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Observed Variables
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Latent Variables
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Theory: A regression model of latent variables
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A measurement model for X – Correlated factors
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A measurement model for Y - uncorrelated factors
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A complete structural model
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Classical test theory

All data are befuddled with error

Now, suppose that we wish to ascertain the
correspondence between a series of values, p, and another
series, q. By practical observation we evidently do not
obtain the true objective values, p and q, but only
approximations which we will call p’ and q’. Obviously, p’
is less closely connected with q’, than is p with q, for the
first pair only correspond at all by the intermediation of
the second pair; the real correspondence between p and
q, shortly rpq has been ”attenuated” into rp′q′ (Spearman,
1904, p 90).
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Classical test theory

All data are befuddled by error: Observed Score = True score +
Error score
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Classical test theory

Spearman’s parallell test theory
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Classical test theory

Classical True score theory

Let each individual score, x, reflect a true value, t, and an error
value, e, and the expected score over multiple observations of x is
t, and the expected score of e for any value of p is 0. Then,
because the expected error score is the same for all true scores, the
covariance of true score with error score (σte) is zero, and the
variance of x, σ2

x , is just

σ2
x = σ2

t + σ2
e + 2σte = σ2

t + σ2
e .

Similarly, the covariance of observed score with true score is just
the variance of true score

σxt = σ2
t + σte = σ2

t

and the correlation of observed score with true score is

ρxt =
σxt√

(σ2
t + σ2

e )(σ2
t )

=
σ2
t√
σ2
xσ

2
t

=
σt
σx
. (1)
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Classical test theory

Classical Test Theory

By knowing the correlation between observed score and true score,
ρxt , and from the definition of linear regression predicted true
score, t̂, for an observed x may be found from

t̂ = bt.xx =
σ2
t

σ2
x

x = ρ2
xtx . (2)

All of this is well and good, but to find the correlation we need to
know either σ2

t or σ2
e . The question becomes how do we find σ2

t or
σ2
e?.
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Classical test theory

Regression effects due to unreliability of measurement

Consider the case of air force instructors evaluating the effects of
reward and punishment upon subsequent pilot performance.
Instructors observe 100 pilot candidates for their flying skill. At the
end of the day they reward the best 50 pilots and punish the worst
50 pilots.

Day 1

Mean of best 50 pilots 1 is 75
Mean of worst 50 pilots is 25

Day 2

Mean of best 50 has gone down to 65 ( a loss of 10 points)
Mean of worst 50 has gone up to 35 (a gain of 10 points)

It seems as if reward hurts performance and punishment helps
performance.

If there is no effect of reward and punishment, what is the
expected correlation from day 1 to day 2?
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Classical test theory

Correcting for attenuation

To ascertain the amount of this attenuation, and thereby
discover the true correlation, it appears necessary to
make two or more independent series of observations of
both p and q. (Spearman, 1904, p 90)

Spearman’s solution to the problem of estimating the true
relationship between two variables, p and q, given observed scores
p’ and q’ was to introduce two or more additional variables that
came to be called parallel tests. These were tests that had the
same true score for each individual and also had equal error
variances. To Spearman (1904b p 90) this required finding “the
average correlation between one and another of these
independently obtained series of values” to estimate the reliability
of each set of measures (rp′p′ , rq′q′), and then to find

rpq =
rp′q′√

rp′p′rq′q′
. (3)
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Classical test theory

Two parallel tests

The correlation between two parallel tests is the squared
correlation of each test with true score and is the percentage of
test variance that is true score variance

ρxx =
σ2
t

σ2
x

= ρ2
xt . (4)

Reliability is the fraction of test variance that is true score
variance. Knowing the reliability of measures of p and q allows us
to correct the observed correlation between p’ and q’ for the
reliability of measurement and to find the unattenuated correlation
between p and q.

rpq =
σpq√
σ2
pσ

2
q

(5)

and

rp′q′ =
σp′q′√
σ2
p′σ

2
q′

=
σp+e′1

σq+e′2√
σ2
p′σ

2
q′

=
σpq√
σ2
p′σ

2
q′

(6)
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Classical test theory

Modern “Classical Test Theory”

Reliability is the correlation between two parallel tests where tests
are said to be parallel if for every subject, the true scores on each
test are the expected scores across an infinite number of tests and
thus the same, and the true score variances for each test are the
same (σ2

p′1
= σ2

p′2
= σ2

p′), and the error variances across subjects for

each test are the same (σ2
e′1

= σ2
e′2

= σ2
e′) (see Figure 11), (Lord &

Novick, 1968; McDonald, 1999). The correlation between two
parallel tests will be

ρp′1p′2 = ρp′p′ =
σp′1p′2√
σ2
p′1
σ2
p′2

=
σ2
p + σpe1 + σpe2 + σe1e2

σ2
p′

=
σ2
p

σ2
p′
. (7)
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Classical test theory

Classical Test Theory

but from Eq 4,
σ2
p = ρp′p′σ

2
p′ (8)

and thus, by combining equation 5 with 6 and 8 the unattenuated
correlation between p and q corrected for reliability is Spearman’s
equation 3

rpq =
rp′q′√

rp′p′rq′q′
. (9)

As Spearman recognized, correcting for attenuation could show
structures that otherwise, because of unreliability, would be hard to
detect.
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Classical test theory

Spearman’s parallell test theory
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Classical test theory

When is a test a parallel test?

