Statistics: Description and inference

Part II: the t-test
Statistical theory and process control

• Consider the problem facing Gossett or any quality control engineer. At a brewery (or any factory), beer (or widgets) are produced to meet certain specifications. There is a certain amount of variation from specifications that is acceptable, but you need to detect when something has gone wrong; i.e., when specifications are no longer being met. How can you tell if the product is being made up to specification?

• Two basic cases: Large samples and small samples
Data = Model + Error

- Almost all of statistics can be summarized as finding how well a model fits the data.
- We need to specify a model, observe the phenomenon, and see how far off the model is from the data.
- Always ask: What is the model? How well does it fit? What are the alternatives? How well do they fit?
Normal distributions and the central limit theorem

- The distribution of sample means from a population with mean μ and variance σ^2 will tend towards a normal distribution with mean μ and variance σ^2/n

$$s^2 = \frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{(n-1)}$$

$$s.e. = \sqrt{s^2/n} = s/\sqrt{n}$$
Distributions as $f(\text{sample size})$

- samples of size 1
- samples of size 2
- samples of size 4
- samples of size 8
- samples of size 16
- samples of size 32
Basic Production process with mean $\mu = 0$ and $\sigma = 1$.
Production can go bad

distribution of production from faulty system

Frequency

-6 -4 -2 0 2 4 6

0 50 100 150 200

unacceptable
Problem of estimating which state the brewery is in
Consider samples of size n
Consider distribution of sample differences with sample size = 8 and true difference = ± 3.
Variation of group differences depend upon sample size

distribution of sample differences with sample size = 4 and true difference = \(\pm 3 \)

distribution of sample differences with sample size = 32 and true difference = \(\pm 3 \)
Gossett and the t-test
(compare differences of means to standard error of mean)

distribution of t differences with sample size = 4 and true difference = ± 3
A sample of 16, diff = 3

distribution of t differences with sample size = 16 and true difference = ± 3
Types of inferential errors
failure to detect, failure to reject

distribution of t differences with sample size = 16 and true difference = ± 1
Descriptions and inference

- Classical “Null Hypothesis Inference Statistical Test” NHIST
- Descriptive statistics with confidence intervals
 - expressed in units of measurement
 - expressed in “effect sizes”
Null Hypothesis Testing

- The Null or Nill hypothesis of no difference
- Alternative hypothesis is that Null is wrong
- What is the likelihood of observing differences this big or bigger if Null is true
- If likelihood given Null is small, then reject Null
- Error of false rejection when Null is True (Type I)
- Error of failure to reject when Null is false (Type II)
Critique of NHIST

- Null is never true
- It is not that something has an effect, but we want to know how big the effect is.
- Hookes Law is not that if you pull on a wire it gets longer but rather that the amount it stretches is proportional to the force.
- We need to estimate quantities, not just see if they are $\neq 0$
Descriptive with confidence

• Standard error = s/\sqrt{N}
 • observed standard deviation/sqrt(sample size)

• Report observed mean and the standard error of the mean. Allows us to estimate the precision of the estimate.

• If population mean is X, then 68% of observed means will be within 1 se of X, 95% within 2 se of X
Effect size comparisons

- Effect (e.g., difference of means) depends upon the scale we use (meters, feet, inches)
- Standardized effect = effect/within group standard deviation
- Note that while $t = \frac{\text{effect}}{\sqrt{n}}$ and thus varies as a function of sample size, standardized effect size does not depend upon sample size and thus allows one to compare effects across studies
Consider multiple samples

```r
> x <- matrix(rnorm(240), ncol=20)
> error.bars(x, xlab="sample", main="Means and Confidence Intervals")
> abline(h=0)
```
Another 20 samples of size 24

Means and Confidence Intervals
20 samples of size 50

Means and Confidence Intervals

sample

V1 V2 V3 V4 V5 V6 V7 V8 V9 V11 V13 V15 V17 V19
Means and Confidence Intervals

Means and Confidence Intervals

Sample Sizes: 5

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>2.5</td>
<td>-0.5</td>
<td>5.5</td>
</tr>
<tr>
<td>V2</td>
<td>1.5</td>
<td>-1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>V3</td>
<td>0.5</td>
<td>-2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>V4</td>
<td>-0.5</td>
<td>-3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>V5</td>
<td>-1.5</td>
<td>-4.5</td>
<td>1.5</td>
</tr>
<tr>
<td>V6</td>
<td>-2.5</td>
<td>-5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V7</td>
<td>-3.5</td>
<td>-6.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V8</td>
<td>-4.5</td>
<td>-7.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V9</td>
<td>-5.5</td>
<td>-8.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V10</td>
<td>0</td>
<td>-1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>V11</td>
<td>1.5</td>
<td>-0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>V12</td>
<td>0.5</td>
<td>-2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>V13</td>
<td>-0.5</td>
<td>-4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>V14</td>
<td>-1.5</td>
<td>-6.5</td>
<td>1.5</td>
</tr>
<tr>
<td>V15</td>
<td>-2.5</td>
<td>-7.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V16</td>
<td>-3.5</td>
<td>-8.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V17</td>
<td>-4.5</td>
<td>-9.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V18</td>
<td>-5.5</td>
<td>-10.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V19</td>
<td>0</td>
<td>-2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Sample Distribution

