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Models

Models of data

(MacCallum, 2004) “A factor analysis model is not an exact
representation of real-world phenomena.
Always wrong to some degree, even in population.
At best, model is an approximation of real world.”
Box (1979): “Models, of course, are never true, but fortunately it is
only necessary that they be useful. For this it is usually needful
only that they not be grossly wrong.”
Tukey (1961): “In a single sentence, the moral is: Admit that
complexity always increases, first from the model you fit to the
data, thence to the model you use to think and plan about the
experiment and its analysis, and thence to the true situation.”
(From MacCallum, 2004); http://www.fa100.info/maccallum2.pdf
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Models

Observed Variables
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Models

Latent Variables
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Models

Theory: A regression model of latent variables
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Models

A measurement model for X
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Models

A measurement model for Y
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Models

A complete structural model
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Models

Various measurement models

1 Observed variables models

Singular Value Decompostion
Eigen Value – Eigen Vector decomposition
Principal Components
First k principal components as an approximation

2 Latent variable models

Factor analysis

3 Interpretation of models

Choosing the appropriate number of components/factors
Transforming/rotating towards interpretable structures
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Models

Singular Value Decomposition of the data matrix

Consider the matrix X of n deviation scores for N subjects, where
each element, xij , represents the responses of the i th individual to
the j th item or test. For simplicity, let the xij scores in each column
be deviations from the mean for that column (i.e., they are column
centered, perhaps by using scale). Let the number of variables be
n. Then the svd function will find the Singular Value
Decomposition of X which allows us to express X as the product of
three orthogonal matrices:

NXn = NUnnDnnV′n

where D is a diagonal matrix of the singular values and the U and
V matrices are matrices of the singular vectors. Although
descriptive of the data, what is meaning of these vectors?
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Models

Decomposition (models) of Correlation and Covariance matrices

With X defined as before, the covariance matrix, Cov, is

Cov = N−1XX′

and the standard deviations are

sd =
√

diag(Cov).

Let the matrix Isd be a diagonal matrix with elements = 1
sdi

, then
the correlation matrix R is

R = IsdCovIsd.

The problem is how to approximate the matrix, R of rank n, with a
matrix of lower rank? The solution to this problem may be seen if
we think about how to create a model matrix to approximate R.
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An example correlation matrix

An example correlation matrix

Consider the following correlation matrix

V1 V2 V3 V4 V5 V6

V1 1.00 0.72 0.63 0.54 0.45 0.36

V2 0.72 1.00 0.56 0.48 0.40 0.32

V3 0.63 0.56 1.00 0.42 0.35 0.28

V4 0.54 0.48 0.42 1.00 0.30 0.24

V5 0.45 0.40 0.35 0.30 1.00 0.20

V6 0.36 0.32 0.28 0.24 0.20 1.00

Is it possible to model these 36 correlations and variances with
fewer terms? Yes, of course. The diagonal elements are all 1 and
the off diagonal elements are symmetric. Thus, we have n ∗ (n− 1)
correlations we want to model.
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Eigen Value Decomposition

Eigen vector decomposition

Given a nxn matrix R, each eigenvector, xi, solves the equation

xiR = λi xi

and the set of n eigenvectors are solutions to the equation

XR = λX

where X is a matrix of orthogonal eigenvectors and λ is a diagonal
matrix of the the eigenvalues, λi . Then

xiR− λi XI = 0 <=> xi(R− λi I) = 0

Finding the eigenvectors and eigenvalues is computationally
tedious, but may be done using the eigen function. That the
vectors making up X are orthogonal means that

XX′ = I

and because they form the basis space for R that

R = XλX′.

That is, it is possible to recreate the correlation matrix R in terms
of an orthogonal set of vectors (the eigenvectors) scaled by their
associated eigenvalues. Both the eigenvectors and eigenvalues are
found by using the eigen function.
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Eigen Value Decomposition

Consider the eigen value solution for the example correlation matrix.

> e <- eigen(R)

> print(e,digits=2)

$values

[1] 3.16 0.82 0.72 0.59 0.44 0.26

$vectors

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.50 -0.061 0.092 0.14 0.238 0.816

[2,] -0.47 -0.074 0.121 0.21 0.657 -0.533

[3,] -0.43 -0.096 0.182 0.53 -0.675 -0.184

[4,] -0.39 -0.142 0.414 -0.78 -0.201 -0.104

[5,] -0.34 -0.299 -0.860 -0.20 -0.108 -0.067

[6,] -0.28 0.934 -0.178 -0.10 -0.067 -0.045

> round(e$vectors %*% t(e$vectors),2) #the eigen vectors are orthogonal

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1
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Eigen Value Decomposition

Eigen Value decomposition and recreation of the original matrix

Find the eigen values (λ) and
eigen vectors (Vi).
> e <- eigen(R)

> print(e,digits=2)

$values

[1] 3.16 0.82 0.72 0.59 0.44 0.26

$vectors

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.50 -0.061 0.092 0.14 0.238 0.816

[2,] -0.47 -0.074 0.121 0.21 0.657 -0.533

[3,] -0.43 -0.096 0.182 0.53 -0.675 -0.184

[4,] -0.39 -0.142 0.414 -0.78 -0.201 -0.104

[5,] -0.34 -0.299 -0.860 -0.20 -0.108 -0.067

[6,] -0.28 0.934 -0.178 -0.10 -0.067 -0.045

#the eigen vectors are orthogonal

> round(e$vectors %*% t(e$vectors),2)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

The eigen vectors and values recreate
the observed correlations.