But how do we know that two tests are parallel? For just knowing
the correlation between two tests, without knowing the true scores
or their variance (and if we did, we would not bother with
reliability), we are faced with three knowns (two variances and one
covariance) but ten unknowns (four variances and six covariances).
That is, the observed correlation, rp′1p′2 represents the two known

variances s2
p′1

and s2
p′2

and their covariance sp′1p′2 . The model to

account for these three knowns reflects the variances of true and
error scores for p′1 and p′2 as well as the six covariances between
these four terms. In this case of two tests, by defining them to be
parallel with uncorrelated errors, the number of unknowns drop to
three (for the true scores variances of p′1 and p′2 are set equal, as
are the error variances, and all covariances with error are set to
zero) and the (equal) reliability of each test may be found.
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Classical test theory

The problem of parallel tests

Unfortunately, according to this concept of parallel tests, the
possibility of one test being far better than the other is ignored.
Parallel tests need to be parallel by construction or assumption and
the assumption of parallelism may not be tested. With the use of
more tests, however, the number of assumptions can be relaxed
(for three tests) and actually tested (for four or more tests).
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Congeneric test theory

Four congeneric tests – 1 latent factor

Four congeneric tests

V1 V2 V3 V4

F1

0.9 0.8 0.7 0.6
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Congeneric test theory

Observed variables and estimated parameters of a congeneric test

V1 V2 V3 V4 V1 V2 V3 V4

V1 s2
1 λ1σ

2
t + σ2

e1
V2 s12 s2

2 λ1λ2σ
2
t λ2σ

2
t + σ2

e2
V3 s13 s23 s2

3 λ1λ3σ
2
t λ2λ3σ

2
t λ3σ

2
t + σ2

e3
V4 s14 s24 s34 s2

4 λ1λ4σ
2
t λ2λ3σ

2
t λ3λ4σ

2
t λ4σ

2
t + σ2

e4
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But what if we don’t have three or more tests?

Unfortunately, with rare exceptions, we normally are faced with
just one test, not two, three or four. How then to estimate the
reliability of that one test? Defined as the correlation between a
test and a test just like it, reliability would seem to require a
second test. The traditional solution when faced with just one test
is to consider the internal structure of that test. Letting reliability
be the ratio of true score variance to test score variance
(Equation 1), or alternatively, 1 - the ratio of error variance to true
score variance, the problem becomes one of estimating the amount
of error variance in the test. There are a number of solutions to
this problem that involve examining the internal structure of the
test. These range from considering the correlation between two
random parts of the test to examining the structure of the items
themselves.
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Estimating reliability by split halves

Split halves

ΣXX ′ =

 Vx
... Cxx′

. . . . . . . . . . . . .

Cxx′
... Vx′

 (10)

and letting Vx = 1Vx1′ and CXX′ = 1CXX ′1
′ the correlation

between the two tests will be

ρ =
Cxx ′√
VxVx ′

But the variance of a test is simply the sum of the true covariances
and the error variances:

Vx = 1Vx1′ = 1Ct1
′ + 1Ve1′ = Vt + Ve

25 / 68
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Estimating reliability by split halves

Split halves

and the structure of the two tests seen in Equation 10 becomes

ΣXX ′ =

 VX = Vt + Ve
... Cxx′ = Vt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt = Cxx′
... Vt′ + Ve′ = VX ′


and because Vt = Vt′ and Ve = Ve′ the correlation between each
half, (their reliability) is

ρ =
CXX ′

VX
=

Vt

VX
= 1− Ve

Vt
.
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Estimating reliability by split halves

Split halves

The split half solution estimates reliability based upon the
correlation of two random split halves of a test and the implied
correlation with another test also made up of two random splits:

ΣXX ′ =



Vx1

... Cx1x2 Cx1x′1

... Cx1x′2
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2 Cx2x′1

... Cx2x′1

Cx1x′1

... Cx2x′1
Vx′1

... Cx′1x′2

Cx1x′2

... Cx2x′2
Cx′1x′2

... Vx′2


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Estimating reliability by split halves

Split halves

Because the splits are done at random and the second test is
parallel with the first test, the expected covariances between splits
are all equal to the true score variance of one split (Vt1), and the
variance of a split is the sum of true score and error variances:

ΣXX ′ =



Vt1 + Ve1

... Vt1 Vt1

... Vt1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt1

... Vt1 + Ve1 Vt1

... Vt1

Vt1

... Vt1 Vt′1
+ Ve′1

... Vt′1

Vt1

... Vt1 Vt′1

... Vt′1
+ Ve′1


The correlation between a test made of up two halves with
intercorrelation (r1 = Vt1/Vx1) with another such test is

rxx ′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus

rxx ′ =
2r1

1 + r1
(11)
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Estimating reliability by split halves

