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Types of data and types of scales

Data = Model + Residual

1 What are the data?

Comparisons of rank order (Oi < Sj ,Oi < Oj ,Si < Sj)
Comparisons of proximity (|Oi − Sj | < δ, |Oi − Sj | < |Ok − Sl |)

2 How are they modeled?
As observed variables

Correlation of OVs
Regression of OVs
Principal Components

As latent variables

Correlation of LVs with OVs
Correlation of LVs
Regression of LVs

3 How large are the residuals?

3 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

Types of data and types of scales

Mapping Observed Variables to Latent Variables
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Correlation and regression

Bivariate Regression
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Correlation and regression

Bivariate Correlation
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Correlation and regression

The correlation as a linear model
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Correlation and regression

Regression and restriction of range
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Although the correlation is very sensitive, regression slopes are
relatively insensitive to restriction of range.
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Correlation and regression

Alternative versions of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with
particular assumptions. If r =

P
xiyi√P

x2
i

P
y2
i

, then depending upon the type

of data being analyzed, a variety of correlations are found.

Coefficient symbol X Y Assumptions
Pearson r continuous continuous
Spearman rho (ρ) ranks ranks
Point bi-serial rpb dichotomous continuous
Phi φ dichotomous dichotomous
Bi-serial rbis dichotomous continuous normality
Tetrachoric rtet dichotomous dichotomous bivariate normality
Polychoric rpc categorical categorical bivariate normality
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Correlation and regression

The biserial correlation estimates the latent correlation
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Correlation and regression

The tetrachoric correlation estimates the latent correlation
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Correlation and regression

Cautions about correlations: Anscombe data set
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Correlation and regression

The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a
scale free estimate of effect size allows for combining experimental and
correlational data in a metric that is directly interpretable as the effect of
a standardized unit change in x leads to r change in standardized y.

Statistic Estimate r equivalent as a function of r

Pearson correlation rxy =
Cxy

σxσy
rxy

Regression by.x = Cxy
σ2

x
r = by.x

σy

σx
by.x = r σx

σy

Cohen’s d d = X1−X2
σx

r = d√
d2+4

d = 2r√
1−r2

Hedge’s g g = X1−X2
sx

r = g√
g2+4(df /N)

g =
2r
√

df /N√
1−r2

t - test t = d
√

df
2

r =
p

t2/(t2 + df ) t =
q

r2df
1−r2

F-test F = d2df
4

r =
p

F/(F + df ) F = r2df
1−r2

Chi Square r =
p
χ2/n χ2 = r2n

Odds ratio d = ln(OR)
1.81

r = ln(OR)

1.81
√

(ln(OR)/1.81)2+4
ln(OR) = 3.62r√

1−r2

requivalent r with probability p r = requivalent
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Multivariate Regression and Partial Correlation

Multiple correlations
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Multivariate Regression and Partial Correlation

Multiple Regression
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations
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Multivariate Regression and Partial Correlation

Multiple Regression: decomposing correlations

X Y ε

X1

X2

Y-

���
���

���
���

��
���

��:

rx1y

rx2y

βy .x1

βy .x2

rx1x2

�
��
ε�

rx1y = +

direct︷︸︸︷
βy .x1

indirect︷ ︸︸ ︷
rx1x2βy .x2

rx2y = +βy .x2︸︷︷︸
direct

rx1x2βy .x1︸ ︷︷ ︸
indirect

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2

R2 = rx1yβy .x1 + rx2yβy .x2

19 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

Multivariate Regression and Partial Correlation

What happens with 3 predictors? The correlations
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Multivariate Regression and Partial Correlation

What happens with 3 predictors? β weights
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Multivariate Regression and Partial Correlation

What happens with 3 predictors?

X Y ε
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The math gets tedious
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Multivariate Regression and Partial Correlation

Multiple regression and matrix algebra

Multiple regression requires solving multiple, simultaneous
equations to estimate the direct and indirect effects.

Each equation is expressed as a rxiy in terms of direct and
indirect effects.
Direct effect is βy .xi

Indirect effect is
∑

j 6=i betay .xj rxjy

How to solve these equations?