R = VλV′.

> round(e$vectors %*% diag(e$values) %*% t(e$vectors),2)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00 0.72 0.63 0.54 0.45 0.36

[2,] 0.72 1.00 0.56 0.48 0.40 0.32

[3,] 0.63 0.56 1.00 0.42 0.35 0.28

[4,] 0.54 0.48 0.42 1.00 0.30 0.24

[5,] 0.45 0.40 0.35 0.30 1.00 0.20

[6,] 0.36 0.32 0.28 0.24 0.20 1.00

16 / 58



Preliminaries Principal Components Factor analysis Rotations and Transformations The number of factors/components problem References

Eigen Value Decomposition

The eigen values reflect the scale, the vectors the structure

Consider the original data and
solution
> R

> e <- eigen(R)

> print(e,digits=2)

V1 V2 V3 V4 V5 V6

V1 1.00 0.72 0.63 0.54 0.45 0.36

V2 0.72 1.00 0.56 0.48 0.40 0.32

V3 0.63 0.56 1.00 0.42 0.35 0.28

V4 0.54 0.48 0.42 1.00 0.30 0.24

V5 0.45 0.40 0.35 0.30 1.00 0.20

V6 0.36 0.32 0.28 0.24 0.20 1.00

$values

[1] 3.16 0.82 0.72 0.59 0.44 0.26

$vectors

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.50 -0.061 0.092 0.14 0.238 0.816

[2,] -0.47 -0.074 0.121 0.21 0.657 -0.533

[3,] -0.43 -0.096 0.182 0.53 -0.675 -0.184

[4,] -0.39 -0.142 0.414 -0.78 -0.201 -0.104

[5,] -0.34 -0.299 -0.860 -0.20 -0.108 -0.067

[6,] -0.28 0.934 -0.178 -0.10 -0.067 -0.045

Consider if all the correlations are
divided by 2.
> R.5 <- as.matrix(R/2)

> diag(R.5) <- 1

> R.5

> e.5 <- eigen(R.5)

> print(e.5,2)

V1 V2 V3 V4 V5 V6

V1 1.000 0.36 0.315 0.27 0.225 0.18

V2 0.360 1.00 0.280 0.24 0.200 0.16

V3 0.315 0.28 1.000 0.21 0.175 0.14

V4 0.270 0.24 0.210 1.00 0.150 0.12

V5 0.225 0.20 0.175 0.15 1.000 0.10

V6 0.180 0.16 0.140 0.12 0.100 1.00

$values

[1] 2.08 0.91 0.86 0.80 0.72 0.63

$vectors

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.50 -0.061 0.092 0.14 0.238 0.816

[2,] 0.47 -0.074 0.121 0.21 0.657 -0.533

[3,] 0.43 -0.096 0.182 0.53 -0.675 -0.184

[4,] 0.39 -0.142 0.414 -0.78 -0.201 -0.104

[5,] 0.34 -0.299 -0.860 -0.20 -0.108 -0.067

[6,] 0.28 0.934 -0.178 -0.10 -0.067 -0.045

Note that the signs are arbitrary.
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Eigen Value Decomposition

Eigen vectors of a 2 x 2 correlation matrix

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

r = 0

x

y

λ=
 1 

+ r
λ= 1 - r

-1.0 -0.5 0.0 0.5 1.0
-1
.0

-0
.5

0.
0

0.
5

1.
0

r = 0.3

x

y

λ=
 1 

+ r
λ= 1 - r

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

r = 0.6

x

y

λ=
 1 

+ r
λ= 1 - r

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

r = 0.9

x

y

λ=
 1 

+ r
λ= 1 - r

Although the length
(eigen values) of
the axes differ, their
orientation (eigen
vectors) are the
same.
> r2 <- matrix(c(1,.6,.6,1),2,2)

> print(eigen(r2),2)

$values

[1] 1.6 0.4

$vectors

[,1] [,2]

[1,] 0.71 -0.71

[2,] 0.71 0.71
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Principal Components: An observed Variable Model

From eigen vectors to Principal Components

1 For n variables, there are n eigen vectors

There is no parsimony in thinking of the eigen vectors
Except that the vectors provide the orthogonal basis for the
variables

2 Principal components are formed from the eigen vectors and
eigen values

R = VλV′ = CC′

C = V
√
λ

3 But there will still be as many Principal Components as
variables, so what is the point?

4 Take just the first k Principal Components and see how well
this reduced model fits the data.
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Principal Components: An observed Variable Model

The first principal component.

> pc1 <- principal(R,1)

> pc1

Uniquenesses:

V1 V2 V3 V4 V5 V6

0.220 0.307 0.408 0.519 0.635 0.748

Loadings:

PC1

V1 0.88

V2 0.83

V3 0.77

V4 0.69

V5 0.60

V6 0.50

PC1

SS loadings 3.142

Proportion Var 0.524

#show the model

> round(pc1$loadings %*% t(pc1$loadings),2)

V1 V2 V3 V4 V5 V6

V1 0.77 0.73 0.68 0.61 0.53 0.44

V2 0.73 0.69 0.64 0.57 0.50 0.42

V3 0.68 0.64 0.59 0.53 0.46 0.38

V4 0.61 0.57 0.53 0.48 0.41 0.34

V5 0.53 0.50 0.46 0.41 0.36 0.30

V6 0.44 0.42 0.38 0.34 0.30 0.25

#find the residuals

> Rresid <- R - pc1$loadings %*% t(pc1$loadings)