The Spearman Brown Prophecy Formula

The correlation between a test made of up two halves with
intercorrelation (r1 = Vt1/Vx1) with another such test is

rxx ′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus

rxx ′ =
2r1

1 + r1
(12)
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Domain Sampling Theory

Domain sampling

Other techniques to estimate the reliability of a single test are
based on the domain sampling model in which tests are seen as
being made up of items randomly sampled from a domain of items.
Analogous to the notion of estimating characteristics of a
population of people by taking a sample of people is the idea of
sampling items from a universe of items.
Consider a test meant to assess English vocabulary. A person’s
vocabulary could be defined as the number of words in an
unabridged dictionary that he or she recognizes. But since the
total set of possible words can exceed 500,000, it is clearly not
feasible to ask someone all of these words. Rather, consider a test
of k words sampled from the larger domain of n words. What is
the correlation of this test with the domain? That is, what is the
correlation across subjects of test scores with their domain scores.?
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Domain Sampling Theory

Correlation of an item with the domain

First consider the correlation of a single (randomly chosen) item
with the domain. Let the domain score for an individual be Di and
the score on a particular item, j, be Xij . For ease of calculation,
convert both of these to deviation scores. di = Di − D̄ and
xij = Xij − X̄j . Then

rxjd =
covxjd√
σ2
xj
σ2
d

.

Now, because the domain is just the sum of all the items, the
domain variance σ2

d is just the sum of all the item variances and all
the item covariances

σ2
d =

n∑
j=1

n∑
k=1

covxjk =
n∑

j=1

σ2
xj

+
n∑

j=1

∑
k 6=j

covxjk .
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Domain Sampling Theory

Correlation of an item with the domain

Then letting c̄ =
∑j=n

j=1

∑
k 6=j covxjk

n(n−1) be the average covariance and

v̄ =

∑j=n
j=1 σ

2
xj

n the average item variance, the correlation of a
randomly chosen item with the domain is

rxjd =
v̄ + (n − 1)c̄√

v̄(nv̄ + n(n − 1)c̄)
=

v̄ + (n − 1)c̄√
nv̄(v̄ + (n − 1)c̄))

.

Squaring this to find the squared correlation with the domain and
factoring out the common elements leads to

r 2
xjd

=
(v̄ + (n − 1)c̄)

nv̄
.

and then taking the limit as the size of the domain gets large is

lim
n→∞

r 2
xjd

=
c̄

v̄
. (13)

That is, the squared correlation of an average item with the
domain is the ratio of the average interitem covariance to the
average item variance. Compare the correlation of a test with true
score (Eq 4) with the correlation of an item to the domain score
(Eq 14). Although identical in form, the former makes assumptions
about true score and error, the latter merely describes the domain
as a large set of similar items.
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Domain Sampling Theory

Domain sampling – correlation of an item with the domain

lim
n→∞

r 2
xjd

=
c̄

v̄
. (14)

That is, the squared correlation of an average item with the
domain is the ratio of the average interitem covariance to the
average item variance. Compare the correlation of a test with true
score (Eq 4) with the correlation of an item to the domain score
(Eq 14). Although identical in form, the former makes assumptions
about true score and error, the latter merely describes the domain
as a large set of similar items.
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Domain Sampling Theory

Correlation of a test with the domain

A similar analysis can be done for a test of length k with a large
domain of n items. A k-item test will have total variance, Vk , equal
to the sum of the k item variances and the k(k-1) item covariances:

Vk =
k∑

i=1

vi +
k∑

i=1

k∑
j 6=i

cij = kv̄ + k(k − 1)c̄.

The correlation with the domain will be

rkd =
covkd√
VkVd

=
kv̄ + k(n − 1)c̄√

(kv̄ + k(k − 1)c̄)(nv̄ + n(n − 1)c̄)
=

k(v̄ + (n − 1)c̄)√
nk(v̄ + (k − 1)c̄)(v̄ + (n − 1)c̄)
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Domain Sampling Theory

Correlation of a test with the domain

Then the squared correlation of a k item test with the n item
domain is

r 2
kd =

k(v̄ + (n − 1)c̄)

n(v̄ + (k − 1)c̄)

and the limit as n gets very large becomes

lim
n→∞

r 2
kd =

kc̄

v̄ + (k − 1)c̄
. (15)
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Coefficients based upon the internal structure of a test

Coefficient α

Find the correlation of a test with a test just like it based upon the
internal structure of the first test. Basically, we are just estimating
the error variance of the individual items.

α = rxx =
σ2
t

σ2
x

=
k2 σ

2
x−
∑
σ2
i

k(k−1)

σ2
x

=
k

k − 1

σ2
x −

∑
σ2
i

σ2
x

(16)
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Coefficients based upon the internal structure of a test

Alpha varies by the number of items and the inter item correlation
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Coefficients based upon the internal structure of a test

Find alpha using the alpha function

> alpha(bfi[16:20])

Reliability analysis

Call: alpha(x = bfi[16:20])

raw_alpha std.alpha G6(smc) average_r mean sd

0.81 0.81 0.8 0.46 15 5.8

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r

N1 0.75 0.75 0.70 0.42

N2 0.76 0.76 0.71 0.44

N3 0.75 0.76 0.74 0.44

N4 0.79 0.79 0.76 0.48

N5 0.81 0.81 0.79 0.51

Item statistics

n r r.cor mean sd

N1 990 0.81 0.78 2.8 1.5

N2 990 0.79 0.75 3.5 1.5

N3 997 0.79 0.72 3.2 1.5

N4 996 0.71 0.60 3.1 1.5

N5 992 0.67 0.52 2.9 1.6
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Coefficients based upon the internal structure of a test

What if items differ in their direction?

