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The extent to which a scale score generalizes

to a latent variable common to all of the scale’s

indicators is indexed by the scale’s general factor

saturation. Seven techniques for estimating this

parameter—omegahierarchical (ωh)—are compared

in a series of simulated data sets. Primary

comparisons were based on 160 artificial data sets

simulating perfectly simple and symmetric

structures that contained four group factors, and

an additional 200 artificial data sets confirmed

large standard deviations for two methods in these

simulations when a general factor was absent.

Major findings were replicated in a series

of 40 additional artificial data sets based on the

structure of a real scale widely believed to contain

three group factors of unequal size and less than

perfectly simple structure. The results suggest that

alpha and methods based on either the first

unrotated principal factor or component should be

rejected as estimates of ωh. Index terms:

generalizability, alpha, omega, factor analysis,

measurement, reliability.

Many scales are assumed by their developers and users to be primarily a measure of one latent

variable. When it is also assumed that the scale conforms to the effect indicator model of measure-

ment (as is almost always the case in psychological assessment), it is important to support such an

interpretation with evidence regarding the internal structure of that scale (Bollen & Lennox,

1991). In particular, it is important to examine two related properties pertaining to the internal

structure of such a scale. The first property relates to whether all the indicators forming the scale

measure a latent variable in common.

The second internal structural property pertains to the proportion of variance in the scale

scores (derived from summing or averaging the indicators) accounted for by this latent variable

that is common to all the indicators (Cronbach, 1951; McDonald, 1999; Revelle, 1979). That is,

if an effect indicator scale is primarily a measure of one latent variable common to all the indica-

tors forming the scale, then that latent variable should account for the majority of the variance in

the scale scores. Put differently, this variance ratio provides important information about the

sampling fluctuations when estimating individuals’ standing on a latent variable common to all

the indicators arising from the sampling of indicators (i.e., when dealing with either Type 2 or
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Type 12 sampling, to use the terminology of Lord, 1956). That is, this variance proportion can be

interpreted as the square of the correlation between the scale score and the latent variable common

to all the indicators in the infinite universe of indicators of which the scale indicators are a subset.

Put yet another way, this variance ratio is important both as reliability and a validity coefficient. This

is a reliability issue as the larger this variance ratio is, the more accurately one can predict an indivi-

dual’s relative standing on the latent variable common to all the scale’s indicators based on his or her

observed scale score. At the same time, this variance ratio also bears on the construct validity of the

scale given that construct validity encompasses the internal structure of a scale.

An index corresponding to this variance ratio can be defined in a model labeled by McDonald

(1999) as the hierarchical factor model, in which it is assumed that observed scores may be decom-

posed into four parts:

x=Gg+AF+DS+E, (1)

where g is a general factor (i.e., a factor common to all k scale indicators), G is a k× 1 vector of

unstandardized general factor loadings (with each unstandardized loading being equal to the item’s

standardized loading times its SD), F is an r× 1 vector of group factors (i.e., factors that are common

to some but not all k indicators) with r< k, A is the k× r matrix of unstandardized group factor load-

ings, S is the k× 1 vector of specific factors unique to each item, D is the k× k diagonal matrix of

unstandardized factor loadings on the item specific factors, and E is the k× 1 vector of random error

scores as above. The model expressed in (1) assumes also that all factors (g, F, and S) are uncorre-

lated with each other, and with E, all the errors (in E) are uncorrelated with each other, without loss

of generality that the variance of each of the common factors (g and those in F) equals 1. In addition,

each of the group factors (in F) is required to have nonzero loadings on at least three indicators to

identify the model in the absence of additional constraints.

Given the model in (1), a coefficient relating to an important psychometric property—

omegahierarchical (ωh)—is defined as

ωh = 10GG01

10S1
, (2)

where S is the observed variance/covariance matrix among the k indicators comprising the scale,

and ωh is the proportion of variance in the scale scores accounted for by a general factor. Of course,

(2) still holds even in the special case when there are no group factors in which (1) reduces to

x=Gg+DS+E:1 ωh can be interpreted as the square of the correlation between the scale score

and the latent variable common to all the indicators in the infinite universe of indicators of which the

scale indicators are a subset (McDonald, 1999). Thus, the larger ωh is, the more strongly one’s scale

scores are influenced by a latent variable common to all the indicators, and the more the observed

scale scores can be said to generalize to scores on that latent variable.

The first psychometric property described above, that there is a latent variable common to all of

the scale’s indicators, is clearly a requisite assumption for the definition of ωh. Whenever possible,

this assumption should be formally tested via the appropriate use of confirmatory factor analysis

(CFA) or via Stout’s methods for evaluating whether a scale is essentially unidimensional. The

primary focus in this article, however, is on methods for estimating ωh rather than on methods for

conducting formal tests of this assumption. The reasons for this are fourfold. First, there are no

published studies comparing the several different methods that one might use to estimate ωh. In

contrast, there are already many excellent discussions of the use of CFA for testing the assump-

tions underlying one’s measurement model; for some examples, see Bollen (1989), Drewes
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(2000), Jöreskog (1971, 1974), McDonald (1981, 1999), Raykov, (1997), and Reuterberg and

Gustafsson (1992). (For examples of CFA tests of the assumption that all of a scale’s indicators

measure a latent variable in common and of the use and interpretation of ωh with real data sets, see

Mohlman & Zinbarg, 2000; Zinbarg, Barlow, & Brown, 1997).

Second, there are likely to be times in practice when the model testing approach fails. For

example, failure to include appropriate comparison models could lead an investigator to accept

a measurement model containing a general factor when in fact there is no general factor. In such

cases, it would be important to know whether an ωh estimate based on this erroneously accepted

model is likely to produce a value reasonably close to zero.

Third, there will be situations in which scale users might not have strong expectations

regarding the number of group factors to include in the measurement model and/or which indi-

cators load on each of the group factors. In such cases, Fabrigar, Wegener, MacCallum, and

Strahan’s (1999) suggestion that exploratory factor analysis (EFA) is a more sensible approach

than CFA seems reasonable, and EFA does not permit formal testing of the assumption of

a latent variable common to all of a scale’s indicators. Despite the inability to conduct a formal test

of this assumption in such cases, estimating ωh can still provide useful information regarding the

justifiability of aggregating across each member of a set of indicators to derive a scale score.

Finally, either a CFA test of the assumption that there is a latent variable common to all of the

scale’s indicators or a test of essential unidimensionality results in a binary decision: Either there

is a general factor present or not; either the scale is essentially unidimensional or not. In contrast,

ωh provides a quantitative estimate indexing how well the scale measures its general factor. A scale

can be essentially unidimensional but still not measure its dominant factor very well if, for exam-

ple, it contains few indicators that are each only weakly saturated with the underlying common

factor. Conversely, a scale can be clearly multidimensional but still have a single factor that is

common to all the scale’s indicators and that accounts for a large proportion of the variance in

scale scores. That is, whereas essential unidimensionality is an important and interesting concept

in its own right, it can be seen that essential unidimensionality is neither necessary nor sufficient

for ωh to be high. Put differently, ωh provides important quantitative information about the reli-

ability and validity of a scale that cannot be obtained from either a CFA inferential hypothesis test-

ing procedure or an inferential test of essential unidimensionality.

Thus, the primary purpose of this article is to address the gap in the literature regarding the rela-

tive performance of different methods of estimating ωh. A discussion of the relationship between

ωh and McDonald’s (1985, 1999) omegas and the importance of ωh is presented, followed by a dis-

cussion of several methods of estimating ωh. Finally, a Monte Carlo study of the performance of

these different methods of estimating ωh is reported.

