
Path diagrams and 
matrix multiplication 

A picture is worth a thousand words



Representing the data

I. Correlation, covariance, and regression models may be 
represented several different ways: 

A.as correlation/covariance matrices - the data to be fit

B. as Venn diagrams (for 2-3 variables)

C. as simultaneous equations

D.as path models

E. as matrix equations
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Correlation or regression

X1 X2

r
12

X1 X2

X1 1 r12

X2 r12 1



Correlation: The Venn 
diagram approach

I. Represent the variance as total area

II. Represent covariance as overlap

III.Possible to decompose Variance into Unique 
and shared variances
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Variance, Covariance and  Correlation

V1 = A + B + C + D V2 = E + B + C + FC12 = B + C

V1.2 = A + D V2.1 = E + F

A B

C
D

E

F

X1 X2

r = C12/sqrt(V1V2) 

V1.2 = V1(1-r2) V2.1 = V2(1-r2)



Partial and Multiple Correlation

A B

C
D

E

F

G

X 1 X2

Y

The conceptual problem



Multiple Correlation
Independent Predictors

A

D

E
F

G

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

C(12)Y = D + C + F

V1.2 = A + D V2.1 = E + F

X 1 

X2

Y



Partial and Multiple Correlation

A B

C
D

E

F

G

X 1 X2

Y

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

C(12)Y = D + C + F

V1.2 = A + D V2.1 = E + F



Partial and Multiple Correlation:
Partial Correlations

A B

C
D

E

F

G

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

V1.2 = A + D V2.1 = E + F

X 1 X2

Y

r1Y.2 =  __(r1y-r12*r2Y)____
        sqrt((1-r12

2)*(1- ry2
2))



Partial and Multiple Correlation: 
Multiple Correlation-correlated predictors

A B

C
D

E

F

G

X 1 X2

Y

Y = b1X1 + b2X2
b1 = (rx1y - r12*r2y)/(1-r12

2)

b2 = (rx2y - r12*r1y)/(1-r12
2)

R2 = b1r1+b2r2



Multiple Correlation: 

A
B DE

F

V1 = A + B + C + D
V2 = E + B + C + F
VY = D + C + F + G

C12 = B + C
C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F
C(12)Y = D + C + F

V1.2 = A + D V2.1 = E + F

X 1 

X2 Y



Correlation or regression

X1 X2

r
12

X1 X2

X1 1 r12

X2 r12 1

Correlation does not imply direction of influence
Regression typically taken as direction of 
influence



Correlation/Regression and 
causality

I. Correlation is a standardized covariance

A.Correlation  = Covariancexy/sqrt(VxVy)

B. unit free measure of relationship

II. Regression is Covariancexy/Variancex

A.Slope (ß) is in units of change in Y as f(change in X)

B. Does not necessarily imply causality but is 
frequently taken that way

13



Correlation and causality

I. Shoe size predicts verbal ability among high school 
students 

II. Salaries of Methodist ministers in Evanston predicts 
price of rum in Puerto Rico 

III. Yellowed fingers and bad breath predict lung cancer

IV. CO2 levels at Mauna Loa predict global warming

V.Years of education predict mortality rates
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Structural Equation 
Modeling sometimes 

called Causal Modeling

I. By summarizing patterns of relationships with 
directional arrows we can fall for the trap of 
interpreting fitting the data as explaining the data.

II. Causal reasoning and interpretation is beyond the 
scope of what simple model fitting programs can do.
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Correlation and Regression as  
path models or matrix models

I. Path notation shows Pattern of relationships

A.path arithmetic 

1. no loops

2. one curved arrow/path

3. no forward and then back

II. Matrix notation of paths can show Pattern, Structure, 
and represent data (and allow for calculation)
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Regression: Modeling the 
variance 

X1 X2

X1 1 ß

X2 ß ß2+e2

X1 E

X1 1 0

X2 ß e

Pattern

X1 X2

E

ß
1

e

PP’