> alpha(bfi[6:10],check.keys=FALSE)

Reliability analysis

Call: alpha(x = bfi[6:10], check.keys = FALSE)

raw_alpha std.alpha G6(smc) average_r mean sd

-0.28 -0.22 0.13 -0.038 3.8 0.58

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r

C1 -0.430 -0.472 -0.020 -0.0871

C2 -0.367 -0.423 -0.017 -0.0803

C3 -0.263 -0.295 0.094 -0.0604

C4 -0.022 0.123 0.283 0.0338

C5 -0.028 0.022 0.242 0.0057

Item statistics

n r r.cor r.drop mean sd

C1 2779 0.56 0.51 0.0354 4.5 1.2

C2 2776 0.54 0.51 -0.0076 4.4 1.3

C3 2780 0.48 0.27 -0.0655 4.3 1.3

C4 2774 0.20 -0.34 -0.2122 2.6 1.4

C5 2784 0.29 -0.19 -0.1875 3.3 1.6 39 / 68



Preliminaries Reliability and internal structure Types of reliability Calculating reliabilities 2 6= 1 Kappa References

Coefficients based upon the internal structure of a test

But what if some items are reversed keyed?

alpha(bfi[6:10])

Reliability analysis

Call: alpha(x = bfi[6:10])

raw_alpha std.alpha G6(smc) average_r mean sd

0.73 0.73 0.69 0.35 3.8 0.58

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r

C1 0.69 0.70 0.64 0.36

C2 0.67 0.67 0.62 0.34

C3 0.69 0.69 0.64 0.36

C4- 0.65 0.66 0.60 0.33

C5- 0.69 0.69 0.63 0.36

Item statistics

n r r.cor r.drop mean sd

C1 2779 0.67 0.54 0.45 4.5 1.2

C2 2776 0.71 0.60 0.50 4.4 1.3

C3 2780 0.67 0.54 0.46 4.3 1.3

C4- 2774 0.73 0.64 0.55 2.6 1.4

C5- 2784 0.68 0.57 0.48 3.3 1.6

Warning message: In alpha(bfi[6:10]) :

Some items were negatively correlated with total scale and were automatically reversed
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Problems with α

Guttman’s alternative estimates of reliability

Reliability is amount of test variance that is not error variance. But
what is the error variance?

rxx =
Vx − Ve

Vx
= 1−

Ve

Vx
. (17)

λ1 = 1−
tr(Vx)

Vx
=

Vx − tr(Vx )

Vx
. (18)

λ2 = λ1 +

√
n

n−1
C2

Vx
=

Vx − tr(Vx ) +
√

n
n−1

C2

Vx
. (19)

λ3 = λ1 +

VX−tr(VX )
n(n−1)

VX
=

nλ1

n − 1
=

n

n − 1

(
1−

tr(V)x

Vx

)
=

n

n − 1

Vx − tr(Vx )

Vx
= α (20)

λ4 = 2
(

1−
VXa + VXb

VX

)
=

4cab

Vx
=

4cab

VXa + VXb
+ 2cabVXaVXb

. (21)

λ6 = 1−
∑

e2
j

Vx
= 1−

∑
(1− r2

smc)

Vx
(22)
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Problems with α

Four different correlation matrices, one value of α

S1: no group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

S2: large g, small group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

S3: small g, large group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

S4: no g but large group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

1 The problem of
group factors

2 If no groups, or
many groups,
α is ok
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Problems with α

Decomposing a test into general, Group, and Error variance

Total = g + Gr + E

V 1 V 3 V 5 V 7 V 9 V 11

V
 1

2
V

 9
V

 7
V

 5
V

 3
V

 1

σ2= 53.2
General = .2

V 1 V 3 V 5 V 7 V 9 V 11
V

 1
2

V
 9

V
 7

V
 5

V
 3

V
 1

σ2= 28.8

3 groups =  .3, .4, .5

V 1 V 3 V 5 V 7 V 9 V 11

V
 1

2
V

 9
V

 7
V

 5
V

 3
V

 1

σ2 = 19.2

σ2 = 10.8

σ2  =  6.4

σ2 = 2

Item Error

V 1 V 3 V 5 V 7 V 9 V 11

V
 1

2
V

 9
V

 7
V

 5
V

 3
V

 1

σ2= 5.2

1 Decompose
total variance
into general,
group, specific,
and error

2 α < total

3 α > general
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Problems with α

Two additional alternatives to α: ωhierarchical and omegatotal

If a test is made up of a general, a set of group factors, and
specific as well as error:

x = cg + Af + Ds + e (23)

then the communality of itemj , based upon general as well as
group factors,

h2
j = c2

j +
∑

f 2
ij (24)

and the unique variance for the item

u2
j = σ2

j (1− h2
j ) (25)

may be used to estimate the test reliability.