Relationship With McDonald’s Omegas and the Importance of ωh

Equation (2) is algebraically equivalent to one of the expressions that McDonald (1985, 1999)

has labeled omega (ω). Specifically, if λgj is the loading of indicator j on the general factor, then

equation (2) is equivalent to McDonald’s (1985, p. 217) equation (7.3.8) or to McDonald’s (1999,

p. 89) equation (6.20a), which—using our notation of ωh—reads

ωh = (
∑k

i=1 λgj)
2

10S1
: (3)

Of course, (3) is simpler and more efficient to use than (2) when calculating ωh by hand.
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However, McDonald (1985, equation (7.3.9); 1999, equation (6.2.1)) also identified another

expression and used the same label of ω for it and (3). McDonald’s (1985, p. 217) equation (7.3.9)

or McDonald’s (1999, p. 89) equation (6.2.1) reads as follows:

ω= 1−
∑k

i=1 u
2
i

10S1
, (4)

where the disi and ei components from (1) combine to form ui—the item ‘‘uniqueness’’

ui = disi + ei: (5)

Equation (4) is algebraically equivalent to

ω= 10GG01+ 10AA01

10S1
: (6)

It is readily apparent from (2) and (6) that ω and ωh are different parameters, with ω ≥ ωh and

equality holding in the case of a unidimensional scale only (McDonald, 1985, 1999; Zinbarg,

Revelle, Yoveld, & Li, 2005). In differentiating the labels for these two, Zinbarg et al. (2005)

retained McDonald’s (1985, 1999) label of ω for (4) and (6) but gave (2) and (3) the new label of

ωh. The primary consideration underlying this decision was that the parameter expressed by (2)—

or, equivalently, by (3)—is specific to the hierarchical factor model, whereas (4) may be defined in

either the hierarchical factor model or what McDonald (1999) labels the independent clusters fac-

tor model. In addition, other references to McDonald’s ω have tended to focus on the parameter

equivalent to (4) or (6).

Before discussing the different methods for estimating ωh, it might be useful to briefly discuss

why ωh is important. One might wonder, for example, if one knows that ω or a conventional reliabil-

ity estimate is high for a particular scale, why should one care about the value of ωh for that scale? If

ωh were low for such a scale, it might indicate that (a) the universe from which one’s scale indicators

are sampled is multifaceted, and (b) the scale scores are a result of the largely independent contribu-

tions of what is unique to several of these facets, without much of a contribution from a latent con-

struct that is common to all the facets. If so, it would be unclear (a) which facet is accounting for

a given relationship between the scale scores and some other variable and (b) which facets are ele-

vated among individuals who obtain moderately high scale scores. In such cases, it would be more

appropriate for scale users to derive two or more subscale scores from the instrument rather than

a single scale score to clarify theoretical understanding of relations with other variables and to avoid

equating individuals who have very different profiles across the multiple facets (for related discus-

sions, see Kelley, 1942; McNemar, 1946; Mosier, 1936). The other possible implication of a low

value of ωh when ω or a conventional reliability estimate is high for a particular scale is that there

are several indicators that should be eliminated because they do not load on the dominant factor that

is loaded on by most of the indicators.

Methods for Estimating ωh

In practice, of course, one never knows the loadings of a scale’s indicators on a factor but can

only estimate these loadings and thus can only estimate ωh. This study chose to focus on those

methods that appear to be most commonly used by applied researchers for extracting a general

factor and estimating its loadings. Finally, it is suspected that coefficient alpha is frequently used

by researchers as an estimate of ωh; therefore, alpha was also included in the comparisons.
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Does alpha estimate ωh? In fact, McDonald (1970, 1985, 1999) has proven that coefficient

alpha is a special case of ωh when the indicators conform to the classical test-theory assumptions

underlying alpha—that is, when the indicators are unidimensional and essentially tau-equivalent

and that measurement errors are uncorrelated. However, alpha should provide biased estimates of

ωh when these assumptions are violated, with the direction of the bias depending on the assump-

tion or assumptions violated (Zinbarg et al., in press; for related discussions, see Komaroff, 1997;

Zimmerman, Zumbo, & Lalonde, 1993). On one hand, alpha will tend to underestimate ωh for

a unidimensional set of indicators that are not essentially tau-equivalent (e.g., McDonald, 1970,

1985, 1999; Raykov, 1997). On the other hand, several authors have noted that alpha tends to over-

estimate the proportion of variance due to a general factor when the indicators are multidimensional

(e.g., Cronbach, 1951; Revelle, 1979; Schmitt, 1996).

In fact, many scales used in psychological and educational measurement are multidimensional.

As one example, consider the various IQ scales that have been hypothesized to consist of various pri-

mary mental abilities at the first-order level, higher order group factors, such as the well-known Verbal

and Performance factors at the second-order level and a general factor at the highest order level (e.g.,

Vernon, 1969). Many other examples of hierarchical/higher order structures could be given from other

domains, including personality scales (e.g., Costa & McCrae, 1985; Waller, Lilienfeld, Tellegen, &

Lykken, 1991; Zinbarg, Mohlman, & Hong, 1999), affect scales (e.g., Tellegen, Watson, & Clark,

1999; Watson & Clark, 1992), and psychopathology scales (e.g., Beck & Steer, 1993a, 1993b; Foa,

Riggs, Dancu, & Olasov-Rothbaum, 1993; Zinbarg & Barlow, 1996). Given that (a) multidimensional

scales are common and (b) the problem of alpha overestimating ωh for a multidimensional scale has

received less theoretical and empirical attention than the problem of alpha underestimating ωh for uni-

dimensional indicators that are not essentially tau-equivalent, the focus in the remainder of this article

is on the multidimensional case in which alpha should overestimateωh.

Although the discussion of alpha primarily focuses on the tendency of alpha to overestimate ωh

for multidimensional scales, there is another problem associated with alpha in the multidimen-

sional case. In the words of Osburn (2000), there is a tendency for ‘‘coefficient alpha to underesti-

mate the true reliability when the data are multidimensional’’ (p. 343), where by true reliability,

Osburn must have been referring to the proportion of variance due to all common factors. In fact,

there is a large literature on alpha’s tendency to underestimate the proportion of variance due to all

common factors for a multidimensional scale, and several indices to overcome this limitation,

such as stratified alpha, maximal reliability, or Guttman’s (1945) Lambda 2, have been studied

fairly extensively (e.g., Cronbach, Schoneman, & McKie, 1965; Feldt & Brennan, 1989; Kristof,

1974; Li, Rosenthal, & Rubin, 1996; Osburn, 2000). Moreover, the problem of alpha underesti-

mating the proportion of variance due to all common factors is important as it will lead to overcor-

rection when alpha is used to correct for attenuation. This problem has been much more widely

studied, however, than that of alpha overestimating ωh for a multidimensional scale.

There are additional complexities associated with traditional reliability estimates that are illu-

minated by generalizability theory and should be considered in relation to ωh. The generalizability

theory distinction between absolute error and relative error and analysis of the effects of sampling

scheme on error variance clearly show that one’s research purpose (i.e., whether one is interested

in making ‘‘absolute’’ vs. ‘‘relative’’ interpretations of test scores) and design can affect error var-

iances. In this regard, it is important to note that ωh is a generalizability coefficient that employs

relative error variance rather than absolute error variance. Sampling scheme, however, will

typically not have an effect on ωh.

Factor-analytic methods. Four methods derived from factor analysis are considered and com-

pared in the remainder of this article: (a) perform an EFA using the principal factor method of

extraction (PF) and use the loadings on the first unrotated PF as estimates of the general factor
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loadings (first PF method) (see Goldberg, 1999, for an example of the application of this technique

for the purpose of estimating general factor loadings); (b) perform a higher order EFA analysis

using the PF method of extraction (i.e., extract two or more obliquely transformed first-order prin-

cipal factors and then use PF to extract higher order factors based on the correlations among the

obliquely transformed first-order principal factors), relate the indicators directly to the highest

order PF (using the transformation originally described by Schmid & Leiman, 1957; also see

Loehlin, 1998, pp. 225-228), and use the loadings on the highest order PF as estimates of the gen-

eral factor loadings (HO-PF method); (c) perform a CFA of a higher order factor model and relate

the indicators directly to the highest order factor to estimate the loadings of the indicators on the

general factor (HO-CF method); and (d) perform a CFA of a hierarchical factor model similar

in form to equation (1), in which each indicator loads directly on a general factor in addition to

loading on at least one group factor (Hi-CF method).

