

Methods of Homogeneous Keying

Factor analysis, principal components analysis, and cluster analysis

Methods of Homogeneous Keying

- Factor Analysis
- Principal Components Analysis
- Cluster Analysis

Factor Analysis Consider the following r matrix

	X_1	X_2	X_3	X_4	X_5
X_1	1.00				
X_2	.72	1.00			
X_3	.63	.56	1.00		
X_4	.54	.48	.42	1.00	
X_5	.45	.40	.35	.30	1.00

Factors as causes; variables as indicators of factors

- Can we recreate the correlation matrix R (of rank n) with a matrix F of rank 1 + a diagonal matrix of uniqueness U²
- $R \approx FF' + U^2$
- Residual Matrix $R^* = R (FF' + U2)$
- Try to minimize the residual

1 Factor solution $R \approx FF' + U^2$

	Correlation with (loading on) Factor 1
X_1	.9
X_2	.8
X_3	.7
X_4	.6
X_5	.5

Factor analysis

Factor Analysis more than 1 factor

	X_1	X_2	X_3	X_4	X_5
X_1	1.00				
X_2	.72	1.00			
X_3	.00	.00	1.00		
X_4	.00	.00	.42	1.00	
X_5	.00	.00	.35	.30	1.00

Factor Analysis: the model

- $R \approx FF' + U^2$
- Residual Matrix $R^* = R (FF' + U2)$
- Try to minimize the residual
- Variables are linear composites of unknown (latent) factors.
- Covariance structures of observables in terms of covariance of unobservables

Structure of mood - how not to display data

transformation					
	F1	F2	F1'	F2	
ENERGETI	-0.8	0.3	0.8	0.0	
LIVELY	-0.8	0.3	0.8	-0.1	
HAPPY	-0.7	-0.1	0.6	-0.4	
TIRED	0.6	-0.3	-0.7	0.0	
SLEEPY	0.6	-0.3	-0.6	0.0	
TENSE	0.2	0.6	0.1	0.6	
CALM	-0.3	-0.6	0.0	-0.6	
AT_EASE	-0.5	-0.5	0.2	-0.7	
AFRAID	0.2	0.4	0.0	0.4	
UNHAPPY	0.4	0.3	-0.2	0.5	
eigen values	3	1.5	2.7	1.8	

Principal components

- R≈ CC'
- Residual Matrix $R^* = R (CC')$
- Try to minimize the residual
- Components are linear composites of known variables.
- Covariance structures of observables in terms of covariance of observables
- Components account for observed variance

2 Principal C	omponer C1	ats of mood	
ENERGETI	-0.8	-0.4	
LIVELY	-0.8	-0.3	
HAPPY	-0.8	0	
TIRED	0.7	0.3	
SLEEPY	0.7	0.3	
AT_EASE	-0.6	0.5	
TENSE	0.2	-0.7	
CALM	-0.3	0.6	
AFRAID	0.2	-0.5	
UNHAPPY	0.5	-0.4	
eigen values	3.4	2.1	

Unrotated and rotated PCs					
	C1	C2	C1'	C2	
ENERGETI	-0.8	-0.4	0.9	0	
LIVELY	-0.8	-0.3	0.8	0	
HAPPY	-0.8	0	0.7	0.4	
TIRED	0.7	0.3	-0.8	0	
SLEEPY	0.7	0.3	-0.7	C	
AT_EASE	-0.6	0.5	0.2	0.7	
TENSE	0.2	-0.7	0.1	-0.7	
CALM	-0.3	0.6	0	0.7	
AFRAID	0.2	-0.5	0	-0.6	
UNHAPPY	0.5	-0.4	-0.3	-0.6	
eigen values	3.4	2.1	3.2	2.4	

Varimax factors and components						
	F1'	F2'	C1'	C2		
ENERGETI	0.8	0.0	0.9	0.0		
LIVELY	0.8	-0.1	0.8	0.0		
HAPPY	0.6	-0.4	0.7	0.4		
TIRED	-0.7	0.0	-0.8	0.0		
SLEEPY	-0.6	0.0	-0.7	0.0		
AT_EASE	0.2	-0.7	0.2	0.7		
TENSE	0.1	0.6	0.1	-0.7		
CALM	0.0	-0.6	0.0	0.7		
AFRAID	0.0	0.4	0.0	-0.6		
UNHAPPY	-0.2	0.5	-0.3	-0.6		
eigen values	2.7	1.8	3.2	2.4		

Determining the number of factors/components

- Statistically: extract factors until residual matrix does not differ from 0
 - Sensitive to sample size (large N -> more factors)
- Theoretically: extract factors that make sense
 - Different theorists differ in their cognitive complexity
- · Pragmatically: scree test
- Pragmatically: extract factors with eigen values greater than a random factor matrix
- Pragmatically: extract factors using Very Simple Structure Test or the minimal partial correlation
- Pragmatically: do not use eigen value>1 rule!

