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Abstract

Reliability is a fundamental problem for measurement in all of science. Al-
though defined in multiple ways, and estimated in even more ways, the basic
concepts are straight forward and need to be understood by methodologists
as well as practioners. Reliability theory is not just for the psychometrician
estimating latent variables, it is for everyone who wants to make inferences
from measures of individuals or of groups. Easy to use, open source software
is applied to examples of real data, and comparisons are made between the
many types of reliability.
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Reliability

Reliability is a fundamental problem for measurement in all of science for “(a)ll
measurement is befuddled by error” (p 294 McNemar, 1946). Perhaps because psycholog-
ical measures are more befuddled than those of the other natural sciences, psychologists
have long studied the problem of reliability (Spearman, 1904b; Kuder & Richardson, 1937;
Guttman, 1945; Lord, 1955; Cronbach, 1951; McDonald, 1999) and it remains an active
topic of research (Sijtsma, 2009; Revelle & Zinbarg, 2009; Bentler, 2009; McNeish, 2017;
Wood et al., 2017). Unfortunately, although recent advances in the theory and measure-
ment of reliability have gone far beyond the earlier contributions, much of this literature
is more technical than readable and is aimed for the specialist rather than the practi-
tioner. We hope to remedy this issue somewhat, for an appreciation of the problems and
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importance of reliability is critical to the activity of measurement across many disciplines.
Reliability theory is not just for the psychometrician estimating latent variables, but also
for the baseball manager trying to predict how well a high performing player will perform
the next year, for accurately estimating agreement among doctors in patient diagnoses,
and in evaluations of the extent to which stock market advisors under-perform the market.

Issues of reliability are fundamental to understanding how correlations between ob-
served variables are (attenuated) underestimates of the relationships between the under-
lying constructs, how observed estimates of a person’s score are over estimates of their
latent score, and how to estimate the confidence intervals around any particular measure-
ment. Understanding the many ways to estimate reliability as well as the ways to use these
estimates allows one to better assess individuals and to evaluate selection and prediction
techniques.

The fundamental question in reliability is to what extent do scores measured at one
time and one place with one instrument predict scores at another time and/or another
place and perhaps measured with a different instrument? That is, given a person’s score
on test 1 at time 1, what score should be expected at a second measurement occasion? The
naive belief is that if the tests measure the same construct, then people will do just as well
on the second measure as they did on the first. This mistaken belief contributes to several
cognitive errors including the common view that punishment improves and rewards dimin-
ish subsequent performance (Kahneman & Tversky, 1973) and other popular phenomena
like the “sophomore slump” and the “Sports Illustrated jinx” (Schall & Smith, 2000). More
formally, the expectation for the second measure is just the regression of observations at
time 2 on the observations at time 1. If both the time 1 and time 2 measures are equally
“befuddled by error” then the observed relationship is the reliability of the measure: the
ratio of the latent score variance to the observed score variance.

Reliability as a variance ratio

The basic concept of reliability seems to be very simple: observed scores reflect
an unknown mixture of signal and noise. To detect the signal, we need to reduce the
noise. Reliability thus defined is a function of the ratio of signal to noise. The signal
might be something as esoteric as a gravity wave produced by a collision of two black
holes, or as prosaic as the batting average of a baseball player. The noise in gravity wave
detectors include the seismic effects of cows wandering in fields near the detector as well
as passing ice cream trucks. The noise in batting averages include the effect of opposing
pitchers, variations in wind direction, and the effects of jet lag and sleep deprivation. We
can enhance the signal/noise ratio by either increasing the signal or reducing the noise.
Unfortunately, this classic statement of reliability ignores the need for unidimensionality of
our measures and equates expected scores with construct scores, a relationship that needs
to be tested rather than assumed (Borsboom & Mellenbergh, 2002).

We can credit Charles Spearman (1904b) for the first formalization of reliability. In
the first of two landmark papers (the other, Spearman, 1904a, laid the basis for factor anal-
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ysis and measurement of cognitive ability) he developed the ordinal correlation coefficient
and the basic principles of reliability theory. Spearman’s fundamental insight was that an
observed test score could be decomposed into two unobservable constructs: a latent score
of interest and a residual but latent error score:

X = χ+ ε. (1)

Reliability was defined as the fraction of an observed score variance that was not error:

rxx =
VX − σ2

ε

VX
= 1− σ2ε

VX
. (2)

The product of the observed score variance and the reliability is an estimate of
the latent construct (sometimes called the “true score”) variance in a test which we will
symbolize as σ2

χ = VX − σ2
ε = rxxVX .

Spearman (1904b) developed reliability theory because he was interested in correct-
ing the observed correlation between two tests for their lack of reliability. In modern
terminology, this disattenuated correlation (ρχη) represents the correlation between two la-
tent variables (χ and η) estimated by the correlation of two observed tests (rxy) corrected
for the reliability of the observed tests (rxx and ryy) (see Figure 1).