Principal components analysis (PCA) methods. PCA is another procedure that some research-

ers use to represent the structure of the correlations among a set of variables. Although the theoret-

ical model underlying PCA is inconsistent with the factor-analytic model underlying ωh (e.g.,

Bentler & Kano, 1990; Gorsuch, 1983, 1990; McArdle, 1990; Mulaik, 1990; Snook & Gorsuch,

1989; Widaman, 1990, 1993), a series of investigations by Velicer (1974, 1976, 1977) and his

associates (Velicer & Fava, 1987; Velicer & Jackson, 1990a, 1990b; Velicer, Peacock, & Jackson,

1982) has shown that PCA and EFA produce highly similar solutions under many conditions. In

addition, although Snook and Gorsuch (1989) and Widaman (1993) have identified conditions in

which there are reliable differences between the two methods, Widaman found that PCA produces

larger estimates of loadings on primary dimensions and smaller estimates of intercorrelations

among the primary dimensions than EFA under these conditions. These two biases may tend to

offset each other when computing loadings on second-order dimensions (especially if one follows

the recommendation of Gorsuch, 1983, pp. 243–244, and uses PF for the second-order factor anal-

ysis of the correlations among the obliquely transformed first-order principal components). That

is, even in the conditions in which Widaman found reliable differences between the lower order

estimates produced by PCA and EFA, the two methods may produce essentially equivalent esti-

mates of second-order loadings. In addition, PCA is the default option in many of the major statis-

tical program packages and has been reported in the past to be more widely used than EFA

(Pruzek & Rabinowitz, 1981; also see Lilly, Hoaglin, & Anderson-Kulman, 1989, cited in Velicer

& Jackson, 1990a). Thus, it is important to examine ωh estimates based on PCA to see if ωh gives

reasonable results, even when it is estimated in a manner that conflicts with the theoretical model

that permitted its derivation in the first place.

Two methods derived from PCA analysis were therefore also considered: (a) perform a PCA and

use the loadings on the first unrotated PC as estimates of the general factor loadings (first PC) (again

see Goldberg, 1999, for an example of the application of this technique for the purpose of estimating

general factor loadings), and (b) perform a higher order PCA (i.e., extract two or more obliquely

transformed first-order principal components and then, following the recommendation of Gorsuch,

1983, use PF to extract higher order factors based on the correlations among the obliquely trans-

formed first-order principal components), relate the indicators directly to the highest order

dimension, and use the loadings on the highest order dimension as estimates of the general factor

loadings (HO-PC).

Study Questions

This study compared the usefulness of (a) the two methods for estimating ωh derived from EFA

(first PF and HO-PF), (b) the two methods derived from CFA (HO-CF and Hi-CF), (c) the two
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methods derived from PCA (first PC and HO-PC), and (d) alpha. These were first applied to artificial

data sets that simulated perfectly simple and symmetric structures containing four group factors but

that varied in terms of the presence and strength of a general factor (the intended meaning of per-

fectly simple and symmetric in this context is that each item had loadings of zero on all but one group

factor, and the group factors were exactly equal in size). In the first general factor loading pattern

condition, the general factor loadings were set equal to 0 to simulate conditions in which a general

factor is absent. In the second general factor loading pattern condition, the general factor loadings

were set equal to .274 to simulate a relatively weak general factor. In the third general factor loading

pattern condition, the general factor loadings were set equal to .274 for the indicators defining two of

the group factors and .500 for the indicators defining the remaining two group factors to simulate

a moderately strong general factor with some degree of heterogeneity in the general factor loadings.

In the fourth general factor loading pattern condition, the general factor loadings were set equal to

.500 to simulate a relatively strong general factor. A second independent variable that was systemati-

cally varied was the sample size, n. This study chose two levels of n: 100 and 200. The third and final

independent variable was the number of indicators or scale length, k. Two levels of k were chosen:

12 indicators (3 indicators per group factor) and 20 indicators (5 indicators per group factor). This

variable was included to study the effects of scale length on the variousωh estimates because the bias

inherent in alpha tends to increase with scale length, whereas it has been noted that differences

between PF and PC analyses tend to diminish with increased scale length (e.g., Gorsuch, 1983,

Nunnally, 1978; Snook & Gorsuch, 1989; Widaman, 1993).

Certain findings to follow are reasonably well documented in the literature; for example, the

first unrotated factor or component often indicates the presence of a strong general dimension,

even when none exists (Jensen & Weng, 1994; Nunnally, 1978). Thus, a relatively brief amount of

space is devoted to findings that are additional demonstrations of such effects. Of main interest is

an examination of whether the HO-PF, HO-CF, HO-PC, and Hi-CF methods of estimating ωh are

more accurate than alpha and the first PF and first PC methods. A good estimator should be

(a) unbiased and (b) relatively efficient, and (c) its accuracy should be stable across different general

factor loading patterns, sample sizes, and scale lengths.

To begin to test the generalizability of the results from the initial series of 160 artificial data

sets, 40 additional artificial data sets were generated based on the structure of widely used scales

in the measurement of anxiety—the Anxiety Sensitivity Index (ASI; Reiss, Peterson, Gursky, &

McNally, 1986). The structure of the ASI is useful for testing the generalizability of the major findings

from the initial series of 160 simulated data sets as it is thought to differ in several ways from the per-

fectly simple and symmetric four-group factor structures simulated in the initial series of 160 artificial

data sets. That is, the ASI has been consistently found to contain three group factors, with one group

factor much larger than the other two and with several indicators having group factor cross-loadings

(e.g., Mohlman & Zinbarg, 2000; Zinbarg et al., 1997; Zinbarg et al., 1999). Thus, of the 16 indicators

comprising the ASI, 8 have their primary loadings on the first group factor, and the remaining 8 indica-

tors are evenly divided between the second and third group factors. In addition, using 0.15 as a cutoff

for cross-loadings, Zinbarg et al. (1997) found that 4 ASI indicators have a cross-loading on a second

group factor, in addition to their primary group factor loading and one item loaded on all three group

factors.

Method

For all analyses, artificial data sets were generated using EQS (Bentler, 1989). In the initial

series of simulations, 10 artificial data sets were created within each of the 16 conditions resulting

R. E. ZINBARG, I. YOVEL, W. REVELLE and R. P. MCDONALD

A COMPARISON OF ESTIMATORS FOR ωh 127



from the 4 (type of higher order structure: higher order factor absent, weak higher order factor

loadings, mixed higher order factor loadings, and strong higher order factor loadings) ×
2(n : 100 vs: 200)× 2(k, 12 vs: 20) design. In each simulation, the indicators were divided into

four equal-sized sets of indicators (thus there were three indicators per set in the k= 12 condition

and five indicators per set in the k= 20 condition).

The higher order factor model representations of the models underlying these simulations were as

follows. In all of the models, every indicator within each of the four sets of indicators had a loading

of .707 on that set’s group factor. For the 40 simulations that did not contain a general factor, all four

group factors had loadings of 0 on the second-order factor. For the 40 simulations in the weak gen-

eral factor loadings condition, the four group factors had loadings of .387 on the second-order factor.

For the 40 simulations in the mixed general factor loadings condition, the first two group factors had

loadings of .387 on the second-order factor, whereas the last two group factors had second-order fac-

tor loadings of .707. For the 40 simulations in the strong general factor loadings condition, the four

group factors had loadings of .707 on the second-order factor. These models produced the following

population correlation matrices. In each condition, indicators loading on the same group factor cor-

related .50. In the general factor absent condition, indicators loading on different group factors corre-

lated 0. In the weak general factor loading condition, indicators loading on different group factors

correlated .075. In the mixed general factor loading condition, indicators loading on Group Factor 1

correlated .075 with indicators loading on Group Factor 2, indicators loading on Group Factors 1

and 2 correlated .137 with indicators loading on Group Factors 3 and 4, and indicators loading on

Group Factor 3 correlated .25 with indicators loading on Group Factor 4. Finally, in the strong gen-

eral factor loadings condition, indicators loading on different group factors correlated .25.

The factors and errors and hence measured variables in each simulation were multivariate nor-

mally distributed. Given that many measurement scales are composed of indicators that yield non-

normal and/or categorical data, the choice to model multivariate normally distributed indicators

limits the generality of the results reported here and therefore deserves comment. The reasoning

behind this choice was prosaic yet may be sensible nevertheless. First, the methods employed here

often produce results when applied to nonnormal and/or categorical data that converge very

strongly with the results of methods that were explicitly developed for nonnormal and/or categori-

cal data (e.g., factor loadings are often correlated .90 or higher with item slope estimates from IRT

analyses). Second, it could be argued that a reasonable strategy for an initial test of different meth-

ods for estimating ωh is to conduct this test using conditions that maximize the likelihood that at

least some of the methods would perform well. That is, before undertaking the more difficult task

of testing these methods in simulations of categorical variables, one might want to know if there

are any conditions in which ωh could be estimated in a relatively unbiased and efficient manner.

