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How to evaluate how well a psychological scale measures just one construct is a recurring
problem in assessment. We introduce an index, u, of the unidimensionality and homogeneity
of a scale. u is just the product of two other indices: τ (a measure of τ equivalence) and ρc (a
measure of congeneric fit). By combining these two indices into one, we provide a simple index
of the unidimensionality and homogeneity of a scale. We evaluate u through simulations and
with real data sets. Simulations of u across one factor scales ranging from 3 to 24 items with
various levels of factor homogeneity show that τ and therefore u are sensitive to the degree
of factor homogeneity. Additional tests with multifactorial scales representing 9, 18, 27, 36
items with a hierarchical factor structure varying in a general factor loading show that ρc and
therefore u are sensitive to the general factor saturation of a test. We also demonstrate the
performance of u on 45 different publicly available personality and ability measures. Compar-
isons with traditional measures (i.e., ωh, α, ωt, CFI, ECV) show that u has greater sensitivity
to unidimensional structure and less sensitivity to the number of items in a scale. u is easily
calculated with open source statistical packages and is relatively robust to sample sizes ranging
from 100 to 5,000.

Public Significance

How to evaluate how well a psychological scale measures just one construct is a recurring
problem in assessment. We present an intuitively easy to understand and easily calculated new
index of scale quality, u, which combines measures of scale unidimensionality and item ho-
mogeneity. Using open source software on publicly available data sets we compare this index
to conventional measures. In multiple simulations we assess the utility of u. Across 12 levels
of general factor saturation, four item levels, and samples sizes ranging from 100 to 5,000, we
show the utility of u as an index of scale quality. We include the R code for our simulations
and analysis of existing data sets.

Evaluating the dimensionality of a measure has been
an ongoing challenge ever since Spearman (1904) intro-
duced his factor model of intelligence. Today, it is widely
recognized that the majority of psychological tests —
even those intended to measure only one construct —
produce a range of response pattern (that is, a degree
of “higgledypiggledyness”, Walker, 1931, p 75) that
is quite large. This has prompted the development of
several techniques for assessing the unidimensionality of
scales. But, as pointed out by McDonald (1981) because
unidimensionality holds or does not hold, the proper
question is not “is a test unidimensional”, but rather how
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well does a unidimensional model fit the data. That is,
we should ask if the fit of a one factor model is “satisfac-
tory”. Hattie (1985) reviewed and then evaluated (Hat-
tie, 1984) 87 ways to assess unidimensionality and stated
that “Unidimensionality can be rigorously defined as the
existence of one latent trait underlying the set of items”
(Hattie, 1985, p 152). Although a test with more than
3 items can never be truly unidimensional, the question
becomes how to assess how close a test is to unidimen-
sionality (Ten Berge and Socan, 2004).

An important characteristic of unidimensionality —
one that motivates our aim of assessing it better — is that
it represents a necessary condition for the meaningful ap-
plication of Item Response Theory (IRT) models. In the
context of IRT, Stout (1990) introduced the concept of
essential dimensionality which he defined as follows:.

“Essential dimensionality, much in the spirit
of counting the number of dimensions in a
factor analytic model, is the number of ma-
jor latent dimensions with minor dimensions
ignored. Essential unidimensionality, the
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existence of exactly one major dimension,
then provides a justification for carrying out
IRT based statistical analyses that require
unidimensionality." (Stout, 1990, 293).

While the procedure for estimating essential dimension-
ality suggested by Stout (1990) and implemented with
his colleagues (Nandakumar and Stout, 1993; Stout et al.,
2001) requires very large samples, their motivation is
worth emphasizing, especially given recent increases
in the use IRT in psychological assessment (Thomas,
2019). Assessing the degree of unidimensionality is (or
should be) a necessary step in claiming that scores for
any given scale reflect one underlying construct. If a
multi-item scale is not adequately unidimensional, then
scores reflect the underlying construct of interest as well
as other, extraneous sources of variance. In these cases,
the use of IRT is not justified.

However, in the context of ability and personality
measurement, even essential unidimensionality seems
not to be desired, as scales need to reflect the complex-
ity of the constructs being assessed (Tellegen, 1991; Tel-
legen and Waller, 2008) and scales need to “unidimen-
sional enough" (Embretson and Reise, 2025). Although
resulting in single scale values, measures as complex as
the Stanford-Binet or the Wechsler Intelligence Scale for
Children are clearly multidimensional, but dominated by
a single factor:

A test needs to measure a well defined con-
struct, but the construct need not be at the
first order. Many useful test scores in educa-
tion and psychology are at a higher order.
The composite score on the ACT Test re-
flects student performance in English, math-
ematics, reading, and science. The gen-
eral intelligence score of the Wechsler In-
telligence Scale for Children reflects per-
formance in verbal comprehension, work-
ing memory, perceptual reasoning, and pro-
cessing speed. In the NEO-PI personal-
ity measure, each domain (for example, ex-
traversion) is composed of multiple facets
(warmth, gregariousness, assertiveness, ex-
citement seeking, and positive emotions).
(Davenport et al., 2015, p 6)

In this article, we suggest a combined index of uni-
dimensionality and homogeneity, u, which compares fa-
vorably to some of the current alternatives. u is both easy
to understand and calculate and it addresses the weak-
nesses of several popular alternatives (i.e., α, ωt, CFI, or
Explained Common Variance).3 Before explaining the
derivation of u however, we first discuss the history and
shortcomings of these alternatives.

Extant Alternatives

To understand the challenge of evaluating unidimen-
sionality, consider a multi-item scale designed to mea-
sure a single construct (T) with inevitable random error
(E). That is, each item xi contributes construct-specific
variance but is “befuddled by error” (McNemar, 1946,
p 246). In terms from classical test theory (Spearman,
1904; Lord and Novick, 1968; McDonald, 1999), this
may be represented as

xi = λiτ + ϵi (1)

with variances
σ2

i = λ
2
i σ

2
τ + σ

2
ϵ (2)

where the λi reflect factor loadings of items on the con-
struct and τ the construct “true score", and ϵi random er-
ror.

The question of unidimensionality thus becomes one
of assessing how well Equation 1 fits the data. In the
unlikely case that the λi are equal for all items and the
variances of the ϵi are all equal, the items are said to be
parallel. That is, all items contribute equally with respect
to the construct measured by the scale. Similarly, sub-
sets of the items from the scale would represent parallel
forms. If the λi are equal for all items but the variances of
the ϵi are unequal, the items are said to be τ equivalent.
That is, each item has the same True score but different
error variances. If the λi are unequal (as is the typical
case for most measures used in psychology), the items
are said to be congeneric. For parallel items, all the cor-
relations and covariances among items will be identical.
For τ equivalent items, the covariances will be identical
but the correlations will not. For congeneric items, nei-
ther the covariances nor the correlations need to be iden-
tical. In all three cases, the values of xi fit a one factor
latent variable model (Lucke, 2005; McDonald, 1999).

The relationships among these values are often used
to evaluate the internal consistency of scales as an es-
timate of reliability as with, for example, Cronbach’s α
(aka Guttman’s λ3) (Cronbach, 1951; Guttman, 1945).
For a scale (X) that is scored as the unit weighed sum
of its items (X = Σxi), internal consistency reliability is
defined as the proportion of construct-specific variance
to total observed variance. That is, with the assumptions
of Equation 2

ρxx =
σ2
τ

σ2
X

.

Although most frequently used as an index of internal
consistency reliability, α is sometimes used — mistak-
enly, in our opinion — as a means of assessing unidi-
mensionality as well. α is a particularly poor measure

3We include α and ωt not because they are useful indices
of uinidimensionality nor of homogeneity, but because they are
popularly misused as such.
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because it assumes (without testing) the case of τ equiv-
alence (Cronbach, 1951). In other words, all of the items
are presumed to have the same (true score) relationship to
the measured construct. This means α is just a function
of the number of items (k) and the average covariance of
the items (σ̄i j):

α =
σ2

X − Σσ
2
i + kσ̄i j

σ2
X

=
kσ̄i j

(σ̄2
i + (k − 1)σ̄i j)

=
k

k − 1
σ2

X − Σσ
2
i

σ2
X

.

(3)
Before the introduction of modern computers, the advan-
tage of α was that it could be calculated from just the test
variances (σ2

X) and the sum of the item variances (Σσ2
i ),

and it did not require finding the covariances and exam-
ining the internal structure of the test. This simplicity
of calculation and subsequent introduction into popular
proprietary software packages probably accounts for the
widespread use of α (Cho and Kim, 2015),

As an alternative to α, McDonald (1999) expanded
equation 1 to account for the relationship of any item to
(multiple) group factors in addition to the general and
specific/error terms4. Thus, the observed score for a par-
ticular subject on an item is the sum of the products of
factor scores (g, f, s, e) and loadings (c, A, D) on these
factors:

x = cg + A f + Ds + e. (4)

Assuming standardized general (g) and group factor (f)
variances, then the total variance of a test may be decom-
posed into that due to a general factor, to the sum of the
group factors, to specific (D) and error factors and will
be

σ2
t = 1′cc′1 + 1′AA′1 + 1′DD′1 + 1′σ2

ϵ1. (5)

Taking advantage of this extension of equation 1 to that
of 4 McDonald (1999) introduced two coefficients, both
called ω to determine the amount of reliable variance in
a test. Using notation suggested by Zinbarg et al. (2005)
the first coefficient, ωt, reflects the total amount of com-
mon variance among the items while the second. ωh,
reflects the amount due to the general factor

ωt =
1′cc′1 + 1′AA′1

σ2
X

. (6)

In that the communality of an item (h2
i ) is the sum of the

squared factor loadings for that item, ωt may be found
by replacing the item variances (σ2

i ) with the amount of
common variance (h2

i ) for each item:

ωt =
σ2

X − Σσ
2
i + Σh2

i

σ2
X

. (7)

ωh is found by summing the loadings on the general fac-
tor and comparing the square of their sum to the test vari-

ance:

ωh =
(Σci)2

σ2
X

=
1′cc′1
σ2

X

. (8)

Although ωt may be found directly from the communal-
ities of a factor analysis, ωh requires either a hierarchical
factoring of the original data followed by a subsequent
Schmid-Leiman Transformation (Schmid and Leiman,
1957) or by a bifactor solution (Holzinger and Swine-
ford, 1937; Reise, 2012) with a general factor and a num-
ber of group factors.