> round(Rresid,2)

V1 V2 V3 V4 V5 V6

V1 0.23 -0.01 -0.05 -0.07 -0.08 -0.08

V2 -0.01 0.31 -0.08 -0.09 -0.10 -0.09

V3 -0.05 -0.08 0.41 -0.11 -0.11 -0.10

V4 -0.07 -0.09 -0.11 0.52 -0.11 -0.10

V5 -0.08 -0.10 -0.11 -0.11 0.64 -0.10

V6 -0.08 -0.09 -0.10 -0.10 -0.10 0.75

The model fits pretty well, except that the diagonal is
underestimated and the other correlations are over estimated.
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Principal Components: An observed Variable Model

Try 2 and 3 principal components

> p2 <- principal(R,2,rotate="none")

> p2

> resid(p2)

Principal Components Analysis

Call: principal(r = R, nfactors = 2, rotate = "none")

Standardized loadings (pattern matrix)

PC1 PC2 h2 u2

V1 0.88 -0.06 0.78 0.217

V2 0.83 -0.07 0.70 0.302

V3 0.77 -0.09 0.60 0.400

V4 0.69 -0.13 0.50 0.502

V5 0.60 -0.27 0.44 0.561

V6 0.50 0.85 0.97 0.031

PC1 PC2

SS loadings 3.16 0.82

Proportion Var 0.53 0.14

Cumulative Var 0.53 0.66

Fit based upon off diagonal values = 0.95

V1 V2 V3 V4 V5 V6

V1 0.22

V2 -0.02 0.30

V3 -0.05 -0.09 0.40

V4 -0.08 -0.11 -0.13 0.50

V5 -0.10 -0.12 -0.14 -0.15 0.56

V6 -0.04 -0.04 -0.03 0.00 0.13 0.03

> p3 <- principal(R,3,rotate="none")

> resid(p3)

Principal Components Analysis

Call: principal(r = R, nfactors = 3, rotate = "none")

Standardized loadings (pattern matrix)

PC1 PC2 PC3 h2 u2

V1 0.88 -0.06 -0.08 0.79 0.2108

V2 0.83 -0.07 -0.10 0.71 0.2917

V3 0.77 -0.09 -0.15 0.62 0.3761

V4 0.69 -0.13 -0.35 0.62 0.3789

V5 0.60 -0.27 0.73 0.97 0.0292

V6 0.50 0.85 0.15 0.99 0.0084

PC1 PC2 PC3

SS loadings 3.16 0.82 0.72

Proportion Var 0.53 0.14 0.12

Cumulative Var 0.53 0.66 0.78

Fit based upon off diagonal values = 0.97

V1 V2 V3 V4 V5 V6

V1 0.21

V2 -0.03 0.29

V3 -0.07 -0.10 0.38

V4 -0.11 -0.14 -0.18 0.38

V5 -0.04 -0.05 -0.03 0.10 0.03

V6 -0.02 -0.03 -0.01 0.05 0.02 0.01
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Factor and component models

What if we did not model the diagonal, just the off diagonal
elements?
The component model is that

R = CC′ (1)

while the factor model is

R = FF′ + U2 (2)

where U2 is a diagonal matrix of uniquenesses. Functionally, this is
modeling the off diagonals.
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Factor Analysis: A Latent Variable Model

Factors vs. components

Originally developed by Spearman (1904) for the case of one
common factor, and then later generalized by Thurstone (1947)
and others to the case of multiple factors, factor analysis is
probably the most frequently used and sometimes the most
controversial psychometric procedure. The factor model, although
seemingly very similar to the components model, is in fact very
different. For rather than having components as linear sums of
variables, in the factor model the variables are themselves linear
sums of the unknown factors. That is, while components can be
solved for by doing an eigenvalue or singular value decomposition,
factors are estimated as best fitting solutions (Eckart & Young,
1936; Householder & Young, 1938), normally through iterative
methods (Jöreskog, 1978; Lawley & Maxwell, 1963). Cattell
(1965) referred to components analysis as a closed model and
factor analysis as an open model, in that by explaining just the
common variance, there was still more variance to explain.
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Principal Axes Factor Analysis as an eigenvalue decomposition of a reduced matrix

Iterative principal axes factor analysis

Principal components represents a n ∗ n matrix in terms of the first
k components. It attempts to reproduce all of the R matrix.
Factor analysis on the other hand, attempts to model just the
common part of the matrix, which means all of the off-diagonal
elements and the common part of the diagonal (the
communalities). The non-common part, the uniquenesses, are
simply that which is left over. An easy to understand procedure is
principal axes factor analysis. This is similar to principal
components, except that it is done with a reduced matrix where
the diagonals are the communalities. The communalities can either
be specified a priori, estimated by such procedures as multiple
linear regression, or found by iteratively doing an eigenvalue
decomposition and repeatedly replacing the original 1s on the
diagonal with the the value of 1 - u2 where

U2 = diag(R − FF′).
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Principal Axes Factor Analysis as an eigenvalue decomposition of a reduced matrix

Principal axes as eigen values of a reduced matrix

That is, starting with the original correlation or covariance matrix,
R, find the k largest principal components, reproduce the matrix
using those principal components. Find the resulting residual
matrix, R∗ and uniqueness matrix, U2 by

R∗ = R− FF′ (3)

U2 = diag(R∗)

and then, for iteration i, find Ri by replacing the diagonal of the
original R matrix with 1 - diag(U2) found on the previous step.
Repeat this process until the change from one iteration to the next
is arbitrarily small.
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Principal Axes Factor Analysis as an eigenvalue decomposition of a reduced matrix

