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A simple index of the unidimensionality of a scale, u, is introduced. u is just the product of two
other indices: τ (a measure of τ equivalence) and ρc (a measure of congeneric fit). Simulations
of u across scales ranging from 3 to 24 items with various levels of factor homogeneity, and
demonstrations of its performance on 45 different personality and ability measures are shown.
Comparisons with traditional measures (e.g., ωh, α, ωt, CFI, ECV) show greater sensitivity to
unidimensional structure and less sensitivity to the number of items in a scale. u is easily
calculated with open source statistical packages and is relatively robust to sample sizes ranging
from 100 to 5,000.

Public Significance

How to evaluate whether a psychologocial scale measures just one construct is a recurring
problem in assessment. We present an intuitively easy to understand and easily calculated new
index of undimensionality, u. We compare this index to conventional measures with simulated
and real data sets.

Evaluating the dimensionality of a measure has been
an ongoing challenging for many years. Ever since
(Walker, 1931, p 75) assessed the degree of ‘higgledyp-
iggledyness,’ researchers have attempted to assess the
unidimensionality of scales. Hattie (1985) reviewed and
then evaluated (Hattie, 1984) 87 ways to assess unidi-
mensionality and stated that “Unidimensionality can be
rigorously defined as the existence of one latent trait un-
derlying the set of items” (Hattie, 1985, p 152). Although
a test with more than 3 items can never be truly uni-
dimensional, the question becomes how to assess how
close a test is to unidimensionality (Ten Berge & Socan,
2004). Unidimensionality is a necessary condition for
the application of Item Response Theory (IRT) models,
even though these models can also be fit to multidimen-
sional models as well (e.g., MIRT, Chalmers, 2012). If
a multi-item scale is unidimensional, scores on that scale
will reflect one underlying construct. If not, then scores
reflect the underlying construct as well as other, extrane-
ous sources of variance.

In this article, we suggest yet one more index, the
u measure of unidimensionality which we believe com-
pares favorably to some of the more popular alternatives.
u is both easy to understand and easy to calculate and
does not share the weaknesses of several popular alterna-
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tives (e.g., α, ωt, CFI, or Explained Common Variance).
To understand the challenge of evaluating unidimen-

sionality, consider a multi-item scale designed to mea-
sure a single construct (T) with inevitable random error
(E). That is, each item xi contributes construct-specific
variance but is “befuddled by error” (McNemar, 1946,
p 246). In terms from classical test theory (Spearman,
1904; Lord & Novick, 1968; McDonald, 1999), this may
be represented as

xi = λiτ + ϵi (1)

with variances
σ2

i = λ
2
i σ

2
τ + σ

2
ϵ (2)

In the unlikely case that the λi are equal for all items
and the variances of the ϵi are all equal, the items are
said to be parallel. That is, all items contribute equally
with respect to the construct measured by the scale. Sim-
ilarly, subsets of the items from the scale would represent
parallel forms. If the λi are equal for all items but the
variances of the ϵi are unequal, the items are said to be
τ equivalent. That is, each item has the same True score
but different error variances. If the λi are unequal (as is
the typical case for most measures used in psychology),
the items are said to be congeneric. For parallel items,
all the correlations and covariances among items will be
identical. For τ equivalent items, the covariances will
be identical but the correlations will not. For congeneric
items, neither the covariances nor the correlations need
to be identical. In all three cases, the values of λi fit a
one factor latent variable model (Lucke, 2005; McDon-
ald, 1999).
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The relationships among these values are often used
to evaluate the internal consistency of scales as an es-
timate of reliability as with, for example, Cronbach’s α
(aka Guttman’s λ3) (Cronbach, 1951; Guttman, 1945).
For a scale (X) that is scored as the sum of its items
(X = Σxi ), internal consistency reliability is estimated
as the proportion of construct-specific variance to total
observed variance. That is,

ρxx =
σ2
τ

σ2
X

Although most frequently used as an index of reliability,
α is sometimes used — confusingly, in our opinion —
as a means of assessing unidimensionality as well. α is
a particularly poor measure because it assumes (without
testing) the case of τ equivalence (Cronbach, 1951). In
other words, all of the items are presumed to have the
same (true score) relationship to the measured construct.
This means α is just a function of the number of items
(k) and the average covariance of the items:

α =
σ2

X − Σσ
2
i + kσ̄i j

σ2
X

=
k

k − 1
kσ̄i j

(σ̄2
i + (k − 1)σ̄i j)

. (3)

Before the introduction of modern computers, the advan-
tage of α was that it could be calculated from just the test
variances (σ2

X) and the sum of the item variances (Σσ2
i ),

and it did not require examining the internal structure of
the test. This simplicity of calculation and subsequent
introduction into popular proprietary software packages
probably accounts for the widespread use of α (Cho &
Kim, 2015),

An alternative to α is omega-total (ωt). Based upon
a factorial model of the item covariances (McDonald,
1999), ωt is found by replacing the item variances (σ2

i )
with the amount of common variance (h2

i ) for each item:

ωt =
σ2

X − Σσ
2
i + Σh2

i

σ2
X

. (4)

Importantly, ωt reflects the total amount of common vari-
ance among the items rather than the amount due to any
single factor or dimension, and this limits its usefulness
as a measure of unidimensionality. The difficulty is that
ωt does not indicate the extent to which items co-vary on
underlying dimensions beyond the primary or “general”
factor.

In fact, α and ωt are similar in that both are the ratio
of a reduced variance σ2

X − δ to the total variance σ2
X

(where δ = Σσ2
i − kσ̄i j for α or δ = Σσ2

i − Σh2
i for ωt).

Thus, in both cases, the numerator increases linearly by
the number of items, but the denominator by the square
of the number items. Importantly, both coefficients will
increase asymptotically to 1 as the number of items in-
creases.

McDonald (1999) simultaneously introduced another
coefficient which he also referred to as ω, but which Zin-
barg, Revelle, Yovel, & Li (2005) refer to as hierarchi-
cal ω (ωh). ωh may be found by a hierarchical factoring
of the original data followed by a subsequent Schmid-
Leiman Transformation (Schmid & Leiman, 1957) or by
a bifactor solution with a general factor and a number of
group factors.

