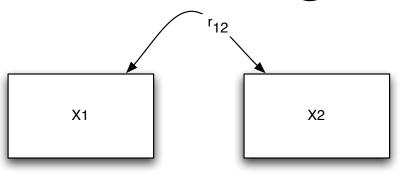
Path diagrams and matrix multiplication

A picture is worth a thousand words

Representing the data

- I. Correlation, covariance, and regression models may be represented several different ways:
 - A. as correlation/covariance matrices the data to be fit
 - B. as Venn diagrams (for 2-3 variables)
 - C. as simultaneous equations
 - D. as path models
 - E. as matrix equations

Correlation or regression

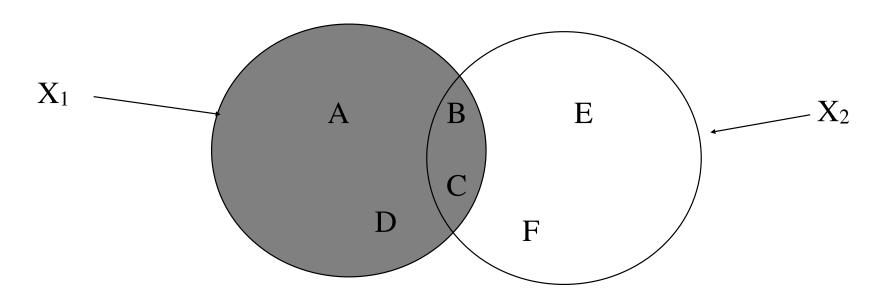


	X 1	X2
X1	1	\mathbf{r}_{12}
X2	\mathbf{r}_{12}	1

Correlation: The Venn diagram approach

- I. Represent the variance as total area
- II. Represent covariance as overlap
- III.Possible to decompose Variance into Unique and shared variances