Comparing 1 with 5 iterations

> f1 <- fa(R,1,fm='pa',max.iter=1)
> f1

> resid(f1)

Factor Analysis using method = pa

Call: fa(r = R, nfactors = 1, max.iter = 1, fm = "pa")

Standardized loadings (pattern matrix)

PA1 h2 u2

V1 0.86 0.74 0.26

V2 0.79 0.62 0.38

V3 0.70 0.48 0.52

V4 0.60 0.36 0.64

V5 0.50 0.25 0.75

V6 0.40 0.16 0.84

PA1

SS loadings 2.62

Proportion Var 0.44

V1 V2 V3 V4 V5 V6

V1 0.26

V2 0.04 0.38

V3 0.03 0.01 0.52

V4 0.02 0.01 0.00 0.64

V5 0.02 0.00 0.00 0.00 0.75

V6 0.01 0.00 0.00 0.00 0.00 0.84

> f1 <- fa(R,1,fm='pa',max.iter=5)
> f1

> resid(f1)

Factor Analysis using method = pa

Call: fa(r = R, nfactors = 1, max.iter = 5, fm = "pa")

Standardized loadings (pattern matrix)

PA1 h2 u2

V1 0.9 0.81 0.19

V2 0.8 0.64 0.36

V3 0.7 0.49 0.51

V4 0.6 0.36 0.64

V5 0.5 0.25 0.75

V6 0.4 0.16 0.84

PA1

SS loadings 2.71

Proportion Var 0.45

V1 V2 V3 V4 V5 V6

V1 0.19

V2 0.00 0.36

V3 0.00 0.00 0.51

V4 0.00 0.00 0.00 0.64

V5 0.00 0.00 0.00 0.00 0.75

V6 0.00 0.00 0.00 0.00 0.00 0.84
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Principal Axes Factor Analysis as an eigenvalue decomposition of a reduced matrix

SMCs as initial communality estimates

Rather than starting with initial communality estimates of 1, the
process can be started with other estimates of the communality. A
conventional starting point is the lower bound estimate of the
communalities, the squared multiple correlation or SMC (Roff,
1936).
The concept here is that a variable’s communality must be at least
as great as the amount of its variance that can be predicted by all
of the other variables. The squared multiple correlations of each
variable with the remaining variables are the diagonal elements of

I− (diag(R−1)−1

and thus a starting estimate for R0 would be R− (diag(R−1)−1.
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Goodness of fit

Goodness of fit–simple estimates

At least three indices of goodness of fit of the principal factors
model can be considered: One compares the sum of squared
residuals to the sum of the squares of the original values:

GFtotal = 1− 1R∗21′

1R21′

The second does the same, but does not consider the diagonal of R

GFoffdiagonal = 1−
∑

i 6=j r
∗2
ij∑

i 6=j r
∗2
ij

= 1− 1R∗21′ − tr(1R∗21′

1R21′ − tr(1R21′)

Finally, a χ2 test of the size of the residuals simply sums all the
squared residuals and multiplies by the number of observations:

χ2 =
∑
i<j

r ∗2
ij (N − 1)

with p * (p-1)/2 degrees of freedom.
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Maximum Likelihood and its alternatives

OLS

The fundamental factor equation (Equation ??) may be viewed as
set of simultaneous equations which may be solved several different
ways: ordinary least squares, generalized least squares, and
maximum likelihood. Ordinary least squares (OLS) or unweighted
least squares (ULS) minimizes the sum of the squared residuals
when modeling the sample correlation or covariance matrix, S,
with Σ = FF′ + U2

E =
1

2
tr(S− Σ)2 (4)

where the trace, tr, of a matrix is the sum of the diagonal
elements and the division by two reflects the symmetry of the S
matrix.
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Maximum Likelihood and its alternatives

MLE

Equation 4 can be generalized to weight the residuals (S− Σ) by
the inverse of the sample matrix, S, and thus to minimize

E =
1

2
tr((S− Σ)S−1)2 =

1

2
tr(I− ΣS−1)2. (5)

This is known as generalized least squares (GLS) or weighted least
squares (WLS). Similarly, if the residuals are weighted by the
inverse of the model, Σ, minimizing

E =
1

2
tr((S− Σ)Σ−1)2 =

1

2
tr(SΣ−1 − I )2 (6)

will result in a model that maximizes the likelihood of the data.
This procedure, maximum likelihood estimation (MLE) is also seen
as finding the minimum of

E =
1

2

(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(7)

where p is the number of variables (Jöreskog, 1978). Perhaps a
helpful intuitive explanation of Equation 10 is that if the model is
correct, then Σ = S and thus Σ−1S = I. The trace of an identity
matrix of rank p is p, and the logarithm of |I| is 0. Thus, the value
of E if the model has perfect fit is 0. With the assumption of
multivariate normality of the residuals, and for large samples, a χ2

statistic can be estimated for a model with p variables and f factors
(Bartlett, 1951; Jöreskog, 1978; Lawley & Maxwell, 1962):

χ2 =
(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(N − 1− (2p + 5)/6− (2f )/3) .

