Approach Motivation

The theory of Achievement Motivation

Achievement Motivation: history

- Murray's Explorations in Personality
- McClelland and the Need for Achievement
- · Atkinson and theory of risk preference
 - Static
 - Dynamic
- · Weiner and attribution theory
- · Reinvigoration: Elliot and Thrash

Murray's Explorations in Personality

- Intense study of small set of subjects from many different perspectives
- · Conceptual identification of needs
- Development of Thematic Apperception
 Test
 - Needs driving perception and production

Need for Achievement

- Desire to approach problems involving challenge and effort
- Joy in success when over coming obstacles
- · Analogous to a hunger
- "The little engine that could"
 - "I think I can, I think I can, I think I can"

McClelland and Need for Achievement

- N-ach and the achievement of nations
- Cultures with a high need for achievement (rather than some other need) will strive to overcome obstacles (other nations?)
 - Greek civilization and Greek literature
 - N-ach in children's primers and later economic growth
 - Teaching n-ach as a means for development

Issues in measurement

- Projective measurement
 - Can't trust self reports of motivations
 - Ambiguous stimuli will lead to interpretations in terms of motives
 - Hunger and interpretation of ambiguous slides
 - · Achievement and stories
 - "grubby graduate student" versus "professor"

Issues in measurement: II

- Weiner's 3 points:
 - TAT is the best way to measure motivation
 - TAT is the worst way to measure motivation
 - People who use TAT believe 1, people who do not believe 2

Static theory of risk preference and achievement motivation

- Achievement motivation: the joy of success
- · Approach motivation
- Atkinson's theory of risk preference (1957, 1964)
 - An expectancy value theory of motivation
 - Contrasted to drive models of Hull, Spence
- Tendency to approach = Value * Expectancy Value = Motive * Incentive

Specific model for achievement

- Expectancy = subjective probability of success
- Motive = Individual's need for achievement
- Incentive = difficulty = 1- probability of success
- Conclusion for achievement motivation
 - $Ts = Ms * P_s * (1-P_s)$
 - Implies that motivational strength is quadratic function of probability of success

Fear of Failure: the pain of failure

- Fear of failure -- test anxiety?
- · Fear of failure and general avoidance motivation
- Specific assumptions for fear of failure
 - Expectancy of Failure = $P_f = 1_{-p_s}$
 - Motive to avoid Failure = fear of failure = M_{af}
 - Incentive to avoid failure = easiness = P_s
 - $-T_{af} = M_{af} * (P_f) * (-P_s) = M_{af} * (1-P_s) * (-P_s)$

Resultant Achievement Motivation

- Resultant tendency = tendency to engage in a task for success + tendency to avoid failing (negative) + extrinsic tendencies
- $T_r = T_s + T_{af} + T_{ext}$
- $T_r = M_s * P_s * (1-P_s) + M_{af} * (1-P_s) * (-P_s)$
- $T_r = (M_s M_{af}) * (1 P_s) * (P_s)$

Tests of original theory

- Motivation and risk prefence: the ring toss
 - Hamilton
 - Heckhausen
 - Although inverted U, did not peak at .5 difficulty

Motivation, risk preference and persistence under failure

	Easy (p = .7)	Hard (p = .05)
High Nach (Low Maf)	6/8	2/9
Low Nach (High Maf)	3/9	6/8

Feather, 1964

Revisions to Atkinson Theory

- Raynor and the concept of future orientation
 - Life is not a ring toss tasks are contingent
 - Probability of success at $event_i = \prod p_i = p_1 {}^*p_2 \ldots p_n$
 - Consider a freshman starting psychology with p = .9 205 215 tenure full

job .81 .35

 Tendency to engage in a task = sum of tendencies for tasks contingent upon that task $T_{rn} = \sum (M_{s} M_{af}) * P_{sic} * (1-P_{sic}) + T_{ext}$

Contingent paths: Evidence for Raynor's hypothesis

	Rayhol s hypothesis					
Study1		Motive to	Low	High		
		achieve				
Importance to future						
	High (major)		2.9	3.4		
	Low (distro)		3.0	2.6		
Study 2	High		3.0	3.5		
	Low		3.4	3.4		

Implications of contingent paths

- High achievers should set distant goals
 Low achievers should set immediate goals
- Preferences for task difficulty should vary as a function of number of outcomes contingent upon particular task outcome

Further explorations: curvilinear models

- Does task performance vary as a curvilinear function of task difficulty
- Is it overachievement or under performance?