Variance, Covariance and Correlation



$$V_1 = A + B + C + D$$

$$C_{12} = B + C$$

$$V_2 = E + B + C + F$$

$$r = C_{12}/sqrt(V_1V_2)$$

$$V_{1,2} = A + D$$

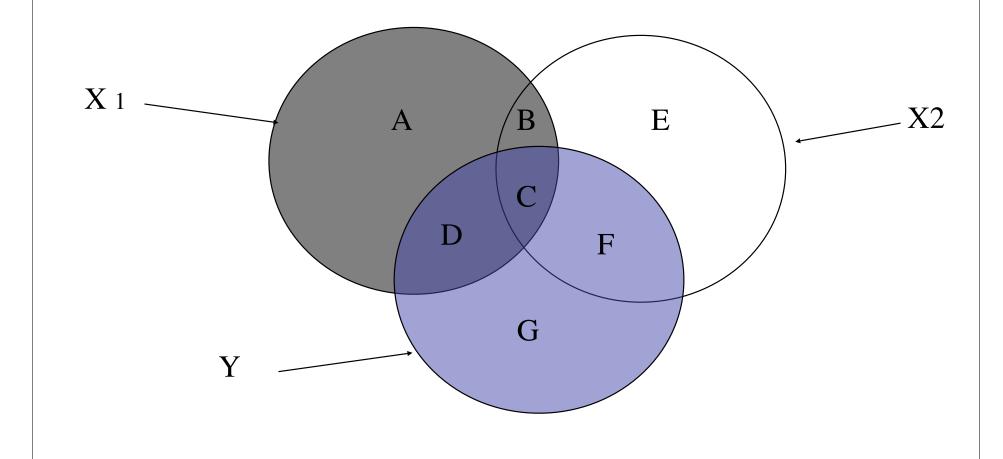
$$V_{2.1} = E + F$$

$$V_{1.2} = V_1(1-r^2)$$

$$V_{2.1} = V_2(1-r^2)$$

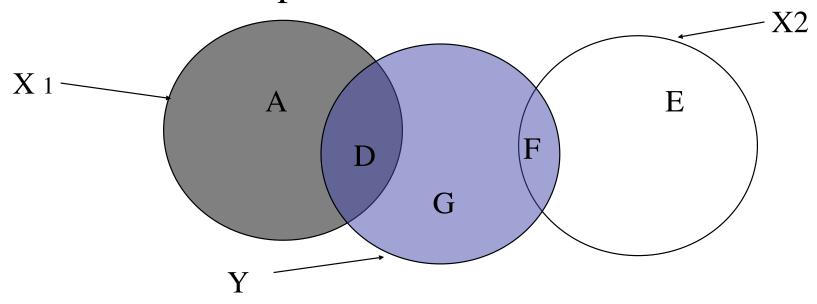
Partial and Multiple Correlation

The conceptual problem



Multiple Correlation

Independent Predictors



$$V_1 = A + B + C + D$$

$$C_{12} = B + C$$

$$C_{1Y.2} = D$$

$$V_2 = E + B + C + F$$

$$C_{1Y} = C + D$$

$$C_{2Y.1} = F$$

$$V_Y = D + C + F + G$$

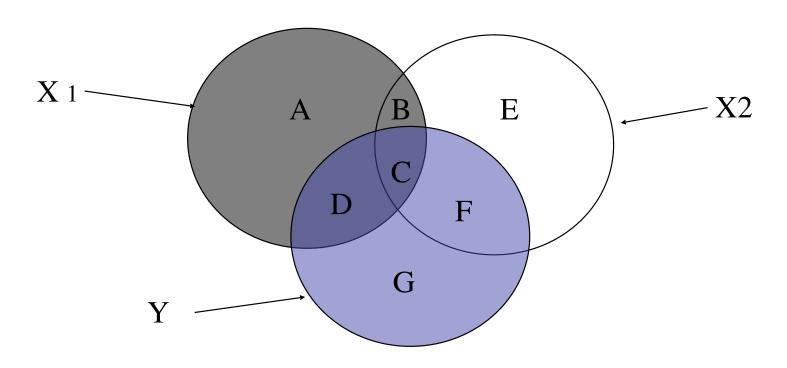
$$C_{2Y} = C + F$$

$$C_{(12)Y} = D + C + F$$

$$V_{1.2} = A + D$$

$$V_{2.}1 = E + F$$

Partial and Multiple Correlation



$$V_1 = A + B + C + D$$

$$V_2 = E + B + C + F$$

$$V_Y = D + C + F + G$$

$$V_{1,2} = A + D$$

$$C_{12} = B + C$$

$$C_{1Y} = C + D$$

$$C_{2Y} = C + F$$

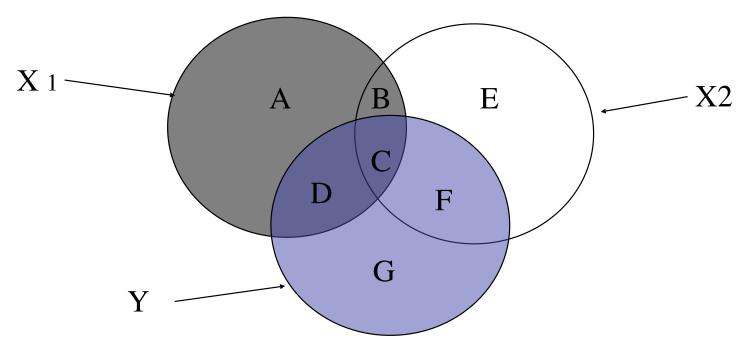
$$V_{2.}1 = E + F$$

$$C_{1Y.2} = D$$

$$C_{2Y.1} = F$$

$$C_{(12)Y} = D + C + F$$

Partial and Multiple Correlation: Partial Correlations



$$V_1 = A + B + C + D$$

$$V_2 = E + B + C + F$$

$$V_Y = D + C + F + G$$

$$V_{1.2} = A + D$$

$$C_{12} = B + C$$

$$C_{1Y} = C + D$$

$$C_{2Y} = C + F$$

$$V_{2.1} = E + F$$

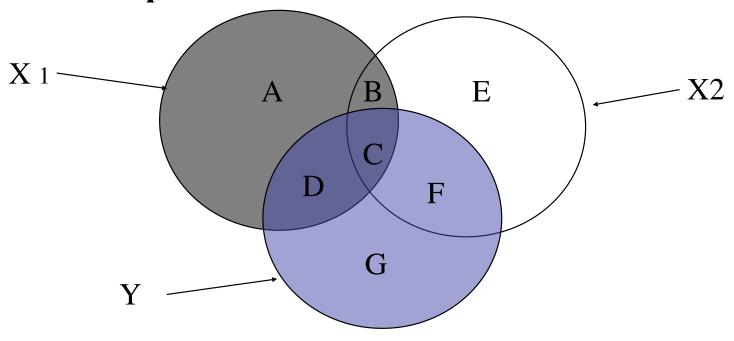
$$C_{1Y.2} = D$$

$$C_{2Y.1} = F$$

$$r_{1Y.2} = \underline{(r_{1y}-r_{12}*r_{2Y})}$$

$$sqrt((1-r_{12}^2)*(1-r_{y2}^2))$$

Partial and Multiple Correlation: Multiple Correlation-correlated predictors



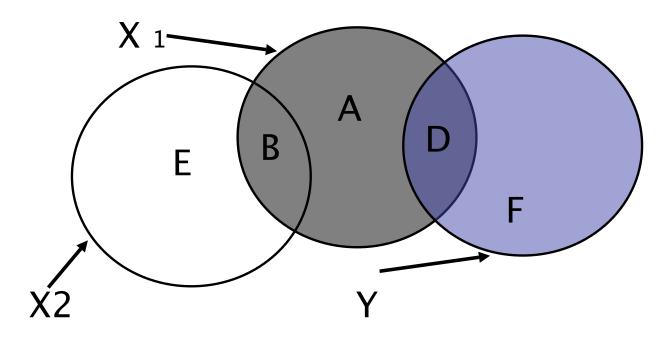
$$Y = b_1 X_1 + b_2 X_2$$

