1 Introduction to using R for statistics

Problem set 1 asked for a variety of analyses. Here I show the direct answers, but also do the analyses in a variety of ways. I use the statistical program R. For help on R, go to the short tutorial on using R for research methods http://personality-project.org/r/r.205.tutorial.html In the following, I assume that you have downloaded R and installed the psych package.
2 Comparing two groups

2.1 A sample problem

An investigator believes that caffeine facilitates performance on a simple spelling test. Two groups of subjects are given either 200 mg of caffeine or a placebo. Although there are several ways of testing if these two groups differ, the most conventional would be a t-test. Apply a t-test to the data in Table 1.

Table 1: The effect of caffeine on spelling performance

<table>
<thead>
<tr>
<th>placebo</th>
<th>caffeine</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>

2.2 Review of variability of distributions of samples

Many statistical tests may be thought of as comparing a statistic to the error of the statistic. One of the most used tests, the t-test (developed by Gossett but published under the name of Student), compares the difference between two means to the expected error of the difference between two means. As we know, the standard error (se) of a single group with mean, \(\bar{X} \), with standard deviation, \(s \), and variance, \(s^2 \)

\[
s^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}
\]

is just

\[
s.e. = \sqrt{\frac{s^2}{n}} = \frac{s}{\sqrt{n}}
\]

and the standard error of the difference of two, uncorrelated groups is

\[
se_{x_1-x_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
\]

How best can we understand the notion of a standard error? One way is to draw repeated samples from a known population and examine their variability. Although this was the procedure
used by Gossett, it is also possible to simulate this using random samples drawn by computer from a known or unknown distribution. Using R it is easy to simulate distributions, either the normal or resampled from our data. Consider 20 samples from a normal distribution of size 12 (Figure I). For each sample we show the mean and the confidence interval of the mean. Note how some of the means are very far apart. That is, even though the mean for the population is known to be zero, the means of samples vary around that. The horizontal lines in the graph represent 1.96 * the standard error of the mean. Note how the confidence region around almost all sample means includes the population mean. But note how some do not. The confidence intervals are shown as “cats’ eyes” to represent the point that most of the confidence is in the middle of the region.

> x <- matrix(rnorm(240), ncol=20)
> error.bars(x, xlab="sample", main="Means and Confidence Intervals")
> abline(h=0)

Figure 1: The mean and 95% confidence intervals for twenty randoms of size 12 from a normal distribution.
An alternative to sampling from the normal population is to resample from the actual data that we collect. Figure 2 shows the mean and confidence regions for 20 samples of size 12, where each sample was drawn with replacement from the original data. Once again, note how much variability there is from sample to sample, even though they come from the same population.

```r
> x <- matrix(sample(spelling[,1],240,replace=TRUE),ncol=20)
> error.bars(x, xlab="sample", main="Means and Confidence Intervals")
> abline(h=24.25)
```

![Means and Confidence Intervals](image)

Figure 2: 20 random resamples (with replacement) of the spelling data. The horizontal line represents the mean of the original data.

Just as we can find the standard deviation of the data and standard error of the mean of a sample, so we can find the standard deviation and associated standard error of the mean for differences between two samples. The standard error of the difference of two, uncorrelated groups
is two, uncorrelated groups is

\[s_{x_1 - x_2} = \sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}} \]

(4)

Given that samples from the same population differ a great deal, how much do the spelling scores of the placebo and caffeine groups differ? Do they differ more than would be expected by chance if in the population there was no effect of caffeine?

We can see this graphically by plotting 20 random samples from the differences between the two sets of data (Figure 3).

```r
> x <- matrix(sample(spelling[,1]-spelling[,2],240,replace=TRUE),ncol=20)
> error.bars(x, xlab="sample", main="Means and Confidence Intervals of the difference between the two groups")
> abline(h=0)
```

Figure 3: 20 random resamples (with replacement) of the spelling data. The horizontal line represents the mean of the original data.
2.3 The t-test

The t-test compares the differences between the means to the standard error of the differences between sample means.