Finally, ωh could be easily adapted for use with the nonlinear factor analysis model developed by

McDonald (1963, 1965, 1999) explicitly for use with categorical data. (A detailed description of

checks on the adequacy of the data generation procedure and more details regarding the simulation

methods are available upon request from Richard E. Zinbarg.) Coefficient alpha was computed for

each artificial data set using the SPSS (Nie, Hull, Jenkins, Steinbrenner, & Bent, 1975) reliability

procedure. PCAs and EFAs were conducted using the SPSS (Nie et al., 1975) factor procedure

with oblimin rotation for the higher order solutions and iterative estimates of communality using

the squared multiple correlation (SMC) as the initial estimate for PF extraction. Each higher order

EFA was conducted by extracting four first-order factors, rotating them using oblimin (with delta

set to 0), and then subjecting the intercorrelation matrix of the first-order factors to a factor analy-

sis and extracting a single second-order factor (note that one could use other methods of oblique

rotation other than oblimin but could not use an orthogonal method such as varimax, which is the

default option for many computer packages). CFAs were conducted using EQS (Bentler, 1989)

128

Volume 30 Number 2 March 2006

APPLIED PSYCHOLOGICAL MEASUREMENT



and maximum likelihood estimation. Each higher order CFA fit a model in which there were four

group factors that were each loaded on by one fourth of the indicators, and each of the group fac-

tors loaded on a single second-order factor. Each hierarchical CFA fit a model consisting of one

general factor, which was loaded on by all indicators, and four group factors, which each were

loaded on by one fourth of the indicators. It should be noted that the dimensionality of the higher

order EFA, PCA, and CFA models equaled four, whereas the dimensionality of the hierarchical

CFAs equaled five. This is because in the higher order models, the higher order dimension lies

entirely in the space defined by the primary four dimensions, whereas in the hierarchical CFA

models, the general factor does not lie in the space defined by the group factors given that all five

factors were constrained to be mutually orthogonal. ωh estimates from all seven methods (first PF,

first PC, HO-PF, HO-PC, HO-CF, Hi-CF, and coefficient alpha) for each sample were compared

to the population ωh value by subtracting the population value from each of the estimates. The

resulting difference scores provided a direct measure of the bias of the ωh estimates and alpha as

compared to the population ωh values. This yielded seven sets of difference scores, which were

analyzed by a repeated-measures multivariate analysis of variance (MANOVA) in which the type

of higher order structure was a between-groups factor with four levels, number of indicators was

a between-groups factor with two levels, and sample size was a between-groups factor with two

levels. The repeated-measure factor of estimate type had seven levels and was decomposed into

a set of five planned contrasts. The first contrast was designed to test the hypotheses of primary

interest—namely, that the HO-PAF, HO-PC, HO-CF, and Hi-CF methods (the putatively accu-

rate methods) are better than alpha and the first PF and first PC methods (the putatively inaccu-

rate methods). Thus, Contrast 1 contrasts the four putatively accurate methods with the three

putatively inaccurate methods. Contrast 2 tests for differences among the putatively inaccurate

methods; specifically, it contrasts alpha with the first PF and first PC estimators. Contrasts 3, 4,

and 5 were designed to test for differences among the four putatively accurate methods. Contrast 3

contrasts the two exploratory methods (HO-PF and HO-PC) with the two CFA methods (HO-CF

and Hi-CF). Contrast 4 contrasts the HO-PF method with the HO-PC method. Contrast 5 contrasts

the HO-CF method with the Hi-CF method. Based on the findings of Jensen and Weng (1994), it

was predicted that any differences involving Contrasts 3, 4, and 5 would be trivially small.

Results

Table 1 presents the correlations among the population values of ωh and the seven estimators of

ωh across all 160 simulations. Table 2 presents the population values of ωh and the mean differ-

ence scores for the seven methods of estimating ωh across the four types of structures and two

levels of the number of indicators simulated in this study. The standard errors were very small for

almost all of the comparisons owing to the repeated-measures design and the very high correla-

tions among most of the estimators. Therefore, it is important to focus heavily on effect size esti-

mates in addition to statistical significance. The results were collapsed across the two different

levels of sample size as almost all effects involving sample size were nonsignificant, all were trivi-

ally small (η2 values ≤ .006), and the standard deviations were not appreciably smaller for the

larger sample sizes for all but one of the seven estimators (the ratio of the standard deviation in the

larger sample size condition divided by the standard deviation in the smaller sample size condition

equaled 1.001, 1.005, 1.050, 0.935, 0.911, 0.935, and 0.786, respectively, for alpha and the first

PF, first PC, HO-PF, HO-PC, HO-CF, and Hi-CF methods).

Contrast 1: The four putatively accurate methods versus the three putatively inaccurate methods.

The main effect of Contrast 1 was significant (F1,144 = 1680:12, p≤ :001; η2 = :65), indicating that
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the average of the four putatively accurate methods was more accurate (less positively biased) than

the average of the three putatively inaccurate methods when aggregated across all conditions

(M= :023, SD= :086 vs. M= :356, SD= :153). Importantly, although this main effect was mod-

erated by two interactions discussed in more detail below, the average of the four putatively accurate

methods was less positively biased than the average of the putatively inaccurate methods in every

condition in these simulations.

The two-way interactions of Contrast 1× the type of general factor loading pattern (F3,144 = 44:11,

p≤ :001, η2 = :05) and Contrast 1× the number of indicators (F1,144 = 4:99, p≤ :05; η2 = :002)

were significant. The significant interaction of Contrast 1× the type of general factor loading pattern

resulted from the fact that the performance of the four putatively accurate methods varied less across

the different general factor loading patterns (general factor absent condition: M= :10, weak higher

order loadings: M=−:02, mixed higher order loadings: M= :04, and strong higher order loadings:

M=−:04) than was the case for the three putatively inaccurate methods. That is, whereas the three

putatively inaccurate methods were positively biased regardless of the type of general factor loading

pattern, they were not as positively biased in the strong higher order loadings condition as in the other

three general factor loading conditions (general factor absent condition: M= :38, weak higher order

loadings: M= :46, mixed higher order loadings conditions: M= :38, and strong higher order loadings

condition: M= :20). The two-way interaction of Contrast 1× the number of indicators was associated

with such a trivially small effect size that its practical significance is highly questionable and will not be

discussed further. No other effects involving Contrast 1 were significant.

To summarize the results for Contrast 1, compared with the three putatively inaccurate methods

of estimating ωh, the four putatively accurate methods were more accurate (less positively biased).

The four putatively accurate methods were also more stable across general factor loading patterns.

Contrast 2: First PF and first PC versus alpha. The interaction of Contrast 2 by the type of gen-

eral factor loading pattern was significant (F3,144 = 109:46, p≤ :001, η2 = :28), as was the interac-

tion of Contrast 2× the number of indicators (F3,144 = 6:64,p≤ :05, η2 = :01). The significant

interaction of Contrast 2× the type of general factor loading pattern resulted from alpha being sig-

nificantly more positively biased in the general factor absent condition (first PF and first

PC: M= :27; alpha: M= :61) but significantly less positively biased in the weak higher order

loadings (first PF and first PC: M= :50; alpha: M= :38), mixed higher order loadings (first PF and

Table 1

Intercorrelations Among Population Values and the Seven Methods of Estimating ωh

Estimator ωh α First PF First PC HO-PF HO-PC HO-CF

α .84

First PF .82 .83

First PC .78 .77 .99

HO-PF .95 .88 .85 .81

HO-PC .95 .88 .85 .81 .99

HO-CF .94 .86 .80 .75 .97 .97

Hi-CF .93 .83 .75 .70 .96 .96 .95

Note. ωh = population value of ωh;α= coefficient alpha; first PF=ωh estimate based on the first unrotated

principal factor; first PC=ωh estimate based on the first unrotated principal component; HO-PF=ωh esti-

mate based on a higher order exploratory factor analysis; HO-PC=ωh estimate based on a higher order prin-

cipal components analysis; HO-CF=ωh estimate based on a higher order confirmatory factor analysis;

Hi-CF=ωh estimate based on a hierarchical confirmatory factor analysis.
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first PC: M= :42; alpha: M= :30), and strong higher order loadings (first PF and first PC: M= :23;

alpha: M= :14) conditions. The two-way interaction of Contrast 2× the number of indicators

resulted from the number of indicators having a greater effect on alpha (η2 = :03) than on the first

PF and first PC methods (η2 = :00), with alpha becoming more positively biased with more indica-

tors (k= 12 : M= :33 vs. k= 20,M= :39), whereas the positive bias in the first PF and first PC

methods did not get worse with more indicators (k= 12 : M= :35 vs. k= 20 : M= :36). No other

effects involving Contrast 2 were significant.