Correlation or regression: 
which way is the direction 

X1 X2

X1 ß2+e2 ß

X2 ß 1

X2 E

X1 ß 0

X2 1 e

Pattern PP’
X1 X2

E

ß
2

e



Multiple regression
X1 Y

E

ß
1

e

X2

ß
2

r
12

X1 X2 E
X1 1 0 0
X2 0 1 0
Y ß1 ß2 e

Pattern

X1 X2 E
X1 1 r1

2
0

X2 r1
2

1 0
E 0 0 1

X1 X2 Y
X1 1 r12 0
X2 r12 1 0
Y ß1+ß2r ß1r+ß2 e

Pr Structure



Multiple Regression as a set 
of simultaneous equations

Appendix–2: More on Matrices

William Revelle
Northwestern University

1 Multiple regression as a system of simultaneous equations

Many problems in data analysis require solving a system of simultaneous equations. For instance, in
multiple regression with two predictors and one criterion with a set of correlations of:






rx1x1 rx1x2 rx1y

rx1x2 rx2x2 rx2y

rx1y rx2y ryy




 (1)

we want to find the find weights, βi, that when multiplied by x1 and x2 maximize the correlations with
y. That is, we want to solve the two simultaneous equations

{
rx1x1β1 + rx1x2β2 = rx1y

rx1x2β1 + rx2x2β2 = rx2y

}
. (2)

We can directly solve these two equations by adding and subtracting terms to the two such that we end
up with a solution to the first in terms of β1 and to the second in terms of β2:

{
β1 + rx1x2β2/rx1x1 = rx1y/rx1x1

rx1x2β1/rx2x2 + β2 = rx2y/rx2x2

}

which becomes {
β1 = (rx1y − rx1x2β2)/rx1x1

β2 = (rx2y − rx1x2β1)/rx2x2

}
(3)

Substituting the second row of (3) into the first row, and vice versa we find
{

β1 = (rx1y − rx1x2(rx2y − rx1x2β1)/rx2x2)/rx1x1

β2 = (rx2y − rx1x2(rx1y − rx1x2β2)/rx1x1)/rx2x2

}

Collecting terms, we find:
{

β1rx1x1rx2x2 = (rx1yrx2x2 − rx1x2(rx2y − rx1x2β1))
β2rx2x2rx1x1 = (rx2yrx1x1 − rx1x2(rx1y − rx1x2β2)

}

1
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and rearranging once again:
{

β1rx1x1rx2x2 − r2
x1x2β1 = (rx1yrx2x2 − rx1x2(rx2y)

β2rx1x1rx2x2 − r2
x1x2β2 = (rx2yrx1x1 − rx1x2(rx1y

}

Struggling on:

{
β1(rx1x1rx2x2 − r2

x1x2) = rx1yrx2x2 − rx1x2rx2y

β2(rx1x1rx2x2 − r2
x1x2) = rx2yrx1x1 − rx1x2rx1y

}

And finally: {
β1 = (rx1yrx2x2 − rx1x2rx2y)/(rx1x1rx2x2 − r2

x1x2)
β2 = (rx2yrx1x1 − rx1x2rx1y)/(rx1x1rx2x2 − r2

x1x2)

}

2 Matrix representation of simultaneous equation

Alternatively, these two equations (2) may be represented as the product of a vector of unknowns (the
βs ) and a matrix of coefficients of the predictors (the rxi’s) and a matrix of coefficients for the criterion
(rxiy): 1

(β1β2)
(

rx1x1 rx1x2

rx1x2 rx2x2

)
= (rx1y rx2x2) (4)

If we let β = (β1β2), R =
(

rx1x1 rx1x2

rx1x2 rx2x2

)
and rxy = (rx1y rx2x2) then equation (4) becomes

βR = rxy (5)

and we can solve (5) for β by multiplying both sides by the inverse of R.

β = βRR−1 = rxyR
−1

2.1 Finding the inverse of a 2 x 2 matrix

But, how do we find the inverse (R−1)? As an example we solve the inverse of a 2 x2 matrix, but the
technique may be applied to a matrix of any size. First, define the identity matrix, I, as

I =
(

1 0
0 1

)

1See Appendix -1 for a detailed discussion of how this is done in practice with some “real” data using the statistical
program, R. In R, the inverse of a square matrix, X, is found by the solve function: X.inv <- solve(X)
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Matrix representation
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Finding the inverseand then the equation
R = IR

may be represented as (
rx1x1 rx1x2

rx1x2 rx2x2

)
=

(
1 0
0 1

) (
rx1x1 rx1x2

rx1x2 rx2x2

)

Dropping the x subscript (for notational simplicity) we have
(

r11 r12

r12 r22

)
=

(
1 0
0 1

) (
r11 r12

r12 r22

)
(6)

We may multiply both sides of equation (6) by a simple transformation matrix (T) without changing
the equality. If we do this repeatedly until the left hand side of equation (6) is the identity matrix, then
the first matrix on the right hand side will be the inverse of R. We do this in several steps to show the
process.