That is,

$$ t = \frac{\bar{X}_1 - \bar{X}_2}{se_{\bar{X}_1-\bar{X}_2}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} $$ (5)

This looks somewhat complicated, but because it is such a common operation, the t-test is a basic function in R (as well as all major statistics programs).

2.4 Using R to do t-tests

From the point of view of most statistical programs, the data need to be rearranged to show the Independent Variable (IV) and the Dependent Variable (DV). Then we try to find how much the DV varies as a function of the IV.

In R, this is done by first loading in the `psych` package, then reading the clipboard using the `read.clipboard` and then using the `t.test` function.

```r
> library(psych) #this loads the psych package into your active workspace
> spelling <- read.clipboard() #copy into your clipboard and then read the clipboard into R

It is always useful to describe the data, both numerically and graphically. Numerically we can do this using the `describe` function.

```r
> describe(spelling)

vars n mean sd median trimmed mad min max range skew kurtosis se
Placebo 1 12 24.25 1.86 25.0 24.3 1.48 21 27 6 -0.33 -1.33 0.54
Drug 2 12 26.17 1.85 26.5 26.2 2.22 23 29 6 -0.22 -1.33 0.53
```

We can show this effect by plotting the two distributions back to back (Figure ??). (This is a bit complicated and the code is included as an example.) But this figure does not reflect the standard error of the two measures.

Alternatively, (and probably better) we can do a boxplot and then add the standard errors to the data (Figure ??). This allows us to see how much we expect the groups to differ given their within group standard deviations and the sample size.

Now, we can do the t-test using the `t.test` function. The distribution of t depends upon the degrees of freedom. Figure [6] shows the .05 rejection region (.025 on the left tail, .025 on the right tail.)

```r
> with(spelling, {t.test(Placebo,Drug)})

Welch Two Sample t-test

data: Placebo and Drug
t = -2.5273, df = 21.999, p-value = 0.01918
```

6
> g1 <- spelling[,"Placebo"]
> g2 <- spelling[,"Drug"]
> t1 <- tabulate(g1-20)
> t2 <- tabulate(g2-20)
> barplot(-t1,col = color[1],horiz=TRUE,xlim=c(-4,4),ylim=c(0,10),main="Counts from
+ Placebo and Drug conditions (-20)")
> barplot(t2,col = color[2],horiz=TRUE,add=TRUE)
> axis(2)

Figure 4: Compare the Placebo Condition (blue) with the Drug condition (red). At least to the eye, these appear different.
Figure 5: Spelling performance as a function of placebo and drug. Means and 95% confidence regions are shown in addition to the basic box plot. The boxplot shows the median, the upper and lower quartiles, and the “hinges” of the data.
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.4894368 -0.3438965
sample estimates:
mean of x mean of y
24.25000 26.16667

2.4.1 ANOVA as a generalized t-test.

The t-test compares the difference between two means with respect to the standard error of the
differences. Another test, developed by Ronald Fisher, is the Analysis of Variance (ANOVA). Here
we are comparing an estimate of the population variance derived from the variance of the means
to an estimate of the population variance derived from the variability within each group. For two
groups, the variance estimate has 1 degree of freedom.

To do this, we need to reorganize the data so that we have one column of the dependent variable
and another column showing the conditions. We do this with the stack function.

We use the aov function and then ask for the summary of the results. Compare the results of this
analysis with the previous one. The F statistic for a 1 degree of freedom comparison (one between
two groups) is the same as $t$. The probability of observing an F of this size or bigger is the same
as observing the t of that size or larger (in absolute value).

```r
> prob1 <- stack(spelling)
> summary(aov(values~ind,data=prob1))

Df Sum Sq Mean Sq F value Pr(>F)
ind 1 22.04 22.042 6.387 0.0192 *
Residuals 22 75.92 3.451