As ωh represents the proportion of general factor vari-
ance to total test variance, it directly address the question
of how well a one factor model fits the data. In addition,
ωh avoids the difficulty introduced by using ωt (the pro-
portion of all common variance to total test variance) as
an estimate of unidimensionality. In cases where one or
more subset(s) of items share group variance that is not
fully explained by variance on the general factor among
all items, ωh will be a smaller proportion than ωt and a
much better estimate of unidimensionality. In addition,
because the relative contribution of the variance of a sin-
gle item to the total variance decreases as the number of
items increases, the asymptotic value of ωh is

ωh∞ =
1′cc′1

1′cc′1 + 1′AA′1
=
ωh

ωt
. (9)

Importantly, ωt reflects the total amount of common vari-
ance among the items rather than the amount due to any
single factor or dimension, and this limits its usefulness
as a measure of unidimensionality. The difficulty is that
ωt does not indicate the extent to which items co-vary on
underlying dimensions beyond the primary or “general”
factor.

In fact, α (Equation 3) and ωt (Equation 7) are similar
in that both are the ratio of a reduced variance σ2

X − δ
to the total variance σ2

X (where δ = Σσ2
i − kσ̄i j for α or

δ = Σσ2
i −Σh2

i for ωt). Thus, in both cases, the numerator
increases linearly by the number of items, but the denom-
inator by the square of the number of items. Importantly,
both coefficients will increase asymptotically to 1 as the
number of items increases.

Although Revelle and Condon (2019) have previously
recommended reporting ωh, α, and ωt for all scales in or-
der to estimate reliability and ωh for the amount of first
factor saturation, unfortunately ωh is not appropriate for
very short scales. This is because ωh requires at least
2 (and preferably ≥ 3) factors in order to find a hier-
archical solution or even a bifactor structure. Since the
degrees of freedom for a factor model with k factors and
n variables is:

4Specific and error are confounded unless using repeated
measures to assess specific variance.
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n(n − 1)
2

− nk +
k(k − 1)

2

the minimum number of variables needed for a 2 factor
model to be defined is 5. Note that this case does not
allow for a proper hierarchical solution using a Schmid-
Leiman transformation for ωh, as this requires 3 lower
level factors (Zinbarg et al., 2006). The minimum num-
ber of variables needed to properly estimate a hierarchi-
cal solution is 6. Thus, in the case of n ≤ 4 ωh = ωt.

Another index of the percent of general factor vari-
ance is Explained Common Variance (ECV) which com-
pares the amount of variance extracted by the first fac-
tor to the amount explained by all factors (Rodriguez
et al., 2016; Sijtsma, 2009; Ten Berge and Socan, 2004).
ECV as discussed by Ten Berge and Socan (2004) com-
pares the size of the eigenvalues extracted using minim-
ium rank factor analysis (Shapiro and ten Berge, 2002;
Ten Berge and Kiers, 1991). Sijtsma (2009) compares
ECV and α for multiple examples and shows where ECV
does not changing while α ranges from .2 to .9, as well as
examples of α not varying and ECV varying from .33 to
1.0. It is important to recognize that ECV just measures
how large the first factor is compared to the remaining
factors. ECV is not an index of general factor variance,
ωh will detect the absence of a general factor.

Yet one more way to test for unidimensionality is to
ask how many factors best fit a scale. If the best estimate
is greater than one, clearly the scale is not unidimen-
sional. However, the number of factors problem is no-
toriously difficult (Horn and Engstrom, 1979) and varia-
tions on the method of parallel analysis Horn (1965) have
spawned a small industry (Lorenzo-Seva et al., 2011;
Revelle and Rocklin, 1979; Timmerman and Lorenzo-
Seva, 2011; Velicer, 1976; Zwick and Velicer, 1986).
Even if these methods suggest one factor, the results may
be misleading in terms of the extent of unidimensional-
ity. For example, a completely homogeneous scale of six
items with all correlations of .16 and and ECV of 1.00
(table 5 from Sijtsma, 2009) is seen as no different than
the six political items from Ten Berge and Socan (2004)
with an ECV of .82. Both appear to be one factor using
parallel analysis with minimum rank factor analysis, but
the latter is intuitively much less unidimensional than the
first.

In recent discussions of the relationship between α,
internal consistency, and unidimensionality, Davenport
et al. (2015); Green and Yang (2015) consider how a test
measuring a single construct does not necessarily have to
be unidimensional, if the construct itself is complex (e.g.,
the ACT composite score, or the Wechsler Intelligence
Scale for Children). Similar points have been raised by
Embretson and Reise (2025) and Tellegen (1991).

Here we introduce a very simple alternative index for

unidimensionality — u, which may be found using the
unidim function in the psych package (Revelle, 2024a)
in R (R Core Team, 2024) — and examine its properties
using both simulated and real data.

Unidim: an index of unidimensionality

The logic is deceptively simple: Unidimensionality
implies that a one factor model (λ) of the data fits the
covariances or the correlations of the data. If this is the
case, then the factor model implies that R = λλ′+U2 will
have residuals of 05. That is, that the observed correla-
tions will equal those of the factor model. To evaluate
this, find the residuals of the observed covariances minus
the modeled covariances, sum the off-diagonal elements
of these squared residuals (Fm =

∑
i, j(Ri j − λiλ

′
j)

2 ), and
compare this to the sum of off-diagonal elements of the
squared original correlations (Fo =

∑
i, j R2

i j). This is the
measure of congeneric fit:

ρc = 1 −
Fm

Fo
=

Fo − Fm

Fo
.

When fitting a one factor model, ρc is a direct measure
of the fit of a congeneric model to the observed correla-
tions/covariances.

A statistically more elegant estimate is that of the
Compararative Fit Index (Bentler, 1990), which com-
pares a fit statistic (i.e., χ2) of the model less the ex-
pected value (Fm = χ

2
m − d fm) to that of the original

data (Fo = χ
2
o − d fo). Constraining both of the fits to

be positive leads to the CFI:

CFI =
max(χ2

0 − d f0, 0) − max(χ2
m − d fm, 0)

max(χ2
0 − d f0, 0)

. (10)

Clearly ρc is a direct index of the fit of a model,
whereas the CFI is a comparison of the fit statistics. Al-
though very similar in their values for data that are almost
unidimensional we prefer ρc for its performance across
less unidimensional data sets and the lack of a need to
specify sample size. In the following tables and figures,
we compare these two indices as well as a larger set of fit
statistics.

Although both the CFI and ρc can be large when some
of the loadings are very small or differ drastically in their
magnitude, it is probably not a good idea to think of the
items as forming a useful scale. Thus, an alternative mea-
sure (the τ statistic) compares the observed correlations
(ri j) to the mean correlation (r̄i j) and considers 1 - the
ratio of the sum of the squared residuals to the sum of
the squared correlations:

τ = 1 −
∑

i, j (ri j − r̄i j)2∑
i, j r2

i j

(11)

5Although we show this for correlation matrices this also
works for the more general covariance matrix.
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τ will achieve a maximum if the item correlations are
all identical (a parallel test model, McDonald, 1999).
Indeed, for dichotomous data, given the equivalence of
factor analytic models using tetrachoric correlations and
weighted least squares, with 2PL IRT models (Kamata
and Bauer, 2008; Takane and de Leeuw, 1987), the Rasch
(1966) model — a one parameter IRT model with the as-
sumption that all items have equally good discrimination
— is functionally a τ equivalent model.

We define the product of ρc and τ as our measure of
unidimensionality, u.6 That is, congeneric fit x tau equiv-
alent fit as a measure of unidimensionality. In the follow-
ing tables, we show how u behaves in various simulations
as well as with real data. We also show the behavior of
the u statistic as a function of sample size and compare
it with CFI and ECV as a function of sample size (Fig-
ure 1). These demonstrations use the functions unidim
and omega as implemented in the psych package (Rev-
elle, 2024a) for the open source statistical system R (R
Core Team, 2024). Output from both functions is also
shown in the reliability function.

Tests with simulations

In the following two sections, we examine 16 one fac-
tor models, four two factor models as well as 48 hier-
archical models with varying levels of a general factor.
To show the robustness of our results, we simulate each
of these models 100 times with four levels of simulated
sample size.

To demonstrate the unidim function on unidimen-
sional data, we simulated four one-factor models for 3,
6, 12 and 24 items. Loadings for each model were
specified for a three-item model as large (.7, .6, .5),
medium (.6, .5, .4), small (.5, .4, .3), or mixed ( .7,
.5, .3) loadings. To form 6, 12, or 24 item structure,
the basic loadings were repeated 2, 4, and 8 times. We
used the sim and sim.minor functions to generate the
data. Both functions generate a latent variable model
by multiplying the factor loading matrix by a matrix of
random normal deviates and then adding normally dis-
tributed error. sim.minor follows the advice of Mac-
Callum and Tucker (1991) who distinguished between
the factor model we want (pure factors) and a generat-
ing model of pure factors with a number of smaller, nui-
sance factors. (For further examples of large and small
factors, see Lorenzo-Seva et al., 2011; Timmerman and
Lorenzo-Seva, 2011). In order to be able to analyze the
actual raw scores, simulations were not done using the
procedure of Tucker et al. (1969) which generates sam-
ple correlation matrices but rather by generating factor
scores plus error following techniques similar to those of
Timmerman and Lorenzo-Seva (2011).

Varying factor loadings of a one dimensional model

For ease of simulation, we formed data based upon the
first four columns (pure) or all eight columns (minor) of
Table 2. By partitioning the resulting correlation matrix
appropriately, we are thus able to generate 16 different
one-factor models. We show loadings for each of the
models. The first set (column 1) contain large loadings
(.7, .6, .5), the second medium (.6, .5, .4) loadings, and
the third small (.5, .4, .3) loadings. The fourth column
shows mixed loadings of .7, .5, and .3. The final four
columns were used when generating minor factors, with
loadings of ±.2 randomly assigned to variables. The par-
titioning of the overall 96 x 96 correlation matrix resulted
in e.g., a 3 x 3 correlation matrix with large loadings
(R[1:3,1:3], medium loadings (R[4:6;4:6], or a 6 x 6 with
mixed loadings (R[c(10:12,22:24), c(10:12,22:24)]), etc.