Let

T1 =
( 1

r11
0

0 1
r22

)

then we multiply both sides of equation (6) by T1 and we have
(

1 r12
r11

r12
r22

1

)
=

( 1
r11

0
0 1

r22

) (
r11 r12

r12 r22

)
(7)

Then, by letting

T2 =
(

1 0
− r12

r22
1

)

and multiplying T2 times both sides of equation (7) we have

(
1 r12

r11

0 − r2
12

r11r22

)
=

( 1
r11

0
− r12

r11r22

1
r22

) (
r11 r12

r12 r22

)
(8)

Then, we let

T3 =
(

1 − r12
r11

0 1

)

and multiplying T3 times both sides of equation (8) we have

(
1 0
0 − r2

12
r11r22

)
=

( 1
r11

0
− r12

r11r22

1
r22

) (
r11 r12

r12 r22

)
(9)

The previous example was drawn out to be easier to follow, but it would be possible to combine several
steps together and define the T1 matrix as the product of T1T2T3 =

T1 =
( 1

r11
0

0 1
r11

)
(10)
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The inverse of a matrix
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rx1x2 rx2x2

)

Dropping the x subscript (for notational simplicity) we have
(

r11 r12

r12 r22

)
=

(
1 0
0 1

) (
r11 r12

r12 r22

)
(6)

We may multiply both sides of equation (6) by a simple transformation matrix (T) without changing
the equality. If we do this repeatedly until the left hand side of equation (6) is the identity matrix, then
the first matrix on the right hand side will be the inverse of R. We do this in several steps to show the
process.

Let

T1 =
( 1

r11
0

0 1
r22

)

then we multiply both sides of equation (6) by T1 and we have

T1R = T1IR (7)
(

1 r12
r11

r12
r22

1

)
=

( 1
r11

0
0 1

r22

) (
r11 r12

r12 r22

)
(8)

Then, by letting

T2 =
(

1 0
− r12

r22
1

)

and multiplying T2 times both sides of equation (7) we have

(
1 r12

r11

0 − r2
12

r11r22

)
=

( 1
r11

0
− r12

r11r22

1
r22

) (
r11 r12

r12 r22

)
(9)

Then, we let

T3 =
(

1 − r12
r11

0 1

)

and multiplying T3 times both sides of equation (8) we have

(
1 0
0 − r2

12
r11r22

)
=

( 1
r11

0
− r12

r11r22

1
r22

) (
r11 r12

r12 r22

)
(10)

3

...

The previous example was drawn out to be easier to follow, but it would be possible to combine several
steps together and define the T1 matrix as the product of T1T2T3 =

T1 =
( 1

r11
0

0 1
r11

)
(11)

T3T2T1R = T3T2T1IR (12)

or, in other words
T3T2T1R = I = R−1R (13)

T3T2T1I = R−1 (14)

4



The inverse of a 2 x 2
> R2

     x1   x2
x1 1.00 0.56
x2 0.56 1.00

> round(solve(R2),2)
      x1    x2

x1  1.46 -0.82
x2 -0.82  1.46



The inverse of a 3 x 3
> R

     x1   x2   x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

> round(solve(R),2)
      x1    x2    x3

x1  1.63 -0.71 -0.48
x2 -0.71  1.52 -0.30
x3 -0.48 -0.30  1.36



Parallel tests: an under 
specified model

X1 X2

X1 a2+e12 ab

X2 ab b2+e22

ø E1 E2

X1 a e1 0

X2 b 0 e2

Pattern PP’
X1 X2

e1
e2

ø

a b



Tau equivalent tests: an exactly 
specified model

ø E1 E2 E3

X1 a e1 0 0

X2 b 0 e2 0

X3 c 0 0 e3

PatternX1

X2

e1

e2

ø

a

b

X3

c

e3



Tau equivalent tests

ø E1 E2 E3

X1 a e1 0 0

X2 b 0 e2 0

X3 c 0 0 e3

Pattern

X1 X2 X3

X1 a2+e12 bc ac

X2 ab b2+e22 bc

X3 ac bc c2+e32

PP’



tau equivalent tests

ø E1 E2 E3

X1 .9 .2 0 0

X2 .8 0 .4 0

X3 .6 0 0 .6

Pattern

X1 X2 X3

X1 a2+e12 bc ac

X2 ab b2+e22 bc

X3 ac bc c2+e32

PP’