ωt =
1cc′1′ + 1AA′1′

Vx
= 1−

∑
(1− h2

j )

Vx
= 1−

∑
u2

Vx
(26)
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Problems with α

McDonald (1999) introduced two different forms for ω

ωt =
1cc′1′ + 1AA′1′

Vx
= 1−

∑
(1− h2

j )

Vx
= 1−

∑
u2

Vx
(27)

and

ωh =
1cc′1

Vx
=

(
∑

Λi )
2∑∑

Rij
. (28)

These may both be find by factoring the correlation matrix and
finding the g and group factor loadings using the omega function.
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Problems with α

Using omega on the Thurstone data set to find alternative reliability
estimates

> lower.mat(Thurstone)

> omega(Thurstone)

Sntnc Vcblr Snt.C Frs.L 4.L.W Sffxs Ltt.S Pdgrs Ltt.G

Sentences 1.00

Vocabulary 0.83 1.00

Sent.Completion 0.78 0.78 1.00

First.Letters 0.44 0.49 0.46 1.00

4.Letter.Words 0.43 0.46 0.42 0.67 1.00

Suffixes 0.45 0.49 0.44 0.59 0.54 1.00

Letter.Series 0.45 0.43 0.40 0.38 0.40 0.29 1.00

Pedigrees 0.54 0.54 0.53 0.35 0.37 0.32 0.56 1.00

Letter.Group 0.38 0.36 0.36 0.42 0.45 0.32 0.60 0.45 1.00

Omega

Call: omega(m = Thurstone)

Alpha: 0.89

G.6: 0.91

Omega Hierarchical: 0.74

Omega H asymptotic: 0.79

Omega Total 0.93
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Problems with α

Two ways of showing a general factor

Omega

Sentences

Vocabulary

Sent.Completion

First.Letters

4.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

F1*

0.6
0.6
0.5

0.2

F2*
0.6
0.5

0.4

F3*
0.6
0.5
0.3

g

0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.5
0.6

Omega

Sentences

Vocabulary

Sent.Completion

First.Letters

4.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

F1

0.9
0.9
0.8

0.4

F2
0.9
0.7

0.6

0.2

F3
0.8
0.6
0.5

g

0.8

0.8

0.7
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Problems with α

omega function does a Schmid Leiman transformation

> omega(Thurstone,sl=FALSE)

Omega

Call: omega(m = Thurstone, sl = FALSE)

Alpha: 0.89

G.6: 0.91

Omega Hierarchical: 0.74

Omega H asymptotic: 0.79

Omega Total 0.93

Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* h2 u2 p2

Sentences 0.71 0.57 0.82 0.18 0.61

Vocabulary 0.73 0.55 0.84 0.16 0.63

Sent.Completion 0.68 0.52 0.73 0.27 0.63

First.Letters 0.65 0.56 0.73 0.27 0.57

4.Letter.Words 0.62 0.49 0.63 0.37 0.61

Suffixes 0.56 0.41 0.50 0.50 0.63

Letter.Series 0.59 0.61 0.72 0.28 0.48

Pedigrees 0.58 0.23 0.34 0.50 0.50 0.66

Letter.Group 0.54 0.46 0.53 0.47 0.56

With eigenvalues of:

g F1* F2* F3*

3.58 0.96 0.74 0.71
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Types of reliability

Internal consistency

α
ωhierarchical

ωtotal

β

Intraclass

Agreement

Test-retest, alternate
form

Generalizability

Internal consistency

alpha,
score.items

omega

iclust

icc

wkappa,
cohen.kappa

cor

aov
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Alpha and its alternatives

Alpha and its alternatives

Reliability = σ2
t
σ2
x

= 1− σ2
e
σ2
x

If there is another test, then σt = σt1t2 (covariance of test X1

with test X2 = Cxx)
But, if there is only one test, we can estimate σ2

t based upon
the observed covariances within test 1
How do we find σ2

e ?
The worst case, (Guttman case 1) all of an item’s variance is
error and thus the error variance of a test X with
variance-covariance Cx

Cx = σ2
e = diag(Cx)

λ1 = Cx−diag(Cx )
Cx

A better case (Guttman case 3, α) is that that the average
covariance between the items on the test is the same as the
average true score variance for each item.

