Validity

Face, Concurrent, Predictive, Construct




Psychometric Theory: A conceptual Syllabus
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Reliability- Correction for attenuation
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Types of Validity: What are we measuring
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Face (Faith Validity)

* Representative content

e Seeming relevance




Concurrent Validity

T

X Y

* Does a measure correlate with the criterion?
* Need to define the criterion.

e Assumes that what correlates now will have
predictive value.




Predictive Validity

* Does a measure correlate with the criterion?
* Need to define the criterion.

e Requires waiting for time to pass.




Type of correlation

e Continuous predictor, continuous criterion

—Regression, multiple regression, correlation

—Slope of regression implies how much change for
unit change in predictor

e Continuous predictor, dichotomous criterion

—point bi-

serial correlation

e Dichotomous predictor, dichotomous

outcome
—Phi




Classics 1n Selection/Assessment

e Gideon’s selection of soldiers
e OSS and Army Air Corps selection studies

» Kelly and Fiske (1950) selection of
psychology students

e Astronaut selection

e Peace Corps selection
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Kelly and Fiske (1950)

e Multiple predictors of graduate school
performance: Kelly and Fiske (1950), Kuncel
et al. (2001)

e Multiple predictors

e Ability, Interests, temperament (each with r
~ .2 -.25) have multiple R of 4-.5
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Predictive and Concurrent Validity

and Decision Making
Hit Rate = Valid Positive + False Negative

Selection Ratio = Valid Positive + False Positive

HR
FN | VP
VN | FP
1-HR

1-SR SR

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)
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Decision Theory and Signal Detection

Probability VP

Probability FP




Signal detection theory

® d prime and beta
® d prime maps to the correlation
® beta maps to selection ratio

e type I and type II error

® Need to consider utility of types of error




Predictive Validity and
Decision Theory

Decision | -SR

Ratio

State of
world
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Predictive Validity, Utility
and Decision Theory

State of
world

FN *Uen | VP *Uvp | Hit rate

VN *Uwn| FP*Urp | [-HR

Selection

Decision | -SR .
Ratio

Utility of test = VP *Uyp + VN *Uyn + FN *Upn + FP¥ Upp - Cost of test




Decisions for institutions,
advice for individuals

State of
world

FN *Uen | VP *Uvp | Hit rate

VN *Uwn| FP* Urp | [-HR

Selection
Ratio

Utility of test = VP *Uyp + VN *Uyn + FN *Upn + FP¥ Upp - Cost of test

Decision | -SR




Decision making and the benefit
of extreme selection ratios

e Typical traits are approximated by a normal
distribution.

e Small differences in means or variances can lead to
large differences in relative odds at the tails

* Accuracy of decision/prediction 1s higher for
extreme values.

* Do we infer trait mean differences from observing
differences of extreme values?

® (code for these graphs at personality-project.org/r/extreme.r)




Odds ratios as f(mean difference, extremity)
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The effect of group differences on
likelihod of extreme scores

Difference =.5 sigma  Difference =1.0 sigma
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The effect of differences of variance

probability of x
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Restriction of range

 Validity of SAT i1s partially limited by range
restriction. (see Lubinski and Benbow)

e Consider giving SATs to 12-13 year olds
—SAT M =390 or SAV V =370 (top 1 in 100)
—SAT M = 500 or SAV V =430 (top 1 in 200)
—SAT M =700 or SAVM =430 (top 1 1n 10,000)
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Predictions within top student group
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Construct Validity: Convergent,
Discriminant, Incremental
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Multi-Trait, Multi-Method Matrix

TIM1 | T2M1 |[T3M1 |TIM2 | T2M2 | T3M2 | TIM3 |T2M3 | T3M3
TIMI1 | TIMI
T2M1 | M1 T2M1
T3M1 | MI M1 T3M1
TIM2 |T1 TIM2
T2M2 T2 M2 T2M2
T3IM2 T3 M2 M2 T3M?2
TIM3 |TI T1 TIM3
T2M3 T2 T2 M3 T2M3
T3M3 T3 T3 M3 M3 T3M3

Mono-Method, Mono trait = reliability

Hetero Method, Mono Trait = convergent validity

Hetero Method, Hetero Trait = discriminant validity
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