Class Performance and Test Scores: A simple model

- Assume variation in ability 1-5
- Assume motivation in class varies 1-4
- Assume motivation in test situation = resting (class) + 1
- Assume efficiency varies as inverted U of motivation (max at 3)
- Assume test performance=ability*efficiency
- Assume cumulative performance =ability*efficiency* time spent

Class and Test Performance

Test and Class Performance

	Motivation in		Efficiency			Performance	
Ability	Cla	ss Test	in class	on test	Time Spent	On test	in class2
1	1	2	1	2	1	2	1
2	1	2	1	2	1	4	2
3	1	2	1	2	1	6	3
4	1	2	1	2	1	8	4
5	1	2	1	2	1	10	5
1	2	3	2	3	2	3	4
2	2	3	2	3	2	6	8
3	2	3	2	3	2	9	12
4	2	3	2	3	2	12	16
5	2	3	2	3	2	15	20
1	3	4	3	2	3	2	9
2	3	4	3	2	3	4	18
3	3	4	3	2	3	6	27
4	3	4	3	2	3	8	36
5	3	4	3	2	3	10	45
1	4	5	2	1	4	1	8
2	4	5	2	1	4	2	16
3	4	5	2	1	4	3	24
4	4	5	2	1	4	4	32
5	4	5	2	1	4	5	40

Dynamic theory of achievement

- Recognition of inertial properties of motivation
 - Motives persist until satisfied
 - Lewin and the "Herr Ober effect"
 - Zeigarnik and the motive for completion
 - Completed tasks
 - · Uncompleted tasks

Trial to trial carryover effects

- Weiner and Schneider carryover and interpretation of success and failure
 - Success and failure on verbal learning tasks
 - Anxiety inhibits performance on hard tasks
 - Anxiety facilitates performance on easy task
 - $-T_{res} = T_{app} T_{avoid}$

Weiner and Schneider, 1971 Drive vs. Cognitive Theory

- Prior work using Drive Theory had suggested that high anxiety interferes with difficult but facilitates easy tasks.
 - (Very well established result with >25 replications)
 - Based upon Drive theory interpretation that Anxiety increases drive and that the Evoked response is a function of Drive X Habit
 - Assume that Easy => Correct Response is dominant,
 Hard, => incorrect Response is dominant
 - Typically use serial anticipation

Weiner and Schneider, 1971

Task: Learn 13 CVC trigrams
 Easy List: high between item differentiation
 e.g. PAK, BIM, MOT
 Difficult list: low between item differentiation
 e.g. HOV, VOV, RIV, MIV
 Lists presented as serial anticipation (implicit feedback?)
 Subjects were high and low resultant Achievement
 Motivation (Nach - Naf)
 Feedback - list is (easy/hard) you are doing better/worse

than others

Locke and Goal Setting

- Thorough review of goal setting effects:
 - The harder the goal, the higher the output
 - Hard tasks lead to more effort than easy tasks
- This is inconsistent with Achievement motivation theory that effort is greatest for moderately difficult tasks

Revelle and Michaels: steps towards dynamics

- How to reconcile the simple try harder the harder the problem (goal setting, see Locke) model with Atkinson model
- Hard tasks take longer to complete and if there is carryover from trial to trial, then motivation should accumulate