(8)
This χ2 has degrees of freedom:

df = p ∗ (p − 1)/2− p ∗ f + f ∗ (f − 1)/2. (9)

That is, the number of lower off-diagonal correlations - the number
of unconstrained loadings (Lawley & Maxwell, 1962).
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Maximum Likelihood and its alternatives

Maximum Likelihood Estimation

(MLE) is also seen as finding the minimum of

E =
1

2

(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(10)

where p is the number of variables (Jöreskog, 1978). Perhaps a
helpful intuitive explanation of Equation 10 is that if the model is
correct, then Σ = S and thus Σ−1S = I. The trace of an identity
matrix of rank p is p, and the logarithm of |I| is 0. Thus, the value
of E if the model has perfect fit is 0. With the assumption of
multivariate normality of the residuals, and for large samples, a χ2

statistic can be estimated for a model with p variables and f
factors:

χ2 =
(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(N − 1− (2p + 5)/6− (2f )/3) .

(11)
This χ2 has degrees of freedom:

df = p ∗ (p − 1)/2− p ∗ f + f ∗ (f − 1)/2. (12)

That is, the number of lower off-diagonal correlations - the number
of unconstrained loadings (Lawley & Maxwell, 1962).
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Maximum Likelihood and its alternatives

Minimum Residual Factor Analysis

The previous factor analysis procedures attempt to optimize the fit
of the model matrix (Σ) to the correlation or covariance matrix
(S). The diagonal of the matrix is treated as mixture of common
variance and unique variance and the problem becomes one of
estimating the common variance (the communality of each
variable). An alternative is to ignore the diagonal and to find that
model which minimizes the squared residuals of the off diagonal
elements. This is done in the fa function using the “minres” option
by finding the solution that minimizes

1

2
1 ((S − I)− (Σ− tr(Σ))2 1′. (13)

The advantage of the minres solution is that it does not require
finding the inverse of either the original correlation matrix (as do
GLS and WLS) nor of the model matrix (as does MLE, and thus
can be performed on non-positive definite matrices or matrices that
are not invertible. 32 / 58
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More than 1 factor

Solutions with more than 1 factor or component

Nothing in the previous algebra restricted the dimensionality of the
F matrix or C matrix to be one column. That is, why limit
ourselves to a one dimensional solution? Consider the following
correlation matrix (constructed by creating a factor matrix and
then finding its inner product).
>F <- matrix(c(.9,.8,.7,rep(0,6),.8,.7,.6),ncol=2) #the model

> rownames(F) <- paste("V",seq(1:6),sep="") #add labels

> colnames(F) <- c("F1", "F2")

> R <- F %*% t(F) #create the correlation matrix

> diag(R) <- 1 #adjust the diagonal of the matrix

> R

V1 V2 V3 V4 V5 V6

V1 1.00 0.72 0.63 0.00 0.00 0.00

V2 0.72 1.00 0.56 0.00 0.00 0.00

V3 0.63 0.56 1.00 0.00 0.00 0.00

V4 0.00 0.00 0.00 1.00 0.56 0.48

V5 0.00 0.00 0.00 0.56 1.00 0.42

V6 0.00 0.00 0.00 0.48 0.42 1.00
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More than 1 factor

Try one principal component to this model.

> pc1 <- principal(R)

> pc1

Principal Components Analysis

Call: principal(r = R)

Standardized loadings (pattern matrix) based upon correlation matrix

PC1 h2 u2

V1 0.90 0.82 0.18

V2 0.88 0.77 0.23

V3 0.83 0.69 0.31

V4 0.00 0.00 1.00

V5 0.00 0.00 1.00

V6 0.00 0.00 1.00

PC1

SS loadings 2.28

Proportion Var 0.38

Test of the hypothesis that 1 component is sufficient.

The degrees of freedom for the null model are 15 and the objective function was 1.96

The degrees of freedom for the model are 9 and the objective function was 0.87

Fit based upon off diagonal values = 0.61

The residuals are large for
the second set of variables.

> resid(pc1)

V1 V2 V3 V4 V5 V6

V1 0.18

V2 -0.07 0.23

V3 -0.12 -0.17 0.31

V4 0.00 0.00 0.00 1.00

V5 0.00 0.00 0.00 0.56 1.00

V6 0.00 0.00 0.00 0.48 0.42 1.00
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More than 1 factor

Two Principal Components

> pc2 <- principal(R,2)

> pc2

Uniquenesses:

V1 V2 V3 V4 V5 V6

0.182 0.234 0.309 0.282 0.332 0.409

Loadings:

PC1 PC2

V1 0.90

V2 0.88

V3 0.83

V4 0.85

V5 0.82

V6 0.77

PC1 PC2

SS loadings 2.273 1.988

Proportion Var 0.379 0.331

Cumulative Var 0.379 0.710

> round(pc2$loadings %*% t(pc2$loadings),2)

V1 V2 V3 V4 V5 V6

V1 0.81 0.79 0.75 0.00 0.00 0.00

V2 0.79 0.77 0.73 0.00 0.00 0.00

V3 0.75 0.73 0.69 0.00 0.00 0.00

V4 0.00 0.00 0.00 0.72 0.70 0.65

V5 0.00 0.00 0.00 0.70 0.67 0.63

V6 0.00 0.00 0.00 0.65 0.63 0.59

> Rresid <- R - pc2$loadings %*% t(pc2$loadings)

> round(Rresid,2)

V1 V2 V3 V4 V5 V6

V1 0.19 -0.07 -0.12 0.00 0.00 0.00

V2 -0.07 0.23 -0.17 0.00 0.00 0.00

V3 -0.12 -0.17 0.31 0.00 0.00 0.00

V4 0.00 0.00 0.00 0.28 -0.14 -0.17

V5 0.00 0.00 0.00 -0.14 0.33 -0.21

V6 0.00 0.00 0.00 -0.17 -0.21 0.41

> resid(pc2)

