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Types of data and types of scales

Data = Model 4+ Residual

@ What are the data?

o Comparisons of rank order (O; < S;, 0; < 0}, 5; < 5j)

o Comparisons of proximity (|O; — Sj| < 0,|0; — S| < |0k — Si|)
@ How are they modeled?

o As observed variables

o Correlation of OVs
@ Regression of OVs
@ Principal Components

o As latent variables

o Correlation of LVs with OVs
o Correlation of LVs
o Regression of LVs

© How large are the residuals?
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Types of data and types of scales

Mapping Observed Variables to Latent Variables

@ Modeling the
data

@ Types of scales

e Ordinal
o Interval
e Ratio
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Correlation and regression

Bivariate Regression
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Correlation and regression

Bivariate Correlation
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Correlation and regression

The correlation as a linear model

Scatter plot
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Correlation and regression

Regression and restriction of range
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Although the correlation is very sensitive, regression slopes are
relatively insensitive to restriction of range.
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Correlation and regression

Alternative versions of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with
particular assumptions. If r = 2 then depending upon the type

VT v

of data being analyzed, a variety of correlations are found.

Coefficient symbol X Y Assumptions
Pearson r continuous continuous

Spearman rho (p)  ranks ranks

Point bi-serial  rpp dichotomous  continuous

Phi 1) dichotomous  dichotomous

Bi-serial Ibis dichotomous  continuous normality
Tetrachoric rtet dichotomous  dichotomous  bivariate normality
Polychoric I'pc categorical categorical bivariate normality
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Correlation and regression

The biserial correlation estimates the latent correlation

r= 0.9 rpb= 0.71 rbis = 0.89 r= 0.6 rpb = 0.48 rbis = 0.6




000000e00

Correlation and regression

The tetrachoric correlation estimates the latent correlation
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Correlation and regression

Cautions about correlations: Anscombe data set

Anscombe's 4 Regression data sets
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Correlation and regression

The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a
scale free estimate of effect size allows for combining experimental and
correlational data in a metric that is directly interpretable as the effect of
a standardized unit change in x leads to r change in standardized y.

Statistic Estimate r equivalent as a function of r
- 0%
Pearson correlation  ry, = Uxéy Iy
Regression by.x = i;%y ;= by.x% byx = rg;
Cohen's d d=%"% r— _d d— _2r
o Jita Vi
_ 2r\/df /N
Hedge's g g:M :% g== df/
o g2+4(df /N) Vi-r2
_ dv/df _ o 24f
t - test t= 22 r= t2/(t2 + df) t = 2{_,2
Fotest F=at r=/F/(F+dN) F=i%
Chi Square r=+/x2/n 2 =rn
Odds ratio d = In(OR) In(OR) /n(OR) — _3.62r
1.81 7

Fequivalent

r with probability p

T le (In(OR)/1.81)2+4

I' = requivalent
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Multivariate Regression and Partial Correlation

Multiple correlations

14 /64



O®00000000

Multivariate Regression and Partial Correlation

Multiple Regression

Ix1x0
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations

16 /64



000®000000

Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations

Iy
direct indirect

~ =
Iy :ﬁy,xl + rX1X2ﬂy.X2

I'oy :By.xz + rxlxzﬂy.xl
~N S

direct indirect
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations

Iy

direct indirect
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations

Iy

direct indirect

~ =~ ——
Py =By.a + Faxl By = HF
X1y —FFy.x1 X1X2 My . X2 y.X1 — 7,31&

_ _ Doy gy

rX2y _By.Xz + rX1X2ﬂy.X1 /By.Xz - 1_r3 N

—~~ N—_—— 1X2

direct indirect

R? = ray By + oy By
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Multivariate Regression and Partial Correlation

What happens with 3 predictors? The correlations

Faxs
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Multivariate Regression and Partial Correlation

What happens with 3 predictors? [ weights

Faxs

©
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Multivariate Regression and Partial Correlation

What happens with 3 predictors?

Faxs

sy

rX1y :B%Xl + erxzﬂ%Xl + rX1X3ﬁ}/~X3 ery = rX3y =
~ Y

direct indirect The math gets tedious

22 /64



000000000 e

Multivariate Regression and Partial Correlation

Multiple regression and matrix algebra

o Multiple regression requires solving multiple, simultaneous
equations to estimate the direct and indirect effects.

o Each equation is expressed as a ry,, in terms of direct and
indirect effects.

o Direct effect is 3

o Indirect effect is . ; betay x rqy

@ How to solve these equations?