$$b_1 = (r_{x1y} - r_{12} * r_{2y})/(1 - r_{12}^2)$$

$$b_2 = (r_{x2y} - r_{12} * r_{1y})/(1 - r_{12}^2)$$

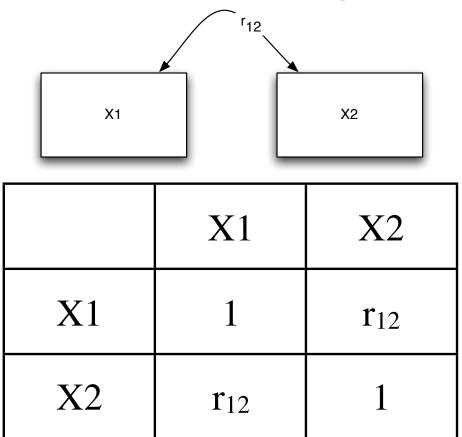
$$R^2 = b_1 r_1 + b_2 r_2$$

Multiple Correlation:



$$V_1 = A + B + C + D C_{12} = B + C C_{1Y.2} = D$$
 $V_2 = E + B + C + F C_{1Y} = C + D C_{2Y.1} = F$
 $V_Y = D + C + F + G C_{2Y} = C + F C_{(12)Y} = D + C + F$
 $V_{1.2} = A + D V_{2.1} = E + F$

Correlation or regression



Correlation does not imply direction of influence Regression typically taken as direction of influence influence

Correlation/Regression and causality

- I. Correlation is a standardized covariance
 - A. Correlation = Covariance_{xy}/sqrt(V_xV_y)
 - B. unit free measure of relationship
- II. Regression is Covariance_{xy}/Variance_x
 - A. Slope (B) is in units of change in Y as f(change in X)
 - B. Does not necessarily imply causality but is frequently taken that way

Correlation and causality

- I. Shoe size predicts verbal ability among high school students
- II. Salaries of Methodist ministers in Evanston predicts price of rum in Puerto Rico
- III. Yellowed fingers and bad breath predict lung cancer
- IV. CO₂ levels at Mauna Loa predict global warming
- V. Years of education predict mortality rates

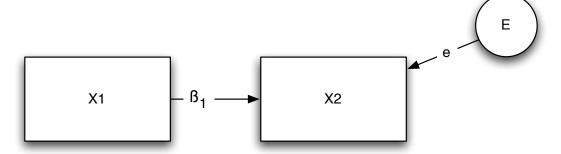
Structural Equation Modeling sometimes called Causal Modeling

- I. By summarizing patterns of relationships with directional arrows we can fall for the trap of interpreting fitting the data as explaining the data.
- II. Causal reasoning and interpretation is beyond the scope of what simple model fitting programs can do.