Tediously, or just use matrix algebra
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Wright’s rules: Applying path models to regression

Wright’s Path model of inheritance in the Guinea Pig (Wright, 1921)
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Wright’s rules: Applying path models to regression

The basic rules of path analysis–think genetics
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Wright’s rules: Applying path models to regression

3 special cases of regression
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Wright’s rules: Applying path models to regression

3 special cases of regression

Orthogonal predictors
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A measurement model for X
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Reliability models (Including Item Response Theory models)

Congeneric Reliability
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Reliability models (Including Item Response Theory models)

Factor analysis to show a congeneric structure

Factor Analysis

V1

V2

V3

V4

MR1

0.8

0.7

0.6

0.5

30 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

Reliability models (Including Item Response Theory models)

Hierarcical reliability models

Tests can have lower level and higher order reliability

Hierarchical (multilevel) Structure
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Reliability models (Including Item Response Theory models)

Schmid Leiman transformation estimates general factor saturation

Omega
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Reliability models (Including Item Response Theory models)

Multiple estimates of reliabilty

Generic: σ2
t
σ2

x
= σ2

t

σ2
t +σ2

e
= 1− σ2

e
σ2

x

σ2
t = σ2

g + Σ(σ2
gi

) + Σ(σ2
sj

)

How to estimate σ2
e ?

α uses 1− r̄ and is α =
σ2

x−Σ(σ2
j )

σ2
x
∗ n

n−1

ωh =
σ2

g

σ2
x

ωt =
σ2

g +Σ(σ2
gi

)

σ2
x

β = 2rw
1+rw

where rw is the correlation between the two worst
split halves.

β ≈ ωh ≤ α ≤ ωt

Guttman (1945); McDonald (1999); Revelle & Zinbarg (2009); Zinbarg, Revelle, Yovel

& Li (2005)
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Reliability models (Including Item Response Theory models)

Item Response Theory

Item Response Theory attempts to model the response to an
item in terms of two latent variables

Subject ability (trait value) θ
Item difficulty (item location) δ
Item discrimination (item sensitivity) α
p(R|θ, δ) = 1

1+eα(δ−θ)

Item Response Theory may be either exploratory or
confirmatory

Rasch Model is a confirmatory model because it constrains all
factor loadings to be equal.
Many multidimensional IRT models constrain cross loadings to
0.

Factor analysis of Tetrachoric/Polychoric correlations based
upon normal theory yields estimates that are equivalent of
IRT parameters.

δ = τ√
1−λ2

α = λ√
1−λ2
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Reliability models (Including Item Response Theory models)

Factor analysis and IRT analysis of 14 iq items

Call: fa(r = iq.tf)

Standardized loadings based

upon correlation matrix

MR1 h2 u2

iq1 0.51 2.7e-01 0.73

iq8 0.17 2.8e-02 0.97

iq10 0.21 4.5e-02 0.96

iq15 0.08 6.3e-03 0.99

iq20 0.22 4.6e-02 0.95

iq44 0.30 9.0e-02 0.91

iq47 0.41 1.7e-01 0.83

iq2 0.07 4.3e-03 1.00

iq11 0.38 1.4e-01 0.86

iq16 0.49 2.4e-01 0.76

iq32 0.39 1.6e-01 0.84

iq37 0.00 4.9e-06 1.00

iq43 0.38 1.4e-01 0.86

iq49 0.05 2.2e-03 1.00

MR1

SS loadings 1.34

Proportion Var 0.10

MR1 h2 u2

iq1 0.71 5.0e-01 0.50

iq8 0.25 6.4e-02 0.94

iq10 0.29 8.4e-02 0.92

iq15 0.12 1.6e-02 0.98

iq20 0.35 1.2e-01 0.88

iq44 0.38 1.4e-01 0.86

iq47 0.51 2.6e-01 0.74

iq2 0.11 1.1e-02 0.99

iq11 0.59 3.5e-01 0.65

iq16 0.64 4.1e-01 0.59

iq32 0.52 2.7e-01 0.73

iq37 0.00 1.3e-05 1.00

iq43 0.49 2.4e-01 0.76

iq49 0.07 4.6e-03 1.00

MR1

SS loadings 2.48

Proportion Var 0.18

Item Response Analysis using

Factor Analysis =

Call: irt.fa(x = iq.tf)

Item discrimination and location

for factor MR1

discrimination location

iq1 1.00 -1.35

iq8 0.26 -0.95

iq10 0.30 0.23

iq15 0.13 -0.45

iq20 0.37 -1.24

iq44 0.41 -0.46

iq47 0.60 -0.34

iq2 0.11 0.42

iq11 0.73 -1.58

iq16 0.84 -1.01

iq32 0.61 -0.19

iq37 0.00 0.60

iq43 0.57 -1.03

iq49 0.07 0.42
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Reliability models (Including Item Response Theory models)

Item information function shows location and discrimination
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Reliability models (Including Item Response Theory models)

IRT of multidimensional and polytomous items

The generalization to ordered categorical items is relatively
straightforward (Samejima, 1969).