Cx = σ2
e = diag(Cx)

λ3 = α = λ1 ∗ n
n−1 = (Cx−diag(Cx ))∗n/(n−1)

Cx
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Alpha and its alternatives

Guttman 6: estimating using the Squared Multiple Correlation

Reliability = σ2
t
σ2
x

= 1− σ2
e
σ2
x

Estimate true item variance as squared multiple correlation
with other items

λ6 = (Cx−diag(Cx )+Σ(smci )
Cx

This takes observed covariance, subtracts the diagonal, and
replaces with the squared multiple correlation
Similar to α which replaces with average inter-item covariance

Squared Multiple Correlation is found by smc and is just
smci = 1− 1/R−1

ii
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Congeneric measures

Alpha and its alternatives: Case 1: congeneric measures

First, create some simulated data with a known structure
> set.seed(42)

> v4 <- sim.congeneric(N=200,short=FALSE)

> str(v4) #show the structure of the resulting object

List of 6

$ model : num [1:4, 1:4] 1 0.56 0.48 0.4 0.56 1 0.42 0.35 0.48 0.42 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"

.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"

$ pattern : num [1:4, 1:5] 0.8 0.7 0.6 0.5 0.6 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"

.. ..$ : chr [1:5] "theta" "e1" "e2" "e3" ...

$ r : num [1:4, 1:4] 1 0.546 0.466 0.341 0.546 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"

.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"

$ latent : num [1:200, 1:5] 1.371 -0.565 0.363 0.633 0.404 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr [1:5] "theta" "e1" "e2" "e3" ...

$ observed: num [1:200, 1:4] -0.104 -0.251 0.993 1.742 -0.503 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"

$ N : num 200

- attr(*, "class")= chr [1:2] "psych" "sim"
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Congeneric measures

A congeneric model

> f1 <- fa(v4\$model)

> fa.diagram(f1)

Four congeneric tests

V1 V2 V3 V4

F1

0.9 0.8 0.7 0.6

> v4$model

V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40

V2 0.56 1.00 0.42 0.35

V3 0.48 0.42 1.00 0.30

V4 0.40 0.35 0.30 1.00

> round(cor(v4$observed),2)

V1 V2 V3 V4

V1 1.00 0.55 0.47 0.34

V2 0.55 1.00 0.38 0.30

V3 0.47 0.38 1.00 0.31

V4 0.34 0.30 0.31 1.00
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Congeneric measures

Find α and related stats for the simulated data

> alpha(v4$observed)

Reliability analysis

Call: alpha(x = v4$observed)

raw_alpha std.alpha G6(smc) average_r mean sd

0.71 0.72 0.67 0.39 -0.036 0.72

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r

V1 0.59 0.60 0.50 0.33

V2 0.63 0.64 0.55 0.37

V3 0.65 0.66 0.59 0.40

V4 0.72 0.72 0.64 0.46

Item statistics

n r r.cor r.drop mean sd

V1 200 0.80 0.72 0.60 -0.015 0.93

V2 200 0.76 0.64 0.53 -0.060 0.98

V3 200 0.73 0.59 0.50 -0.119 0.92

V4 200 0.66 0.46 0.40 0.049 1.09
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Hierarchical structures

A hierarchical structure

cor.plot(r9)

Correlation plot

V1 V2 V3 V4 V5 V6 V7 V8 V9

V9

V8

V7

V6

V5

V4

V3

V2

V1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

> set.seed(42)

> r9 <- sim.hierarchical()

> lower.mat(r9)

V1 V2 V3 V4 V5 V6 V7 V8 V9

V1 1.00

V2 0.56 1.00

V3 0.48 0.42 1.00

V4 0.40 0.35 0.30 1.00

V5 0.35 0.30 0.26 0.42 1.00

V6 0.29 0.25 0.22 0.35 0.30 1.00

V7 0.30 0.26 0.23 0.24 0.20 0.17 1.00

V8 0.25 0.22 0.19 0.20 0.17 0.14 0.30 1.00

V9 0.20 0.18 0.15 0.16 0.13 0.11 0.24 0.20 1.00
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Hierarchical structures

α of the 9 hierarchical variables

> alpha(r9)

Reliability analysis

Call: alpha(x = r9)

raw_alpha std.alpha G6(smc) average_r

0.76 0.76 0.76 0.26

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r

V1 0.71 0.71 0.70 0.24

V2 0.72 0.72 0.71 0.25

V3 0.74 0.74 0.73 0.26

V4 0.73 0.73 0.72 0.25

V5 0.74 0.74 0.73 0.26

V6 0.75 0.75 0.74 0.27

V7 0.75 0.75 0.74 0.27

V8 0.76 0.76 0.75 0.28

V9 0.77 0.77 0.76 0.29

Item statistics

r r.cor

V1 0.72 0.71

V2 0.67 0.63

V3 0.61 0.55

V4 0.65 0.59

V5 0.59 0.52

V6 0.53 0.43

V7 0.56 0.46

V8 0.50 0.39

V9 0.45 0.32
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Multiple dimensions - falsely labeled as one

An example of two different scales confused as one

Correlation plot

V1 V2 V3 V4 V5 V6 V7 V8

V8

V7

V6

V5

V4

V3

V2

V1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

> set.seed(17)

> two.f <- sim.item(8)

> lower.mat(cor(two.f))

cor.plot(cor(two.f))