@ Tediously, or just use matrix algebra
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Wright's rules: Applying path models to regression

Wright's Path model of inheritance in the Guinea Pig (Wright, 1921)

T \\\\\\\\\\@ D\ 0
H . b G a, el _h @
Chance%{\G /
H"'.><‘:::G;, a_YoH /b, .
Ee\ﬁ E% /
p4— i

24 /64



(o] Jvie)

Wright's rules: Applying path models to regression

The basic rules of path analysis—think genetics

e
G 2 B —h
A aAb  eaAb
G b Xz
bBc Up ... and over and down ...
B bBd
= X3 No down and up
d cd
X4

No double overs

Parents cause children
) Up ... and down ...
children do not cause parents
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Wright's rules: Applying path models to regression

3 special cases of regression

Orthogonal predictors Correlated predictors

rxly ery

xy
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Wright's rules: Applying path models to regression

3 special cases of regression

Orthogonal predictors

rX1y

Fxixp

Correlated predictors

rX1y

xy

5 — DBay~hax oy
yX1 — —r2
x1x0
/3 _ Doy gy
Xp = 2
e 1_r><1><2

R? = ray By + oy By
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A measurement model for X
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Reliability models (Including Item Response Theory models)

Congeneric Reliability
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Reliability models (Including Item Response Theory models)

Factor analysis to show a congeneric structure

Factor Analysis

0.8
V2
——
0.6
V3
- 0.5
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Reliability models (Including Item Response Theory models)

Hierarcical reliability models

Tests can have lower level and higher order reliability

Hierarchical (multilevel) Structure

0.
Vocabulary
0.
. 0.8
Sent.Completion
First.Letters
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Reliability models (Including Item Response Theory models)

Schmid Leiman transformation estimates general factor saturation

Omega

Sentences

R First.Letters

0.
. 4 Letter. Words 0.5
0.6 0.4

0.2
_
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Reliability models (Including Item Response Theory models)

Multiple estimates of reliabilty

2 2 2

. g (o g

o Generic: &t = 5t = =
ox o;tog 0%

0 02 = aé + ):(a;) + Z(afj)
o How to estimate 027

2 2
- . oi—%(of
o wuses 1 — 7 and |sa:XT(J)*nf”l
2
g
— g
(] Wh — 0_2
X
2 2
oz+2(og;)

@ Wt = 2
X

o 3= 12J:Vrvw where r,, is the correlation between the two worst
split halves.

o frwp<a<sw

Guttman (1945); McDonald (1999); Revelle & Zinbarg (2009); Zinbarg, Revelle, Yovel
& Li (2005)
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Reliability models (Including Item Response Theory models)

Item Response Theory

@ Item Response Theory attempts to model the response to an
item in terms of two latent variables
o Subject ability (trait value) 0
o Item difficulty (item location) &
o Item discrimination (item sensitivity) «
o p(R|0,0) = m
@ Item Response Theory may be either exploratory or
confirmatory
e Rasch Model is a confirmatory model because it constrains all
factor loadings to be equal.
e Many multidimensional IRT models constrain cross loadings to
0.
e Factor analysis of Tetrachoric/Polychoric correlations based

upon normal theory yields estimates that are equivalent of
IRT parameters.

N T
° 5*@

_ A
e X = 1

34 /64



DOO000e000

Reliability models (Including Item Response Theory models)

Factor analysis and IRT analysis of 14 iq items

Item Response Analysis using
Factor Analysis =
Call: irt.fa(x = iq.tf)
Call: fa(r = iq.tf)