Tau equivalent model
P <- matrix(c(.9,.2,0,0,
+               .8,0,.4,0,
+               .6,0,0,.6),nrow=3,byrow=TRUE)
> rownames(P) <- c("X1","X2","X3")
> colnames(P) <- c("theta", "E1","E2","E3")
> P

   theta  E1  E2  E3
X1   0.9 0.2 0.0 0.0
X2   0.8 0.0 0.4 0.0
X3   0.6 0.0 0.0 0.6

> R <- P %*% t(P)
R

     X1   X2   X3
X1 0.85 0.72 0.54
X2 0.72 0.80 0.48
X3 0.54 0.48 0.72 

Pattern 

PP’



A second tau equivalent model
 P <- matrix(c(.9,.44,0,0,
+               .8,0,.6,0,
+               .6,0,0,.8),nrow=3,byrow=TRUE)
>               rownames(P) <- c("X1","X2","X3")
> colnames(P) <- c("theta", "E1","E2","E3")
> P

   theta   E1  E2  E3
X1   0.9 0.44 0.0 0.0
X2   0.8 0.00 0.6 0.0
X3   0.6 0.00 0.0 0.8

> R <- P %*% t(P)

     X1   X2   X3
X1 1.00 0.72 0.54
X2 0.72 1.00 0.48
X3 0.54 0.48 1.00

Pattern

PP’



Congeneric models: 
overspecified and thus testable

X1

X2

e1

e2

ø

a

b

X3

c

e3

X4

d

e4

ø E1 E2 E3 E4

X1 a e1 0 0 0

X2 b 0 e2 0 0

X3 c 0 0 e3 0

X4 d 0 0 0 e4

Pattern



A congeneric model
P

   theta   E1  E2   E3  E4
X1   0.9 0.44 0.0 0.00 0.0
X2   0.8 0.00 0.6 0.00 0.0
X3   0.7 0.00 0.0 0.71 0.0
X4   0.6 0.00 0.0 0.00 0.8

> R <- P %*% t(P)
     

X1   X2   X3   X4
X1 1.00 0.72 0.63 0.54
X2 0.72 1.00 0.56 0.48
X3 0.63 0.56 0.99 0.42
X4 0.54 0.48 0.42 1.00

PP’



Basic path model

X1 X2

e1
e2

ø
1

a b

Y1 Y2

e3
e4

ø
2

c d

f



Pattern * Correl = Structure

ø1 ø2

X1 a 0
X2 b 0
X3 0 c
X4 0 d
ø1 1 0
ø2 0 1

ø1 ø2

X1 a af
X2 b bf
X3 cf c
X4 df d
ø1 1 f
ø2 f 1

ø1 ø2

ø1 1 f
ø2 f 1

Pattern Correlation Structure



Structure = Pattern x 
correlation

P1
   theta1 theta2
X1    0.8    0.0
X2    0.7    0.0
X3    0.0    0.8
X4    0.0    0.9

Pr
       theta1 theta2
theta1    1.0    0.4
theta2    0.4    1.0

S
   theta1 theta2
X1   0.80   0.32
X2   0.70   0.28
X3   0.32   0.80
X4   0.36   0.90

S = P1  Pr



Model = Pattern x correl x P’
P1

   theta1 theta2
X1    0.8    0.0
X2    0.7    0.0
X3    0.0    0.8
X4    0.0    0.9

Pr
       theta1 theta2
theta1    1.0    0.4
theta2    0.4    1.0

model = P1  Pr P1’