Table 1

Four simulated loadings matrices. For each model, one
of the first 4 columns was combined with columns 5-8.
The loadings represent large, medium and small load-
ings, as well as a mixed set. The minor factors had load-
ings of ±.2 for four nuisance factors. To simulate an
(e.g.) six item problem with medium loadings, the first
six rows of the second and 5-8th columns were used.

Item large middle small mixed m1 m2 m3 m4
1 0.7 0.6 0.5 0.7 0.0 0.0 0.2 -0.2
2 0.6 0.5 0.4 0.5 0.0 0.2 0.0 0.0
3 0.5 0.4 0.3 0.3 -0.2 0.0 0.0 0.2
4 0.7 0.6 0.5 0.7 0.2 0.2 0.2 0.2
5 0.6 0.5 0.4 0.5 0.0 -0.2 0.0 0.0
6 0.5 0.4 0.3 0.3 0.0 0.2 0.0 0.2

... ... ... ..
22 0.7 0.6 0.5 0.7 -0.2 0.0 -0.2 0.2
23 0.6 0.5 0.4 0.5 0.0 0.0 0.2 -0.2
24 0.5 0.4 0.3 0.3 -0.2 0.0 0.0 0.0

Data were generated for 500 simulated subjects us-
ing both the “pure” (just one of the first four columns)
and the “noisy” (one + four minor factors) model. Solu-
tions for 3, 6, 12, and 24 items per scale for 500 simu-
lated participants are shown for pure factors in Table 3
and for noisy data in Table 4. The last four rows re-
flect scales formed from the first and second factors for
6, 10, 12, and 24 items7. These are clearly not unidimen-
sional. Simulations were done with continuous data as
well as six alternative categorical data (simulating items–
Table 5). Several things to note in these tables: Follow-
ing the Spearman-Brown equation (Brown, 1910; Spear-

6Thus, the square root of u is just the geometric mean of τ
and ρc.

7Because we also are finding split half estimates, we lim-
ited our examples to 24 items to allow for finding all split half
values from the 2,704,156 possible splits.
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Table 2

The simulated loadings matrix. Rows 1-12 were repeated 8 times to generate the 96 item loadings. The loadings
represent large, medium and small loadings, as well as a mixed set. The minor factors had loadings of ±.2 for four
nuisance factors. The resulting 96* 96 correlation matrix is then partitioned into unifactorial subsets. (E.g., R[1:3,1:3]
represents the correlation matrix of 3 items with large correlations, R[4:6,4:6] the medium sized correlation matrix.

Variable Large Medium Small Mixed m1 m2 m3 m4
V1 0.7 0.0 0.0 0.0 0.0 0.0 0.2 -0.2
V2 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0
V3 0.5 0.0 0.0 0.0 -0.2 0.0 0.0 0.2
V4 0.0 0.6 0.0 0.0 0.2 0.2 0.2 0.2
V5 0.0 0.5 0.0 0.0 0.0 -0.2 0.0 0.0
V6 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.2
V7 0.0 0.0 0.5 0.0 0.2 0.2 0.0 0.0
V8 0.0 0.0 0.4 0.0 -0.2 0.0 -0.2 0.2
V9 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.2
V10 0.0 0.0 0.0 0.7 -0.2 0.0 0.2 0.0
V11 0.0 0.0 0.0 0.5 0.0 0.0 0.2 -0.2
V12 0.0 0.0 0.0 0.3 -0.2 0.0 0.0 0.0

... ... ... ... ... ... ... ...
V85 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0
V86 0.6 0.0 0.0 0.0 0.0 0.0 0.0 -0.2
V87 0.5 0.0 0.0 0.0 0.2 0.2 0.0 0.0
V88 0.0 0.6 0.0 0.0 -0.2 0.2 0.0 0.0
V89 0.0 0.5 0.0 0.0 -0.2 0.0 0.0 0.2
V90 0.0 0.4 0.0 0.0 0.2 0.0 -0.2 -0.2
V91 0.0 0.0 0.5 0.0 0.0 0.0 0.2 -0.2
V92 0.0 0.0 0.4 0.0 -0.2 0.0 0.0 0.0
V93 0.0 0.0 0.3 0.0 0.2 -0.2 0.2 0.0
V94 0.0 0.0 0.0 0.7 0.0 0.2 0.2 0.0
V95 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.0
V96 0.0 0.0 0.0 0.3 0.0 0.0 -0.2 0.2

man, 1910), α and ωt increase with the number of items
in the scale. Neither statistic flags the scales formed from
two orthogonal factors as poor fits. Because a hierarchi-
cal model is not identified for three item scales, ωh was
forced to a one factor solution for those scales but prop-
erly identifies the last four scales as having low values for
general factor saturation. The behavior of the u statistic
is very gratifying, in that it does not increase with the
number of items per scale, varies as a function of the the
range of loadings, and correctly identifies the last four
scales as non-unidimensional. For these examples, the
performance of the CFI and ECV statistics showed sim-
ilar patterns: high for unidimensional scales, lower for
multidimensional scales. This is in striking contrast to
ωt or α which show very “reasonable” values for these
non-unidimensional scales.

Sensitivity to sample size

For practical purposes, we addressed the question of
the effect of sample size on the u statistic. We simulated
200, 500, 1,000 and 5,000 participants using the factor
structure shown in Table 2. For each simulation we per-
formed 100 replications. We also examined the effect
of sample size on ωt, CFI and ECV. It is quite clear (Fig-
ure 1) that even for samples as small as 100, the u statistic
could distinguish between unidimensional scales versus
multidimensional scales. The pattern of results show that

u is, in contrast toωt, not sensitive to the number of items
in the scale, but is sensitive to unidimensionality. This is
evident from comparisons of the first 16 to the last four
columns of each panel. The CFI statistic was not sensi-
tive to sample size nor range of factor loadings for one
factor data but did drop when given two factor data. The
ECV was sensitive to sample size, increasing with larger
samples, and to factor structure (decreasing from factors
with large to medium to low loadings). In contrast to u,
with the exception of 3 item scales, ECV was sensitive to
the number of items per factor, increasing from 6 to 12
to 24.

But what if the data are not unidimensional?

Our prior demonstrations examined various fit statis-
tics for one factor models with various number of items
and size and range of factor loadings. But what if the data
are intentionally multidimensional? Ability measures
typically are thought to represent a factor hierarchy of
correlated lower order (group) factors with a higher level
‘g’ factor (Jensen and Weng, 1994). Indeed, measures of
general ability are not meant to be purely unidimensional
(Humphreys, 1994; Nandakumar, 1991). Similarly, mea-
sures of higher order personality scales (e.g., extraver-
sion or neuroticism) are typically not meant to be truly
unidimensional, but to include related lower level con-
structs (Tellegen and Waller, 2008). Variously known
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Table 3

Various estimates of unidimensionality and reliability for 500 simulated participants for scales formed from 3, 6, 12,
and 24 items with factor loadings as specified in Table 2. The last four rows report results for scales formed from two
orthogonal subscales. u is the unidimensionality statistic, τ and ρC are the τ and congeneric fits, ωh and ωt are the
two omega statistics, α is the traditional estimate. Max split and min split represent the maximum and minimum split
half reliabilities found by complete sampling of all Ck

k/2 possible split half coefficients. r̄ reports the mean correlation
in the scale. Median r is just the median correlation among the items. CFI is the comparative fit index, ECV is the
Explained Common Variance.

Model u τ ρC ωh α ωt Max Min r̄ Median CFI ECV N
Split Split r Items

high.3 0.99 0.99 1.00 0.61 0.61 0.61 0.58 0.52 0.34 0.36 1.00 0.98 3
med.3 0.99 0.99 1.00 0.54 0.54 0.54 0.50 0.45 0.28 0.28 1.00 0.98 3
low.3 0.97 0.97 1.00 0.34 0.33 0.34 0.32 0.26 0.14 0.14 1.00 0.97 3
mixed.3 0.92 0.92 1.00 0.45 0.44 0.45 0.44 0.31 0.21 0.18 1.00 0.97 3
high.6 0.96 0.96 0.99 0.69 0.76 0.78 0.78 0.73 0.35 0.33 0.99 0.74 6
med.6 0.91 0.92 0.99 0.41 0.67 0.74 0.70 0.65 0.26 0.26 1.00 0.73 6
low.6 0.85 0.88 0.97 0.21 0.52 0.62 0.56 0.47 0.15 0.15 1.00 0.69 6
mixed.6 0.73 0.74 0.98 0.26 0.61 0.71 0.66 0.55 0.21 0.18 0.99 0.55 6
high.12 0.94 0.95 0.99 0.76 0.87 0.87 0.89 0.84 0.35 0.35 0.99 0.90 12
med.12 0.88 0.90 0.98 0.38 0.78 0.81 0.82 0.75 0.23 0.23 0.97 0.74 12
low.12 0.78 0.83 0.94 0.48 0.66 0.68 0.71 0.57 0.14 0.14 0.99 0.76 12
mixed.12 0.77 0.78 0.98 0.26 0.77 0.81 0.82 0.71 0.22 0.20 0.99 0.73 12
high.24 0.95 0.95 1.00 0.11 0.93 0.93 0.95 0.92 0.36 0.35 1.00 0.93 24
med.24 0.90 0.92 0.98 0.64 0.88 0.88 0.91 0.85 0.23 0.23 0.99 0.88 24
low.24 0.81 0.85 0.95 0.66 0.82 0.82 0.86 0.77 0.16 0.16 0.99 0.84 24
mixed.24 0.78 0.79 0.98 0.36 0.88 0.89 0.91 0.82 0.24 0.21 0.99 0.90 24
F2.6 0.32 0.50 0.63 0.11 0.50 0.61 0.59 0.12 0.14 0.07 0.61 0.54 6
F2.10 0.30 0.49 0.62 0.07 0.66 0.73 0.75 0.09 0.16 0.06 0.61 0.46 10
F2.12 0.12 0.19 0.63 0.05 0.62 0.73 0.73 0.09 0.12 0.05 0.62 0.50 12
F2.24 0.23 0.34 0.68 0.08 0.79 0.84 0.87 0.32 0.14 0.07 0.65 0.58 24

Table 4

Various estimates of unidimensionality and internal consistency for 500 simulated participants for scales formed from
3, 6, 12, and 24 items with major and minor factor loadings as specified in Table 2. The last four rows report results
for scales formed from two orthogonal subscales. Column headings are the same as in Table 3. The addition of a
small amount of noise makes very little difference (compare with Table 3).