When considering the case of ωh, one might expand
equation 1 to account for the relationship of any item to
(multiple) group factors in addition to the general and
specific/error terms3. Thus, the observed score for a par-
ticular subject on an item is the sum of the products of
factor scores (g, f, s, e) and loadings (c, A, D) on these
factors:

x = cg + A f + Ds + e (5)

ωh is found by summing the loadings on the general fac-
tor and comparing the square of their sum to the test vari-
ance:

ωh =
(Σλi)2

σ2
X

=
1cc′1′

σ2
X

. (6)

As ωh represents the proportion of general factor vari-
ance to total test variance, it directly addresses the diffi-
culty introduced by using ωt (the proportion of all com-
mon variance to total test variance) as an estimate of uni-
dimensionality. In cases where one or more subset(s) of
items share group variance that is not fully explained by
variance on the general factor among all items, ωh will be
a smaller proportion than ωt and a much better estimate
of unidimensionality. In addition, because the relative
contribution of the variance of a single item to the total
variance decreases as the the number of items increases,
the asymptotic value of ωh is

ωhlimit = (1cc′1′)/(1cc′1′ + 1AA′1′).

Although Revelle & Condon (2019) have previously
recommended reporting ωh, α, and ωt for all scales in
order to estimate reliability andωh for unidimensionality,
unfortunately ωh is not appropriate for very short scales.
This is becauseωh requires at least 2 (and preferably ≥ 3)
factors in order to find a hierarchical solution or even a
bifactor structure. Since the degrees of freedom for a
factor model with k factors and n variables is:

n(n − 1)
2

− nk +
k(k − 1)

2
the minimum number of variables needed for a 2 factor
model to be defined is 5. Note that this case does not
allow for a proper hierarchical solution using a Schmid-
Leiman transformation for ωh, as this requires 3 lower

3Specific and error are confounded unless using repeated
measures to assess specific variance.
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level factors (Zinbarg, Yovel, Revelle, & McDonald,
2006). The minimum number of variables needed to
properly estimate a hierarchical solution is 6. Thus, in
the case of n ≤ 4 ωh = ωt.

Another index of the percent of general factor vari-
ance is Explained Common Variance (ECV) which com-
pares the amount of variance extracted by the first factor
to the amount explained by all factors (Rodriguez, Reise,
& Haviland, 2016; Sijtsma, 2009; Ten Berge & Socan,
2004). ECV as discussed by Ten Berge & Socan (2004)
compares the size of the eigenvalues extracted using min-
imium rank factor analysis (Shapiro & ten Berge, 2002;
Ten Berge & Kiers, 1991). A nice set of examples com-
paring α to the ECV is given by Sijtsma (2009).

Yet one more way to test for unidimensionality is to
ask how many factors best fit a scale. If the best esti-
mate is greater than one, clearly the scale is not unidi-
mensional. However, the number of factors problem is
notoriously difficult (Horn & Engstrom, 1979) and varia-
tions on the method of parallel analysis Horn (1965) have
spawned a small industry (Lorenzo-Seva, Timmerman,
& Kiers, 2011; Revelle & Rocklin, 1979; Timmerman
& Lorenzo-Seva, 2011; Velicer, 1976; Zwick & Velicer,
1986). However, even if these methods suggest one fac-
tor, they do not distinguish between the quality of the
scale. Thus a completely homogeneous scale of six items
with all correlations of .16 and and ECV of 1.00 (table 6
from Sijtsma, 2009) is seen as no different than the six
political items from Ten Berge & Socan (2004) with an
ECV of .82. Both appear to be one factor using parallel
analysis with minimum rank factor analysis.

Here we introduce a very simple alternative test for
unidimensionality — u, which may be found using the
unidim function in the psych package in R — and ex-
amine its properties using both simulated and real data.

Unidim: a test for unidimensionality

The logic is deceptively simple: Unidimensionality
implies that a one factor model of the data fits the co-
variances of the data. If this is the case, then the fac-
tor model implies that R = λλ′ + U2 will have residuals
of 0. That is, that the observed correlations will equal
the model. To evaluate this, find the residuals of the
observed correlations minus the modeled correlations,
sum the off-diagonal elements of these squared residuals
(Fm =

∑
i, j(Ri j − λλ)2 ), and compare this to the sum of

off-diagonal elements of the squared original correlations
(Fo =

∑
i, j R2

i j). This is the measure of congeneric fit:

ρc = 1 −
Fm

Fo
=

Fo − Fm

Fo
.

When fitting a one factor model, ρc is a direct measure
of the fit of a congeneric model to the observed correla-
tions/covariances.

A statistically more elegant estimate is that of the
Compararative Fit Index (Bentler, 1990), which com-
pares a fit statistic (i.e., χ2) of the model less the ex-
pected value (Fm = χ

2
m − do fm) to that of the original

data (Fo = χ
2
o − do fo). Constraining both of the fits to be

positive leads to the CFI:

CFI =
max(χ2

0 − d f0), 0) − max(χ2
m − d fm), 0)

max(χ2
0 − d f0), 0)

. (7)

Clearly ρc is a direct index of the fit of a model,
whereas the CFI is a comparison of the fit statistics. Al-
though very similar in their values, we prefer the sim-
plicity of ρc. In the following tables, we compare these
two indices as well as a larger set of fit statistics.
ρc works well, but when some of the loadings are very

small or differ drastically in their magnititude, it is prob-
ably not a good idea to think of the items as forming a
unidimensional scale. Thus, an alternative model (the τ
statistic) compares the observed correlations (ri j) to the
mean correlation (r̄i j) and considers 1 - the ratio of the
sum of the squared residuals to the sum of the squared
correlations:

τ = 1 −
∑

i, j (ri j − r̄i j)2∑
i, j r2

i j

(8)

τ will achieve a maximum if the item covariances are
all identical (a tau equivalent model, McDonald, 1999).
Indeed, for dichotomous data, given the equivalence of
factor analytic models using tetrachoric correlations with
2PL IRT models (Kamata & Bauer, 2008; Takane & de
Leeuw, 1987), the Rasch (1966) model — a one param-
eter IRT model with the assumption that all items have
equally good discrimination — is functionally a τ equiv-
alent model.