   X1   X2   X3   X4
X1 0.64 0.56 0.26 0.29
X2 0.56 0.49 0.22 0.25
X3 0.26 0.22 0.64 0.72
X4 0.29 0.25 0.72 0.81



A SEM
Loehlin problem 2.5
     Ach1 Ach2 Amb1 Amb2 Amb3

Ach1  1.0  0.6  0.3  0.2  0.2
Ach2  0.6  1.0  0.2  0.3  0.1

Amb1  0.3  0.2  1.0  0.7  0.6
Amb2  0.2  0.3  0.7  1.0  0.5
Amb3  0.2  0.1  0.6  0.5  1.0



A possible path model

achieve 1 achieve 2

e1
e2

Achieve

a b

Ambition 1 Ambition 2

e3
e4

Ambit

c
d

f

Ambition 3

e
e5



SEM analysis
Parameter Estimates

  Estimate Std Error z value Pr(>|z|)                   
a 0.920    0.0924    9.966   0.00e+00 Amb1 <--- Ambit   
b 0.761    0.0955    7.974   1.55e-15 Amb2 <--- Ambit   
c 0.652    0.0965    6.753   1.45e-11 Amb3 <--- Ambit   
d 0.879    0.1762    4.986   6.16e-07 Ach1 <--- Achieve 
e 0.683    0.1509    4.525   6.03e-06 Ach2 <--- Achieve 
f 0.356    0.1138    3.127   1.76e-03 Achieve <--> Ambit
u 0.153    0.0982    1.557   1.20e-01 Amb1 <--> Amb1    
v 0.420    0.0898    4.679   2.88e-06 Amb2 <--> Amb2    
w 0.575    0.0949    6.061   1.35e-09 Amb3 <--> Amb3    
x 0.228    0.2791    0.816   4.15e-01 Ach1 <--> Ach1    
y 0.534    0.1837    2.905   3.67e-03 Ach2 <--> Ach2  



Loehlin Prob 2.5 (cont)
Pattern

     Ambit Achiev
Ach1  0.00   0.88
Ach2  0.00   0.68
Amb1  0.92   0.00
Amb2  0.76   0.00
Amb3  0.65   0.00

Pr1
       Ambit Achiev

Ambit  1.000  0.356
Achiev 0.356  1.000

round(Struct,2)
     Ambit Achiev
Ach1  0.31   0.88
Ach2  0.24   0.68
Amb1  0.92   0.33
Amb2  0.76   0.27
Amb3  0.65   0.23



Loehlin 2.5 continued
> Pattern

     Ambit Achiev
Ach1  0.00   0.88
Ach2  0.00   0.68
Amb1  0.92   0.00
Amb2  0.76   0.00
Amb3  0.65   0.00

Pr1
       Ambit Achiev

Ambit  1.000  0.356
Achiev 0.356  1.000

round(Model,2)
     Ach1 Ach2 Amb1 Amb2 Amb3

Ach1 0.77 0.60 0.29 0.24 0.20
Ach2 0.60 0.46 0.22 0.18 0.16
Amb1 0.29 0.22 0.85 0.70 0.60
Amb2 0.24 0.18 0.70 0.58 0.49
Amb3 0.20 0.16 0.60 0.49 0.42

Model = P r P’



Residual = Data - Model
Data = Model +  Error 

round(resid,2)
      Ach1  Ach2  Amb1  Amb2  Amb3
Ach1  0.23  0.00  0.01 -0.04  0.00
Ach2  0.00  0.54 -0.02  0.12 -0.06
Amb1  0.01 -0.02  0.15  0.00  0.00
Amb2 -0.04  0.12  0.00  0.42  0.01
Amb3  0.00 -0.06  0.00  0.01  0.58



Estimating the goodness 
of fit

I. How big are the residuals?

A.compared to what?

1. Deviation from a 0 matrix of sample size N

2. as a function of the number of parameters

3. as a function of phases of the moon
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Alternative goodness of 
fit indices

 Model Chisquare =  9.74   Df =  4 Pr(>Chisq) = 0.0450
 Chisquare (null model) =  176   Df =  10
 Goodness-of-fit index =  0.964
 Adjusted goodness-of-fit index =  0.865
 RMSEA index =  0.120   90% CI: (0.0164, 0.219)
 Bentler-Bonnett NFI =  0.945
 Tucker-Lewis NNFI =  0.914
 Bentler CFI =  0.965
 BIC =  -8.68 

 Normalized Residuals
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-5.74e-01 -3.76e-02 -2.03e-06  4.83e-03  3.85e-05  1.13e+00 