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

2.4.2 Linear regression as a generalized ANOVA

Yet another way of thinking about this problem is to use linear regression. That is, if we estimate
$\beta$ in the linear regression equation:

$$\hat{y} = \beta x + e$$

(6)

and we use the lm (for linear model) function

```r
> summary(lm(values~ind,data=prob1))

Call:
 lm(formula = values ~ ind, data = prob1)

Residuals:
 Min 1Q Median 3Q Max
-3.250000 -1.479310 0.750000 1.061855 2.833333
```
Figure 6: Finding area under the curve for for $|t|$ values $|t| < \alpha$ may be done using the qnorm function. In this case, with $df = 22$, show the 5% rejection region. $qt(.025, df=22)$ will yield the critical t value for the lower tail. $qt(.975, df=22)$ for the upper region.
Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 26.1667 | 0.5362 | 48.796 | <2e-16 *** |
| indPlacebo | -1.9167 | 0.7584 | -2.527 | 0.0192 * |

---

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y ^ a˘A´Z 1

Residual standard error: 1.858 on 22 degrees of freedom
Multiple R-squared: 0.225, Adjusted R-squared: 0.1898
F-statistic: 6.387 on 1 and 22 DF, p-value: 0.01918

We find that the difference between the two IV conditions is 1.917 (this is the same as the difference between the means found in the t-test) and that the probability of this difference happening by chance if there were no difference is .0192. This is, of course, the same probability as that found by the t-test or the ANOVA.

3 Linear regression and correlation

Another investigator believes that introversion/extraversion has a linear relationship to spelling ability and reports the following data (Table 2). This can be solved by finding the linear regression of Spelling on Introversion or by finding the correlation between spelling and introversion. Do either one (or both).

<table>
<thead>
<tr>
<th>Introversion</th>
<th>Spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>44</td>
</tr>
<tr>
<td>26</td>
<td>44</td>
</tr>
</tbody>
</table>

For this problem, we need to read in the data from the clipboard using the \texttt{read.clipboard} function and then can use the \texttt{cor} function to find the correlation, or the \texttt{lm} function to find the linear regression, or use the \texttt{pairs.panels} function to find the correlation as well as to graph the data.

\texttt{> int\_spelling <- read.clipboard()}
> round(cor(int_spelling),2)

<table>
<thead>
<tr>
<th></th>
<th>Introversion</th>
<th>Spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introversion</td>
<td>1.00</td>
<td>0.51</td>
</tr>
<tr>
<td>Spelling</td>
<td>0.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>

> cor.test(int_spelling$Introversion,int_spelling$Spelling)

Pearson's product-moment correlation

data: int_spelling$Introversion and int_spelling$Spelling

t = 1.8761, df = 10, p-value = 0.0901

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
-0.09002976 0.83857967

sample estimates:
cor
0.5102348

> summary(lm(Spelling ~ Introversion,data=int_spelling))

Call:
  lm(formula = Spelling ~ Introversion, data = int_spelling)

Residuals:
     Min      1Q  Median      3Q     Max
-13.2168  -3.5376   0.4292   6.1062   9.1372

Coefficients:  
              Estimate Std. Error t value Pr(>|t|)
(Intercept)    20.8717    7.8064   2.674  0.0233 *
Introversion     0.8230    0.4387   1.876  0.0901 .

---

Signif. codes:  0 ^a^Y***^a^Z 0.001 ^a^Y**^a^Z 0.01 ^a^Y*^a^Z 0.05 ^a^Y.^a^Z 0.1 ^a^Y  a^Z 1

Residual standard error: 7.123 on 10 degrees of freedom
Multiple R-squared: 0.2603,  Adjusted R-squared: 0.1864
F-statistic: 3.52 on 1 and 10 DF,  p-value: 0.0901

4 Two way Analysis of Variance

Still another investigator believes that spelling performance is a function of the interaction of caffeine and time of day. She administers 0 or 200 mg of caffeine to subjects at 9 am and 9 pm. These data are typically examined using an Analysis of Variance (ANOVA), although a multiple regression using the general linear model would work as well. If the results are as below (Table 3), do the ANOVA.

We first read in the data (but without the labels for the columns) and then add colnames to the data.
Figure 7: A Scatter Plot Matrix (splom) of the correlation between introversion and spelling
Table 3: Time of day, caffeine, and spelling performance

<table>
<thead>
<tr>
<th></th>
<th>9am</th>
<th>9 am</th>
<th>9pm</th>
<th>9pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mg</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>200 mg</td>
<td>27</td>
<td>30</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>28</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>32</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>25</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>29</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>31</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>28</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>28</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>26</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>29</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>31</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

> tod.data<- read.clipboard(header=FALSE)

Un fortunately, this analysis is a bit more complicated, because we need to string the data out and then add the conditions as additional variables. This will be discussed in more detail in subsequent handouts.