V1 V2 V3 V4 V5 V6 V7 V8

V1 1.00

V2 0.29 1.00

V3 0.05 0.03 1.00

V4 0.03 -0.02 0.34 1.00

V5 -0.38 -0.35 -0.02 -0.01 1.00

V6 -0.38 -0.33 -0.10 0.06 0.33 1.00

V7 -0.06 0.02 -0.40 -0.36 0.03 0.04 1.00

V8 -0.08 -0.04 -0.39 -0.37 0.05 0.03 0.37 1.00
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Multiple dimensions - falsely labeled as one

Rearrange the items to show it more clearly

Correlation plot

V1 V2 V5 V6 V3 V4 V7 V8

V8

V7

V4

V3

V6

V5

V2

V1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

> cor.2f <- cor(two.f)

> cor.2f <- cor.2f[c(1:2,5:6,3:4,7:8),

c(1:2,5:6,3:4,7:8)]

> lower.mat(cor.2f)

>cor.plot(cor.2f)

V1 V2 V5 V6 V3 V4 V7 V8

V1 1.00

V2 0.29 1.00

V5 -0.38 -0.35 1.00

V6 -0.38 -0.33 0.33 1.00

V3 0.05 0.03 -0.02 -0.10 1.00

V4 0.03 -0.02 -0.01 0.06 0.34 1.00

V7 -0.06 0.02 0.03 0.04 -0.40 -0.36 1.00

V8 -0.08 -0.04 0.05 0.03 -0.39 -0.37 0.37 1.00
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Multiple dimensions - falsely labeled as one

α of two scales confused as one

Note the use of the keys parameter to specify how some items
should be reversed.
> alpha(two.f,keys=c(rep(1,4),rep(-1,4)))

Reliability analysis

Call: alpha(x = two.f, keys = c(rep(1, 4), rep(-1, 4)))

raw_alpha std.alpha G6(smc) average_r mean sd

0.62 0.62 0.65 0.17 -0.0051 0.27

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r

V1 0.59 0.58 0.61 0.17

V2 0.61 0.60 0.63 0.18

V3 0.58 0.58 0.60 0.16

V4 0.60 0.60 0.62 0.18

V5 0.59 0.59 0.61 0.17

V6 0.59 0.59 0.61 0.17

V7 0.58 0.58 0.61 0.17

V8 0.58 0.58 0.60 0.16

Item statistics

n r r.cor r.drop mean sd

V1 500 0.54 0.44 0.33 0.063 1.01

V2 500 0.48 0.35 0.26 0.070 0.95

V3 500 0.56 0.47 0.36 -0.030 1.01

V4 500 0.48 0.37 0.28 -0.130 0.97

V5 500 0.52 0.42 0.31 -0.073 0.97

V6 500 0.52 0.41 0.31 -0.071 0.95

V7 500 0.53 0.44 0.34 0.035 1.00

V8 500 0.56 0.47 0.36 0.097 1.02 59 / 68
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Using score.items to find reliabilities of multiple scales

Score as two different scales

First, make up a keys matrix to specify which items should be
scored, and in which way
> keys <- make.keys(nvars=8,keys.list=list(one=c(1,2,-5,-6),two=c(3,4,-7,-8)))

> keys

one two

[1,] 1 0

[2,] 1 0

[3,] 0 1

[4,] 0 1

[5,] -1 0

[6,] -1 0

[7,] 0 -1

[8,] 0 -1
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Using score.items to find reliabilities of multiple scales

Now score the two scales and find α and other reliability estimates

> score.items(keys,two.f)

Call: score.items(keys = keys, items = two.f)

(Unstandardized) Alpha:

one two

alpha 0.68 0.7

Average item correlation:

one two

average.r 0.34 0.37

Guttman 6* reliability:

one two

Lambda.6 0.62 0.64

Scale intercorrelations corrected for attenuation

raw correlations below the diagonal, alpha on the diagonal

corrected correlations above the diagonal:

one two

one 0.68 0.08

two 0.06 0.70

Item by scale correlations:

corrected for item overlap and scale reliability

one two

V1 0.57 0.09

V2 0.52 0.01

V3 0.09 0.59

V4 -0.02 0.56

V5 -0.58 -0.05

V6 -0.57 -0.05

V7 -0.05 -0.58

V8 -0.09 -0.59
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Intraclass correlations

Reliability of judges

When raters (judges) rate targets, there are multiple sources
of variance

Between targets
Between judges
Interaction of judges and targets

The intraclass correlation is an analysis of variance
decomposition of these components

Different ICC’s depending upon what is important to consider

Absolute scores: each target gets just one judge, and judges
differ
Relative scores: each judge rates multiple targets, and the
mean for the judge is removed
Each judge rates multiple targets, judge and target effects
removed
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ICC of judges

Ratings of judges

What is the reliability of ratings of different judges across ratees?
It depends. Depends upon the pairing of judges, depends upon the
targets. ICC does an Anova decomposition.

> Ratings

J1 J2 J3 J4 J5 J6

1 1 1 6 2 3 6

2 2 2 7 4 1 2

3 3 3 8 6 5 10

4 4 4 9 8 2 4

5 5 5 10 10 6 12

6 6 6 11 12 4 8

> describe(Ratings,skew=FALSE)

var n mean sd median trimmed mad min max range se

J1 1 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76

J2 2 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76

J3 3 6 8.5 1.87 8.5 8.5 2.22 6 11 5 0.76

J4 4 6 7.0 3.74 7.0 7.0 4.45 2 12 10 1.53

J5 5 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76

J6 6 6 7.0 3.74 7.0 7.0 4.45 2 12 10 1.53
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ICC of judges

Sources of variances and the Intraclass Correlation Coefficient

Table: Sources of variances and the Intraclass Correlation Coefficient.