The product of ρc and τ is the measure of unidimen-
sionality, u. That is, congeneric fit x tau equivalent fit
as a measure of unidimensionality. In the following ta-
bles, we show how u behaves in various simulations as
well as with real data. We also show the behavior of
the u statistic as a function of sample size and compare
the standard errors as a function of sample sizes (Fig-
ure 1). These demonstrations use the functions unidim
and omega as implemented in the psych package (Rev-
elle, 2024a) for the open source statistical system R (R
Core Team, 2023). Output from both functions is also
shown in the reliability function.

Tests with simulations

To demonstrate the unidim function, we simulated
four one-factor models for 3, 6, 12 and 24 items. Load-
ings for each model were specified for a three-item
model as large (.7, .6, .5), medium (.6, .5, .4), small (.5,
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.4, .3), or mixed ( .7, .5, .3) loadings. To form 6, 12, or 24
item structure, the basic loadings were repeated 2, 4, and
8 times. We used the sim and sim.minor functions to
generate the data. Both functions generate a latent vari-
able model by multiplying the factor loading matrix by a
matrix of random normal deviates and then adding nor-
mally distributed error. sim.minor follows the advice of
MacCallum & Tucker (1991) who distinguished between
the factor model we want (pure factors) and a generating
model of pure factors with a number of smaller, nuisance
factors. (For further examples of large and small factors,
see Lorenzo-Seva et al., 2011; Timmerman & Lorenzo-
Seva, 2011).

For ease of simulation, we formed data based upon the
first four columns (pure) or all eight columns (minor) of
Table 2. By partitioning the resulting correlation matrix
appropriately, we are thus able to generate 16 different
one-factor models. We show loadings for each of the
models. The first set (column 1) contain large loadings
(.7, .6, .5), the second medium (.6, .5, .4) loadings, and
the third small (.5, .4, .3) loadings. The fourth column
shows mixed loadings of .7, .5, and .3. The final four
columns were used when generating minor factors, with
loadings of ±.2 randomly assigned to variables. The par-
titioning of the overall 96 x 96 correlation matrix resulted
in e.g., a 3 x 3 correlation matrix with large loadings
(R[1:3,1:3], medium loadings (R[4:6;4:6], or a 6 x 6 with
mixed loadings (R[c(10:12,22:24), c(10:12,22:24)]), etc.

Table 1

Four simulated loadings matrices. For each model, one
of the first 4 columns was combined with columns 5-8.
The loadings represent large, medium and small load-
ings, as well as a mixed set. The minor factors had load-
ings of ±.2 for four nuisance factors. To simulate an
(e.g.) six item problem with medium loadings, the first
six rows of the second and 5-8th columns were used.

Item large middle small mixed m1 m2 m3 m4
1 0.7 0.6 0.5 0.7 0.0 0.0 0.2 -0.2
2 0.6 0.5 0.4 0.5 0.0 0.2 0.0 0.0
3 0.5 0.4 0.3 0.3 -0.2 0.0 0.0 0.2
4 0.7 0.6 0.5 0.7 0.2 0.2 0.2 0.2
5 0.6 0.5 0.4 0.5 0.0 -0.2 0.0 0.0
6 0.5 0.4 0.3 0.3 0.0 0.2 0.0 0.2

... ... ... ..
22 0.7 0.6 0.5 0.7 -0.2 0.0 -0.2 0.2
23 0.6 0.5 0.4 0.5 0.0 0.0 0.2 -0.2
24 0.5 0.4 0.3 0.3 -0.2 0.0 0.0 0.0

Data were generated for 500 simulated subjects using
both the “pure” (just one of the first four columns) and
the “noisy” (one + four noise factors) model. Solutions
for 3, 6, 12, and 24 items per scale for 500 simulated
participants are shown for pure factors in Table 3 and for
noisy data in Table 4. The last four rows reflect scales

formed from the first and second factors for 6, 10, 12, and
24 items4. These are clearly not unidimensional. Several
things to note in these tables: Following the Spearman-
Brown equation (Brown, 1910; Spearman, 1910), α and
ωt increase with the number of items in the scale. Nei-
ther statistic flags the scales formed from two orthogo-
nal factors as poor fits. Because a hierarchical model is
not identified for three item scales, ωh was forced to a
one factor solution for those scales but properly identi-
fies the last four scales as having low values for general
factor saturation. The behavior of the u statistic is very
gratifying, in that it does not increase with the number
of items per scale, varies as a function of the the range
of loadings, and correctly identifies the last four scales
as non-unidimensional. For these examples, the perfor-
mance of the CFI and ECV statistics showed similar pat-
terns: high for unidimensional scales, lower for multi-
dimensional scales. This is in striking contrast to ωt or
α which show very “reasonable” values for these non-
unidimensional scales.

Applying unidm to real data

The simulations were done with continuous item
scores. However, most real ability and personality items
are categorical. unidim can be applied to such data us-
ing either tetrachoric or more generally polychoric cor-
relations. In addition to showing results with simulated
continuous and categorical data (Table 5) we show the
utility of the unidim statistic with real categorical data
from three data sets available in the psychTools package
(Revelle, 2024b) for the R statistical system. For rea-
sons discussed in Chalmers (2017) and Revelle & Con-
don (2019), conventional reliability indices were found
using Pearson correlations. However, the unidimensional
estimates were found from factoring the tetrachoric or
polychoric correlation matrices.

Of these data sets, the first, the ability data set in-
cludes 16 items for 1,525 participants from the Interna-
tional Cognitive Ability Resource (Condon & Revelle,
2014), which represents 4 lower level factors and one
higher level factor (Table 6 part 1). The items are di-
chotomous. The second dataset, bfi, contains data from
2,800 participants who responded to 25 Likert-like items
with six response choices ranging from “very inaccu-
rate” to “very accurate.” Although normally scored us-
ing only five separate constructs (the familiar Big Five
traits shown in Table 6 part 2), composite scales were
also formed here, for demonstration purposes, from two
(E+O), three (A+C+N) or five (all) of these constructs.
This is a particularly nice example of the advantage of the

4Because we also are finding split half estimates, we lim-
ited our examples to 24 items to allow for finding all split half
values from the 2,704,156 possible splits.
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Table 2

The simulated loadings matrix. Rows 1-12 were repeated 8 times to generate the 96 item loadings. The loadings
represent large, medium and small loadings, as well as a mixed set. The minor factors had loadings of ±.2 for four
nuisance factors. The resulting 96* 96 correlation matrix is then partitioned into unifactorial subsets. (E.g., R[1:3,1:3]
represents the correlation matrix of 3 items with large correlations, R[4:6,4:6] the medium sized correlation matrix.

