and the objective function was 0 The root mean square of the residuals is 0 The df corrected root mean square of the residuals is 0 Fit based upon off diagonal values = 1 Measures of factor score adequacy MR.1 Correlation of scores with factors 0.89 0.78 Multiple R square of scores with factors

0.57

Minimum correlation of possible factor scores

Show the structure

Factor Analysis



Congeneric with some noise

```
> cong1 <- sim.congeneric(N=500,short=FALSE)</pre>
> cong1
Call: NULL
 $model (Population correlation matrix)
     V1
          V2
               V3
                    ۷4
V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00
$r (Sample correlation matrix for sample size = 500 )
       ٧2
               VЗ
     V 1
                    V4
V1 1.00 0.55 0.49 0.42
V2 0.55 1.00 0.45 0.38
V3 0.49 0.45 1.00 0.35
V4 0.42 0.38 0.35 1.00
```

Add noise to the model

```
> cong1 <- sim.congeneric(N=500,short=FALSE) fa(cong1$observed)
> cong1
                                       > f
Call: NULL
 $model (Population correlation matrixFactor Analysis using method = minres
     V1
          V2
               V3
                    V4
                                       Call: fa(r = cong1$observed)
V1 1.00 0.56 0.48 0.40
                                       Standardized loadings based upon correlation n
V2 0.56 1.00 0.42 0.35
                                           MR.1
                                                 h2
                                                    u2
V3 0.48 0.42 1.00 0.30
                                       V1 0.77 0.60 0.40
V4 0.40 0.35 0.30 1.00
                                       V2 0.71 0.50 0.50
                                       V3 0.63 0.40 0.60
    (Sample correlation matrix
                                       V4 0.54 0.29 0.71
for sample size = 500 )
     V1
          V2 V3
                                                       MR.1
                    V4
V1 1.00 0.55 0.49 0.42
                                                      1.79
                                       SS loadings
V2 0.55 1.00 0.45 0.38
                                       Proportion Var 0.45
V3 0.49 0.45 1.00 0.35
V4 0.42 0.38 0.35 1.00
```

Factor a 1 dimensional model

```
Factor Analysis using method = minres
Call: fa(r = cong1$observed)
Standardized loadings based upon correlation matrix
   MR.1 h2 u2
V1 0.77 0.60 0.40
V2 0.71 0.50 0.50
V3 0.63 0.40 0.60
V4 0.54 0.29 0.71
               MR1
              1.79
SS loadings
Proportion Var 0.45
Test of the hypothesis that 1 factor is sufficient.
The degrees of freedom for the null model are 6 and the objective function was 0.95 with Chi Square of
The degrees of freedom for the model are 2 and the objective function was 0
The root mean square of the residuals is 0
The df corrected root mean square of the residuals is 0.01
The number of observations was 500 with Chi Square = 0.11 with prob < 0.95
Tucker Lewis Index of factoring reliability = 1.012
RMSEA index = 0 and the 90 % confidence intervals are 0 0.034
BTC = -12.32
Fit based upon off diagonal values = 1
Measures of factor score adequacy
                                               MR.1
Correlation of scores with factors
                                              0.88
```

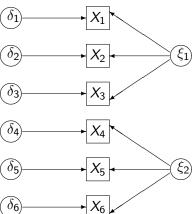
0.78

0.56

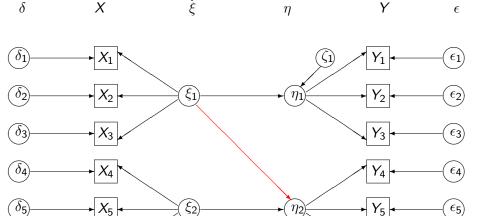
Multiple R square of scores with factors

Minimum correlation of possible factor scores

Factor Analysis



A complete structural model



 ϵ_6

- Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17-21.
- Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42(5), 815-824.
- Bollen, K. A. (2002). Latent variables in psychology and the social sciences. US: Annual Reviews.
- McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology. Vol 60 Jan 2009, 577-605.
- Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66, 825-852.
- Widaman, K. F. & Thompson, J. S. (2003). On specifying the null model for incremental fit indices in structural equation modeling. Psychological Methods, 8(1), 16 - 37.