Much easier to see this in terms of factor of polychoric
correlations with conversion to IRT parameters.

Example is from two scales of the Big Five.
Calculating polychorics is tedious

irt.fa will find either tetrachoric or polychoric correlation,
depending upon the data.

Graphic output includes Item Information Curves, Item
Characteristic Curves, and Test Information Curves.
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Reliability models (Including Item Response Theory models)

Item information curves for factors 1 and 2 of BFI
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Exploratory models

Factor versus component models

Factors model the correlations: R ≈ FF ′ + U2

Factors are latent (unobserved) entities that are estimated
F̂s = XW = XR−1F
Factor scores are are indeterminate and need to be estimated,
but the structure is determinant, given the model.

Components model the observed scores

Cs = XC
This will model the error in X as well as X.

The question of what is optimal number of
factors/components to extract remains an open question.
Good alternatives include:

Parallel analysis
Scree Test
Very Simple Structure
Minimum Average Partial
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Confirmatory models

Exploratory versus confirmatory models

1 Exploratory models allow all cross loadings to be estimated.
Rotation to simple structure makes for more interpretable
solution, but the cross loadings still are not forced to zero.
By using more parameters than confirmatory analysis, EFA will
necessarily provide better fits, but at the cost of more
complexity.
Alternative rotations will produce different appearing solutions,
but all fit equally well.

2 Confirmatory analysis specifies some parameters to be 0.
Usually not allowing many if any cross loadings.
This will lead to lower levels of fit, but also more parsimonious
models.

3 The supposed advantage of confirmatory models is to allow
model testing.

This is particularly useful when examining structural similarity
across groups and across ages.
Knowing that the measures are the same across groups is
important when making comparisons.
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Structural models

Originally just path models as an approach to regression.
Possible to summarize many different regressions in one figure.
Regressions are done on observed variables.

When combined with a measurement model to estimate
factors, it is possible to do regression on latent variables.
Do not need to estimate the factor scores, but rather fit the
models to the covariances themselves.

In some sense, this is just doing regression on disattenuated
correlations.
Needs to have good measures to estimate factors, poor
measures will inflate structural values (just like a reliability
correction).

Goodness of fit tests allow for evaluation of fit of overall
model as well as the parts of the model.

Like many regression models, the direction of causality is not
determined by the statistics, but by the design.
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Path diagram approach to structure using regression

More complicated regression - 3 dependent variables

# ex3.11

Data <- read.table("ex3.11.dat")

names(Data) <- c("y1","y2","y3",

"x1","x2","x3")

model.ex3.11 <- ' y1 + y2 + y3 ~ x1 + x2 + x3 '
fit <- sem(model.ex3.11, data=Data)

summary(fit, standardized=TRUE)

X1

X2

X3

Y1

Y2

Y3

42 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

Path diagram approach to structure using regression

More complicated regression - a path model

# ex3.11

Data <- read.table("ex3.11.dat")

names(Data) <- c("y1","y2","y3",

"x1","x2","x3")

model.ex3.11 <- ' y1 + y2 ~ x1 + x2 + x3

y3 ~ y1 + y2 + x2 '
fit <- sem(model.ex3.11, data=Data)

summary(fit, standardized=TRUE, fit.measures=TRUE)

X1

X2

X3

Y1

Y2

Y3
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Measurement + structure

The LISREL model of the Bollen data set – note the correlated
residuals

http://www.ssicentral.com/lisrel/techdocs/obsres.pdf
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Measurement + structure

The most simple model: Industrialization leads to Democracy

lavaan.diagram(sem.fit,lr=FALSE,e.size=.2)