Standardized loadings based Item discrimination and location
R e w WL b2 w2 diserinination location
iql 0.51 2.7e-01 0.73 iql 0.715.0e-01 0.50 iq1 1.00 -1.35
iq8 0.17 2.8e-02 0.97 ig8 0.25 6.4e-02 0.94 iq8 0.26 -0.95
iq1o 0.21 4.56-02 0.96 iq10 0.29 8.4e-02 0.92 iq1o 0.30 0.23
iq15 0.08 6.3¢-03 0.99 iq15 0.12 1.6e-02 0.98 iq15 0.13  -0.45
iq20 0.22 4.66-02 0.95 920 0.35 1.2e-01 0.88 iq20 0.37 -1.24
iq44 0.30 9.06-02 0.91 iq4d 0.38 1.4e-01 0.86 iq44 0.41  -0.46
iq47 0.41 1.76-01 0.83 iq47 0.51 2.6e-01 0.74 1947 0.60 -0.34
iq2 0.07 4.36-03 1.00 iq2 0.11 1.1e-02 0.59 iq2 0.11 0.42
iqll 0.38 1.46-01 0.86 iqil 0.59 3.5e-01 0.65 iqli 0.73  -1.58
‘q16 0.49 2.46-01 0.76 iq16 0.64 4.1e-01 0.59 ‘q16 0.84  -1.01
}qsz 0.39 1.66-01 0.84 1982 0.52 2.7e-01 0.73 }qsz 0.61  -0.19
}q37 0.00 4.96—06 1.00 q37 0.00 1.3e-05 1.00 }q37 0.00 0.60
}q43 0.38 1.4e—01 0.86 1943 0.49 2.4e-01 0.76 }q43 0.57 -1.03
[RS8 RS : iq49 0.07 4.6e-03 1.00 d : :
ig49 0.05 2.2e-03 1.00 iq49 0.07 0.42
- MR1

SS loadings 2.48

SS loadings 1.34 Proportion Var 0.18

Proportion Var 0.10
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Reliability models (Including Item Response Theory models)

Item information function shows location and discrimination

Item information from factor analysis
1

0.4
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Reliability models (Including Item Response Theory models)

IRT of multidimensional and polytomous items

@ The generalization to ordered categorical items is relatively
straightforward (Samejima, 1969).

@ Much easier to see this in terms of factor of polychoric
correlations with conversion to IRT parameters.

e Example is from two scales of the Big Five.
e Calculating polychorics is tedious

@ irt.fa will find either tetrachoric or polychoric correlation,
depending upon the data.

@ Graphic output includes Item Information Curves, ltem
Characteristic Curves, and Test Information Curves.
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Reliability models (Including Item Response Theory models)

Item information curves for factors 1 and 2 of BFI

N information from factor analy information from factor analy

- A3 -C4

e |

0

@

e | o |
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Exploratory models

Factor versus component models

e Factors model the correlations: R ~ FF' + U?
o Factors are latent (unobserved) entities that are estimated
o Fi=XW = XR™F
e Factor scores are are indeterminate and need to be estimated,
but the structure is determinant, given the model.

@ Components model the observed scores
o (= XC
o This will model the error in X as well as X.

@ The question of what is optimal number of
factors/components to extract remains an open question.
Good alternatives include:

Parallel analysis

Scree Test

Very Simple Structure

Minimum Average Partial

39 /64



Confirmatory models

Exploratory versus confirmatory models

© Exploratory models allow all cross loadings to be estimated.

e Rotation to simple structure makes for more interpretable
solution, but the cross loadings still are not forced to zero.

e By using more parameters than confirmatory analysis, EFA will
necessarily provide better fits, but at the cost of more
complexity.

o Alternative rotations will produce different appearing solutions,
but all fit equally well.

@ Confirmatory analysis specifies some parameters to be 0.

e Usually not allowing many if any cross loadings.

o This will lead to lower levels of fit, but also more parsimonious
models.

© The supposed advantage of confirmatory models is to allow
model testing.

e This is particularly useful when examining structural similarity
across groups and across ages.

e Knowing that the measures are the same across groups is

important when making comparisons. o e
of



Structural models

@ Originally just path models as an approach to regression.

e Possible to summarize many different regressions in one figure.

o Regressions are done on observed variables.

@ When combined with a measurement model to estimate
factors, it is possible to do regression on latent variables.

@ Do not need to estimate the factor scores, but rather fit the
models to the covariances themselves.

e In some sense, this is just doing regression on disattenuated
correlations.

o Needs to have good measures to estimate factors, poor
measures will inflate structural values (just like a reliability
correction).

@ Goodness of fit tests allow for evaluation of fit of overall
model as well as the parts of the model.