> colnames(tod.data) <- c("AP","AC","PP","PC")
> tod.stacked <- stack(tod.data)
> tod.df <- data.frame(spelling = tod.stacked$values,drug = rep(c(rep("P",12),rep("C",12)),2),time=c(rep("AM",24),rep("PM",24))
> anova(lm(spelling~drug*time,data=tod.df))

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug</td>
<td>1</td>
<td>1.688</td>
<td>1.688</td>
<td>0.2971</td>
<td>0.5885</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>9.187</td>
<td>9.187</td>
<td>1.6175</td>
<td>0.2101</td>
</tr>
<tr>
<td>drug:time</td>
<td>1</td>
<td>238.521</td>
<td>238.521</td>
<td>41.9937</td>
<td>6.633e-08 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>44</td>
<td>249.917</td>
<td>5.680</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---
Signif. codes:  < 0.001 *** < 0.01 ** < 0.05 * < 0.1 . 1

A more generic way of doing this analysis is as follows:

> raw.data <- read.clipboard(header=FALSE)

> nsub <- c(12,12)
> IV1.names <- c("Placebo","Caffeine")

14
> IV2.names <- c("AM","PM")
> nvar=2
> drug <- rep(rep(IV1.names,nsub),nvar)
> time <- rep(rep(IV2.names,nsub),nvar)
> data.df <- data.frame(stack(raw.data)$value,drug = drug,time=time)
> summary(aov(spelling~drug*time,data=tod.df))

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug</td>
<td>1</td>
<td>1.69</td>
<td>1.69</td>
<td>0.297</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>9.19</td>
<td>9.19</td>
<td>1.618</td>
</tr>
<tr>
<td>drug:time</td>
<td>1</td>
<td>238.52</td>
<td>238.52</td>
<td>41.994</td>
</tr>
<tr>
<td>Residuals</td>
<td>44</td>
<td>249.92</td>
<td>5.68</td>
<td></td>
</tr>
</tbody>
</table>

---
Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y ^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1

Table 4: A truncated version of the time of day data.frame.

<table>
<thead>
<tr>
<th>stack.raw.data..value</th>
<th>drug</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>34</td>
<td>25</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>36</td>
<td>26</td>
<td>Placebo AM</td>
</tr>
<tr>
<td>37</td>
<td>24</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>38</td>
<td>23</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>44</td>
<td>21</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>45</td>
<td>26</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>46</td>
<td>22</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>47</td>
<td>23</td>
<td>Caffeine PM</td>
</tr>
<tr>
<td>48</td>
<td>26</td>
<td>Caffeine PM</td>
</tr>
</tbody>
</table>

5 Chi Square tests of independence

Another experimenter wants to test the hypothesis that gender is related to interest in football. 100 subjects (50 male and 50 female) are asked whether or not they watched a recent football game. The results are in Table 5. The question of whether a relationship between two dichotomous
variables is larger than chance is typically done by using a $\chi^2$ test. Find the $\chi^2$ to determine if there is a relationship between gender and watching the football game.

<table>
<thead>
<tr>
<th></th>
<th>Watched</th>
<th>Did not watch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 5: Gender differences in football interest

This is a question of the association between two categorical variables. We are given the counts and we can enter them into a matrix and run the $\chi^2$ test directly. We have an option of correcting for continuity. We turn off this correction for consistency with the hand done version.

```r
> football <- matrix(c(30,20,20,30),ncol=2)
> chisq.test(football,correct=FALSE)
```

Pearson's Chi-squared test

data: football
X-squared = 4, df = 1, p-value = 0.0455

6 Correlated and uncorrelated t-tests

A professor believes that taking statistics increases one’s ability to reason analytically. To test this hypothesis, she develops a test of reasoning and gives it to two sets of students. Those who have just started a statistics course and those who have just finished a statistics course. The results are shown in Table 6

6.1 Uncorrelated t-tests

These data could be analyzed by using t-test (or by doing an ANOVA). Notice that this design is normally not as powerful as doing a pre-post within subjects design.