Table 2

Mean Differences Between Estimated and Population Values of ωh: Four Group Factor Simulations

k ωh α First PF First PC HO-PF HO-PC HO-CF Hi-CF

λG ¼ 0

12 .00 .534 .191 .245 .079 .078 .156 .069

(.057) (.232) (.284) (.066) (.065) (.114) (.070)

20 .00 .691 .297 .335 .094 .095 .170 .089

(.056) (.286) (.328) (.082) (.082) (.106) (.071)

Weak λG

12 .34 .336 .406 .568 −.035 −.036 .019 −.067

(.036) (.157) (.189) (.074) (.072) (.079) (.107)

20 .36 .432 .464 .574 −.012 −.015 .044 −.055

(.026) (.094) (.102) (.076) (.077) (.062) (.133)

Mixed λG

12 .43 .333 .410 .546 .076 .073 .129 .127

(.030) (.027) (.020) (.057) (.057) (.057) (.061)

20 .58 .272 .317 .409 −.048 −.043 .026 .004

(.012) (.012) (.010) (.039) (.041) (.031) (.035)

Strong λG

12 .71 .123 .176 .291 −.071 −.082 −.006 −.012

(.025) (.019) (.002) (.054) (.055) (.050) (.049)

20 .74 .159 .188 .257 −.059 −.066 .008 .001

(.014) (.009) (.002) (.049) (.049) (.039) (.052)

.360 .306 .403 .003 .001 .068 .020

(.181) (.178) (.214) (.088) (.091) (.098) (.100)

Note. k= the number of indicators; ωh = population value of ωh; α= coefficient alpha; first PF=ωh estimate

based on the first unrotated principal factor; first PC=ωh estimate based on the first unrotated principal compo-

nent; HO-PF=ωh estimate based on a higher order exploratory factor analysis; HO-PC=ωh estimate based on

a higher order principal components analysis; HO-CF=ωh estimate based on a higher order confirmatory factor

analysis; Hi-CF=ωh estimate based on a hierarchical confirmatory factor analysis; λG = population values of

loadings of indicators on a general factor. Standard deviations are in parentheses. As the data were aggregated

across the two levels of sample size, each of the eight conditions resulting from the 2 (k: 12 vs. 20)× 4 (type of

general factor loading pattern) displayed in this table contained 20 replications. The bottom two rows display

the results aggregated across all 160 replications.
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To summarize the results for Contrast 2, when aggregated across all conditions, alpha

(M= :36) and the first PF and first PC methods (M= :35) were comparably positively biased.

However, alpha was much more positively biased when a general factor was absent and somewhat

less positively biased in the weak, mixed, and strong higher order loadings conditions. Finally, the

bias associated with alpha did increase with scale length, whereas the bias associated with the first

PF and first PC methods did not.

Contrast 3: Exploratory versus confirmatory methods. The main effect of Contrast 3 was signif-

icant (F1,144 = 119:21, p≤ :001) though very small (η2 = :05), indicating that, even though the

average bias associated with both types of methods was small, the average of the HO-PF and

HO-PC methods (M= :002, SD= :090) was slightly less positively biased than the average of the

HO-CF and Hi-CF methods (M= :044, SD= :090) when aggregated across all conditions. Not only

was this main effect associated with a very small effect size, but it was also moderated by a signifi-

cant interaction of Contrast 3 by type of general factor loading pattern (F3,144 = 10:90, p≤ :001).

Although this interaction was associated with a trivially small effect size (η2 = :01), the interaction

resulted from inconsistency across the general factor loading pattern conditions in terms of whether

the CFA or exploratory approaches were less biased. That is, the putatively accurate CFA

approaches were nonsignificantly less negatively biased in the weak higher order loadings con-

dition (M=−:015) and the strong higher order loadings condition (M=−:002) than the puta-

tively accurate exploratory approaches (weak higher order loadings condition: M=−:024,

strong higher order loadings condition: M=−:070), whereas the exploratory approaches were

significantly less positively biased in the general factor absent (confirmatory:M= :121, exploratory:

M= :087) and mixed higher order loadings (confirmatory: M= :071, exploratory: M= :014)

conditions (a pattern of interaction that makes the importance of the main effect questionable).

Finally, the interaction of Contrast 3× the sample size was significant (F1,144 = 13:22, p≤ :001;
η2 = :006) but was associated with such a trivially small effect size that its practical significance is

highly questionable and will not be discussed further. There were no other significant effects involv-

ing Contrast 3.

To summarize the results for Contrast 3, the results reversed from one type of general factor load-

ing pattern to the next in terms of whether the exploratory procedures or the CFA procedures were

less biased. Importantly, both the putatively accurate exploratory procedures and the putatively

accurate confirmatory procedures tended to perform well in most of the conditions studied here.

Contrast 4: HO-PF versus HO-PC. The main effect of Contrast 4 was significant (F1,144 = 9:98,

p≤ :005) though trivially small (η2 = :0002). Whereas the average bias associated with these two

estimators was small, the average of the HO-PC estimator (M= :001, SD= :091) was slightly less

positively biased than the average of the HO-PF estimator (M= :003, SD= :088). However, not

only was the effect size for this main effect trivially small, but it was also moderated by a significant

interaction of Contrast 4 by the type of general factor loading pattern (F3,144 = 7:29, p≤ :001;
η2 = :0004). Although this interaction itself was associated with a trivially small effect size, the

interaction resulted from inconsistency across the general factor loading pattern conditions in terms

of whether the HO-PF or HO-PC approaches were less biased. That is, the interaction resulted from

the HO-PF estimator being nonsignificantly more positively biased in the general factor absent con-

dition (HO-PF: M= :087, HO-PC: M= :086) but nonsignificantly less negatively biased in the

weak higher order loadings (HO-PF: M=−:023, HO-PC: M=−:025) and strong higher order

loadings (HO-PF: M=−:065, HO-PC: M=−:074) conditions and nonsignificantly less positively

biased in the mixed higher order loadings condition (HO-PF: M= :014, HO-PC: M= :015). There

were no other significant effects involving Contrast 4.

To summarize the results for contrast 4, although there were significant differences in bias

between the HO-PC and HO-PF estimators when averaged across all conditions, the magnitude of
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this difference was trivially small, and the trivially small differences in bias between them were

not consistent across the types of general factor loading patterns. Most important, both estimators

performed well in all of the conditions studied here.

Contrast 5: HO-CF versus Hi-CF. The main effect of Contrast 5 was significant (F1,144 = 75:64,

p≤ :001) though very small (η2 = :06), indicating that, even though the average bias associated with

both estimators was reasonably small, the Hi-CF estimator (M= :020, SD= :100) was slightly less

positively biased than the HO-CF estimator (M= :068, SD= :098) when aggregated across all con-

ditions. Not only was this main effect associated with a very small effect size, but it was also moder-

ated by a significant interaction of Contrast 5 by the type of general factor loading pattern

(F3,144 = 16:72, p≤ :001; η2 = :04). This interaction resulted from the HO-CF estimator being signif-

icantly more positively biased in the general factor absent (HO-CF: M= :163, Hi-CF: M= :079) and

mixed higher order loadings (HO-CF: M= :078, Hi-CF: M= :065) conditions but significantly less

biased in the weak higher order loadings (HO-CF: M= :032, Hi-CF: M=−:061) and strong higher

order loadings (HO-CF:M= :001, Hi-CF:M=−:006) conditions. Finally, the interaction of Contrast

5× the type of general factor loading pattern times the sample size was significant (F3,144 = 3:11,

p≤ :05; η2 = :007) but was associated with such a trivially small effect size that its practical signifi-

cance is highly questionable and will not be discussed further. There were no other significant effects

involving Contrast 5.

To summarize the results for Contrast 5, although there were significant differences between

the HO-CF and Hi-CF estimators on average, the magnitude of this difference was very small, and

the differences in bias were not consistent across the general factor loading pattern conditions.

Moreover, both estimators performed well in most of the conditions studied here.

Efficiency. Table 2 shows that both alpha and the four putatively accurate methods were associ-

ated with relatively small standard deviations in almost every condition. In contrast, the first PF

and first PC methods were associated with large standard deviations in the general factor absent

condition and also tended to have somewhat elevated standard deviations in the weak higher order

loadings condition.