@ Like many regression models, the direction of causality is not
determined by the statistics, but by the design.
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Path diagram approach to structure using regression

More complicated regression - 3 dependent variables

# ex3.11

Data <- read.table("ex3.11.dat")

names (Data) <- c("y1","y2","y3",

"Xl II’ "X2”, "X3”)

model.ex3.11 <= ' y1 + y2 + y3 "~ x1 + x2 + x3 '
fit <- sem(model.ex3.11, data=Data)

summary (fit, standardized=TRUE)
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Path diagram approach to structure using regression

More complicated regression - a path model

# ex3.11

Data <- read.table("ex3.11.dat")

names (Data) <- c("y1","y2","y3",

"Xl II’ "X2”, "XSII)

model.ex3.11 <= " y1 + y2 ~ x1 + x2 + x3

y3 ~yl + y2 + x2'

fit <- sem(model.ex3.11, data=Data)

summary (fit, standardized=TRUE, fit.measures=TRUE)
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Measurement + structure

The LISREL model of the Bollen data set — note the correlated
residuals
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Measurement + structure

The most simple model: Industrialization leads to Democracy

lavaan.diagram(sem fit,Ir=FALSE e.size=.2)

Structural model

06070707
I & -
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Measurement + structure

The very modified model — another way

lavaan.diagram(fit3,cut=0)

Structural model

46
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STARTS models as a general framework

A MIMIC model

Consider the case of 6 variables with two latent factors that have 3
covariates (MPlus Example 5.8)
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STARTS models as a general framework

Stable Traits, Auto Regressive Trait, State Components

© Test retest reliabilities reflect three different components and
we need multiple measures to estimate them.

@ Stable Traits should lead to same score over time ()

© Auto regressive traits suggest slow drop off in correlation over
time ()

2
© State leads to internal consistency (,82[162 ) but not stability
)

(Kenny & Zautra (2001); Lucas & Donnellan (2007)
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STARTS models as a general framework

Stability across time

If « =0 and \; = k then this is just congeneric measurement with
equal loadings.
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STARTS models as a general framework

Growth across time

If « =0 and A = k then this is just congeneric measurement, but
we can also model growth.
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simplex cases as special change models

Simplex change over time

Predicts diminishing correlations across time.

a >\ a >\ a
m 12 UK T4

€1 € €3 €4
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simplex cases as special change models

(]
b
=
fre)
Q
=]
-
fre)
()]
X
9
Q.
£
(72]
=
=
2
-
()]
0]
=
=)
2
o
pd
o0
<

=0)

> 512 <- sim.simplex(nvar =12, r=.8,mu=NULL, n

> round(s12,2)

V9 V1o Vi1 V12

v2 V3 Vv4 Vs Ve V7 V8

Vi
1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11 0.09

V2 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11
V3 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13
V4 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17
Vs 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21
V6 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26
V7 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33
V8 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41
V9 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51
V10 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64
Vi1 0.11 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80
V12 0.09 0.11 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00

Vi
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simplex cases as special change models

How many factors in a simplex?

Parallel Analysis Scree Plots Very Simple Structure

© - x —*— PC Actual Data S 7
,,,,,, PC Simulated Data 3\%
—A— FA Actual Data
FA Simulated Data
w - 0
s 11—1
< J
© | 1
= \
. Ty 1
<
o
N q A
N
g
X\X—x-x—x—x—x o
° S
T f T T T T T T T T f !
2 4 & 8 10 12 2 8 4 5 6 7 8
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simplex cases as special change models

3 or 4 factor solution?

Factor Analysis using method = minres
Call: fa(r = s12, nfactors = 3, n.obs = 500)
Standardized loadings based upon correlation matrix