Correlation and Regression as path models or matrix models

- I. Path notation shows Pattern of relationships
 - A. path arithmetic
 - 1. no loops
 - 2. one curved arrow/path
 - 3. no forward and then back
- II. Matrix notation of paths can show Pattern, Structure, and represent data (and allow for calculation)

Regression: Modeling the variance



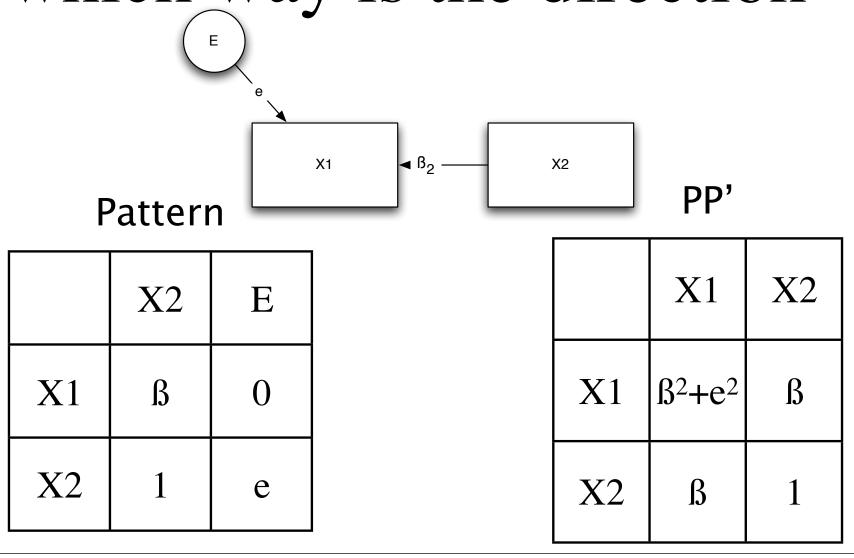
Pattern

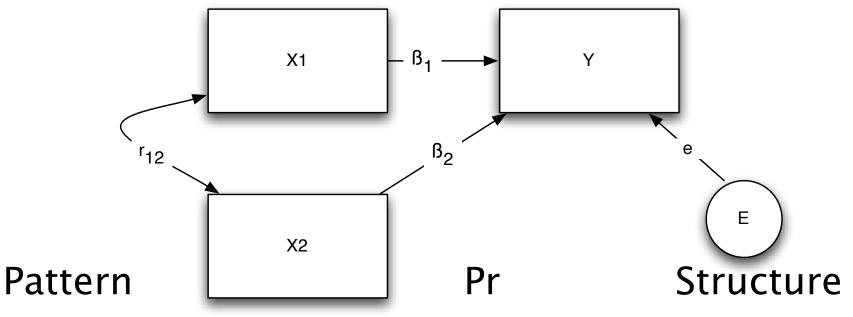
	X 1	E
X1	1	0
X2	ß	e

PP'

	X1	X2
X1	1	ß
X2	В	ß ² +e ²

Correlation or regression: which way is the direction





	X_1	X_2	Ε
X_1	1	0	0
X_2	0	1	0
Υ	$oldsymbol{eta}_1$	ß ₂	e

	X_1	X ₂	Ε		X ₁	X ₂	Y
X_1	1	r ₁	0	X_1	1	r ₁₂	0
X_2	r_1	1	0	X_2	r ₁₂	1	0
E	0	0	1	Y	$\beta_1 + \beta_2 r$	$\beta_1 r + \beta_2$	e

Multiple Regression as a set of simultaneous equations

$$\left\{
\begin{array}{cccc}
r_{x1x1} & r_{x1x2} & r_{x1y} \\
r_{x1x2} & r_{x2x2} & r_{x2y} \\
r_{x1y} & r_{x2y} & r_{yy}
\end{array}
\right\}$$

$$\begin{cases} r_{x1x1}\beta_1 + r_{x1x2}\beta_2 = r_{x1y} \\ r_{x1x2}\beta_1 + r_{x2x2}\beta_2 = r_{x2y} \end{cases}.$$

$$\begin{cases}
\beta_1 = (r_{x1y}r_{x2x2} - r_{x1x2}r_{x2y})/(r_{x1x1}r_{x2x2} - r_{x1x2}^2) \\
\beta_2 = (r_{x2y}r_{x1x1} - r_{x1x2}r_{x1y})/(r_{x1x1}r_{x2x2} - r_{x1x2}^2)
\end{cases}$$