Are the large standard deviations in the general factor absent condition due to random sam-

pling error or actual variation? The results presented thus far are consistent with the predictions

that the HO-PF, HO-PC, HO-CF, and Hi-CF methods would outperform alpha and the first PC and

first PF methods. However, the large standard deviations observed for the first PC and first PF

methods in the general factor absent condition complicate the interpretation of the results. Given

the relatively small number of replications per condition, it is difficult to know whether these large

standard deviations are due to random sampling error or actual variation. To more conclusively

resolve this issue, more replications for the general factor absent condition were conducted. Fifty

simulated samples were created within each of the four conditions resulting from the 2× 2 cross-

ing of sample size (n: 100 vs. 200) and scale length (k, 12 vs. 20); thus, a total of an additional 200

artificial data sets in the general factor absent condition were created. In addition to estimating ωh

using the first PF and first PC methods, for comparison purposes, ωh was also estimated using

the putatively accurate method with the largest standard deviation in the general factor absent

condition—the HO-CF method—and alpha for each of these data sets.

Again, the results were collapsed across the two different levels of sample size as all effects

involving sample size were trivially small (η2≤ :002). Compared with alpha (k=12 :SD= :067;
k=20 :SD= :037) and the HO-CF (k=12 :SD= :113; k=20 :SD= :107) method, the standard

deviations associated with the first PF method (k=12 :SD= :162;k=20 : SD= :187) were moder-

ately large, and those associated with the first PC method (k=12 : SD= :273; k=20,SD= :260)

were very large. This evidence strongly suggests that the large standard deviations shown in Table 2

for the first PF and especially for the first PC methods reflect actual variation rather than random
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sampling error. (To save space, the mean difference scores for the four methods of estimating ωh in

these simulations and the results of the inferential statistical comparing the methods in terms of their

bias are not reported here but are available upon request from Richard E. Zinbarg.)

Do the results generalize beyond the case of four equal-sized group factors with perfectly

simple structure? Additional limitations of the results presented thus far are that it is not clear

(a) if they hold only in the case of four group factors and (b) if they hold only in the case of scales

with perfectly simple and symmetric structure. As noted above, to begin to address these issues,

some additional simulations were conducted based on the structure of the ASI (Reiss et al., 1986).

Ten simulated samples were created within each of the four conditions resulting from the 2× 2

crossing of sample size (n: 50 vs. 200) and type of general factor loading pattern (relatively weak

vs. relatively strong); thus, a total of an additional 40 artificial data sets were created based on

the structure of the ASI. In all conditions, the models used to generate the artificial data sets were

created by assigning indicators their standard deviations from Zinbarg et al.’s (1997) Table 1

and their standardized group factor loadings from Zinbarg et al.’s Table 2, including cross-

loadings that were greater than .15. This resulted in 11 indicators loading on only one of the

three group factors, four indicators having a cross-loading on a second group factor, and one

item loading on all three group factors. In the relatively strong general factor loading condition,

indicators were assigned their standardized general factor loadings from Zinbarg et al.’s Table 2.

This resulted in an average standardized general factor loading of :49(SD= :13). In the relatively

weak general factor loading condition, the standardized general factor loadings were reduced by an

average of .35, such that the average standardized general factor loading equaled :14(SD= :05).

ωh estimates from all seven methods (first PF, first PC, HO-PF, HO-PC, HO-CF, Hi-CF, and

coefficient alpha) for each sample were again compared to the population ωh value by subtracting

the population value from each of the estimates. For these simulations, the dimensionality of the

estimated models equaled three for the higher order EFA, PCA, and CFA models and four for the

hierarchical CFAs. Table 3 presents the population values of ωh and the mean difference scores

for the seven methods of estimating ωh across the two types of structures and two levels of sample

size in the set of simulations based on the structure of the ASI. The repeated-measure factor of

estimate type was again decomposed into the set of five planned contrasts described above.

Contrast 1: The four putatively accurate methods versus the three putatively inaccurate

methods. The main effect of Contrast 1 was significant (F1,36 = 1041:60, p≤ :001; η2 = :68),

indicating that the average of the four putatively accurate methods was more accurate (less posi-

tively biased) than the average of the three putatively inaccurate methods when aggregated

across all conditions (M= :022, SD= :115 vs. M= :441, SD= :172). Importantly, although

this main effect was moderated by two interactions (discussed below), the average of the four

putatively accurate methods was more accurate (less positively biased) than the average of the

three putatively inaccurate methods in every condition.

The two-way interaction of Contrast 1× the type of general factor loading pattern (F1,36 = 70:30,

p≤ :001, η2 = :05) and the three-way interaction of Contrast 1× the type of general factor loading

pattern times the sample size interaction (F1,36 = 5:18, p≤ :05; η2 = :004) were significant. The sig-

nificant interaction of Contrast 1× the type of general factor loading pattern resulted from the type of

general factor loading pattern having a greater effect on the putatively inaccurate methods (η2 = :89)

than on the putatively accurate methods (η2 = :21), with the putatively inaccurate methods being

even more positively biased with a weak general factor (M= :60) than with a relatively strong gen-

eral factor (M= :28). The three-way interaction of Contrast 1× the type of general factor loading

pattern times the sample size was associated with such a trivially small effect size that its practical

significance is highly questionable and will not be discussed further. No other effects involving

Contrast 1 were significant.
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Contrast 2: First PF and first PC versus alpha. The main effect of Contrast 2 (F1,36 = 82:82,

p≤ :001, η2 = :04) and the three-way interaction of Contrast 2× the type of general factor loading

pattern times the sample size (F1,36 = 3:98, p≤ :05, η2 = :002) were significant. The significant

main effect of Contrast 2 resulted from the first PF and first PC being even more biased than alpha

aggregated across all conditions (first PF and first PC: M= :46; alpha: M= :39). The three-way

interaction of Contrast 2× the type of general factor loading pattern times the sample size was asso-

ciated with such a trivially small effect size that its practical significance is highly questionable and

will not be discussed further. No other effects involving Contrast 2 were significant.

Contrast 3: Exploratory versus confirmatory methods. The main effect of Contrast 3 was signi-

ficant (F1,36 = 27:14, p≤ :001, η2 = :11), indicating that the average of the confirmatory methods

(M= :003) were even less biased than the average of the exploratory methods (M= :132). There

were no other significant effects involving Contrast 3.

Contrast 4: HO-PF versus HO-PC. The interaction of Contrast 4× the type of general factor

loading pattern was significant (F1,36 = 6:55, p≤ :05) though trivially small (η2 = :007). There

were no other significant effects involving Contrast 4.

Contrast 5: HO-CF versus Hi-CF. The main effect of Contrast 5 was significant

(F1,36 = 30:18, p≤ :001, η2 = :22), indicating that, even though the average bias associated with

Table 3

Mean Differences Between Estimated and Population Values of ωh:

Simulations Based on the Anxiety Sensitivity Index

n ωh α First PF First PC HO-PF HO-PC HO-CF Hi-CF

Weak λG

50 .127 .559 .521 .715 .130 .120 .118 −.053

(.049) (.109) (.148) (.153) (.140) (.244) (.096)

200 .127 .529 .503 .780 .127 .151 .048 −.050

(.031) (.064) (.087) (.121) (.122) (.142) (.056)

Strong λG

50 .643 .231 .244 .343 −.038 −.072 −.015 −.226

(.026) (.032) (.020) (.114) (.107) (.142) (.210)

200 .643 .252 .259 .352 .073 .050 .076 −.082

(.007) (.007) (.003) (.065) (.057) (.061) (.086)

.393 .382 .548 .073 .062 .057 −.103

(.156) (.146) (.220) (.132) (.138) (.162) (.142)

Note. n= sample size; ωh = population value of ωh;α= coefficient alpha; first PF=ωh estimate based on the

first unrotated principal factor; first PC=ωh estimate based on the first unrotated principal component;

HO-PF=ωh estimate based on a higher order exploratory factor analysis; HO-PC=ωh estimate based on

a higher order principal components analysis; HO-CF=ωh estimate based on a higher order confirmatory

factor analysis; Hi-CF=ωh estimate based on a hierarchical confirmatory factor analysis; λGpopulation

values of loadings of indicators on a general factor. Standard deviations are in parentheses. As the data were

aggregated across the two levels of sample size, each of the eight conditions resulting from the 2 (k: 12 vs. 20)× 4

(type of general factor loading pattern) displayed in this table contained 20 replications. The bottom two rows

display the results aggregated across all 160 replications.
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both estimators was reasonably small, the Hi-CF estimator (M=−:10, SD= :14) tended to be

negatively biased, whereas the HO-CF estimator (M= :057, SD= :16) tended to be positively

biased. There were no other significant effects involving Contrast 5.