(J1, J2) (J3, J4) (J5, J6) (J1, J3) (J1, J5) (J1 ... J3) (J1 ... J4) (J1 ... J6)
Variance estimates

MSb 7 15.75 15.75 7.0 5.2 10.50 21.88 28.33
MSw 0 2.58 7.58 12.5 1.5 8.33 7.12 7.38
MSj 0 6.75 36.75 75.0 0.0 50.00 38.38 30.60
MSe 0 1.75 1.75 0.0 1.8 0.00 .88 2.73

Intraclass correlations
ICC(1,1) 1.00 .72 .35 -.28 .55 .08 .34 .32
ICC(2,1) 1.00 .73 .48 .22 .53 .30 .42 .37
ICC(3,1) 1.00 .80 .80 1.00 .49 1.00 .86 .61
ICC(1,k) 1.00 .84 .52 -.79 .71 .21 .67 .74
ICC(2,k) 1.00 .85 .65 .36 .69 .56 .75 .78
ICC(3,k) 1.00 .89 .89 1.00 .65 1.00 .96 .90
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ICC of judges

ICC is done by calling anova

aov.x <- aov(values ~ subs + ind, data = x.df)

s.aov <- summary(aov.x)

stats <- matrix(unlist(s.aov), ncol = 3, byrow = TRUE)

MSB <- stats[3, 1]

MSW <- (stats[2, 2] + stats[2, 3])/(stats[1, 2] + stats[1,

3])

MSJ <- stats[3, 2]

MSE <- stats[3, 3]

ICC1 <- (MSB - MSW)/(MSB + (nj - 1) * MSW)

ICC2 <- (MSB - MSE)/(MSB + (nj - 1) * MSE + nj * (MSJ - MSE)/n.obs)

ICC3 <- (MSB - MSE)/(MSB + (nj - 1) * MSE)

ICC12 <- (MSB - MSW)/(MSB)

ICC22 <- (MSB - MSE)/(MSB + (MSJ - MSE)/n.obs)

ICC32 <- (MSB - MSE)/MSB
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ICC of judges

Intraclass Correlations using the ICC function

> print(ICC(Ratings),all=TRUE) #get more output than normal

$results

type ICC F df1 df2 p lower bound upper bound

Single_raters_absolute ICC1 0.32 3.84 5 30 0.01 0.04 0.79

Single_random_raters ICC2 0.37 10.37 5 25 0.00 0.09 0.80

Single_fixed_raters ICC3 0.61 10.37 5 25 0.00 0.28 0.91

Average_raters_absolute ICC1k 0.74 3.84 5 30 0.01 0.21 0.96

Average_random_raters ICC2k 0.78 10.37 5 25 0.00 0.38 0.96

Average_fixed_raters ICC3k 0.90 10.37 5 25 0.00 0.70 0.98

$summary

Df Sum Sq Mean Sq F value Pr(>F)

subs 5 141.667 28.3333 10.366 1.801e-05 ***

ind 5 153.000 30.6000 11.195 9.644e-06 ***

Residuals 25 68.333 2.7333

---

Signif. codes: 0 Ô***~O 0.001 Ô**~O 0.01 Ô*~O 0.05 Ô.~O 0.1 Ô ~O 1

$stats

[,1] [,2] [,3]

[1,] 5.000000e+00 5.000000e+00 25.000000

[2,] 1.416667e+02 1.530000e+02 68.333333

[3,] 2.833333e+01 3.060000e+01 2.733333

[4,] 1.036585e+01 1.119512e+01 NA

[5,] 1.800581e-05 9.644359e-06 NA

$MSW

[1] 7.377778

$Call

ICC(x = Ratings)

$n.obs

[1] 6

$n.judge

[1] 6
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Cohen’s kappa

Cohen’s kappa and weighted kappa

When considering agreement in diagnostic categories, without
numerical values, it is useful to consider the kappa coefficient.

Emphasizes matches of ratings
Doesn’t consider how far off disagreements are.

Weighted kappa weights the off diagonal distance.

Diagnostic categories: normal, neurotic, psychotic
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Weighted kappa

Cohen kappa and weighted kappa

> cohen

[,1] [,2] [,3]

[1,] 0.44 0.07 0.09

[2,] 0.05 0.20 0.05

[3,] 0.01 0.03 0.06

> cohen.weights

[,1] [,2] [,3]

[1,] 0 1 3

[2,] 1 0 6

[3,] 3 6 0

> cohen.kappa(cohen,cohen.weights)

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries

lower estimate upper

unweighted kappa -0.92 0.49 1.9

weighted kappa -10.04 0.35 10.7

see the other examples in ?cohen.kappa
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Weighted kappa
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