Matrix representation

$$(\beta_1 \beta_2) \begin{pmatrix} r_{x1x1} & r_{x1x2} \\ r_{x1x2} & r_{x2x2} \end{pmatrix} = (r_{x1y} & r_{x2x2})$$

$$\beta = (\beta_1 \beta_2), R = \begin{pmatrix} r_{x1x1} & r_{x1x2} \\ r_{x1x2} & r_{x2x2} \end{pmatrix} \text{ and } r_{xy} = (r_{x1y} & r_{x2x2})$$

$$\beta R = r_{xy}$$

$$\beta = \beta R R^{-1} = r_{xy} R^{-1}$$

Finding the inverse

$$R = IR$$

$$\begin{pmatrix} r_{x1x1} & r_{x1x2} \\ r_{x1x2} & r_{x2x2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r_{x1x1} & r_{x1x2} \\ r_{x1x2} & r_{x2x2} \end{pmatrix}$$

$$T_1 = \begin{pmatrix} \frac{1}{r_{11}} & 0\\ 0 & \frac{1}{r_{22}} \end{pmatrix}$$

.

The inverse of a matrix

$$T_1R = T_1IR$$

$$\begin{pmatrix} 1 & \frac{r_{12}}{r_{11}} \\ \frac{r_{12}}{r_{22}} & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{r_{11}} & 0 \\ 0 & \frac{1}{r_{22}} \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ r_{12} & r_{22} \end{pmatrix}$$

- - -

$$T_3 T_2 T_1 R = I = R^{-1} R$$

 $T_3 T_2 T_1 I = R^{-1}$

The inverse of a 2 x 2

> R2

x1 x2 x1 1.00 0.56 x2 0.56 1.00

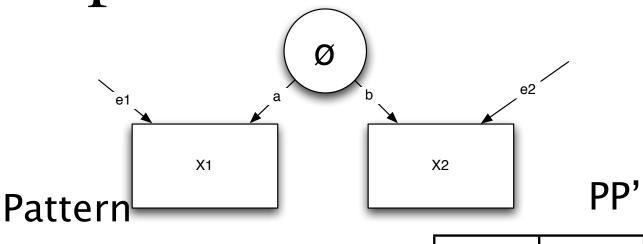
> round(solve(R2),2)

x1 x2 x1 1.46 -0.82 x2 -0.82 1.46

The inverse of a 3 x 3

> round(solve(R),2)

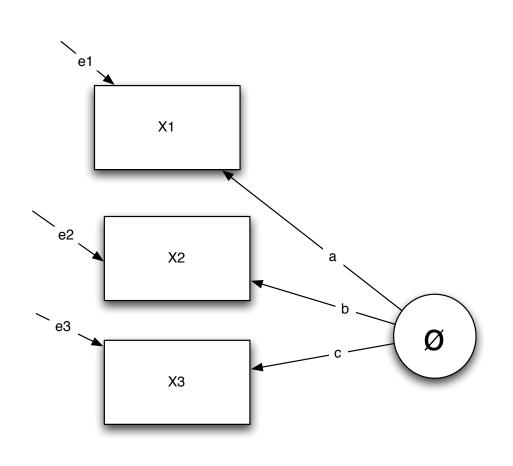
Parallel tests: an under specified model



	Ø	E_1	E_2
X1	a	e_1	0
X2	b	0	e_2

	X1	X2
X 1	$a^2 + e_1^2$	ab
X2	ab	b ² +e ₂ ²

Tau equivalent tests: an exactly specified model



Pattern

	Ø	E_1	E_2	E_3
X 1	a	e_1	0	0
X2	b	0	e_2	0
X3	c	0	0	e ₃

Tau equivalent tests

Pattern

	Ø	E_1	E_2	E_3
X 1	a	e_1	0	0
X2	b	0	e_2	0
X3	c	0	0	e ₃

PP'