To summarize the results from Contrasts 1 through 5 for the simulations based on the structure

of the ASI, perhaps the most important result was that the four putatively accurate methods were

again more accurate (less positively biased) and more stable across general factor loading patterns

than the three putatively inaccurate methods. In addition, on average, the first PF and first PC

methods were even more positively biased than alpha. There were also some differences among

the four putatively accurate methods. Thus, the HO-CF and Hi-CF methods were even more accu-

rate (less positively biased) on average than the HO-PF and HO-PC methods, and the HO-CF

method tended to be slightly positively biased, whereas the Hi-CF tended to be slightly negatively

biased. However, it is important to note that the HO-PF, HO-PC, HO-CF, and Hi-CF methods all

performed reasonably well in the ASI simulations.

Efficiency. Table 3 shows that alpha was associated with relatively small standard deviations in

each of the four conditions included in the simulations based on the structure of the ASI. In con-

trast, the putatively accurate CFA methods were associated with large standard deviations in the

n= 50 condition. In addition, the first PF, first PC, HO-PF, and HO-PC also tended to have some-

what elevated standard deviations in the n= 50 condition (especially when also in the weak higher

order loadings condition).

Discussion

The predictions that the HO-PF, HO-PC, HO-CF, and Hi-CF methods of estimating ωh would

perform better than coefficient alpha and the first PF and first PC methods received strong support.

In every single condition studied here, the HO-PF, HO-PC, HO-CF, and Hi-CF methods of estimat-

ing ωh were more accurate than alpha and the first PF and first PC methods. Moreover, with a few

exceptions, the HO-PF, HO-PC, HO-CF, and Hi-CF methods all performed well (within .10 of the

population value of ωh, on average) to very well (within .05 of the population value of ωh, on aver-

age) in terms of bias. The HO-PF, HO-PC, HO-CF, and Hi-CF methods were also reasonably effi-

cient in almost every condition, except the n= 50 condition, in the simulations based on the ASI in

which the CFA methods were associated with especially large standard deviations. It is also impor-

tant to note that (a) differences in the size and variance of the general factor loadings, (b) variation in

sample size ranging from 50 to 200, (c) increasing scale length from 12 to 20 indicators, (d) whether

there were four group factors present versus three, and (e) the presence versus absence of item cross-

loadings by and large had trivial effects on the performance of the HO-PF, HO-PC, HO-CF, and

Hi-CF methods of estimating ωh. Although the HO-PF, HO-PC, HO-CF, and Hi-CF methods tended

to outperform alpha and the first PF and first PC methods, even with sample sizes of 50 in the simula-

tions based on the structure of the ASI, their performance did deteriorate somewhat (especially in

terms of efficiency), suggesting caution in their use and interpretation with such small sample sizes.

Although it is reasonable to ask whether there is a best method for estimating ωh among these four

methods, any differences that did emerge among them in terms of both bias and efficiency tended to be

quite small. Moreover, these differences were not consistent across conditions as each of the main

effects (exploratory vs. confirmatory, HO-PF vs. HO-PC, and HO-CF vs. Hi-CF) involved was moder-

ated by interactions in which the results reversed from one condition to the next in terms of which

method was even less biased than another. Furthermore, the estimates derived from these four methods

were almost perfectly correlated with each other and the population values of ωh. Thus, none of these

four methods is recommended over the other three at this time on empirical grounds. However, it seems
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reasonable to argue that the HO-PF, HO-CF, and Hi-CF methods should be preferred over the HO-PC

method on the grounds that the theoretical model underlying PCA analysis is inconsistent with the

factor-analytic model underlyingωh. Fortunately, the results suggest that the accuracy of estimatingωh

will not suffer when researchers who do not share this preference use the HO-PC method instead.

The use of the two CFA methods (HO-CF and Hi-CF) over the accurate EFA method (HO-PF)

is recommended whenever the investigator has clear theoretical or empirical expectations regard-

ing the number of group factors to include in the measurement model and the pattern of loadings

of the indicators on the common factors. The advantage of the CFA methods over the EFA method

is that in the process of fitting one’s CFA model to obtain the parameter estimates necessary to cal-

culate ωh, one can (and should) test the assumptions required for the derivation of ωh. However,

the results suggest that when investigators do not have clear expectations regarding the number of

factors and/or the pattern of the loadings of the indicators on the common factors and therefore use

EFA rather than CFA, the accuracy of estimating ωh does not have to suffer in the multidimen-

sional case as long as they use the HO-PF method rather than the first PF method.

A recommendation that should be heeded, regardless of the method chosen to estimate ωh, is to

always examine the pattern of the estimated general factor loadings prior to estimating ωh. Such

an examination constitutes an informal test of the assumption that there is a latent variable com-

mon to all of the scale’s indicators that can be conducted even in the context of EFA. If the load-

ings were salient for only a relatively small subset of the indicators, this would suggest that there is

no true general factor underlying the covariance matrix. Just such an informal assumption test

would have afforded a great deal of protection against the possibility of misinterpreting the mis-

leading ωh estimates occasionally produced in the simulations reported here. For example, Tables

4 and 5 show the ‘‘general’’ factor loadings from the HO-CF solutions taken from the eight sam-

ples in the general factor absent condition that produced ωh estimates of .28 or higher. The pattern

of loadings on the ‘‘general’’ factor in all but the last of these cases was clearly representing one of

the group factors and should be interpreted as evidence that there was no true general factor and

that ωh should therefore be set to equal 0.

It is also worth noting that the results provide yet another demonstration of the well-

documented problem with coefficient alpha as an estimate of the proportion of scale variance due

to a general factor. In each of the conditions studied here, alpha was a highly positively biased esti-

mator of ωh. The first PC and first PF methods of estimating ωh share coefficient alpha’s limita-

tions in this regard. In fact, the first PC and first PF methods were even somewhat more positively

biased than alpha in these simulations whenever a general factor was present, although they were

less positively biased than alpha when a general factor was absent. In addition, the bias associated

with alpha did increase with scale length as expected. The use of any of these three methods is not

recommended for estimating ωh when group factors are present, as was the case in each of the

simulations studied here.

The conclusion that alpha provides a highly positively biased estimate of ωh for multidimen-

sional data might appear to conflict with the large literature demonstrating that alpha tends to

underestimate reliability. The key to understanding this seeming contradiction lies in the distinc-

tion between a general factor and group factors made within the hierarchical factor model

expressed in equation (1). Maximal reliability, stratified alpha, and related coefficients—such as

McDonald’s (1985, 1999) omega expressed equivalently by either equation (4) or (6)—are related

to the proportion of scale variance associated with all common factors, including not only the gen-

eral factor (if one is present) but also the group factors. As Cronbach (1951) noted, alpha tends to

fall somewhere in between the proportion of scale variance due to a general factor and the propor-

tion due to all common factors (i.e., alpha tends to overestimate the former while underestimating

the latter).
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Relationship to Alternative Studies Demonstrating a Positive Bias in Alpha

Models accounting for error covariances—which bear some similarities to the group factors

considered here—have been considered by Green and Hershberger (2000), Komaroff (1997), and

Raykov (1998a). Moreover, each of these authors has concluded that there are conditions invol-

ving correlated errors in which α has a positive bias. There are some important differences in the

contributions made by these earlier articles and the current article. First, Green and Hershberger,

Komaroff, and Raykov were concerned with the bias in alpha as an estimate of a reliability coeffi-

cient closer in meaning to ω rather than as an estimate of ωh. Raykov, for example, examined cases

in which a scale measured two separate, but possibly intercorrelated, factors and was interested

in alpha as an estimate of the proportion of variance in scale scores due to both of these factors.

There will be conditions—such as when Raykov’s two factors are uncorrelated, the factor loadings

are heterogeneous, and the error covariances are zero—in which alpha would continue to overesti-

mate ωh but would underestimate the proportion of variance in scale scores due to both of these

factors that Raykov focuses on. In addition, there are at least two potential advantages of the group

factor approach over the correlated errors approach. The first advantage is conceptual in that if one

allows for correlated errors, it would appear to be difficult to maintain a distinction between com-

mon factors and errors/uniquenesses (for a related discussion, see Green & Hershberger, 2000,

p. 253). The second advantage is that the group factor approach will often be more parsimonious.

That is, one has to estimate m(m− 1)

2
paths in the error covariance approach to model the associations

among the m indicators loading on a particular group factor that are modeled via the estimation of

m paths using the group factor approach.