V1 V2 V3 V4 V5 V6

V1 0.18

V2 -0.07 0.23

V3 -0.12 -0.17 0.31

V4 0.00 0.00 0.00 0.28

V5 0.00 0.00 0.00 -0.13 0.33

V6 0.00 0.00 0.00 -0.17 -0.21 0.41
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More than 1 factor

Try two factors

> f2 <- fa(R,2,rotate="none")

> f2

Factor Analysis using method = minres

Call: fa(r = R, nfactors = 2, rotate = "none")

Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 h2 u2

V1 0.9 0.0 0.81 0.19

V2 0.8 0.0 0.64 0.36

V3 0.7 0.0 0.49 0.51

V4 0.0 0.8 0.64 0.36

V5 0.0 0.7 0.49 0.51

V6 0.0 0.6 0.36 0.64

MR1 MR2

SS loadings 1.94 1.49

Proportion Var 0.32 0.25

Cumulative Var 0.32 0.57

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 15 and the objective function was 1.96

The degrees of freedom for the model are 4 and the objective function was 0

The root mean square of the residuals (RMSR) is 0

The df corrected root mean square of the residuals is 0

Fit based upon off diagonal values = 1

> resid(f2)

V1 V2 V3 V4 V5 V6

V1 0.19

V2 0.00 0.36

V3 0.00 0.00 0.51

V4 0.00 0.00 0.00 0.36

V5 0.00 0.00 0.00 0.00 0.51

V6 0.00 0.00 0.00 0.00 0.00 0.64
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More than 1 factor

Add two more variables (with a factor model)

#the model

> f <- matrix(c(.9,.8,.7,rep(0,3),.7,rep(0,4),.8,.7,.6,0,.5),ncol=2)

> rownames(f) <- paste("V",seq(1:8),sep="") #add labels

> colnames(f) <- c("F1", "F2")

> R <- f %*% t(f) #create the correlation matrix

> diag(R) <- 1 #adjust the diagonal of the matrix

> R

V1 V2 V3 V4 V5 V6 V7 V8

V1 1.00 0.72 0.63 0.00 0.00 0.00 0.63 0.00

V2 0.72 1.00 0.56 0.00 0.00 0.00 0.56 0.00

V3 0.63 0.56 1.00 0.00 0.00 0.00 0.49 0.00

V4 0.00 0.00 0.00 1.00 0.56 0.48 0.00 0.40

V5 0.00 0.00 0.00 0.56 1.00 0.42 0.00 0.35

V6 0.00 0.00 0.00 0.48 0.42 1.00 0.00 0.30

V7 0.63 0.56 0.49 0.00 0.00 0.00 1.00 0.00

V8 0.00 0.00 0.00 0.40 0.35 0.30 0.00 1.00
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More than 1 factor

Factors loadings do not change, component loadings do

> R

V1 V2 V3 V4 V5 V6 V7 V8

V1 1.00 0.72 0.63 0.00 0.00 0.00 0.63 0.00

V2 0.72 1.00 0.56 0.00 0.00 0.00 0.56 0.00

V3 0.63 0.56 1.00 0.00 0.00 0.00 0.49 0.00

V4 0.00 0.00 0.00 1.00 0.56 0.48 0.00 0.40

V5 0.00 0.00 0.00 0.56 1.00 0.42 0.00 0.35

V6 0.00 0.00 0.00 0.48 0.42 1.00 0.00 0.30

V7 0.63 0.56 0.49 0.00 0.00 0.00 1.00 0.00

V8 0.00 0.00 0.00 0.40 0.35 0.30 0.00 1.00

> f2 <- factanal(covmat=R,factors=2)

> f2

Call:

factanal(factors = 2, covmat = R)

Uniquenesses:

V1 V2 V3 V4 V5 V6 V7 V8

0.19 0.36 0.51 0.36 0.51 0.64 0.51 0.75

Loadings:

Factor1 Factor2

V1 0.9

V2 0.8

V3 0.7

V4 0.8

V5 0.7

V6 0.6

V7 0.7

V8 0.5

Factor1 Factor2

SS loadings 2.430 1.740

Proportion Var 0.304 0.218

Cumulative Var 0.304 0.521

The degrees of freedom for the model is 13 and the fit was 0

pc2 <- principal(R,2)

pc2

Uniquenesses:

V1 V2 V3 V4 V5 V6 V7 V8

0.194 0.271 0.367 0.311 0.379 0.468 0.367 0.575

Loadings:

PC1 PC2

V1 0.90

V2 0.85

V3 0.80

V4 0.83

V5 0.79

V6 0.73

V7 0.80

V8 0.65

PC1 PC2

SS loadings 2.812 2.268

Proportion Var 0.352 0.284

Cumulative Var 0.352 0.635
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Simple Structure

The original solution of a principal components or principal axes factor analysis is a set

of vectors that best account for the observed covariance or correlation matrix, and

where the components or factors account for progressively less and less variance. But

such a solution, although maximally efficient in describing the data, is rarely easy to

interpret. But what makes a structure easy to interpret? Thurstone’s answer, simple

structure, consists of five rules (Thurstone, 1947, p 335):

(1) Each row of the oblique factor matrix V should have at least one zero.
(2) For each column p of the factor matrix V there should be a distinct
set of r linearly independent tests whose factor loadings vip are zero.
(3) For every pair of columns of V there should be several tests whose
entries vip vanish in one column but not in the other.
(4) For every pair of columns of V, a large proportion of the tests should
have zero entries in both columns. This applies to factor problems with
four or five or more common factors.
(5) For every pair of columns there should preferably be only a small
number of tests with non-vanishing entries in both columns.