Variable Large Medium Small Mixed m1 m2 m3 m4
V1 0.7 0.0 0.0 0.0 0.0 0.0 0.2 -0.2
V2 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0
V3 0.5 0.0 0.0 0.0 -0.2 0.0 0.0 0.2
V4 0.0 0.6 0.0 0.0 0.2 0.2 0.2 0.2
V5 0.0 0.5 0.0 0.0 0.0 -0.2 0.0 0.0
V6 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.2
V7 0.0 0.0 0.5 0.0 0.2 0.2 0.0 0.0
V8 0.0 0.0 0.4 0.0 -0.2 0.0 -0.2 0.2
V9 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.2
V10 0.0 0.0 0.0 0.7 -0.2 0.0 0.2 0.0
V11 0.0 0.0 0.0 0.5 0.0 0.0 0.2 -0.2
V12 0.0 0.0 0.0 0.3 -0.2 0.0 0.0 0.0

... ... ... ... ... ... ... ...
V85 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0
V86 0.6 0.0 0.0 0.0 0.0 0.0 0.0 -0.2
V87 0.5 0.0 0.0 0.0 0.2 0.2 0.0 0.0
V88 0.0 0.6 0.0 0.0 -0.2 0.2 0.0 0.0
V89 0.0 0.5 0.0 0.0 -0.2 0.0 0.0 0.2
V90 0.0 0.4 0.0 0.0 0.2 0.0 -0.2 -0.2
V91 0.0 0.0 0.5 0.0 0.0 0.0 0.2 -0.2
V92 0.0 0.0 0.4 0.0 -0.2 0.0 0.0 0.0
V93 0.0 0.0 0.3 0.0 0.2 -0.2 0.2 0.0
V94 0.0 0.0 0.0 0.7 0.0 0.2 0.2 0.0
V95 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.0
V96 0.0 0.0 0.0 0.3 0.0 0.0 -0.2 0.2

Table 3

Various estimates of unidimensionality and reliability for 500 simulated participants for scales formed from 3, 6, 12,
and 24 items with factor loadings as specified in Table 2. The last four rows report results for scales formed from two
orthogonal subscales. u is the unidimensionality statistic, τ and ρC are the τ and congeneric fits, ωh and ωt are the
two omega statistics, α is the traditional estimate. Max split and min split represent the maximum and minimum split
half reliabilities found by complete sampling of all Ck

k/2 possible split half coefficients. r̄ reports the mean correlation
in the scale. Median r is just the median correlation among the items. CFI is the comparative fit index, ECV is the
Explained Common Variance.

hline Variable u τ ρC ωh α ωt Max split Min split r̄ Median r CFI ECV N items
high.3 0.99 0.99 1.00 0.61 0.61 0.61 0.58 0.52 0.34 0.36 1.00 0.98 3
med.3 0.99 0.99 1.00 0.54 0.54 0.54 0.50 0.45 0.28 0.28 1.00 0.98 3
low.3 0.97 0.97 1.00 0.34 0.33 0.34 0.32 0.26 0.14 0.14 1.00 0.97 3
mixed.3 0.92 0.92 1.00 0.45 0.44 0.45 0.44 0.31 0.21 0.18 1.00 0.97 3
high.6 0.96 0.96 0.99 0.69 0.76 0.78 0.78 0.73 0.35 0.33 0.99 0.74 6
med.6 0.91 0.92 0.99 0.41 0.67 0.74 0.70 0.65 0.26 0.26 1.00 0.73 6
low.6 0.85 0.88 0.97 0.21 0.52 0.62 0.56 0.47 0.15 0.15 1.00 0.69 6
mixed.6 0.73 0.74 0.98 0.26 0.61 0.71 0.66 0.55 0.21 0.18 0.99 0.55 6
high.12 0.94 0.95 0.99 0.76 0.87 0.87 0.89 0.84 0.35 0.35 0.99 0.90 12
med.12 0.88 0.90 0.98 0.38 0.78 0.81 0.82 0.75 0.23 0.23 0.97 0.74 12
low.12 0.78 0.83 0.94 0.48 0.66 0.68 0.71 0.57 0.14 0.14 0.99 0.76 12
mixed.12 0.77 0.78 0.98 0.26 0.77 0.81 0.82 0.71 0.22 0.20 0.99 0.73 12
high.24 0.95 0.95 1.00 0.11 0.93 0.93 0.95 0.92 0.36 0.35 1.00 0.93 24
med.24 0.90 0.92 0.98 0.64 0.88 0.88 0.91 0.85 0.23 0.23 0.99 0.88 24
low.24 0.81 0.85 0.95 0.66 0.82 0.82 0.86 0.77 0.16 0.16 0.99 0.84 24
mixed.24 0.78 0.79 0.98 0.36 0.88 0.89 0.91 0.82 0.24 0.21 0.99 0.90 24
F2.6 0.32 0.50 0.63 0.11 0.50 0.61 0.59 0.12 0.14 0.07 0.61 0.54 6
F2.10 0.30 0.49 0.62 0.07 0.66 0.73 0.75 0.09 0.16 0.06 0.61 0.46 10
F2.12 0.12 0.19 0.63 0.05 0.62 0.73 0.73 0.09 0.12 0.05 0.62 0.50 12
F2.24 0.23 0.34 0.68 0.08 0.79 0.84 0.87 0.32 0.14 0.07 0.65 0.58 24
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Table 4

Various estimates of unidimensionality and reliability for 500 simulated participants for scales formed from 3, 6, 12,
and 24 items with major and minor factor loadings as specified in Table 2. The last four rows report results for scales
formed from two orthogonal subscales. Column headings are the same as in Table 3. The addition of a small amount
of noise makes very little difference (compare with Table 3).