	\mathbf{X}_1	X_2	X_3
X_1	$a^2 + e_1^2$	bc	ac
X_2	ab	$b^2 + e_2^2$	bc
X_3	ac	bc	c ² +e ₃ ²

tau equivalent tests

Pattern

	Ø	E_1	E_2	E_3
X 1	.9	.2	0	0
X2	.8	0	.4	0
X3	.6	0	0	.6

PP'

	\mathbf{X}_1	X_2	X_3
X_1	$a^2 + e_1^2$	bc	ac
X_2	ab	$b^2 + e_2^2$	bc
X_3	ac	bc	$c^2 + e_3^2$

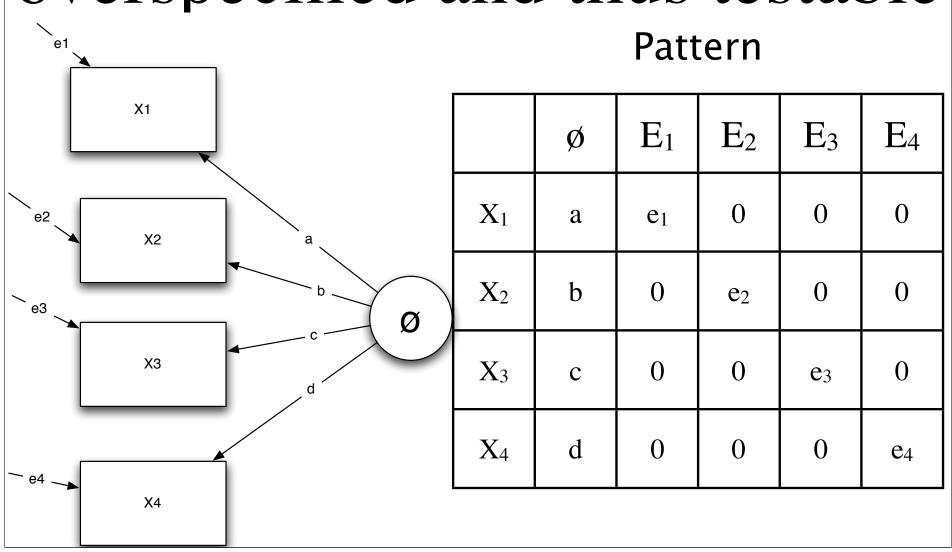
Tau equivalent model

```
P \leftarrow matrix(c(.9,.2,0,0,
         .8,0,.4,0,
         .6,0,0,.6),nrow=3,byrow=TRUE)
> \text{rownames}(P) <- c("X1", "X2", "X3")
> colnames(P) <- c("theta", "E1", "E2", "E3")
                                                  Pattern
> P
                                              theta E1 E2 E3
                                           X1 0.9 0.2 0.0 0.0
                                           X2 0.8 0.0 0.4 0.0
                                           X3 0.6 0.0 0.0 0.6
> R <- P \%*\% t(P)
                                                      PP'
R
                                                  X1 X2 X3
                                            X1 0.85 0.72 0.54
                                            X2 0.72 0.80 0.48
                                            X3 0.54 0.48 0.72
```

A second tau equivalent model

```
.8,0,.6,0,
        .6,0,0,.8),nrow=3,byrow=TRUE)
        rownames(P) <- c("X1","X2","X3")
> colnames(P) <- c("theta", "E1", "E2", "E3")
                                             Pattern
> P
                                         theta E1 E2 E3
                                      X1 0.9 0.44 0.0 0.0
                                      X2 0.8 0.00 0.6 0.0
                                      X3 0.6 0.00 0.0 0.8
> R <- P \%*\% t(P)
                                                PP'
                                             X1 X2 X3
                                        X1 1.00 0.72 0.54
                                        X2 0.72 1.00 0.48
                                        X3 0.54 0.48 1.00
```