- **V1**: 20 samples of size 5
- **V2**: 20 samples of size 5
- **V3**: 20 samples of size 5
- **V4**: 20 samples of size 5
- **V5**: 20 samples of size 5
- **V6**: 20 samples of size 5
- **V7**: 20 samples of size 5
- **V8**: 20 samples of size 5
- **V9**: 20 samples of size 5
- **V10**: 20 samples of size 5
- **V11**: 20 samples of size 5
- **V12**: 20 samples of size 5
- **V13**: 20 samples of size 5
- **V14**: 20 samples of size 5
- **V15**: 20 samples of size 5
- **V16**: 20 samples of size 5
- **V17**: 20 samples of size 5
- **V18**: 20 samples of size 5
- **V19**: 20 samples of size 5

Confidence Intervals

- **V1**: -0.5 to 5.5
- **V2**: -1.5 to 4.5
- **V3**: -2.5 to 3.5
- **V4**: -3.5 to 2.5
- **V5**: -4.5 to 1.5
- **V6**: -5.5 to 0.5
- **V7**: -6.5 to 0.5
- **V8**: -7.5 to 0.5
- **V9**: -8.5 to 0.5
- **V10**: -1.5 to 1.5
- **V11**: -0.5 to 3.5
- **V12**: -2.5 to 2.5
- **V13**: -4.5 to 3.5
- **V14**: -6.5 to 1.5
- **V15**: -7.5 to 0.5
- **V16**: -8.5 to 0.5
- **V17**: -9.5 to 0.5
- **V18**: -2.5 to 2.5
- **V19**: -2.5 to 2.5

Sample Distribution

- **V1**: 20 samples of size 5
- **V2**: 20 samples of size 5
- **V3**: 20 samples of size 5
- **V4**: 20 samples of size 5
- **V5**: 20 samples of size 5
- **V6**: 20 samples of size 5
- **V7**: 20 samples of size 5
- **V8**: 20 samples of size 5
- **V9**: 20 samples of size 5
- **V10**: 20 samples of size 5
- **V11**: 20 samples of size 5
- **V12**: 20 samples of size 5
- **V13**: 20 samples of size 5
- **V14**: 20 samples of size 5
- **V15**: 20 samples of size 5
- **V16**: 20 samples of size 5
- **V17**: 20 samples of size 5
- **V18**: 20 samples of size 5
- **V19**: 20 samples of size 5
20 samples of size 4, 16, 32
Confidence Intervals and precision

• As sample size increases, the confidence intervals get smaller
• But the probability of being included in a 95% confidence interval remains 95%!
Finding t

The data
placebo caffeine
24 24
25 29
27 26
26 23
26 25
22 28
21 27
22 24
23 27
25 28
25 27
25 26

Analysis
Get the data
spelling <- read.clipboard()

Describe the data
describe(spelling)

<table>
<thead>
<tr>
<th>var</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>placebo</td>
<td>1</td>
<td>24.25</td>
<td>1.86</td>
<td>25.0</td>
<td>1.48</td>
<td>21</td>
<td>27</td>
<td>6</td>
<td>-0.33</td>
<td>-1.33</td>
<td>0.54</td>
</tr>
<tr>
<td>caffeine</td>
<td>2</td>
<td>26.17</td>
<td>1.85</td>
<td>26.5</td>
<td>2.22</td>
<td>23</td>
<td>29</td>
<td>6</td>
<td>-0.22</td>
<td>-1.33</td>
<td>0.53</td>
</tr>
</tbody>
</table>
> attach(spelling)
> t.test(placebo, caffeine, equal.var=TRUE)

Welch Two Sample t-test

data: placebo and caffeine
t = -2.5273, df = 21.999, p-value = 0.01918
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.4894368 -0.3438965
sample estimates:
mean of x mean of y
 24.25000 26.16667

 var n mean sd median mad min max range skew kurtosis se
placebo 1 12 24.25 1.86 25.0 1.48 21 27 6 -0.33 -1.33 0.54
caffeine 2 12 26.17 1.85 26.5 2.22 23 29 6 -0.22 -1.33 0.53
Reporting the t.test

- Formally (and formerly!):
 - The hypothesis of no difference between the groups was rejected with a probability of \(p < .02 \)

- More typical:
 - Caffeine (26.17, sd. = 1.85) led to an increase in spelling performance when compared to placebo (24.25, sd. = 1.86), \(t = 2.53, p < .02 \).
 - Some also report the probability of replication:
 - \(p_{rep} = .95 \)