Variable u τ ρC ωh α ωt Max split Min split r̄ Median r CFI ECV N items
high.3 0.98 0.98 1.00 0.59 0.58 0.59 0.56 0.47 0.32 0.30 1.00 0.98 3
med.3 0.99 0.99 1.00 0.53 0.53 0.53 0.51 0.44 0.27 0.29 1.00 0.97 3
low.3 0.90 0.90 1.00 0.43 0.39 0.43 0.43 0.28 0.18 0.19 1.00 0.91 3
mixed.3 0.91 0.91 1.00 0.54 0.52 0.54 0.53 0.36 0.27 0.22 1.00 0.98 3
high.6 0.93 0.93 1.00 0.43 0.76 0.82 0.78 0.74 0.35 0.34 1.00 0.74 6
med.6 0.92 0.94 0.97 0.55 0.67 0.70 0.71 0.61 0.26 0.24 0.96 0.76 6
low.6 0.82 0.84 0.97 0.39 0.54 0.62 0.59 0.47 0.16 0.15 0.99 0.61 6
mixed.6 0.80 0.81 0.99 0.56 0.68 0.72 0.71 0.61 0.26 0.22 0.99 0.79 6
high.12 0.93 0.94 0.99 0.65 0.86 0.87 0.89 0.83 0.34 0.34 0.97 0.88 12
med.12 0.91 0.94 0.97 0.66 0.80 0.81 0.84 0.74 0.25 0.25 0.94 0.81 12
low.12 0.79 0.84 0.95 0.49 0.69 0.70 0.75 0.61 0.16 0.16 0.96 0.77 12
mixed.12 0.81 0.83 0.99 0.30 0.81 0.83 0.85 0.72 0.26 0.23 0.99 0.75 12
high.24 0.93 0.94 0.99 0.60 0.92 0.93 0.95 0.89 0.34 0.34 0.95 0.89 24
med.24 0.89 0.91 0.97 0.64 0.89 0.89 0.92 0.83 0.25 0.25 0.95 0.86 24
low.24 0.77 0.83 0.93 0.58 0.82 0.83 0.87 0.74 0.16 0.16 0.90 0.79 24
mixed.24 0.80 0.82 0.98 0.67 0.89 0.90 0.92 0.82 0.26 0.23 0.98 0.86 24
F2.6 0.06 0.11 0.57 0.02 0.46 0.56 0.56 0.03 0.12 0.05 0.57 0.52 6
F2.10 0.30 0.48 0.63 0.07 0.65 0.73 0.76 0.09 0.16 0.09 0.62 0.52 10
F2.12 0.31 0.47 0.64 0.07 0.68 0.74 0.77 0.10 0.15 0.10 0.63 0.53 12
F2.24 0.30 0.47 0.62 0.06 0.81 0.84 0.88 0.29 0.15 0.11 0.58 0.53 24

Table 5

Comparing unidim estimates for continuous and item
(categorical) data for pure and minor simulated factors.
The categorical data were generated with six categories
using the sim and sim.minor functions in psych.

Variable pure continuous pure items minor continuous minor items
high.3 0.99 0.98 0.98 0.97
med.3 0.99 0.97 0.99 0.96
low.3 0.97 0.83 0.90 0.94
mixed.3 0.92 0.87 0.91 0.86
high.6 0.96 0.96 0.93 0.94
med.6 0.91 0.95 0.92 0.95
low.6 0.85 0.84 0.82 0.81
mixed.6 0.73 0.84 0.80 0.76
high.12 0.94 0.94 0.93 0.93
med.12 0.88 0.92 0.91 0.93
low.12 0.78 0.79 0.79 0.83
mixed.12 0.77 0.81 0.81 0.73
high.24 0.95 0.95 0.93 0.94
med.24 0.90 0.90 0.89 0.91
low.24 0.81 0.79 0.77 0.82
mixed.24 0.78 0.80 0.80 0.74
F2.6 0.32 0.06 0.06 0.32
F2.10 0.30 0.09 0.30 0.27
F2.12 0.12 0.10 0.31 0.28
F2.24 0.23 0.22 0.30 0.31

u statistic as contrasted with the more conventional α and
ωt statistics, for the latter show quite reasonable values
(.71 - .84) for scales that are not unidimensional. u and
ωh on the other hand, show clear evidence (.30 - .41) for
multidimensionality (Table 6 part 3). What is interesting
is that for these nominally unifactorial scales, the CFI
and ECV statistics were quite low. The ECVs for the sin-

gle construct bfi scales ranged from .79 to .87, values,
which, although larger than for the multi-construct scales
(.52 - .61), do not suggest strong unidimensionality.

The third dataset uses the 135 items of the SAPA Per-
sonality Inventory (Condon, 2018) for 4,000 participants
(spi) to form 27 lower level scales; these also had six
response options (“very inaccurate” to “very accurate”)
(Table 7). In this case, the u values for the SPI-27 reflect
the higher degree of unidimensionality expected from
brief 5-item scales with a median of .94 and ranging form
.83 to .99. By contrast, α values are relatively lower
(again, as expected, given the short scale lengths), and
the ωh values are difficult to interpret due to inadequate
degrees of freedom. In contrast to the findings with the
bfi scales, these 27 scales show higher levels of ECV
with a median of .91 and ranging from .77 to .96.

Sensitivity to sample size

For practical purposes, we addressed the question of
the effect of sample size on the u statistic. We simulated
200, 500, 1,000 and 5,000 participants using the factor
structure shown in Table 2. For each simulation we per-
formed 100 replications. We also examined the effect
of sample size on ωt, CFI and ECV. It is quite clear (Fig-
ure 1) that even for samples as small as 200, the u statistic
could distinguish between unidimensional scales versus
multidimensional scales. The pattern of results show that
u is, in contrast toωt, not sensitive to the number of items
in the scale, but is sensitive to unidimensionality. This is
evident from comparisons of the first 16 to the last four
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Table 6

Unidim coefficients and multiple reliability measures for the ability data set with 16 items and 1,525 participants
and the bfi data set with 2,800 participants for 25 items. The first three columns report unidim statistics u, τ, ρc, the
next three columns the conventional ωh, α, and ωt internal consistency estimates, and the next two report the maximum
and minimum split half reliabilities based upon a split half decomposition of the scales. The next two columns (r̄ and
Median r) are the mean and median within scale correlations, respectively. The last three columns are the CFI and
ECV, followed by the number of items per scale. The ICAR16 represents a higher order factor composed of four lower
level factors. Although the bfi is scored as five unidimensional constructs, the last three lines represent scales formed
from two (E+O), three (A+C+N) or five (all) constructs. For the latter three scales, note how the high value of α and
ωt conflict with low values of u and ωh which are better indicators of unidimensionality.