Very Simple Structure

(Revelle and Rocklin)

- Consider the factors as interpreted by user
 - Small loadings are thought to be zero
- How well does this very simple interpretation of the actual structure reproduce the correlation matrix
- $R^*_{vss} = R F_{vss} * F'_{vss}$
- Consider structures of various levels of simplicity (complexity) (1, 2, ... loadings/item)
- Solution peaks at optimal number of factors

Representative MSQ items (arranged by angular location)

Item	EA-PA	TA-NA	Angle
energetic	0.8	0.0	1
elated	0.7	0.0	2
excited	0.8	0.1	6
anxious	0.2	0.6	70
tense	0.1	0.7	85
distressed	0.0	0.8	93
frustrated	-0.1	0.8	98
sad	-0.1	0.7	101
irritable	-0.3	0.6	114
sleepy	-0.5	0.1	164
tired	-0.5	0.2	164
inactive	-0.5	0.0	177
calm	0.2	-0.4	298
relaxed	0.4	-0.5	307
at ease	0.4	-0.5	312
attentive	0.7	0.0	357
enthusiastic	0.8	0.0	358
lively	0.9	0.0	360

FA and PCA vocabulary

0.5

- Eigen values = ∑(loading²) across variables = amount of variance accounted for by factor
- Communality = ∑(loading²) across factors = amount of variance accounted for in a variable by all the factors
- Rotations versus Transformations

-0.5

- Rotations are orthogonal transformations
- Oblique Transformations

-1.0 L -1.0

Rotations and transformations

- Simple structure as a criterion for rotation
- Simple structure in the eye of the beholder
- Simple factors (few high, many 0 loadings)
- Simple variables (few high, many 0 loadings)
- VARIMAX, Quartimax, Quartimin
- Procrustes

Rotations and transformations

- · Orthogonal rotations
 - Factors are orthongonal, rotated to reduce (or maximize) particular definition of simple structure.
- Oblique transformations and higher order factors
 - Allows factors to be correlated (and thus have higher order factors)

Exploratory versus Confirmatory

- Exploratory:
 - How many factors and best rotation
 - Extraction
 - · How many factors?
 - Algorithm for extraction
 - Rotation to simple structure -- what is best SS?
- · Confirmatory: does a particular model fit?
 - Apply statistical test of fit
 - But larger N => less fit
 - Is the model the original one or has it been modified?

Components versus Factors

- Components are linear sums of variables and are thus defined at the data level
- Factors represent the covariances of variables and are only estimated (variables are linear sums of factors)
 - Model is undefined at data level, but is defined at structural level
 - Factor indeterminancy problem

Threats to interpreting correlation and the benefits of structure

- Correlations can be attenuated due to differences in skew (and error)
- Bi polar versus unipolar scales of affect
- How happy do you feel?
 - Not at all A little Somewhat Very
- How sad do you feel?
 - Not at all A little Somewhat Very
- · How do you feel?
- very sad sad happy very happy

Simulated Example of unipolar scales and the problem of skew

- Consider X and Y as random normal variables
- Let X+=X if X>0, 0 elsewhere
- Let X = X if X < 0, 0 elsewhere
- Reversed (X+) = -X+
- · Similarly for Y
- · Examine the correlational structure
- Note that although X and -X correlate -1.0, X+ and Xcorrelate only -.43 and that X+ correlates with X+Y+.66

Determining Structure: zeros and skew

X+Y+ X-Y-1.00 X--0.47 1.00 0.03 -0.01 1.00 Y-0.00 -0.03 -0.46 1.00 X+Y+ 1.00 -0.39 -0.39 0.65 0.66 X-Y--0.40 0.63 -0.40 0.63 -0.46 1.00 X+Y-0.63 -0.40 -0.39 0.66 0.00 0.02 1.00 X-Y+ -0.39 0.64 0.63 -0.40 0.00 0.00 -0.47 1.00

Skew and zeros: determining structure

X+Y+ X+ X+Y- r(Y-) r(X-Y-) r(X-) X-Y+1.00 1.00 X+Y+ 0.66 0.03 0.65 1.00 X+Y--0.39 0.00 0.63 1.00 0.46 0.39 0.00 -0.66 0.46 0.40 -0.02 r(X-Y-) 0.40 0.63 1.00 r(X-) 0.01 0.39 0.47 0.40 -0.03 0.63 1.00 0.63 0.00 -0.39 -0.47 0.40 0.00 -0.64 1.00

Factor analysis shows structure

2 POSX -0.01 -0.81 271 NEGX 0.04 0.80 **POSY** 0.80 -0.05 356 NEGY -0.80 0.00 180 **POSXY** 0.56 -0.59 314 NEGXY -0.55 0.57 136 POSXN -0.59 227 **NEGXP** 0.58 0.55 43

Structural representation 1.0 NEGX NEGXY NEGXPOSY POSXNEGY POSXY POSXY

Factor analysis shows structure

2 angle -0.01 POSX 0.81 89 POSY 0.05 0.80 POSXY 0.56 0.59 46 POSXN -0.59 0.55 137 **NEGXP** 0.58 -0.55 313 -0.04 0.80 87 **REVNE REVNE** 0.80 0.00 90 **REVNG** 0.55 0.57 46

Hyperplanes and Zeros: Defining variables by what they are not

- Tendency to interpret variables in terms of their patterns of high correlations
- But large correlations may be attenuated by skew or error
- Correlation of .7 is an angle of 45 degrees => lots of room for misinterpretation!
- Zero correlations reflect what a variable is not
 Zeros provide definition by discriminant validity