Model u τ ρC ωh α ωt Max Min r̄ Median CFI ECV N
Split Split r Items

high.3 0.98 0.98 1.00 0.59 0.58 0.59 0.56 0.47 0.32 0.30 1.00 0.98 3
med.3 0.99 0.99 1.00 0.53 0.53 0.53 0.51 0.44 0.27 0.29 1.00 0.97 3
low.3 0.90 0.90 1.00 0.43 0.39 0.43 0.43 0.28 0.18 0.19 1.00 0.91 3
mixed.3 0.91 0.91 1.00 0.54 0.52 0.54 0.53 0.36 0.27 0.22 1.00 0.98 3
high.6 0.93 0.93 1.00 0.43 0.76 0.82 0.78 0.74 0.35 0.34 1.00 0.74 6
med.6 0.92 0.94 0.97 0.55 0.67 0.70 0.71 0.61 0.26 0.24 0.96 0.76 6
low.6 0.82 0.84 0.97 0.39 0.54 0.62 0.59 0.47 0.16 0.15 0.99 0.61 6
mixed.6 0.80 0.81 0.99 0.56 0.68 0.72 0.71 0.61 0.26 0.22 0.99 0.79 6
high.12 0.93 0.94 0.99 0.65 0.86 0.87 0.89 0.83 0.34 0.34 0.97 0.88 12
med.12 0.91 0.94 0.97 0.66 0.80 0.81 0.84 0.74 0.25 0.25 0.94 0.81 12
low.12 0.79 0.84 0.95 0.49 0.69 0.70 0.75 0.61 0.16 0.16 0.96 0.77 12
mixed.12 0.81 0.83 0.99 0.30 0.81 0.83 0.85 0.72 0.26 0.23 0.99 0.75 12
high.24 0.93 0.94 0.99 0.60 0.92 0.93 0.95 0.89 0.34 0.34 0.95 0.89 24
med.24 0.89 0.91 0.97 0.64 0.89 0.89 0.92 0.83 0.25 0.25 0.95 0.86 24
low.24 0.77 0.83 0.93 0.58 0.82 0.83 0.87 0.74 0.16 0.16 0.90 0.79 24
mixed.24 0.80 0.82 0.98 0.67 0.89 0.90 0.92 0.82 0.26 0.23 0.98 0.86 24
F2.6 0.06 0.11 0.57 0.02 0.46 0.56 0.56 0.03 0.12 0.05 0.57 0.52 6
F2.10 0.30 0.48 0.63 0.07 0.65 0.73 0.76 0.09 0.16 0.09 0.62 0.52 10
F2.12 0.31 0.47 0.64 0.07 0.68 0.74 0.77 0.10 0.15 0.10 0.63 0.53 12
F2.24 0.30 0.47 0.62 0.06 0.81 0.84 0.88 0.29 0.15 0.11 0.58 0.53 24
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Table 5

Comparing unidim (u) estimates for continuous and item (categorical) data for pure and minor simulated factors. The
categorical data were generated with six categories using the sim and sim.minor functions in psych.

Model pure continuous pure categorical minor continuous minor categorical
high.3 0.99 0.98 0.98 0.97
med.3 0.99 0.97 0.99 0.96
low.3 0.97 0.83 0.90 0.94
mixed.3 0.92 0.87 0.91 0.86
high.6 0.96 0.96 0.93 0.94
med.6 0.91 0.95 0.92 0.95
low.6 0.85 0.84 0.82 0.81
mixed.6 0.73 0.84 0.80 0.76
high.12 0.94 0.94 0.93 0.93
med.12 0.88 0.92 0.91 0.93
low.12 0.78 0.79 0.79 0.83
mixed.12 0.77 0.81 0.81 0.73
high.24 0.95 0.95 0.93 0.94
med.24 0.90 0.90 0.89 0.91
low.24 0.81 0.79 0.77 0.82
mixed.24 0.78 0.80 0.80 0.74
F2.6 0.32 0.06 0.06 0.32
F2.10 0.30 0.09 0.30 0.27
F2.12 0.12 0.10 0.31 0.28
F2.24 0.23 0.22 0.30 0.31

as Factorially Homogeneous Item Dimensions or FHIDs
(Comrey, 1984) or Homogeneous Item Composites or
HICs (Hogan and Hogan, 2007), these lower level con-
structs may be formed into higher level scales. Struc-
tural analysis includes bi-factor solutions (Reise et al.,
2007), (Reise et al., 2018) taking advantage of the bifac-
tor model of Holzinger and Swineford (1937) (see also,
Holzinger and Swineford, 1939) as well as the Schmid
and Leiman (1957) higher level model. All of these ap-
proaches are intentionally multidimensional but the re-
sulting scores tend to be interpreted as one higher order
construct.

Jensen and Weng (1994) give a nice example of a
higher level (g) factor arising from the composite of three
lower level factors. Given a three factor model for nine
items with loadings as shown in Table 6 (part A), and
factor loadings on ‘g’ of .9, .8 and .7 result in factor
correlations of .72 , .63 and .56. The 9 x 9 correlation
matrix may be solved using a higher order solution or ro-
tated using the Schmid and Leiman (1957) oblique factor
solution to produce the factor solution shown in part B of
Table 6. The u statistic for this set of 9 items is .84, with
ωh of .69 and CFI of .93.

This model was extended to the case of 18, 27, and 36
items by duplicating the loadings shown in Table 6 two,
three or four times. To examine the effect of factor struc-
ture, factor intercorrelations, and sample size, the higher
order loadings were set by specifying identical higher or-
der loadings varying from 0 to 1. Data were generated
for 100, 200, 500, and 1000 simulated cases with mi-
nor noise factors (MacCallum et al., 2007; MacCallum
and Tucker, 1991) with random loadings of -.2 , 0, or
.2. The data for 9, 18, 27, and 36 items were generated,

with either continuous or categorical items (with five cat-
egories). In the categorical case, polychoric correlations
were found although we did not expect much effect of
the categorical versus continuous distinction (Rhemtulla
et al., 2012). Results for the u, ωh and CFI statistics are
shown as a function of the number of items (9, 18, 27,
36) and the general factor loading for both the contin-
uous and categorical cases (Figure 2). Figure 3 show
the effects of sample size (100, 200, 500, 1000) on these
estimates. To examine the extent these these results gen-
eralize across the size of group factors we redid these
analyses with smaller group factors (loadings of .6, .5
and .4) for the case of categorical variables (Figure 4)
and sample size (Figure 5).

Inspecting these four figures, it is clear that all three
measures are sensitive to the g loading, with the u
statistic being less sensitive to the number of items and
whether they are continuous or categorical. Although
both u and ωh varied across the entire range of g load-
ings, the CFI estimate was not sensitive to variations in g
loadings less than .5. That is, for rejecting unidiminsion-
ality (g < .9 all three statistics did a good job, but CFI
was not good index of poor fit.

A reviewer asked why we bother to introduce a new
estimate of unidimensionality when we already have
perfectly good ways of detecting whether a single fac-
tor fits the data? In a comparison of five procedures
for estimating the optimal number of factors to extract
Zwick and Velicer (1986) show that two are far better
than the others. Emphasizing Principal Components, the
Minimum Average Partial correlation test (MAP Velicer,
1976; Zwick and Velicer, 1986) finds the number of
components that minimize the average squared partial
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A)  ωt varies by sample size and factor loadings
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B) U varies by sample size and factor loadings
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 C) CFI is not very sensitive to variations in factor loadings
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 D) ECV varies by sample size and factor loadings
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Figure 1

The ωt, u, CFI and ECV statistics behave very differently across the number of items per factor and sample size. Panel
A shows how ωt increases with the number of items/factor and varies by the size of the factor loadings. It is relatively
insensitive to the non-unidimensionality of scales formed from multiple factors and to sample size. Panel B shows how
the u statistic does not increase with the number of items per scale, is sensitive to the the size of the factor loadings,
and is very sensitive to the degree of non-unidimensionality (the four right hand observations in both panels). Panel
C shows that the CFI varies only slightly by sample or range of factor loadings. Panel D shows that ECV varies by
sample size and factor loadings. Sample sizes in all panels range from 200 (black) to 500, 1000, and 5000 (green)
simulated participants. The cats-eyes shapes display standard deviations of 100 replications for each sample size.

correlation of the residual matrix when partialling out
the first n components. Parallel Analysis (PA, Horn,
1965; Humphreys and Montanelli, 1975) compares fac-
tors/components of a sample to those of random samples
of the same number of variables and subjects and iden-
tifies the number of factors/components to those with
eigen values of the observed sample greater than those

of a random samples. In Figure 6 we compare MAP, PA
for components, and PA for factors for 100 replications
of our hierarchical data problem with 12 levels of gen-
eral factor saturation, four levels of the number of items,
and four sample sizes. All three procedures suggest one
factor with g values of 1.0, and three factors for g values
of < .5 but are not as clear for g values between .6 and
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(B) u ~ g loading and sample size
 Continuous data 
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(C) Omega_h ~ g loading and number of items
 Continuous data 
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(D) Omega_h ~ g loading and number of items
 Categorical data 
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(E)  CFI ~ g loading and number of items
Continuous data
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(F)  CFI ~ g loading and number of items
 Categorical data
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Figure 2