Variable u τ ρc ωh α ωt Max split Min split r̄ Median r CFI ECV N items
ICAR dataset
ICAR16 0.90 0.93 0.96 0.56 0.83 0.85 0.87 0.73 0.23 0.21 0.76 0.78 16
reasoning 0.98 0.98 1.00 0.05 0.65 0.65 0.65 0.64 0.31 0.31 1.00 0.99 4
letters 0.99 0.99 1.00 0.65 0.67 0.68 0.68 0.66 0.34 0.33 1.00 0.98 4
matrix 0.93 0.95 0.98 0.37 0.54 0.59 0.58 0.49 0.23 0.22 0.95 0.83 4
rotate 1.00 1.00 1.00 0.71 0.77 0.78 0.78 0.74 0.45 0.44 0.99 0.96 4
bfi dataset: single construct scales
extraversion 0.96 0.97 0.99 0.55 0.76 0.82 0.78 0.66 0.39 0.38 0.97 0.86 5
openness 0.89 0.91 0.98 0.39 0.61 0.70 0.66 0.52 0.24 0.23 0.94 0.79 5
agreeableness 0.90 0.91 0.99 0.64 0.71 0.75 0.75 0.62 0.33 0.34 0.96 0.86 5
conscientious 0.95 0.97 0.98 0.53 0.73 0.77 0.74 0.64 0.35 0.34 0.93 0.84 5
neuroticism 0.94 0.95 0.98 0.71 0.81 0.85 0.83 0.69 0.47 0.41 0.90 0.87 5
bfi multi construct scales
EO 0.49 0.62 0.79 0.36 0.71 0.77 0.79 0.38 0.20 0.21 0.64 0.61 10
ACN 0.43 0.63 0.68 0.33 0.78 0.81 0.87 0.47 0.19 0.14 0.44 0.52 15
All 0.38 0.56 0.68 0.30 0.82 0.84 0.89 0.58 0.15 0.13 0.40 0.56 25

Table 7

Unidim coeffficients and multiple reliability measures of the spi-135 (Condon, 2018). The SAPA Personality Inven-
tory (Condon, 2018) has five higher order scales assessing the “Big Five” and 27 lower level scales assessing other
aspects of personality. The 27 lower level measures have 5 items each. The spi data set in the psychTools has 4,000
observations on these 135 items plus 10 criteria/demographic variables. The columns are the same as in Table 6.

Variable u τ ρc ωh α ωt Max split Min split r̄ Median r CFI ECV N items
Compassion 0.99 0.99 1.00 0.80 0.88 0.89 0.87 0.82 0.59 0.58 0.99 0.94 5
Trust 0.99 0.99 1.00 0.80 0.87 0.89 0.87 0.81 0.58 0.58 0.98 0.94 5
Honesty 0.96 0.97 0.99 0.71 0.81 0.84 0.83 0.70 0.46 0.46 0.94 0.88 5
Conservatism 0.84 0.91 0.92 0.56 0.78 0.85 0.84 0.61 0.41 0.35 0.66 0.76 5
Authoritarianism 0.89 0.93 0.96 0.63 0.81 0.86 0.85 0.63 0.46 0.46 0.83 0.81 5
EasyGoingness 0.90 0.92 0.98 0.45 0.68 0.76 0.73 0.58 0.29 0.29 0.94 0.78 5
Perfectionism 0.83 0.84 0.99 0.34 0.70 0.74 0.72 0.53 0.31 0.33 0.97 0.87 5
Order 0.93 0.94 0.99 0.62 0.81 0.85 0.83 0.66 0.46 0.42 0.93 0.86 5
Industry 0.99 0.99 1.00 0.72 0.84 0.86 0.84 0.76 0.52 0.50 0.98 0.94 5
Impulsivity 0.98 0.98 1.00 0.72 0.87 0.90 0.87 0.80 0.58 0.58 0.99 0.96 5
SelfControl 0.91 0.94 0.96 0.49 0.76 0.83 0.80 0.60 0.39 0.36 0.87 0.79 5
EmotionalStability 0.99 0.99 1.00 0.65 0.85 0.89 0.84 0.76 0.52 0.50 0.99 0.93 5
Anxiety 0.99 0.99 1.00 0.83 0.90 0.91 0.89 0.83 0.64 0.62 0.97 0.95 5
Irritability 0.98 0.99 0.99 0.78 0.89 0.91 0.89 0.79 0.61 0.60 0.94 0.91 5
WellBeing 0.99 0.99 1.00 0.80 0.90 0.92 0.90 0.81 0.63 0.63 0.95 0.92 5
EmotionalExpressiveness 0.93 0.94 0.99 0.73 0.80 0.83 0.83 0.68 0.45 0.43 0.95 0.90 5
Sociability 0.97 0.98 0.99 0.66 0.85 0.89 0.85 0.75 0.53 0.50 0.95 0.88 5
Adaptability 0.93 0.94 0.99 0.62 0.80 0.84 0.82 0.68 0.44 0.42 0.95 0.88 5
Charisma 0.94 0.96 0.98 0.67 0.82 0.86 0.84 0.72 0.47 0.43 0.88 0.85 5
Humor 0.94 0.94 0.99 0.68 0.78 0.82 0.81 0.64 0.42 0.40 0.97 0.91 5
AttentionSeeking 0.93 0.93 0.99 0.80 0.88 0.90 0.89 0.77 0.58 0.67 0.94 0.92 5
SensationSeeking 0.97 0.98 0.99 0.77 0.86 0.89 0.87 0.77 0.55 0.54 0.92 0.91 5
Conformity 0.90 0.94 0.96 0.67 0.82 0.87 0.85 0.67 0.47 0.47 0.82 0.83 5
Introspection 0.94 0.95 0.99 0.56 0.78 0.84 0.81 0.68 0.41 0.41 0.94 0.87 5
ArtAppreciation 0.90 0.90 1.00 0.68 0.80 0.83 0.81 0.65 0.44 0.46 0.98 0.92 5
Creativity 0.97 0.98 1.00 0.70 0.85 0.86 0.85 0.77 0.52 0.53 0.98 0.94 5
Intellect 0.99 0.99 1.00 0.81 0.86 0.87 0.84 0.78 0.54 0.52 0.99 0.96 5
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columns of each panel. The CFI statistic was not sensi-
tive to sample size nor range of factor loadings for one
factor data but did drop when given two factor data. The
ECV was sensitive to sample size, increasing with larger
samples, and to factor structure (decreasing from factors
with large to medium to low loadings). In contrast to u,
with the exception of 3 item scales, ECV was sensitive to
the number of items per factor, increasing from 6 to 12
to 24.