Steps towards dynamics

- Effort on trial 1: Ms-Maf*(Ps)*(1-Ps)
- Effort on Trial 2 is a function of outcome of trial 1:
 - If success on trial 1, then effort T2 = T1
 - If failure on trial 2, then motivation from trial 1 carries over to trial 2: Effort T2 = T1 + carryover
 - Assume perfect carryover T2 = T1*p + 2T1*(1-p)

Expected Effort as a function of trial and probability of success

Steps towards dynamics

- Effort on trial 1: Ms-Maf*(Ps)*(1-Ps)
- Effort on Trial 3 is a function of outcome of trial 2:
 - If success on trial 2, then effort T3 = T1
 - If failure on trial 2, then motivation from trial 2 carries over to trial 3: Effort T3 = T3 + carryover
 - Assume perfect carryover

Carryover (3 trials)

Trial 1		T1=p*(1-p)			
outcome		p(success)=p	P(failure)=(1-p)		1-p)
Trial 2		T1		2* T1	
outcome		p(s)=p ²	f=p*(1-p)	S=(1-p)*p	F= (1-p) ²
					$(1-p)^2$
Trial 3		T1	2* T1	T1	3* T1

What if there is less than perfect carry over from trial to trial?

- Motivation carries over from trial to trial, but some effort is expended so there is not perfect carryover.
- Consider 90, 80 and 70% carryover

Dynamics of Action: Approach Atkinson and Birch, 1970

- Action Tendencies as latent needs
- Instigating forces -- situational stimulation and individual sensitivities
- Consummatory forces -- need satisfaction
- Change in action tendencies = f(instigating forces consummatory forces)

Dynamics of Action Atkinson and Birch, 1970

- Action Tendencies increase as a function of instigating forces, decrease as a function of action.
 - -dT = F (if not ongoing)
 - -dT = F cT (if ongoing)
 - Stable state occurs when $dT = 0 \iff T = F/c$
- · Actions with greatest action tendency will occur

Avoidance and Inhibitory Motivation -- Negaction

- Negaction tendencies inhibit behavior
- Inhibitory forces increase negaction
- Resistance forces decrease negaction
- $Dn=I-rN \iff N->I/r$ at limit

Inhibition and resultant action tendencies

- Resultant action tendency = T -N
- Resultant action tendency will grow if not ongoing
- Example of bottled up action tendencies
 - A classroom with an authoritarian teacher
 - Strong inhibitory forces lower Tr but not T
 - Release of inhibition releases "bottled up action tendency"

Personality as rates of change in states

- What is stable is how rapidly one changes
- Sociability as rate of becoming sociable
- Anxiety as rate of change of becoming anxious
- Intelligence as rate of change in problem space
- Need achievement as rate of growth in approach motivation when faced with achievement goals

Personality as rates of change

- Growth rates, decay rates, inhibitory strengths
- Growth of tendency when stimulated
 - dTa = personality x situation
- Decay of Ta when ongoing
 - Adaptation rate?
- · Strength of inhibitory processes

Revised Dynamics of Action

- Cues
- Action Tendencies
- Actions
- Cues elicit action Tendencies
- Tendencies strengthen actions
- Actions reduce Tendencies
- Decision rule is mutual inhibition

Cues, Tendencies, Action Incompatible actions Cues Cues Tendency Action

Computer simulations as formal theory

- Theory as a system of differential equations
- Simulations in terms of difference equations
- Predictions are consequences of the model and are not always obvious
- Computer simulations of the CTA model
 - Dynamic variables

Additional alternative formulations

- General recognition of two motivations, two types of behaviors, two outcomes
- · Achievement motivation and approach
- · Avoidance Motivation and withdrawal
- Promotion focus and approach
- · Prevention focus and withdrawal
- Joy of gain, pain of loss

Attributions and cognition

- Information gained by success and failure
 - Success on hard tasks => high ability
 - Failure on easy tasks => low ability
- Stability of self estimates of ability
- Stability of estimates of task difficulty
- Tasks as ways of learning vs. ways of performing