Structural model

x1 x2 x3 y5 y6 y7 y8

ind60

0.9 1 0.9

dem65

0.6 0.7 0.7 0.7

0.6

45 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

Measurement + structure

The very modified model – another way

lavaan.diagram(fit3,cut=0)

Structural model

x1

x2

x3

y1

y2

y3

y4

y5

y6

y7

y8

ind60

1
1.1
0.9

dem60

1
0.8
0.8
1

dem65
1
0.9
1
1

0.10.1

0.2

0.1

0.1

0.4

0.2

0.8

46 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

STARTS models as a general framework

A MIMIC model

Consider the case of 6 variables with two latent factors that have 3
covariates (MPlus Example 5.8)

X1

X2

X3

f1

f2

Y1

Y2

Y3

Y4

Y5

Y6
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STARTS models as a general framework

Stable Traits, Auto Regressive Trait, State Components

1 Test retest reliabilities reflect three different components and
we need multiple measures to estimate them.

2 Stable Traits should lead to same score over time (λ)
3 Auto regressive traits suggest slow drop off in correlation over

time (α)
4 State leads to internal consistency ( β2

β2+ε2 ) but not stability

(Kenny & Zautra (2001); Lucas & Donnellan (2007))

η1 η2 η3 η4

X1 X2 X3 X4

β β β β

α α α

λ2

λ3

λ4
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STARTS models as a general framework

Stability across time

If α = 0 and λi = k then this is just congeneric measurement with
equal loadings.

η1

X1 X2 X3 X4

λ λ2 λ3 λ4

ε1 ε2 ε3 ε4
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STARTS models as a general framework

Growth across time

If α = 0 and λ = k then this is just congeneric measurement, but
we can also model growth.

η1

γ1

X1 X2 X3 X4

λ λ λ λ

g1 g2 g3
ε1 ε2 ε3 ε4
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simplex cases as special change models

Simplex change over time

Predicts diminishing correlations across time.

η1 η2 η3 η4

X1 X2 X3 X4

β β β β

α α α

ε1 ε2 ε3 ε4
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simplex cases as special change models

A growth set with simplex structure

> s12 <- sim.simplex(nvar =12, r=.8,mu=NULL, n=0)

> round(s12,2)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

V1 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11 0.09

V2 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11

V3 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13

V4 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17

V5 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26 0.21

V6 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33 0.26

V7 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41 0.33

V8 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51 0.41

V9 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64 0.51

V10 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80 0.64

V11 0.11 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00 0.80

V12 0.09 0.11 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1.00
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simplex cases as special change models

How many factors in a simplex?

2 4 6 8 10 12

0
1

2
3

4
5

6

Parallel Analysis Scree Plots

Factor Number

ei
ge

nv
al

ue
s 

of
 p

rin
ci

pa
l c

om
po

ne
nt

s 
an

d 
fa

ct
or

 a
na

ly
si

s

PC  Actual Data
 PC  Simulated Data
FA  Actual Data
 FA  Simulated Data

1 1

1

1 1 1 1 1

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Factors

V
er

y 
S

im
pl

e 
S

tru
ct

ur
e 

Fi
t

Very Simple Structure

2 2

2

2 2
2 2

3 3 3 3 3 3
4 4

4 4 4

53 / 64



Data = Model + Residual Measurement models Structural models More complicated designs References

simplex cases as special change models

3 or 4 factor solution?

Factor Analysis using method = minres

Call: fa(r = s12, nfactors = 3, n.obs = 500)