Comparison of fit statistics

A reasonable question to ask is what is the relation-
ship between these various estimates. As one reviewer
questioned, is our ρc measure any different from ECV?
Conceptually our proposed measure, u, based upon the
product of τ and ρc would seem to be similar to the good-
ness of fit of a one factor model (CFI) or the Explained
Common Variance. To address this question, we report
the correlations of these measures for two our data sets
(Table 8): the results for 500 simulated subject across
24 different conditions shown in Table 3 and for the 27
5 item scales for 4,000 real subjects from the spi data
set (Table 7). For the simulated data, ρc correlated .99
and .77 with CFI and ECV, while for the spi data, the
correlations were .97 and .87. The correlations with the
unidim u statistic were .95 and .83 for the simulated data
and .61 and .75 for the spi data.

Table 8

Correlations of fit statistics: Lower off diagonal is for
the analysis of the spi data. Upper off diagonal is for
the simulation of pure data with 500 subjects.

Variable Uni τ ρc ωh CFI ECV
Uni 0.99 0.96 0.71 0.95 0.83
τ 0.95 0.92 0.71 0.92 0.81
ρc 0.70 0.44 0.66 0.99 0.77
ωh 0.76 0.76 0.45 0.66 0.65
CFI 0.61 0.34 0.97 0.30 0.76
ECV 0.75 0.56 0.87 0.70 0.82

Summary and Conclusion

The problem of assessing the unidimensionality of a
scale has been a challenge for many years, and many
solutions have been offered. Here we have suggested
a simple index, u, which is the the product of indices
of τ equivalance and ρc or congeneric equivalence. u is
simple to calculate (e.g., the unidim or reliability
functions in the psych package for R). We compare the
u index to five popular indices of scale quality, α, ωh ωt,
CFI, and ECV show that unlike α, ωt, or ECV, u is insen-
sitive to the number of items in a scale and unlike the CFI

is sensitive to factor structure. u is robust across sample
sizes from 200 to 5000 in identifying unidimensionality.
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A)  ωt varies by sample size and factor loadings
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B) U varies by sample size and factor loadings
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 C) CFI is not very sensitive to variations in factor loadings
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 D) ECV varies by sample size and factor loadings
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Figure 1

The ωt, u, CFI and ECV statistics behave very differently across the number of items per factor and sample size. Panel
A shows how ωt increases with the number of items/factor and varies by the size of the factor loadings. It is relatively
insensitive to the non-unidimensionality of scales formed from multiple factors and to sample size. Panel B shows how
the u statistic does not increase with the number of items per scale, is sensitive to the the size of the factor loadings,
and is very sensitive to the degree of non-unidimensionality (the four right hand observations in both panels). Panel
C shows that the CFI varies only slightly by sample or range of factor loadings. Panel D shows that ECV varies by
sample size and factor loadings. Sample sizes in all panels range from 200 (black) to 500, 1000, and 5000 (green)
simulated participants. The cats-eyes shapes display standard deviations of 100 replications for each sample size.
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Appendix: R code

R code

library(psych)
library(psychTools)
#requires psych version 2.4.3 or above
#The basic data structure

fx4 <- matrix(c(.7,.6,.5,rep(0,12),.6,.5,.4,rep(0,12) ,.5,.4,.3,rep(0,12),.7,.5,.3),ncol=4)
fx96 <- rbind(fx4,fx4,fx4,fx4,fx4,fx4,fx4,fx4)
rownames(fx96) <- paste0("V",1:96)
colnames(fx96) <- paste0("F",1:4)
keys96 <- factor2cluster(fx96)
rownames(keys96) <- paste0("V",1:96)
keys.96 <- keys2list(keys96)
keys.12 <-keys2list(keys96[1:12,])
keys.24 <- keys2list(keys96[1:24,])
keys.48 <- keys2list(keys96[1:48,])
# names(keys.12) <- paste0("F",1:4,".12")
names(keys.12) <- paste0(cs(high, med, low, mixed),".",3)
names(keys.24) <- paste0(cs(high, med, low, mixed),".",6)
names(keys.48) <- paste0(cs(high, med, low, mixed),".",12)
names(keys.96) <- paste0(cs(high, med, low, mixed),".",24)
keys.6.2.factors <- list(c(keys.12$high,keys.12$med))
keys.10.2.factors <- list(c(keys.24$high[1:5],keys.24$med[1:5]))
keys.12.2.factors <- list(c(keys.48$high[1:6],keys.48$med[1:6]))
keys.24.2.factors <- list(c(keys.96$high[1:12],keys.96$med[1:12]))
names(keys.6.2.factors) <- "F2.6"
names(keys.10.2.factors) <- "F2.10"
names(keys.12.2.factors) <- "F2.12"
names(keys.24.2.factors) <- "F2.24"
#names(keys.48.2.factors) <- "F2.48"
keys <- c(keys.12,keys.24,keys.48,keys.96,keys.6.2.factors,keys.10.2.factors,

keys.12.2.factors,keys.24.2.factors)

#one run to create Tables 3 and 4
n.obs=500
set.seed(42) #for reproducible results
sim.96 <- sim(fx96,n=n.obs) #generate n.obs participants for 96 variables
minor.96 <- sim.minor(fbig=fx96,n=n.obs, n.small=4) #include nuisance factors
#create item like data
sim.96.item <- sim(fx96,n=n.obs, items=TRUE) #generate n.obs participants for 96 variables
minor.96.item <- sim.minor(fbig=fx96,n=n.obs, n.small=4,items=TRUE) #include nuisance factors

reliability.pure.500 <- reliability(keys, sim.96$observed) #
reliability.minor.500 <- reliability(keys, minor.96$observed,n.sample=50000)

uni.pure.cont <- unidim(keys,sim.96$observed)
uni.minor.cont <- unidim(keys,minor.96$observed)
#do it for categoriical data
uni.pure.item <- unidim(keys,sim.96.item$observed,cor="poly")
uni.minor.item <- unidim(keys,minor.96.item$observed,cor="poly")

uni.sum <- data.frame(pure.cont=uni.pure.cont$uni[,1:3], pure.item=uni.pure.item$uni[,1:3],
minor.cont = uni.minor.cont$uni[,1:3], minor.item = uni.minor.item$uni[,1:3])