Table 4

Sample General Factor Loading Patterns From Higher Order Confirmatory Factor Model Solutions

That Grossly Overestimated ωh When No General Factor Was Present With 12 Indicators

Sample

Indicator Sample 3 (n= 100) Sample 4 (n= 100) Sample 9 (n= 200) Sample 10 (n= 200)

1 −.15 .07 .13 .06

2 −.10 0.07 .11 .05

3 −.12 0.07 .12 .06

4 .12 0.13 .08 .24

5 .11 0.16 .08 .21

6 .11 0.20 .07 .23

7 .82 .02 .80 .49

8 .72 .02 .70 .46

9 .82 .02 .73 .52

10 .16 .74 .01 .17

11 .19 .70 .01 .18

12 .17 .78 .01 .19

HO-CF .36 .35 .30 .28

α .51 .58 .61 .64

Note. n= sample size; HO-CF= sample estimate of ωh using the higher order confirmatory factor analysis

method; α= coefficient alpha. Factor loadings ≥ j:30j are listed in boldface.
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Limitations, Future Directions, and Conclusion

This study has at least three strengths. First, a wide range of methods of estimating ωh are evalu-

ated for multidimensional scales, as are often encountered in practice. Second, ωh estimates are

investigated under various levels of a number of conditions, including strength of general factor

loadings, scale length, and sample size. Third, the major findings were replicated in a set of simula-

tions based on the structure of a widely used instrument, suggesting that the generality of the results

is not limited to the four-factor case or to structures demonstrating perfectly simple structures.

However, this study also has limitations. First, only multivariate normal distributions and con-

tinuous indicators are used, whereas nonnormal and/or categorical data are often encountered in

practice. Second, although sample size and the number of indicators were varied, further work

should be done to examine whether larger effects for these variables would emerge if more levels

and more extreme values were used for them.

Third, with the exception of the first PF and first PC methods, all of the EFA, CFA, and PCA

models were correctly specified. That is, the CFA models correctly specified the number of group

factors, and the indicators that should load on the group factors and the HO-PF and HO-PC models

Table 5

Sample General Factor Loading Patterns From Higher Order Confirmatory Factor Model Solutions

That Grossly Overestimated ωh When No General Factor Was Present With 20 Indicators

Sample

Indicator Sample 3 (n= 100) Sample 4 (n= 100) Sample 9 (n= 200) Sample 10 (n= 200)

1 .16 .11 .14 .13

2 .14 .12 .12 .13

3 .16 .12 .11 .11

4 .15 .11 .12 .12

5 .14 .11 .13 .12

6 .02 .71 .09 .18

7 .01 .71 .09 .19

8 .02 .69 .08 .18

9 .01 .75 .08 .17

10 .02 .65 .09 .18

11 .80 .21 −.03 .37

12 .66 .21 −.04 .41

13 .81 .24 −.04 .39

14 .67 .21 −.03 .40

15 .71 .22 −.03 .36

16 .07 −.07 .61 .30

17 .08 −.07 .70 .30

18 .08 −.07 .67 .27

19 .07 −.07 .67 .28

20 .06 −.07 .73 .31

HO-CF .35 .40 .28 .32

α .74 .70 .73 .78

Note. n= sample size; HO-CF= sample estimate of ωh using the higher order confirmatory factor analysis

method; α= coefficient alpha. Factor loadings≤ j:30j are listed in boldface.
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correctly specified the number of first-order and second-order factors. Further work should be

done to examine the extent to which estimates of ωh are affected by model misspecification such

as underfactoring and overfactoring. Such work should certainly include the case of overfactoring

in the unidimensional situation, which is an important special case given that the unidimensional

situation often represents the ideal of measurement. The first PF and first PC methods would be

expected to perform better in the unidimensional case than in the multidimensional situations stud-

ied here, but it is unclear how much the performance of the HO-PF, HO-PC, HO-CF, and Hi-CF

methods will deteriorate in the unidimensional case due to the effects of overfactoring.

Fourth, point estimation only was considered; no consideration was given to the important topic

of using sample statistics to derive interval estimates for the population value of ωh. Although fur-

ther discussion of this topic is beyond the scope of this article, it is important to note that when esti-

mating ωh, good statistical practice would dictate that point estimation should be supplemented by

interval estimation. Certainly, interval estimation of ωh is a topic that should be studied in detail in

future investigations. Bootstrapping and analytic techniques similar to thos‘e described by Raykov

(1998b) and Raykov and Shrout (2002) should also be useful for obtaining a standard error and

confidence interval when estimating ωh.

Fifth, all simulations included four or three group factors and therefore do not address a diffi-

culty that arises in the estimation of ωh when only two group factors are present. In the two–group

factor case, the higher order portion of any higher order model will be underidentified as there will

be only one observed correlation between the two lower order factors to estimate the two higher

order factor loadings. Thus, further work is needed to examine the extent to which different identi-

fying constraints introduce bias into the process of estimating ωh in the two–group factor case.

Finally, it is important to note that if ωh is applied in a mechanical fashion without careful

thought, an investigator might be led to discard a potentially useful item set. For example, imagine

a 20-item, effect-indicator instrument with a factor structure consisting of a very weak general fac-

tor and three group factors that are loaded on by 13, 4, and 3 indicators, respectively. The popula-

tion value of ωh would be low in this instance, and the sample estimates for the accurate methods

of estimating ωh (e.g., HO-PF, HO-PC, HO-CF, Hi-CF) should be correspondingly low. It is not

difficult to imagine some scale users or developers deciding to abandon the entire item set as

a result. Such a decision, however, would represent an instance of ‘‘throwing out the baby with the

bath water,’’ as it is likely that the 13 indicators loading on the first group factor might form a scale

with a more than adequate value of ωh. Depending on the size of the loadings, even the four indica-

tors loading on the second group factor might form a scale with an adequate ωh, as might the three

indicators loading on the third group factor. If so, one might be able to derive three reasonable sub-

scales from these 20 indicators, even though a single total score based on all 20 indicators would

be ill advised.

Thus, it is important to keep in mind that a small value of ωh merely indicates that the empirical

justification for aggregating across all indicators to derive a single, effect-indicator total score is

weak. Moreover, the proper interpretation of ωh must take into account not only the estimated

value of ωh but also the matrix of factor loadings. When ωh estimates are relatively high, one needs

to pay attention to both the general factor loadings (as discussed earlier to protect against the possi-

bility of overestimating ωh when a general factor is not actually present) and the group factor load-

ings (to see if [a] subscale scores might be considered in addition to a total scale score or [b] there

are indicators that might simply be dropped because they do not have a salient loading on either

the general factor or one of the group factors). When ωh estimates are relatively low, one needs to

pay particular attention to the group factor loadings to see if (a) reasonable subscales might be cre-

ated, even though a single total score would not be well justified; (b) some indicators might be
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dropped, leaving a shorter instrument that yields a single, well-justified total score; or (c) addi-

tional indicators are needed to produce an instrument that yields several subscale scores.

In conclusion, four methods of estimating ωh (Hi-CF, HO-PF, HO-PC, and HO-CF) were

identified that clearly outperformed alpha and the first PF and first PF methods. In addition, the accu-

racy of these four methods of estimatingωh was stable across the different general factor loading pat-

terns, with sample sizes ranging from 50 to 200 and scale lengths ranging from 12 to 20 indicators.

Based on theoretical considerations in addition to performance in these simulations, it is recom-

mended that the HO-CF and/or the Hi-CF methods be used to estimate ωh whenever the investigator

has a clear a priori measurement model that can be tested via CFA. When the investigator does not

have a clear a priori measurement model, the HO-PF method is recommended, although the HO-PC

method will probably produce similar results. Regardless of which of these methods an investigator

uses to estimate ωh, in practice, the proper interpretation of the implications of ωh for scale develop-

ment and use requires an examination of the pattern of group factor loadings. Finally, one should

always assess the reasonableness of the assumption that all of the scale’s indicators measure a latent

variable in common prior to estimating ωh. One informal test of this assumption that can be per-

formed in either a CFA or an EFA context is to examine the pattern of estimated general factor

loadings. Whenever possible, this assumption should also be tested formally via the appropriate

use of CFA.

Notes

1. That is, there will be no group factors when the scale is unidimensional. In this case, the vector

of unstandardized general factor loadings is given by the vector of unstandardized loadings on

the single common factor.

2. It is obvious that m(m− 1)

2
≥ m only when m> 2. What may be less obvious is that even when

m= 2, the number of group factor loadings estimated will equal the number of error covar-

iances estimated as a constraint has to be imposed on one of the two group factor loadings for

identification purposes. Thus, the group factor approach will not only usually be more parsi-

monious but will always be at least as parsimonious as an error covariance approach that

models the associations among the m indicators loading on a particular group factor.
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