Unidim, ωh, and CFI as functions of general factor loading (0 ... 1), number of items (9, 18, 27, 36) and type of data
(continuous versus 5 level categorical). Left hand panel shows fits as function of number of items and g loadings for
continuous data, right hand panel shows the effect of categorical data.. All models are include minor noise factors.
Simulated sample sizes range for 100 to 1000 cases (see Figure 3). “Cats eyes" show the 95% confidence of the 100
simulations for each condition.
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U ~ g loading and number of observations
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U ~ g loading and number of observations
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omega_h ~ g loading and number of observations
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omega_h ~ g loading and number of observations
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CFI ~ g loading and number of observations

g
n.obs

C
FI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100
200
500
1000

CFI ~ g loading and number of observations
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Figure 3

Unidim, ωh, and CFI as functions of general factor loading and simulated sample size. Left hand panel shows con-
tinuous data, right hand panel shows categorical data. All models include minor noise factors. “Cats eyes" show the
95% confidence of the 100 simulations for each condition.
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(A) u ~ g loading and number of items
Small group factor loadings
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(B) u ~ g loading and number of items
Large group factor loadings
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(C) omega_h ~ g loading and number of items
Small group factor loadings
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(D) omega_h ~ g loading and number of items
Large group factor loadings
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(E)  CFI ~ g loading and number of items
Small group factor loadings
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(F)  CFI ~ g loading and number of items
Large group factor loadings
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Figure 4

Unidim, ωh, and CFI as functions of general factor loading and the total number of items (9, 18, 27, 36). Left hand
panel shows low group factor loadings, right hand panel shows larger group factors loadings. All data are categorical
and include minor noise factors. “Cats eyes" show the 95% confidence of the 100 simulations for each condition.
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(A)u ~ g loading and number of observations
Small group factors
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(B) u ~ g loading and number of observations
Large group factors

 g loading

U
ni

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1000
500
200
100

(C) omega_h ~ g loading and number of observations
Small group factors
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(D) omega_h ~ g loading and number of observations
Large group factors
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(E) CFI ~ g loading and number of observations
Small group factors
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(F) CFI ~ g loading and number of observations
Large group factors
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Figure 5

Unidim, ωh, and CFI as functions of general factor loading and sample size (100, 200, 500, 1000). Left hand panel
shows low group factor loadings, right hand panel shows larger group factors loadings. All data are categorical and
include small noise factors. “Cats eyes" show the 95% confidence of the 100 simulations for each condition.
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Table 6

Three factors with loadings for 9 items have g loadings as specified in the last row (part A). These may be transformed
to a bifactor solution (part B). U = .84, ωh = .69,CFI = .93. A similar set of factors (F1, F2, F3) are then duplicated
two, three or four times and the g loadings are set to be all 0, all .1, ... all 1.0, to create the results shown in Figure 3)

Part A Part B
Variable F1 F2 F3 g F1* F2* F3* h2 u2 p2 com
V1 0.80 0.00 0.00 0.72 0.35 0.00 0.00 0.64 0.36 0.81 1.44
V2 0.70 0.00 0.00 0.63 0.31 0.00 0.00 0.49 0.51 0.81 1.44
V3 0.60 0.00 0.00 0.54 0.26 0.00 0.00 0.36 0.64 0.81 1.44
V4 0.00 0.70 0.00 0.56 0.00 0.42 0.00 0.49 0.51 0.64 1.85
V5 0.00 0.60 0.00 0.48 0.00 0.36 0.00 0.36 0.64 0.64 1.85
V6 0.00 0.50 0.00 0.40 0.00 0.30 0.00 0.25 0.75 0.64 1.85
V7 0.00 0.00 0.60 0.42 0.00 0.00 0.43 0.36 0.64 0.49 2.00
V8 0.00 0.00 0.50 0.35 0.00 0.00 0.36 0.25 0.75 0.49 2.00
V9 0.00 0.00 0.40 0.28 0.00 0.00 0.29 0.16 0.84 0.49 2.00
g 0.90 0.80 0.70

.9. Compare these curves to those showing u and CFI
with values for the same range of g values in figures 2-
5. Unlike u or the CFI, MAP and PA are very sensitive
to the number of items in the scale. MAP and PA give
different answers for 9 or 18 items as a function of the
g loadings in the range from .7 to .9. In fact for 9 items
MAP suggests one or slightly more the one factor across
the entire g range.

Applying unidim to real data

The simulations were done with continuous and cat-
egorical item scores with known (simulated) structure.
However, most real ability and personality items are cate-
gorical and the structures are assumed rather than known.
unidim can be applied to such data using either tetra-
choric or more generally polychoric correlations. In ad-
dition to showing results with simulated continuous and
categorical data (Table 5, Figures 2, 3) we show the
utility of the u statistic with real categorical data from
three data sets available in the psychTools package (Rev-
elle, 2024b) for the R statistical system. For reasons
discussed in Chalmers (2017) and Revelle and Condon
(2019), conventional reliability indices were found us-
ing Pearson correlations. However, the unidimensional
estimates were found from factoring the tetrachoric or
polychoric correlation matrices.

Of these data sets, the first, the ability data set in-
cludes 16 items for 1,525 participants from the Inter-
national Cognitive Ability Resource (Condon and Rev-
elle, 2014), which represents 4 lower level factors and
one higher level factor (Table 7 part 1). The items are
dichotomous. The second dataset, bfi, contains data
from 2,800 participants who responded to 25 Likert-like
items with six response choices ranging from “very in-
accurate” to “very accurate.” Although normally scored
using only five separate constructs (the familiar Big Five
traits shown in Table 7 part 2), composite scales were

also formed here, for demonstration purposes, from two
(E+O), three (A+C+N) or five (all) of these constructs.
This is a particularly nice example of the advantage of
the u statistic as contrasted with the more conventional
α and ωt statistics, for the latter show quite reasonable
values (.71 - .84) for scales that are not unidimensional.
u and ωh on the other hand, show clear evidence (.30 -
.41) for multidimensionality (Table 7 part 3). What is
interesting is that for these nominally unifactorial scales,
the CFI and ECV statistics were quite low. The ECVs
for the single construct bfi scales ranged from .79 to
.87, values, while the CFIs ranged from .90 to .97 which,
although larger than for the multi-construct scales (.52
- .61 for ECV, .40 - .64 for CFI), do not suggest strong
unidimensionality.

The third dataset uses the 135 items of the SAPA Per-
sonality Inventory (Condon, 2018) for 4,000 participants
(spi) to form 27 lower level scales; these also had six
response options (“very inaccurate” to “very accurate”)
(Table 8). In this case, the u values for the SPI-27 reflect
the higher degree of unidimensionality expected from
brief 5-item scales with a median of .94 and ranging from
.83 to .99. By contrast, α values are relatively lower
(again, as expected, given the short scale lengths), and
the ωh values are difficult to interpret due to inadequate
degrees of freedom. In contrast to the findings with the
bfi scales, these 27 scales show higher levels of ECV
with a median of .91 and ranging from .77 to .96.

Comparison of fit statistics

A reasonable question to ask is what is the relationship
between these various estimates of unidimensionality?
As one reviewer questioned, is our ρc measure any dif-
ferent from ECV? Conceptually our proposed measure,
u, based upon the product of τ and ρc would seem to
be similar to the goodness of fit of a one factor model
(CFI) or the Explained Common Variance. To address
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Table 7

Unidim coefficients and multiple reliability measures for the ability data set with 16 items and 1,525 participants
and the bfi data set with 2,800 participants for 25 items. The first three columns report unidim statistics u, τ, ρc, the
next three columns the conventional ωh, α, and ωt internal consistency estimates, and the next two report the maximum
and minimum split half reliabilities based upon a split half decomposition of the scales. The next two columns (r̄ and
Median r) are the mean and median within scale correlations, respectively. The last three columns are the CFI and
ECV, followed by the number of items per scale. The ICAR16 represents a higher order factor composed of four lower
level factors. Although the bfi is scored as five unidimensional constructs, the last three lines represent scales formed
from two (E+O), three (A+C+N) or five (all) constructs. For the latter three scales, note how the high value of α and
ωt conflict with low values of u and ωh which are better indicators of unidimensionality.

Data set u τ ρC ωh α ωt Max Min Mean Median CFI ECV N
Scale Split Split r r Items
ICAR dataset
ICAR16 0.90 0.93 0.96 0.56 0.83 0.85 0.87 0.73 0.23 0.21 0.76 0.78 16
reasoning 0.98 0.98 1.00 0.05 0.65 0.65 0.65 0.64 0.31 0.31 1.00 0.99 4
letters 0.99 0.99 1.00 0.65 0.67 0.68 0.68 0.66 0.34 0.33 1.00 0.98 4
matrix 0.93 0.95 0.98 0.37 0.54 0.59 0.58 0.49 0.23 0.22 0.95 0.83 4
rotate 1.00 1.00 1.00 0.71 0.77 0.78 0.78 0.74 0.45 0.44 0.99 0.96 4
bfi dataset: single construct scales
extraversion 0.96 0.97 0.99 0.55 0.76 0.82 0.78 0.66 0.39 0.38 0.97 0.86 5
openness 0.89 0.91 0.98 0.39 0.61 0.70 0.66 0.52 0.24 0.23 0.94 0.79 5
agreeableness 0.90 0.91 0.99 0.64 0.71 0.75 0.75 0.62 0.33 0.34 0.96 0.86 5
conscientious 0.95 0.97 0.98 0.53 0.73 0.77 0.74 0.64 0.35 0.34 0.93 0.84 5
neuroticism 0.94 0.95 0.98 0.71 0.81 0.85 0.83 0.69 0.47 0.41 0.90 0.87 5
bfi multi construct scales
EO 0.49 0.62 0.79 0.36 0.71 0.77 0.79 0.38 0.20 0.21 0.64 0.61 10
ACN 0.43 0.63 0.68 0.33 0.78 0.81 0.87 0.47 0.19 0.14 0.44 0.52 15
All 0.38 0.56 0.68 0.30 0.82 0.84 0.89 0.58 0.15 0.13 0.40 0.56 25

Table 8

Unidim coeffficients and multiple reliability measures of the spi-135 (Condon, 2018). The SAPA Personality Inven-
tory (Condon, 2018) has five higher order scales assessing the “Big Five” and 27 lower level scales assessing other
aspects of personality. The 27 lower level measures have 5 items each. The spi data set in the psychTools has 4,000
observations on these 135 items plus 10 criteria/demographic variables. The columns are the same as in Table 7.