First, copy the data to a spreadsheet (with no extra lines) and then copy that to the clipboard. We then read the clipboard into R.

```r
reasoning <- read.clipboard()
> t.test(reasoning$before, reasoning$after, equal.var=TRUE)
```

Welch Two Sample t-test
Table 6: The effect of taking a statistics course on reasoning analytically.

<table>
<thead>
<tr>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

data: reasoning$before and reasoning$after
t = -5.0735, df = 21.896, p-value = 4.47e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.983620 -3.349713
sample estimates:
mean of x mean of y
13.33333 19.00000

6.2 Correlated t-tests

Another professor has the same hypothesis, but decides to use a pre-post design. That is, each student takes the reasoning test twice, once before and once after the class. The data can now be analyzed by using a t-test for correlated scores, or a t-test comparing the difference scores to 0.

```r
> t.test(reasoning$before, reasoning$after, equal.var = TRUE, paired = TRUE)

Paired t-test
data: reasoning$before and reasoning$after
t = -4.363, df = 11, p-value = 0.001131
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-8.525295 -2.808038
sample estimates:
mean of the differences
-5.666667
```
When examining these results, we notice that the assumption of independence between the pre and post scores yields a larger t value than when we allow them to be correlated. Examining this more closely, we discover that the correlation between the pre and post scores is actually negative!

\[ \text{cor(reasoning)} \]

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>before</td>
<td>1.00</td>
<td>-0.35</td>
</tr>
<tr>
<td>after</td>
<td>-0.35</td>
<td>1.00</td>
</tr>
</tbody>
</table>

If the numbers are the same as in problem 6, what test should be applied?

There are advantages and disadvantages of the designs used in questions 6 and 6.2. What are some of them?

7 Using the normal distribution

If a test is normally distributed and has a mean of 100 and a standard deviation of 15, then what percentage of students would you expect to have scores of 100 or greater?

Convert the observed score (in this 100) to a standard score by subtracting the mean and dividing the by the standard deviation:

\[ z_x = \frac{(X - \bar{X})}{s_x} \]  \hspace{1cm} (7)

Thus, \( z_x = (100-100) / 15 = 0.0 \). Then, using the `pnorm` function (probability of a normal) we find that \( pnorm(0) = 0.5 \).

This, of course, requires knowing how to think about the normal distribution. This one should be easy, the next one is also fairly easy.

With the same assumptions, what percentage of students would you expect to have scores greater than 115? That is to say, the number of people to the right of the value.

\[ z_x = (115-100) / 15 = 1 \]

\[ 1 - pnorm(1) = .16 \]

8 The binomial distribution

If you flip a fair coin 10 times, how often would you expect to observe at least 8 heads?

This requires thinking about the binomial distribution and using the `dbinom` to help us. We create a vector, x, with 11 values, find the binomial probabilities of each value of x, and add them up for the cases of 8, 9, and 10. To better understand where these probabilities are coming from, we can multiply them by 1024 \( (2^{10}) \) to get the number of outcomes out of the 1024 different outcomes that match what we want:

\[ x \leftarrow 0:10 \]

[1] 0 1 2 3 4 5 6 7 8 9 10
Figure 8: Finding area under the normal curve for for values $< z$ may be done using the `pnorm` function. In this case, $z = 1$ and we want to find the shaded area. `pnorm(1)` will yield the area to the left of 1.
> round(dbinom(x,10,.5),3)
[1] 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001

> dbinom(x,10,.5) * 1024
[1] 1 10 45 120 210 252 210 120 45 10 1

> (1 + 10 + 45)/1024
[1] 0.0546875

Thus, the answer to our question of getting at least 8 is \((1 + 10 + 45)/1024\) or .0547. We can plot the binomial distribution using the `plot` function.
\texttt{\textgreater{} barplot(dbinom(x,10,.5),main="The binomial distribution")}

Figure 9: The binomial distribution for 10 coins (equal probability of a coin flip)