Congeneric models: overspecified and thus testable



A congeneric model

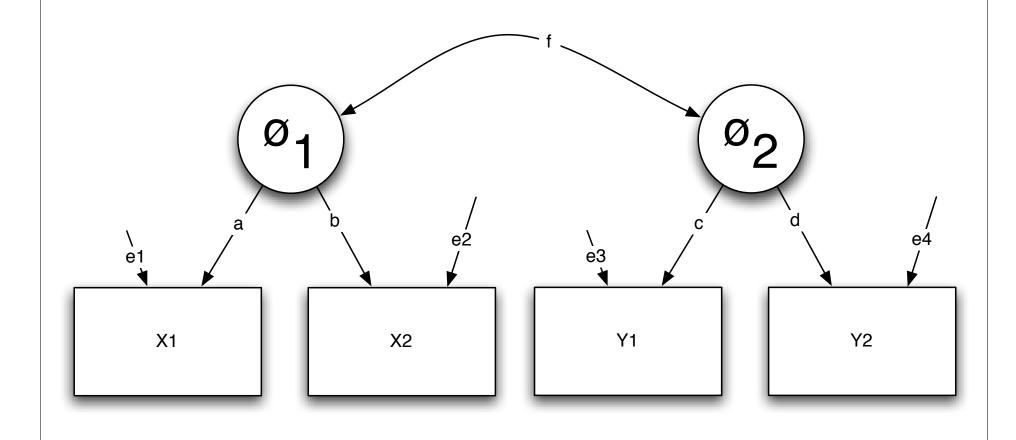
theta E1 E2 E3 E4
X1 0.9 0.44 0.0 0.00 0.0
X2 0.8 0.00 0.6 0.00 0.0
X3 0.7 0.00 0.0 0.71 0.0
X4 0.6 0.00 0.0 0.00 0.8

> R < - P % * % t(P)

PP'

X1 X2 X3 X4 X1 1.00 0.72 0.63 0.54 X2 0.72 1.00 0.56 0.48 X3 0.63 0.56 0.99 0.42 X4 0.54 0.48 0.42 1.00

Basic path model



Pattern * Correl = Structure

Pattern

	\emptyset_1	Ø2
X_1	a	0
X ₂	b	0
X ₃	0	С
X 4	0	d
\emptyset_1	1	0
Ø2	0	1

Correlation

	\emptyset_1	Ø2
\emptyset_1	1	f
Ø ₂	f	1

Structure

	\emptyset_1	Ø 2
X_1	a	af
X_2	b	bf
X ₃	cf	С
X ₄	df	d
Ø 1	1	f
Ø2	f	1

Structure = Pattern x correlation

```
P1
 theta1 theta2
X1
    0.8
        0.0
X2 0.7 0.0
X3 0.0 0.8
X4 0.0 0.9
    theta1 theta2
theta1 1.0 0.4
theta2 0.4
             1.0
```

```
S = P1 Pr
S
theta1 theta2
X1 0.80 0.32
X2 0.70 0.28
X3 0.32 0.80
X4 0.36 0.90
```

Model = Pattern x correl x P'

```
P1
theta1 theta2
X1 0.8 0.0
X2 0.7 0.0
X3 0.0 0.8
X4 0.0 0.9
```

Pr
theta1 theta2
theta1 1.0 0.4
theta2 0.4 1.0

model = P1 Pr P1'

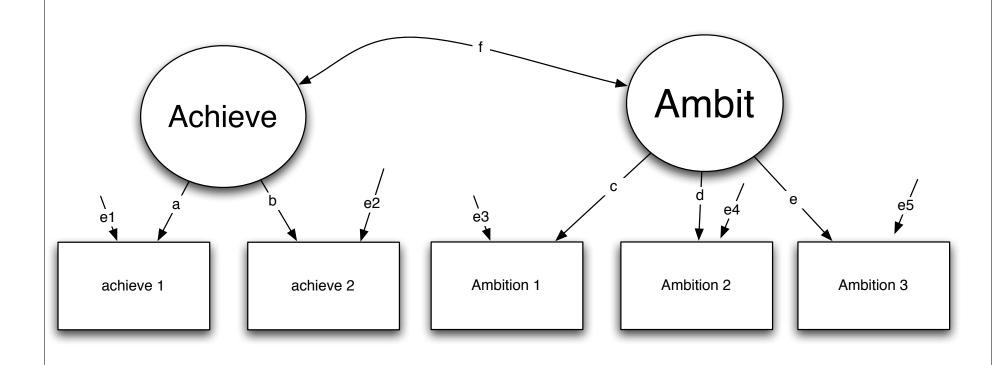
X1 X2 X3 X4 X1 0.64 0.56 0.26 0.29 X2 0.56 0.49 0.22 0.25 X3 0.26 0.22 0.64 0.72 X4 0.29 0.25 0.72 0.81