Standardized loadings based upon correlation matrix
MR3  MR2 MR1 MR4  h2 u2

Vi -0.02 0.86 -0.07 0.04 0.68 0.321
MR1 MR2 MR3 h2 u2
V2 -0.01 0.96 0.00 0.03 0.92 0.082
Vi 0.05 -0.49 0.57 0.60 0.40
V3 0.04 0.64 0.37 -0.05 0.78 0.218
V2 0.11 -0.57 0.62 0.80 0.20
V4 0.07 0.30 0.71 -0.07 0.79 0.214
V3 0.29 -0.56 0.52 0.83 0.17
V6 0.06 0.02 0.88 0.04 0.86 0.137
V4 0.54 -0.45 0.29 0.74 0.26
V6 -0.01 -0.04 0.69 0.36 0.79 0.209
V5 0.77 -0.29 0.06 0.74 0.26
V7 -0.04 -0.01 0.36 0.69 0.79 0.209
V6 0.94 -0.10 -0.10 0.81 0.19
V8 0.02 0.06 0.04 0.88 0.86 0.137
V7 0.94 0.10 -0.10 0.81 0.19
V9 0.30 0.07 -0.07 0.71 0.79 0.214
V8 0.77 0.29 0.06 0.74 0.26
Vi0 0.64 0.04 -0.05 0.37 0.78 0.218
V9 0.54 0.45 0.29 0.74 0.26
Vil 0.96 -0.01 0.03 0.00 0.92 0.082
V10 0.29 0.56 0.52 0.83 0.17 Vi2 0.86 -0.02 0.04 -0.07 0.68 0.321
Vi1 0.11 0.57 0.62 0.80 0.20
V12 0.05 0.49 0.57 0.60 0.40
MR3 MR2 MR1 MR4
SS loadings 2.38 2.38 2.44 2.44
MR1 MR2 MR3 8
. Proportion Var 0.20 0.20 0.20 0.20
SS loadings ~ 4.12 2.33 2.54 Cumulative Var 0.20 0.40 0.60 0.80
Proportion Var 0.35 0.19 0.21
Cumulative Var 0.35 0.54 0.75

With factor correlations of
MR3 MR2 MR1 MR4

MR3 1.00 0.14 0.20 0.55

MR2 0.14 1.00 0.55 0.20

MR1 0.20 0.55 1.00 0.48

MR4 0.55 0.20 0.48 1.00

With factor correlations of
MR1 MR2 MR3

MR1 1.00 0 0.54

MR2 0.00 1 0.00

MR3 0.54 0 1.00
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simplex cases as special change models

3 and 4 factor solutions

Factor Analysis Factor Analysis

m:] (
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simplex cases as special change models

omega solutons

Hierarchical (multilevel) Structure Omega
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simplex cases as special change models

Clustering a simplex

ICLUST of a simplex
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Applications in genetics

ACE models: Additive genetic, Common environment, unique
Environment

@ Sources of variance in the common behavioral genetic models
o Additive genetic variance
e Shared family environmental variance
e Unique environmental variance
@ Modeled by the association between various family
combinations
o Monozygotic twins raised apart (sharing just genetic variance)
o Monozygotic twins raised together (sharing genetic +
environmental variance)
e Dizygotic twins raised apart (sharing .5 genetic variance)
e Dizygotic twins raised together (sharing .5 genetic +
environmental variance)
o Adopteds together (sharing just environmental variance)

o unrelateds apart (sharing nothing)
2
(e}
g

: 2 2 2 e B2
o Estimate 0,0z, 0¢ and define h* = e

cr
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Applications in genetics

ACE model: no error correction

a=1,50and § = 1,0 depending upon family configuration.
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Applications in genetics

ACE model: with error correction. Model the observed correlations.

e c a c e
P1 P>
rXX rXX
01 02
r
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Applications in genetics

Genetic analysis in the German Observational Study of Twins

@ Borkenau, Riemann, Angleitner & Spinath (2001a,b); Spinath,
Angleitner, Borkenau, Riemann & Wolf (2002); Spinath &
O’Connor (2003); Borkenau, Mauer, Riemann, Spinath &
Angleitner (2004a,b); Spinath & Wolf (2006) report on the
multi method analysis of personality and genetics.

o Self report measures on the German NEO-PI-R.
e Peer report measures on the peer version of the NEO.

@ Analyzed the NEO at both the domain level (Big 5) as well as
the facet level.

@ Did this analysis for each pair of twins.
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Applications in genetics

Multi method (self and peer) genetics analysis

=2}

Q
o)
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Applications in genetics

Multi method (self and peer), multi-facets, genetics analysis

o

fo R

) G com G G
B ®
" ® ® ‘.

,

6 P6

o Qo e
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Conclusion

Modeling and data

@ The power of analysis is no greater than the quality of the
data
o Data = Model + Residual
e Model = Data - Residual
o Model requires good data
@ Multiple models will fit the data

o Models should be compared to each other, not just the Null
model

o Is a model better than an alternative model?

e How do you know?

o What other models fit equally well?

@ Be creative while being cautious and critical
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