Thurstone proposed to rotate the original solution to achieve simple structure.
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Simple structure

A matrix is said to be rotated if it is multiplied by a matrix of
orthogonal vectors that preserves the communalities of each
variable. Just as the original matrix was orthogonal, so is the
rotated solution. For two factors, the rotation matrix T will rotate
the two factors θ radians in a counterclockwise direction.

T =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(14)

Generalizing equation 14 to larger matrices is straight forward:

T =



1 ... 0 ... 0 ... 0
0 ... cos(θ) ... sin(θ) ... 0
... ... 0 1 0 ... 0
0 ... −sin(θ) ... cos(θ) ... 0
... ... 0 ... 0 ... ...
0 ... 0 ... 0 ... 1

 . (15)
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Rotating to simple structure

When F is post-multiplied by T, T will rotate the i th and j th

columns of F by θ radians in a counterclockwise direction.

Fr = FT (16)

The factor.rotate function from the psych package will do this
rotation for arbitrary angles (in degrees) for any pairs of factors.
This is useful if there is a particular rotation that is desired.
An entire package devoted to rotations is the GPArotation by
Robert Jennrich (Jennrich, 2004).
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Analytic Simple Structure

As pointed out by Carroll (1953) when discussing Thurstone’s
(1947) simple structure as a rotational criterion “it is obvious that
there could hardly be any single mathematical expression which
could embody all these characteristics.” (p 24). Carroll’s solution
to this was to minimize the sum of the inner products of the
squared (rotated) loading matrix. An alternative, discussed by
Ferguson (1954) is to consider the parsimony of a group of n tests
with r factors to be defined as the average parsimony of the
individual tests (Ij ) where

Ij =
r∑
m

a4
jm (17)

(the squared communality) and thus the average parsimony is

I. = n−1
n∑
j

r∑
m

a4
jm

and to choose a rotation that maximizes parsimony.
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Rotation to parsimony

Parsimony as defined in equation 17 is a function of the variance
as well as the mean of the squared loadings of a particular test on
all the factors. For fixed communality h2, it will be maximized if all
but one loading is zero; a variable’s parsimony will be maximal if
one loading is 1.0 and the rest are zero. In path notation,
parsimony is maximized if one and only one arrow is associated
with a variable. This criterion, as well as the criterion of maximum
variance taken over factors has been operationalized as the
quartimax criterion by Neuhaus & Wrigley (1954). As pointed out
by Kaiser (1958), the criterion can rotate towards a solution with
one general factor, ignoring other, smaller factors.
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Varimax and alternatives

If a general factor is not desired, an alternative measure of the
parsimony of a factor, similar to equation 17 is to maximize the
variance of the squared loadings taken over items instead of over
factors. This, the varimax criterion was developed by Kaiser (1958)
to avoid the tendency to yield a general factor. Both of these
standard rotations as well as many others are available in the
GPArotation package of rotations and transformations which uses
the Gradient Projection Algorithms developed by Jennrich (2001,
2002, 2004).
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Harmon 8 physical measures

> data(Harman23.cor)

> lower.mat(Harman23.cor$cov)

heght arm.s forrm lwr.l weght btr.d chst.g chst.w

height 1.00

arm.span 0.85 1.00

forearm 0.80 0.88 1.00

lower.leg 0.86 0.83 0.80 1.00

weight 0.47 0.38 0.38 0.44 1.00

bitro.diameter 0.40 0.33 0.32 0.33 0.76 1.00

chest.girth 0.30 0.28 0.24 0.33 0.73 0.58 1.00

chest.width 0.38 0.42 0.34 0.36 0.63 0.58 0.54 1.00
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Two solutions – loadings change, goodness of fits do not

> f2 <- fa(Harman23.cor$cov,2,rotate="none")

> f2

Factor Analysis using method = minres

Call: fa(r = Harman23.cor$cov, nfactors = 2,

rotate = "none")

Standardized loadings (pattern matrix)

MR1 MR2 h2 u2

height 0.89 -0.19 0.83 0.17

arm.span 0.89 -0.31 0.89 0.11

forearm 0.86 -0.30 0.83 0.17

lower.leg 0.87 -0.22 0.80 0.20

weight 0.67 0.67 0.89 0.11

bitro.diameter 0.56 0.58 0.65 0.35

chest.girth 0.50 0.59 0.59 0.41

chest.width 0.56 0.40 0.47 0.53

MR1 MR2

SS loadings 4.40 1.56

Proportion Var 0.55 0.19

Cumulative Var 0.55 0.74

Test of the hypothesis that 2 factors are sufficient.