A SEM Loehlin problem 2.5

```
Ach1 Ach2 Amb1 Amb2 Amb3
Ach1 1.0 0.6 0.3 0.2 0.2
Ach2 0.6 1.0 0.2 0.3 0.1
Amb1 0.3 0.2 1.0 0.7 0.6
Amb2 0.2 0.3 0.7 1.0 0.5
```

Amb3 0.2 0.1 0.6 0.5 1.0

A possible path model



SEM analysis

Parameter Estimates

```
Estimate Std Error z value Pr(>|z|)
a 0.920
        0.0924
                9.966 0.00e+00 Amb1 <--- Ambit
        0.0955 7.974 1.55e-15 Amb2 <--- Ambit
b 0.761
c 0.652
        0.0965 6.753 1.45e-11 Amb3 <--- Ambit
d 0.879
        0.1762 4.986 6.16e-07 Ach1 <--- Achieve
                4.525 6.03e-06 Ach2 <--- Achieve
e 0.683
        0.1509
f 0.356
                3.127
                       1.76e-03 Achieve <--> Ambit
        0.1138
u 0.153
       0.0982 1.557 1.20e-01 Amb1 <--> Amb1
v 0.420
        0.0898
                4.679 2.88e-06 Amb2 <--> Amb2
w 0.575 0.0949
                6.061 1.35e-09 Amb3 <--> Amb3
\times 0.228
        0.2791
                0.816 4.15e-01 Ach1 <--> Ach1
y 0.534
        0.1837
                2.905 3.67e-03 Ach2 <--> Ach2
```

Loehlin Prob 2.5 (cont)

Pattern

Ambit Achiev

Ach1 0.00 0.88

Ach2 0.00 0.68

Amb1 0.92 0.00

Amb2 0.76 0.00

Amb3 0.65 0.00

Pr1
Ambit Achiev
Ambit 1.000 0.356
Achiev 0.356 1.000

round(Struct,2)

Ambit Achiev

Ach1 0.31 0.88

Ach2 0.24 0.68

Amb1 0.92 0.33

Amb2 0.76 0.27

Amb3 0.65 0.23

Loehlin 2.5 continued

```
round(Model,2)
    > Pattern
   Ambit Achiev Ach1 Ach2 Amb1 Amb2 Amb3
Ach1 0.00 0.88 Ach1 0.77 0.60 0.29 0.24 0.20
Ach2 0.00 0.68 Ach2 0.60 0.46 0.22 0.18 0.16
Amb1 0.92 0.00 Amb1 0.29 0.22 0.85 0.70 0.60
Amb2 0.76 0.00 Amb2 0.24 0.18 0.70 0.58 0.49
Amb3 0.65 0.00 Amb3 0.20 0.16 0.60 0.49 0.42
       Pr1
     Ambit Achiev
                          Model = P r P'
Ambit 1.000 0.356
```

Achiev 0.356 1.000

Residual = Data - Model Data = Model + Error

round(resid,2)

Ach1 Ach2 Amb1 Amb2 Amb3
Ach1 0.23 0.00 0.01 -0.04 0.00
Ach2 0.00 0.54 -0.02 0.12 -0.06
Amb1 0.01 -0.02 0.15 0.00 0.00
Amb2 -0.04 0.12 0.00 0.42 0.01
Amb3 0.00 -0.06 0.00 0.01 0.58

Estimating the goodness of fit

I. How big are the residuals?

A. compared to what?

- 1. Deviation from a 0 matrix of sample size N
- 2. as a function of the number of parameters
- 3. as a function of phases of the moon

Alternative goodness of fit indices

```
Goodness-of-fit index = 0.964
Adjusted goodness-of-fit index = 0.865
RMSEA index = 0.120 90% CI: (0.0164, 0.219)
Bentler-Bonnett NFI = 0.945
Tucker-Lewis NNFI = 0.914
Bentler CFI = 0.965
BIC = -8.68

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.74e-01 -3.76e-02 -2.03e-06 4.83e-03 3.85e-05 1.13e+00
```

Model Chisquare = 9.74 Df = 4 Pr(>Chisq) = 0.0450

Chisquare (null model) = 176 Df = 10