Model u τ ρC ωh α ωt Max Min Mean Median CFI ECV N
Split Split r r Items

Compassion 0.99 0.99 1.00 0.80 0.88 0.89 0.87 0.82 0.59 0.58 0.99 0.94 5
Trust 0.99 0.99 1.00 0.80 0.87 0.89 0.87 0.81 0.58 0.58 0.98 0.94 5
Honesty 0.96 0.97 0.99 0.71 0.81 0.84 0.83 0.70 0.46 0.46 0.94 0.88 5
Conservatism 0.84 0.91 0.92 0.56 0.78 0.85 0.84 0.61 0.41 0.35 0.66 0.76 5
Authoritarianism 0.89 0.93 0.96 0.63 0.81 0.86 0.85 0.63 0.46 0.46 0.83 0.81 5
EasyGoingness 0.90 0.92 0.98 0.45 0.68 0.76 0.73 0.58 0.29 0.29 0.94 0.78 5
Perfectionism 0.83 0.84 0.99 0.34 0.70 0.74 0.72 0.53 0.31 0.33 0.97 0.87 5
Order 0.93 0.94 0.99 0.62 0.81 0.85 0.83 0.66 0.46 0.42 0.93 0.86 5
Industry 0.99 0.99 1.00 0.72 0.84 0.86 0.84 0.76 0.52 0.50 0.98 0.94 5
Impulsivity 0.98 0.98 1.00 0.72 0.87 0.90 0.87 0.80 0.58 0.58 0.99 0.96 5
SelfControl 0.91 0.94 0.96 0.49 0.76 0.83 0.80 0.60 0.39 0.36 0.87 0.79 5
EmotionalStability 0.99 0.99 1.00 0.65 0.85 0.89 0.84 0.76 0.52 0.50 0.99 0.93 5
Anxiety 0.99 0.99 1.00 0.83 0.90 0.91 0.89 0.83 0.64 0.62 0.97 0.95 5
Irritability 0.98 0.99 0.99 0.78 0.89 0.91 0.89 0.79 0.61 0.60 0.94 0.91 5
WellBeing 0.99 0.99 1.00 0.80 0.90 0.92 0.90 0.81 0.63 0.63 0.95 0.92 5
EmotionalExpressiveness 0.93 0.94 0.99 0.73 0.80 0.83 0.83 0.68 0.45 0.43 0.95 0.90 5
Sociability 0.97 0.98 0.99 0.66 0.85 0.89 0.85 0.75 0.53 0.50 0.95 0.88 5
Adaptability 0.93 0.94 0.99 0.62 0.80 0.84 0.82 0.68 0.44 0.42 0.95 0.88 5
Charisma 0.94 0.96 0.98 0.67 0.82 0.86 0.84 0.72 0.47 0.43 0.88 0.85 5
Humor 0.94 0.94 0.99 0.68 0.78 0.82 0.81 0.64 0.42 0.40 0.97 0.91 5
AttentionSeeking 0.93 0.93 0.99 0.80 0.88 0.90 0.89 0.77 0.58 0.67 0.94 0.92 5
SensationSeeking 0.97 0.98 0.99 0.77 0.86 0.89 0.87 0.77 0.55 0.54 0.92 0.91 5
Conformity 0.90 0.94 0.96 0.67 0.82 0.87 0.85 0.67 0.47 0.47 0.82 0.83 5
Introspection 0.94 0.95 0.99 0.56 0.78 0.84 0.81 0.68 0.41 0.41 0.94 0.87 5
ArtAppreciation 0.90 0.90 1.00 0.68 0.80 0.83 0.81 0.65 0.44 0.46 0.98 0.92 5
Creativity 0.97 0.98 1.00 0.70 0.85 0.86 0.85 0.77 0.52 0.53 0.98 0.94 5
Intellect 0.99 0.99 1.00 0.81 0.86 0.87 0.84 0.78 0.54 0.52 0.99 0.96 5
median 0.94 0.96 0.99 0.68 0.82 0.86 0.84 0.72 0.47 0.47 0.96 0 .90 5
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this question, we report the correlations of these and ad-
ditional measures (Table 9) for the continuous and cate-
gorical datas sets shown in Figure 2. Table 10 compares
the effect of larger versus smaller group factor loadings.
In all of these case, we show the correlation with the g
loading as well. For both continuous and categorical data
and for small versus large group factor loadings the u
statistic is more closely related to the g loading (r=.96
for both cases with larger group factor loadings, .9 for
smaller group factor loadings) than are the other esti-
mates.

Table 9

Correlation of fit statistics across 12 levels of g loadings.
Lower off diagonal for continuous variables, upper off
diagonal for categorical variables, N observations range
from 100 to 1000, number of items fit range from 9 to 36.
See Figure 2 for the data.

Variable g Uni τ ρc ωh CFI ECV
g 0.96 0.95 0.94 0.92 0.84 0.92
Uni 0.96 0.99 0.99 0.96 0.89 0.96
τ 0.95 0.98 0.96 0.94 0.83 0.92
ρc 0.95 0.99 0.96 0.95 0.91 0.96
ωh 0.94 0.96 0.94 0.96 0.83 0.96
CFI 0.89 0.92 0.85 0.93 0.88 0.91
ECV 0.94 0.96 0.92 0.96 0.96 0.96

Table 10

Correlation of fit statistics across 12 levels of g loadings.
Lower off diagonal values represent lower group factor
loadings, upper off diagonal larger group factor load-
ings.

Variable g Uni τ ρc ωh CFI ECV
g 0.96 0.95 0.95 0.93 0.83 0.93
Uni 0.90 0.98 0.99 0.96 0.88 0.96
τ 0.89 0.98 0.96 0.93 0.82 0.92
ρc 0.89 0.98 0.96 0.95 0.90 0.96
ωh 0.85 0.90 0.88 0.88 0.82 0.96
CFI 0.81 0.91 0.86 0.94 0.75 0.90
ECV 0.88 0.93 0.90 0.92 0.95 0.83

How should we interpret these various fit statistics and
what should we do if the fits are not perfect? Even with
data meant to be represented by one factor, (i.e, g load-
ings of 1 in the hierarchical factor model– Figure 2) the
fits are not perfect. Unlike ωh or CFI, u is not sensitive to
the number of items in the scale, but all of these measures
are sensitive to the number of observations (Figures 3,
5). The magnitude of ωh is positively correlated with
the number of items, while CFI is negatively correlated.
All measures are larger for more observations, with the
exception of CFI for continuous data.

Summary and Conclusion

The problem of assessing the fit of a unidimensional
model of a scale has been a challenge for many years,
and many solutions have been offered. Here we have
suggested a simple index, u, which is the the product
of indices of τ equivalance and ρc or congeneric equiva-
lence. u is simple to calculate (e.g., using the unidim or
reliability functions in the psych package for R). We
compare the u index to five popular indices of scale qual-
ity, α, ωh ωt, CFI, and ECV and show that unlike α, ωt,
or ECV, u is insensitive to the number of items in a scale
and unlike the CFI is sensitive to factor structure. u is
robust across sample sizes from 100 to 5000 in assessing
how well a unidimensional model fits the data.
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(F) PA (components) ~ g loading and number of observations,
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Figure 6

Alternative measures of the number of factors in a hierarchical model include the Minimum Average Partial (MAP),
parallel analysis of the number of factors (P.fa) , or parallel analysis of the number of components (P.co). For all 3
estimates, we show the statistic as a function of the g loadings of the generating model, as well as the number of items
(panels A, C, E) and the number of observations (Panels B, D, F). Catseyes show the confidence intervals for 100
replications.
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Appendix: R code

Here we show the R code used in the simulations.
The first section is for Tables 1-5 and Figure 6 showing various effects on the one factor model.
The next section is for the variation in the g factor loadings.

One factor models
R code

library(psych)
library(psychTools)
library(parallel) #to allow multiple cores (for speed)
#requires psych version 2.4.3 or above

#First simulate data for tables 1-5

#The basic data structure
#we create a 96 x 96 matrix, from which we take partitions for the various examples

fx4 <- matrix(c(.7,.6,.5,rep(0,12),.6,.5,.4,rep(0,12) ,.5,.4,.3,rep(0,12),.7,.5,.3),ncol=4)
fx96 <- rbind(fx4,fx4,fx4,fx4,fx4,fx4,fx4,fx4)
rownames(fx96) <- paste0("V",1:96)
colnames(fx96) <- paste0("F",1:4)
keys96 <- factor2cluster(fx96)
rownames(keys96) <- paste0("V",1:96)
keys.96 <- keys2list(keys96)
keys.12 <-keys2list(keys96[1:12,])
keys.24 <- keys2list(keys96[1:24,])
keys.48 <- keys2list(keys96[1:48,])
# names(keys.12) <- paste0("F",1:4,".12")
names(keys.12) <- paste0(cs(high, med, low, mixed),".",3)
names(keys.24) <- paste0(cs(high, med, low, mixed),".",6)
names(keys.48) <- paste0(cs(high, med, low, mixed),".",12)
names(keys.96) <- paste0(cs(high, med, low, mixed),".",24)
keys.6.2.factors <- list(c(keys.12$high,keys.12$med))
keys.10.2.factors <- list(c(keys.24$high[1:5],keys.24$med[1:5]))
keys.12.2.factors <- list(c(keys.48$high[1:6],keys.48$med[1:6]))
keys.24.2.factors <- list(c(keys.96$high[1:12],keys.96$med[1:12]))
names(keys.6.2.factors) <- "F2.6"
names(keys.10.2.factors) <- "F2.10"
names(keys.12.2.factors) <- "F2.12"
names(keys.24.2.factors) <- "F2.24"
#names(keys.48.2.factors) <- "F2.48"
keys <- c(keys.12,keys.24,keys.48,keys.96,keys.6.2.factors,keys.10.2.factors,

keys.12.2.factors,keys.24.2.factors)