The root mean square of the residuals (RMSR) is 0.02

The df corrected root mean square of the residuals

is 0.03

Fit based upon off diagonal values = 1

> f2 <- fa(Harman23.cor$cov,2,rotate="varimax")

> f2

Factor Analysis using method = minres

Call: fa(r = Harman23.cor$cov, nfactors = 2,

rotate = "varimax")

Standardized loadings (pattern matrix)

MR1 MR2 h2 u2

height 0.86 0.30 0.83 0.17

arm.span 0.92 0.20 0.89 0.11

forearm 0.89 0.19 0.83 0.17

lower.leg 0.86 0.26 0.80 0.20

weight 0.22 0.92 0.89 0.11

bitro.diameter 0.18 0.78 0.65 0.35

chest.girth 0.12 0.76 0.59 0.41

chest.width 0.27 0.63 0.47 0.53

MR1 MR2

SS loadings 3.30 2.66

Proportion Var 0.41 0.33

Cumulative Var 0.41 0.74

The root mean square of the residuals (RMSR)

is 0.02

The df corrected root mean square of the residuals

is 0.03
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Alternative rotations
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Oblique transfomations

Many of those who use factor analysis use it to identify
theoretically meaningful constructs which they have no reason to
believe are orthogonal. This has lead to the use of oblique
transformations which allow the factors to be correlated. Although
the term rotation is sometimes used for both orthogonal and
oblique solutions, in the oblique case the factor matrix is not
rotated so much as transformed.
Oblique transformations lead to the distinction between the factor
pattern and factor structure matrices. The factor pattern matrix is
the set of regression weights (loadings) from the latent factors to
the observed variables. The factor structure matrix is the matrix of
correlations between the factors and the observed variables. If the
factors are uncorrelated, structure and pattern are identical. But, if
the factors are correlated, the structure matrix (S) is the pattern
matrix (F) times the factor intercorrelations φ
S = Fφ <=> F = Sφ−1:
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An oblique transformation of the Harman 8 physical variables

> f2t <- fa(Harman23.cor$cov,2,rotate="oblimin",n.obs=305)

> print(f2t)

Factor Analysis using method = minres

Call: fa(r = Harman23.cor$cov, nfactors = 2, rotate = "oblimin", n.obs = 305)

item MR1 MR2 h2 u2

height 1 0.87 0.08 0.84 0.16

arm.span 2 0.96 -0.05 0.89 0.11

forearm 3 0.93 -0.04 0.83 0.17

lower.leg 4 0.88 0.04 0.81 0.19

weight 5 0.01 0.94 0.89 0.11

bitro.diameter 6 0.00 0.80 0.64 0.36

chest.girth 7 -0.06 0.79 0.59 0.41

chest.width 8 0.13 0.62 0.47 0.53

MR1 MR2

SS loadings 3.37 2.58

Proportion Var 0.42 0.32

Cumulative Var 0.42 0.74

With factor correlations of

MR1 MR2

MR1 1.00 0.46

MR2 0.46 1.00 49 / 58
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Oblique Transformations
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Another way to show simple structure

> simp24 <- sim.item(24,circum=FALSE)

> cor.plot(cor(simp24),main="A simple structure")
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A circumplex is one alternative to simple structure
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Another way of showing a circumplex – cor.plot

> circ24 <- sim.item(24,circum=TRUE)

> cor.plot(cor(circ24),main="A circumplex structure")

A circumplex structure
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The Thurstone 9 variable problem

> lower.mat(Thurstone)

Sntnc Vcblr Snt.C Frs.L 4.L.W Sffxs Ltt.S Pdgrs Ltt.G

Sentences 1.00

Vocabulary 0.83 1.00

Sent.Completion 0.78 0.78 1.00

First.Letters 0.44 0.49 0.46 1.00

4.Letter.Words 0.43 0.46 0.42 0.67 1.00

Suffixes 0.45 0.49 0.44 0.59 0.54 1.00

Letter.Series 0.45 0.43 0.40 0.38 0.40 0.29 1.00

Pedigrees 0.54 0.54 0.53 0.35 0.37 0.32 0.56 1.00

Letter.Group 0.38 0.36 0.36 0.42 0.45 0.32 0.60 0.45 1.00
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Three factors from Thurstone 9 variables

> f3 <- fa(Thurstone,3)

> f3

Factor Analysis using method = minres

Call: fa(r = Thurstone, nfactors = 3)

Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 MR3 h2 u2

Sentences 0.91 -0.04 0.04 0.82 0.18

Vocabulary 0.89 0.06 -0.03 0.84 0.16

Sent.Completion 0.83 0.04 0.00 0.73 0.27

First.Letters 0.00 0.86 0.00 0.73 0.27

4.Letter.Words -0.01 0.74 0.10 0.63 0.37

Suffixes 0.18 0.63 -0.08 0.50 0.50

Letter.Series 0.03 -0.01 0.84 0.72 0.28

Pedigrees 0.37 -0.05 0.47 0.50 0.50

Letter.Group -0.06 0.21 0.64 0.53 0.47

MR1 MR2 MR3

SS loadings 2.64 1.86 1.50

Proportion Var 0.29 0.21 0.17

Cumulative Var 0.29 0.50 0.67

With factor correlations of

MR1 MR2 MR3

MR1 1.00 0.59 0.54

MR2 0.59 1.00 0.52

MR3 0.54 0.52 1.00
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A hierarchical/multilevel solution to the Thurstone 9 variables

Hierarchical (multilevel) Structure
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A bifactor solution using the Schmid Leiman transformation

Omega with Schmid Leiman Transformation
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How many factors – no right answer, one wrong answer

1 Statistical
Extracting factors until the χ2 of the residual matrix is not
significant.
Extracting factors until the change in χ2 from factor n to
factor n+1 is not significant.

2 Rules of Thumb
Parallel Extracting factors until the eigenvalues of the real data
are less than the corresponding eigenvalues of a random data
set of the same size (parallel analysis)
Plotting the magnitude of the successive eigenvalues and
applying the scree test.

3 Interpretability
Extracting factors as long as they are interpretable.
Using the Very Simple Structure Criterion (VSS)
Using the Minimum Average Partial criterion (MAP).

4 Eigen Value of 1 rule
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