Standardized loadings based upon correlation matrix

MR1 MR2 MR3 h2 u2

V1 0.05 -0.49 0.57 0.60 0.40

V2 0.11 -0.57 0.62 0.80 0.20

V3 0.29 -0.56 0.52 0.83 0.17

V4 0.54 -0.45 0.29 0.74 0.26

V5 0.77 -0.29 0.06 0.74 0.26

V6 0.94 -0.10 -0.10 0.81 0.19

V7 0.94 0.10 -0.10 0.81 0.19

V8 0.77 0.29 0.06 0.74 0.26

V9 0.54 0.45 0.29 0.74 0.26

V10 0.29 0.56 0.52 0.83 0.17

V11 0.11 0.57 0.62 0.80 0.20

V12 0.05 0.49 0.57 0.60 0.40

MR1 MR2 MR3

SS loadings 4.14 2.33 2.54

Proportion Var 0.35 0.19 0.21

Cumulative Var 0.35 0.54 0.75

With factor correlations of

MR1 MR2 MR3

MR1 1.00 0 0.54

MR2 0.00 1 0.00

MR3 0.54 0 1.00

Standardized loadings based upon correlation matrix

MR3 MR2 MR1 MR4 h2 u2

V1 -0.02 0.86 -0.07 0.04 0.68 0.321

V2 -0.01 0.96 0.00 0.03 0.92 0.082

V3 0.04 0.64 0.37 -0.05 0.78 0.218

V4 0.07 0.30 0.71 -0.07 0.79 0.214

V5 0.06 0.02 0.88 0.04 0.86 0.137

V6 -0.01 -0.04 0.69 0.36 0.79 0.209

V7 -0.04 -0.01 0.36 0.69 0.79 0.209

V8 0.02 0.06 0.04 0.88 0.86 0.137

V9 0.30 0.07 -0.07 0.71 0.79 0.214

V10 0.64 0.04 -0.05 0.37 0.78 0.218

V11 0.96 -0.01 0.03 0.00 0.92 0.082

V12 0.86 -0.02 0.04 -0.07 0.68 0.321

MR3 MR2 MR1 MR4

SS loadings 2.38 2.38 2.44 2.44

Proportion Var 0.20 0.20 0.20 0.20

Cumulative Var 0.20 0.40 0.60 0.80

With factor correlations of

MR3 MR2 MR1 MR4

MR3 1.00 0.14 0.20 0.55

MR2 0.14 1.00 0.55 0.20

MR1 0.20 0.55 1.00 0.48

MR4 0.55 0.20 0.48 1.00
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simplex cases as special change models

3 and 4 factor solutions

Factor Analysis
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simplex cases as special change models

omega solutons

Hierarchical (multilevel) Structure
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simplex cases as special change models

Clustering a simplex

ICLUST of a simplex
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Applications in genetics

ACE models: Additive genetic, Common environment, unique
Environment

Sources of variance in the common behavioral genetic models
Additive genetic variance
Shared family environmental variance
Unique environmental variance

Modeled by the association between various family
combinations

Monozygotic twins raised apart (sharing just genetic variance)
Monozygotic twins raised together (sharing genetic +
environmental variance)
Dizygotic twins raised apart (sharing .5 genetic variance)
Dizygotic twins raised together (sharing .5 genetic +
environmental variance)
Adopteds together (sharing just environmental variance)
unrelateds apart (sharing nothing)

Estimate σ2
g , σ

2
c , σ

2
e and define h2 =

σ2
g

σ2
g +σ2

c +σ2
e
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Applications in genetics

ACE model: no error correction

A1C1E3

P1

ace

P2

A2 C2 E2

a c e

α

δ

ρ

α = 1, .5, 0 and δ = 1, 0 depending upon family configuration.
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Applications in genetics

ACE model: with error correction. Model the observed correlations.

A1C1E3

P1

ace

P2

A2 C2 E2

a c e

α = 1, .5, 0

δ = 1, 0

ρ

O1 O2

√
rxx

√
rxx

r
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Applications in genetics

Genetic analysis in the German Observational Study of Twins

Borkenau, Riemann, Angleitner & Spinath (2001a,b); Spinath,
Angleitner, Borkenau, Riemann & Wolf (2002); Spinath &
O’Connor (2003); Borkenau, Mauer, Riemann, Spinath &
Angleitner (2004a,b); Spinath & Wolf (2006) report on the
multi method analysis of personality and genetics.

Self report measures on the German NEO-PI-R.
Peer report measures on the peer version of the NEO.

Analyzed the NEO at both the domain level (Big 5) as well as
the facet level.

Did this analysis for each pair of twins.
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Applications in genetics

Multi method (self and peer) genetics analysis
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Applications in genetics

Multi method (self and peer), multi-facets, genetics analysis
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Conclusion

Modeling and data

The power of analysis is no greater than the quality of the
data

Data = Model + Residual
Model = Data - Residual
Model requires good data

Multiple models will fit the data

Models should be compared to each other, not just the Null
model
Is a model better than an alternative model?
How do you know?
What other models fit equally well?

Be creative while being cautious and critical
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