#now, a cleaner table, just the u values
uni.sum.1<- data.frame(pure.cont=uni.pure.cont$uni[,1], pure.item=uni.pure.item$uni[,1],

minor.cont = uni.minor.cont$uni[,1], minor.item = uni.minor.item$uni[,1])

matPlot(uni.sum.1, xlas=3 ,legend=3,
main="Unidim as a function of number of items, factor loadings and item type")

#now try to get confidence intervals on the basic stats
# we do 100 runs for each condition

# We create a short function to simulate the data
#It uses the sim functions from psych
#also the reliability and unidim functions
#use 10 replications for testing purposes

simulate.unidim <- function(fx,n.obs=1000, n.replications = 10, keys=NULL, minor=FALSE, items=FALSE) {
results <- list()
uni.results <- list()
vnames <- cs(omega.h ,alpha, omega.tot, ECV, Uni, r.fit ,fa.fit ,n.items)
if(is.null(keys)) {nvar <- 1} else {nvar <- length(keys)}

for (i in (1: n.replications)) { # short loop
if(minor) {sim.data <- sim.minor(fbig=fx, n=n.obs, n.small=4,items=items) } else {sim.data <- sim(fx,n=n.obs, items=items)}
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if(items) {R <- lowerCor(sim.data$observed, cor="poly", show=FALSE)$rho } else {R <- lowerCor(sim.data$observed,show=FALSE)}

temp <- reliability(keys,R,split=FALSE,n.obs=n.obs)$result.df
uni.temp <- unidim(keys,R, n.obs=n.obs)$fa.stats
results[[i]] <- temp

uni.results[[i]] <- uni.temp
} #end of loop

#organize the results
result.df <- matrix(unlist(results),byrow=TRUE,ncol=13*nvar)
uni.df <- matrix(unlist(uni.results), byrow=TRUE, ncol=9*nvar)
return(result.df)
} # the end of our short simulation function

#now use this function to generate the replications of the data
set.seed(42) #allows for reproducible results

sim100 <- simulate.unidim(fx96,n.obs=100,n.replications=100,keys=keys) # n = 100
sim200 <- simulate.unidim(fx96,n.obs=200,n.replications=100,keys=keys)
sim500 <- simulate.unidim(fx96,n.obs=500,n.replications=100, keys=keys)
sim1k <- simulate.unidim(fx96,n.obs=1000,n.replications=100, keys=keys)
sim5k <- simulate.unidim(fx96,n.obs=5000,n.replications=100, keys=keys)

#now combine the u and omega_t estimates across data sets to graph them

total.sims <- data.frame(N=c(rep(200,100), rep(500,100), rep(1000,100),rep(5000,100)),
rbind(sim200[,41:80], sim500[,41:80], sim1k[,41:80], sim5k[,41:80]),
rbind(sim200[,221:260], sim500[,221:260] , sim1k[,221:260], sim5k[,221:260]))

#clean up the names for the graphics
temp <- gsub("omega.tot","",colnames(total.sims))
temp <- gsub("Uni","u",temp)
temp[18:21] <- c("F1+F2 6","F1+F2 10","F1+F2 12","F1+F2 24")

temp[38:41] <- c("F1+F2 6","F1+F2 10","F1+F2 12","F1+F2 24")
colnames(total.sims) <- temp

#n = 100

error.bars.by(total.sims[,22:41],total.sims[,1],by.var=FALSE,v.labels=colnames(total.sims[2:21]),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",legend=3,
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims[,2:21],total.sims[,1],by.var=FALSE,v.labels=colnames(total.sims[2:21]),
ylab=expression(omega[t]), las=3,xlab="",ylim=c(0,1),main=expression(paste("A) ",

omega[t]," varies by sample size and factor loadings")),
legend=3, labels =c(100,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims2[,42:61],total.sims2[,1],by.var=FALSE, v.labels=names(keys),
ylab="CFI", las=3,xlab="", ylim=c(0,1),
main=" C) CFI is not very sensitive to variations in factor loadings",
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims2[,62:81],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="ECV", las=3,xlab="",ylim=c(0,1),
main=" D) ECV varies by sample size and factor loadings",
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

#min n =200

total.sims <- data.frame(N=c(rep(100,100), rep(500,100), rep(1000,100),rep(5000,100)),
rbind(sim200[,41:80], sim500[,41:80], sim1k[,41:80], sim5k[,41:80]),
rbind(sim200[,221:260], sim500[,221:260] , sim1k[,221:260], sim5k[,221:260]))

error.bars.by(total.sims[,2:21],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab=expression(omega[t]), las=3,xlab="",ylim=c(0,1),main=expression(paste("A) ",

omega[t]," varies by sample size and factor loadings"))

# legend=3, labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims[,22:41],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
labels =c(5000,1000,500,200), lty=1:4,col =cs(green, red, blue, black))

#do legends separately to have more control
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error.bars.by(total.sims[,22:41],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
labels =c(5000,1000,500,200), lty=1:4,col =cs(black, blue,red, green))

legend("bottomleft",lty=4:1,legend=c(5000,1000,500,200),col=cs(green, red, blue, black) ,pch=15)

#score
#

bfi.keys.plus <-
list(extraversion=c("-E1","-E2","E3","E4","E5"),
openness = c("O1","-O2","O3","O4","-O5"),
agree=c("-A1","A2","A3","A4","A5"),
conscientious=c("C1","C2","C3","-C4","-C5"),

neuroticism=c("N1","N2","N3","N4","N5"),

EO = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5"),
ACN =c("-A1","A2","A3","A4","A5","C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"),
All = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5","-A1","A2","A3","A4","A5",’

"C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"))
bfi.rel <- reliability(bfi.keys.plus,bfi,n.sample=5200300)

}
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