#one run to create Tables 3 and 4
n.obs=500
set.seed(42) #for reproducible results
sim.96 <- sim(fx96,n=n.obs) #generate n.obs participants for 96 variables
minor.96 <- sim.minor(fbig=fx96,n=n.obs, n.small=4) #include nuisance factors
#create item like data
sim.96.item <- sim(fx96,n=n.obs, items=TRUE) #generate n.obs participants for 96 variables
minor.96.item <- sim.minor(fbig=fx96,n=n.obs, n.small=4,items=TRUE) #include nuisance factors

reliability.pure.500 <- reliability(keys, sim.96$observed) #
reliability.minor.500 <- reliability(keys, minor.96$observed,n.sample=50000)

uni.pure.cont <- unidim(keys,sim.96$observed)
uni.minor.cont <- unidim(keys,minor.96$observed)
#do it for categoriical data
uni.pure.item <- unidim(keys,sim.96.item$observed,cor="poly")
uni.minor.item <- unidim(keys,minor.96.item$observed,cor="poly")

uni.sum <- data.frame(pure.cont=uni.pure.cont$uni[,1:3],
pure.item=uni.pure.item$uni[,1:3],

minor.cont = uni.minor.cont$uni[,1:3],
minor.item = uni.minor.item$uni[,1:3])

#now, a cleaner table, just the u values
uni.sum.1<- data.frame(pure.cont=uni.pure.cont$uni[,1],

pure.item=uni.pure.item$uni[,1],
minor.cont = uni.minor.cont$uni[,1],
minor.item = uni.minor.item$uni[,1])

matPlot(uni.sum.1, xlas=3 ,legend=3,
main="Unidim as a function of number of items, factor loadings and item type")
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#now try to get confidence intervals on the basic stats
# we do 100 runs for each condition

# We create a short function to simulate the data
#It uses the sim functions from psych
#also the reliability and unidim functions
#use 10 replications for testing purposes

simulate.unidim <- function(fx,n.obs=1000, n.replications = 10, keys=NULL,
minor=FALSE, items=FALSE) {

results <- list()
uni.results <- list()
vnames <- cs(omega.h ,alpha, omega.tot, ECV, Uni, r.fit ,fa.fit ,n.items)
if(is.null(keys)) {nvar <- 1} else {nvar <- length(keys)}

for (i in (1: n.replications)) { # short loop
if(minor) {sim.data <- sim.minor(fbig=fx, n=n.obs, n.small=4,items=items)
} else {sim.data <- sim(fx,n=n.obs, items=items)}
if(items) {R <- lowerCor(sim.data$observed, cor="poly", show=FALSE)$rho
} else {R <- lowerCor(sim.data$observed,show=FALSE)}

temp <- reliability(keys,R,split=FALSE,n.obs=n.obs)$result.df
uni.temp <- unidim(keys,R, n.obs=n.obs)$fa.stats
results[[i]] <- temp

uni.results[[i]] <- uni.temp
} #end of loop

#organize the results
result.df <- matrix(unlist(results),byrow=TRUE,ncol=13*nvar)
uni.df <- matrix(unlist(uni.results), byrow=TRUE, ncol=9*nvar)
return(result.df)
} # the end of our short simulation function

#now use this function to generate the replications of the data
set.seed(42) #allows for reproducible results

sim100 <- simulate.unidim(fx96,n.obs=100,n.replications=100,keys=keys) # n = 100
sim200 <- simulate.unidim(fx96,n.obs=200,n.replications=100,keys=keys)
sim500 <- simulate.unidim(fx96,n.obs=500,n.replications=100, keys=keys)
sim1k <- simulate.unidim(fx96,n.obs=1000,n.replications=100, keys=keys)
sim5k <- simulate.unidim(fx96,n.obs=5000,n.replications=100, keys=keys)

#now combine the u and omega_t estimates across data sets to graph them
#this is particularly clunky
total.sims <- data.frame(N=c(rep(200,100), rep(500,100),

rep(1000,100),rep(5000,100)),
rbind(sim200[,41:80], sim500[,41:80], sim1k[,41:80], sim5k[,41:80]),
rbind(sim200[,221:260], sim500[,221:260] , sim1k[,221:260], sim5k[,221:260]))

#clean up the names for the graphics
temp <- gsub("omega.tot","",colnames(total.sims))
temp <- gsub("Uni","u",temp)
temp[18:21] <- c("F1+F2 6","F1+F2 10","F1+F2 12","F1+F2 24")

temp[38:41] <- c("F1+F2 6","F1+F2 10","F1+F2 12","F1+F2 24")
colnames(total.sims) <- temp

#n = 100
#figure not included for compactness
error.bars.by(total.sims[,22:41],total.sims[,1],by.var=FALSE,

v.labels=colnames(total.sims[2:21]),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
legend=3,
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims[,2:21],total.sims[,1],by.var=FALSE,v.labels=colnames(total.sims[2:21]),
ylab=expression(omega[t]), las=3,xlab="",ylim=c(0,1),main=expression(paste("A) ",

omega[t]," varies by sample size and factor loadings")),
legend=3, labels =c(100,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims2[,42:61],total.sims2[,1],by.var=FALSE, v.labels=names(keys),
ylab="CFI", las=3,xlab="", ylim=c(0,1),
main=" C) CFI is not very sensitive to variations in factor loadings",
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims2[,62:81],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="ECV", las=3,xlab="",ylim=c(0,1),
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main=" D) ECV varies by sample size and factor loadings",
labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

#min n =200

total.sims <- data.frame(N=c(rep(100,100), rep(500,100), rep(1000,100),rep(5000,100)),
rbind(sim200[,41:80], sim500[,41:80], sim1k[,41:80], sim5k[,41:80]),
rbind(sim200[,221:260], sim500[,221:260] , sim1k[,221:260], sim5k[,221:260]))

error.bars.by(total.sims[,2:21],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab=expression(omega[t]), las=3,xlab="",ylim=c(0,1),main=expression(paste("A) ",

omega[t]," varies by sample size and factor loadings"))

# legend=3, labels =c(200,500,1000,5000), lty=1:4,col =cs(black, blue,red, green))

error.bars.by(total.sims[,22:41],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
labels =c(5000,1000,500,200), lty=1:4,col =cs(green, red, blue, black))

#do legends separately to have more control

error.bars.by(total.sims[,22:41],total.sims2[,1],by.var=FALSE,v.labels=names(keys),
ylab="U",xlab="", las=3,main="B) U varies by sample size and factor loadings",
labels =c(5000,1000,500,200), lty=1:4,col =cs(black, blue,red, green))

legend("bottomleft",lty=4:1,legend=c(5000,1000,500,200),col=cs(green, red, blue, black) ,pch=15)

#########
########’

Score the ability, bfi, and spi data sets

These data sets are in the psychTools package.
R code

library(psychTools)
#score the data from the real data sets
#
results are in table 7
#five single construct scales
bfi.keys.plus <-
list(extraversion=c("-E1","-E2","E3","E4","E5"),
openness = c("O1","-O2","O3","O4","-O5"),
agree=c("-A1","A2","A3","A4","A5"),
conscientious=c("C1","C2","C3","-C4","-C5"),

neuroticism=c("N1","N2","N3","N4","N5"),
#3 multiconstruct scales
EO = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5"),
ACN =c("-A1","A2","A3","A4","A5","C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"),
All = c("-E1","-E2","E3","E4","E5","O1","-O2","O3","O4","-O5","-A1","A2","A3","A4","A5",

"C1","C2","C3","-C4","-C5","N1","N2","N3","N4","N5"))
bfi.rel <- reliability(bfi.keys.plus,bfi)

#add the ability results for table 7
rel.ab <- reliability(ability.keys,ability)
uni.ab <- unidim(ability.keys,ability,cor="tet", n.obs=1525)
ab.uni.rel <- data.frame(uni.ab$uni[,c(1:3)],rel.ab$result.df[,c(1:3,7:10)],

uni.ab$uni[,c(7:8)],rel.ab$result.df[,11])
df2latex(ab.uni.rel)

rel.bfi<- reliability(bfi.keys,bfi)
uni.bfi <- unidim(bfi.keys, bfi, cor="poly")
bfi.uni.rel <- data.frame(uni.bfi$uni[,c(1:3)],rel.bfi$result.df[,c(1:3,7:10)],

uni.bfi$uni[,c(7:8)],rel.bfi$result.df[,11])
df2latex(bfi.uni.rel)

EO <- c(bfi.keys$extraversion,bfi.keys$openness)
ACN <- c(bfi.keys$agree,bfi.keys$conscientious,bfi.keys$neuroticism)
bfi.plus <- list(extraversion = bfi.keys$extraversion,openness=bfi.keys$openness,

agreeableness=bfi.keys$agree, conscientious=bfi.keys$conscientious,
neuroticism = bfi.keys$neuroticism,
EO = EO, ACN = ACN,
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All = c(EO, ACN))

rel.bfi<- reliability(bfi.plus,bfi)
uni.bfi <- unidim(bfi.plus, bfi, cor="poly")
bfi.uni.rel <- data.frame(uni.bfi$uni[,c(1:3)],rel.bfi$result.df[,c(1:3,7:10)],

uni.bfi$uni[,c(7:8)],rel.bfi$result.df[,11])

#now, do the analyses for Table 8

spi.rel <- reliability(spi.keys,spi)
spi.uni <- unidim(spi.keys,spi,cor="poly")
spi.uni.rel <- data.frame(spi.uni$uni[,c(1:3)],spi.rel$result.df[,c(1:3,7:10)],

spi.uni $uni[,c(7:8)], spi.rel $result.df[,11])

Simulation of multidimensional models

This next section simulates the data for figures 1-4. It takes considerable time and so using multi-cores will speed
it up.

First we define two functions which then we call repeatedly.
R code

# a little function to take the output of the VSS function and grab just some of the output.
psych.summary.vss<- function(x) {

wh.max <- which.max(x$cfit.1)
wh.map <- which.min(x$map)
results <- list(VSS1=wh.max, MAP=wh.map)
return(results)
}

#the next code was
#developed June/July/September 2024 help test the uni and omega statistics

#requires psych_2.4.9 or newer

#first create a "small" function to do one case (for four levels of number of items)

sim.gen<- function(n.trials=10,n.obs=500, gload=NULL, fload=NULL, nfactors=3,
rotate="oblimin",categorical=FALSE,minor=FALSE,VSS=FALSE) {

if (is.null(gload))
gload = matrix(c(0.9, 0.8, 0.7), nrow = 3)

if (is.null(fload)) fload <- matrix(c(0.8, 0.7, 0.6, rep(0, 9), 0.7, 0.6, 0.5, rep(0, 9),
0.6, 0.5, 0.4), ncol = 3)

fload.18 <- rbind(fload,fload)
fload.27 <- rbind(fload,fload.18)
fload.36 <- rbind(fload.18,fload.18)
#do this once
jen <- sim.hierarchical(gload=gload,fload=fload,n=n.obs)
R <- cor(jen$observed)
rel <- suppressMessages(suppressWarnings(reliability(R,nfactors, n.obs=n.obs)))
cn <- colnames(rel$result.df)

results <- list() # We will store the results in a list

#define a local function to do the simulation
#this will be called repeateldy inside the sim.gen function

bigFunction <- function(ntrials,gload,fload, n.obs ,nfactors, categorical, rotate, minor, VSS) {
jen9 <- sim.hierarchical(gload=gload,fload=fload,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)
jen18 <- sim.hierarchical(gload=gload,fload=fload.18,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)
jen27 <- sim.hierarchical(gload=gload,fload=fload.27,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)
jen36 <- sim.hierarchical(gload=gload,fload=fload.36,n=n.obs,categorical=categorical,low=-2,

high=2,minor=minor)

if(!categorical) {R9 <- cor(jen9$observed)
R18 <- cor(jen18$observed)
R27 <- cor(jen27$observed)
R36 <- cor(jen36$observed) } else {
R9 <- polychoric(jen9$observed,correct=0)$rho

R18 <- polychoric(jen18$observed,correct=0)$rho
R27 <- polychoric(jen27$observed,correct=0)$rho
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R36 <- polychoric(jen36$observed,correct=0)$rho

}
if(VSS) { #do we want to do all the extra hassle of finding MAP, PA, etc.

vss9 <- suppressWarnings(VSS(R9,n.obs=n.obs))
vss18 <- suppressWarnings(VSS(R18,n.obs=n.obs))
vss27 <- suppressWarnings(VSS(R27,n.obs=n.obs))

vss36 <- suppressWarnings(VSS(R36,n.obs=n.obs))
p9 <- suppressWarnings(fa.parallel(R9,n.obs=n.obs))
p18 <- suppressWarnings(fa.parallel(R18,n.obs=n.obs))
p27 <- suppressWarnings(fa.parallel(R27,n.obs=n.obs) )
p36 <- suppressWarnings(fa.parallel(R36,n.obs=n.obs))

vss.result <-c(psych.summary.vss(vss9)$VSS1,psych.summary.vss(vss18)$VSS1,
psych.summary.vss(vss27)$VSS1,psych.summary.vss(vss36)$VSS1)

map.result <-c(psych.summary.vss(vss9)$MAP,psych.summary.vss(vss18)$MAP,
psych.summary.vss(vss27)$MAP,psych.summary.vss(vss36)$MAP)

pa.result <- c(p9$nfact, p18$nfact,p27$nfact,p36$nfact)
pa.resultc <- c(p9$ncomp, p18$ncomp,p27$ncomp,p36$ncomp)
}

#combine the results from four passes
rel <- suppressMessages(suppressWarnings(reliability(R9,nfactors,rotate=rotate,n.obs=n.obs)))
rel18 <- suppressMessages(suppressWarnings(reliability(R18,nfactors,rotate=rotate, n.obs=n.obs)))
rel27 <- suppressMessages(suppressWarnings(reliability(R27,nfactors,rotate=rotate,n.obs=n.obs)))
rel36 <- suppressMessages(suppressWarnings(reliability(R36,nfactors,rotate=rotate,n.obs=n.obs)))
results <- t(matrix(unlist(rbind(rel$result.df,rel18$result.df,rel27$result.df,

rel36$result.df)),ncol=16))
if(VSS) results <-rbind(results,vss.result,map.result, pa.result,pa.resultc)
return(results)
} #end bigFunction
results <- mcmapply(bigFunction,c(1:n.trials),MoreArgs=list(gload=gload,fload=fload,

n.obs=n.obs,nfactors=nfactors, categorical=categorical, rotate=rotate,
minor=minor, VSS=VSS))

#results is now a list of n.trials matrices of 16 or 20 x 4
if(VSS) {mat <- matrix(unlist(results),ncol=(length(cn)+4),byrow=TRUE)

colnames(mat) <- c(cn, "VSS","MAT","P.fa","P.co")
} else {mat <- matrix(unlist(results),ncol=length(cn),byrow=TRUE)

colnames(mat) <- cn}
mat.df<- data.frame(n.obs=n.obs,mat)
return(mat.df)
}

#options(mc.cores=4) #use multi-cores if available.

#
sim.gen(gload=gload,n.trials=n.trials,categorical=categorical, n.obs=1000,

minor=minor, VSS=VSS))

#do it for 0 .. 1
set.seed(42)

#use this function multiple times and the aggregate the results

#compare smaller factor loadings

categorical <- TRUE
minor=TRUE
n.trials=100
set.seed(42)
gload<- NULL
VSS <- TRUE
if (minor) fload <- matrix(c( 0.6, 0.5, 0.4, rep(0, 9), .5,.4,.3, rep(0, 9),

0.5,.4,.3), ncol = 3) } else {minor <- NULL}

#do it for 0 .. 1
#this could probably be done in a loop, but easier to for one simulation run
set.seed(42)
gload <- rep(0,3)
v0.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS)
v0.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS)
v0.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor, VSS=VSS)



26 UNIDIMENSIONALITY

system.time(v0.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.1,3)
v.1.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.1.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.1.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
v.1.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,n.obs=1000,

minor=minor, VSS=VSS)

set.seed(42)
gload <- rep(.2,3)
v.2.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.2.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.2.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
system.time(v.2.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.3,3)
v.3.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.3.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.3.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
system.time(v.3.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.4,3)
v.4.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=100,

minor=minor, VSS=VSS)
v.4.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=200,

minor=minor, VSS=VSS)
v.4.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical, n.obs=500,

minor=minor, VSS=VSS)
system.time(v.4.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.5,3)
system.time(v.5.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.5.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS))
v.5.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor, VSS=VSS)
system.time(v.5.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.6,3)
system.time(v.6.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.6.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS))
v.6.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor, VSS=VSS)
system.time(v.6.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.7,3)
system.time(v.7.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.7.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=200, minor=minor, VSS=VSS))
v.7.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=500, minor=minor,VSS=VSS)
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system.time(v.7.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.8,3)
system.time(v.8.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,

n.obs=100, minor=minor, VSS=VSS))
system.time(v.8.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=200, minor=minor, VSS=VSS))

v.8.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=500, minor=minor, VSS=VSS)

system.time(v.8.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,categorical=categorical,
n.obs=1000, minor=minor, VSS=VSS))

set.seed(42)
gload <- rep(.9,3)
system.time(v.9.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=100,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
system.time(v.9.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=200,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
v.9.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=500,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster")
system.time(v.9.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=1000,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))

set.seed(42)
gload <- rep(.95,3)
system.time(v.95.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=100,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
system.time(v.95.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=200,

minor=minor,VSS=VSS,categorical=categorical,rotate="cluster"))
v.95.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=500,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster")
system.time(v.95.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=1000,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))

set.seed(42)
gload <- rep(1,3) #100 percent g loading which blows up omega_h unless we use rotate="cluster"
system.time(v1.100 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=100,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
system.time(v1.200 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=200,

minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))
v1.500 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,n.obs=500,
minor=minor, VSS=VSS,categorical=categorical,rotate="cluster")
system.time(v1.1000 <- sim.gen(gload=gload, fload=fload,n.trials=n.trials,

n.obs=1000,minor=minor, VSS=VSS,categorical=categorical,rotate="cluster"))

}

nr <- nrow(v.9.1000)

g <- c(rep(0,nr *4),rep(.1,nr *4),
rep(.2,nr *4),rep(.3,nr *4),rep(.4,nr *4),

rep(.5,nr *4),rep(.6,nr*4),rep(.7,nr*4),rep(.8,nr*4), rep(.9,nr*4),
rep(.95,nr*4),rep(1,nr*4))

#now, look at the lower value of fload
new.vss.sum.df <- rbind(v0.100,v0.200,v0.500,v0.1000,

v.1.100,v.1.200,v.1.500,v.1.1000,
v.2.100,v.2.200,v.2.500,v.2.1000,
v.3.100,v.3.200,v.3.500,v.3.1000,
v.4.100,v.4.200,v.4.500,v.4.1000,
v.5.100,v.5.200,v.5.500,v.5.1000,
v.6.100,v.6.200,v.6.500,v.6.1000,
v.7.100,v.7.200,v.7.500,v.7.1000,
v.8.100,v.8.200,v.8.500,v.8.1000,

v.9.100,v.9.200,v.9.500,v.9.1000,
v.95.100,v.95.200,v.95.500,v.95.1000,

v1.100, v1.200, v1.500, v1.1000)

new.vss.sum.df <- data.frame(g,new.vss.sum.df)

#now draw the graphs for low fload
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#these graphical functions are repeated multiple times with different parameters
#not shown for compactness

error.bars.by(omega_h ~ g +n.items , data=low.cat.sum.df,
main="omega_h ~ g loading and number of items",
ylim=c(0,1),

v.labels =cs(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95,1),
xlab=" g loading",
legend=1, lab=c(9,18,27,36),
colors=cs(black,blue,green,red))
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