ρχη =
rxy√
rxxryy

. (3)

Furthermore, given an observed score, the variance of the error of that score (σ2
ε )

is just the observed test variance times one minus the reliability and thus the standard
deviation of the error associated with that score (the standard error of measurement) is:

σε = σx
√

1− rxx. (4)

Although expressed as a correlation between observed scores, reliability is a ratio of
reliable variance to total variance. In addition, because the covariance of the latent score
with the observed score is just the reliable variance, the predicted latent score is

χ̂ = rxxx+ ε (5)

where x is the raw deviation score (x = X − X̄). From Equation 4, we know the standard
error of measurement and can give a confidence interval for our estimated latent score:

χ̂i = rxxxi ± tα/2,dfσx
√

1− rxx (6)

where tα/2,df represents Student’s t with an appropriate probability level (e.g., α = .05).
Increasing reliability reduces the standard error of measurement (Equation 4) and

increases the observed correlation with external variables (Equation 3). That is, if we knew
the reliabilities, we could correct the observed correlation to find the latent correlation and
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√
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√
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Figure 1. The basic concept of reliability and correcting for attenuation. Adjusting observed
correlations (rxy) by reliabilities (rxx′ , ryy′) estimates underlying latent correlations (ρχη). (See
Equation 3). Observed variables and correlations are shown in conventional Roman fonts, latent
variables and latent paths in Greek fonts.

estimate the precision of our measurement. The problem for Spearman was, and remains
for us today, how to find reliability?

Equations 1 - 6 are intellectually interesting, but not very helpful, for they decompose
an observed measure into the two unobservable variables of latent score and latent error.
To make it even more complicated, all tests are assumed to measure something stable over
time (denoted as T for trait like), something that varies over time (reflecting the current
state and denoted as S), some specific variance (s) that is stable but does not measure
our trait of interest, and some residual, random error (E) (Baltes, 1987; Cattell, 1966b;
Hamaker et al., 2017; Kenny & Zautra, 1995).

Although ultimately interested in the precision of a score for each individual, relia-
bility is expressed as a ratio of variances between individuals1: The reliability of a measure

1We can also find within subject reliability across time. This will be discussed later.
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X (rxx) is just the percentage of total variability (VX) that is not error. Unless we have
repeated measures, error is an unknown mixture of variability due to differences in item
means, the person x item interaction, and some un-modeled residual. The between person
variance is a mixture of Trait, State, and specific variance. (For instance, an item such as
“I enjoy a lively party” is an unknown mixture of trait extraversion, state positive affect,
and the specific wording of the item – how one interprets lively and party.) If we are inter-
ested in the stable trait scores, reliability is the ratio of (unobservable) trait variance (σ2

T )
to (observable) total test variance (Vx). (We use σ2 to represent unobservable variances,
V to represent observable variance.) That is,

rtt =
σ2
T

VX
=

σ2
T

σ2
T + σ2

S + σ2
s + σ2

e

. (7)

However, if we are interested in how well we are measuring a particular fluctuating state
(e.g. an emotion) we want to know

rss =
σ2
S

VX
=

σ2
S

σ2
T + σ2

S + σ2
s + σ2

e

. (8)

The problem becomes how to find σ2
T or σ2

S and how to separate their effects. Al-
though Trait scores are thought to be stable over time, State scores, while fluctuating,
show some (unknown) short term temporal stability. Consider a measure of depression.
Part of an individual’s depression score will reflect long term trait neuroticism and some of
it reflects current negative emotional state. Two measures taken a few hours apart should
produce similar trait and state values, although measures taken a year apart should reflect
just the trait.

In all cases, we are interested in the scores for the individuals being measured. To
make the problem even more complicated, it is likely that our Trait or State scores reflect
some aggregation of item responses or of the ratings of judges. Thus, we want to assess
the variance due to Traits or States that is independent of the effects of items/judges, how
much variance is due to the items or judges, and finally how much variance is due to the
interactions of items/judges with the Trait/State measures2. To be consistent with much
of the literature, we will treat Trait and State as both latent sources of variance for the
observed score X and refer to Trait as a stable across time and State as varying across
time. We recognize, of course that Traits do change over longer periods of time but will
use this stable/unstable distinction for relatively short temporal durations. Although some
prefer to think of specific variance (σ2

s) and error variance (σ2
e) as hopelessly confounded,

we prefer to separate them for there are some designs (e.g., test-retest vs. parallel forms)
that allow us to distinguish them.

2Unfortunately, some prefer to use State to reflect the measure at a particular time point and to decom-
pose this “State” into Trait and Occasion components (Cole et al., 2005).
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Reliability as defined in equations 7 and 8 is not just a function of the test, but also
of who is being tested, where they are tested and when they are tested. Because it is a
variance ratio, increasing between person variance without increasing the error variance
will increase the reliability. Similarly, decreasing between person variance will decrease
reliability. Generalizabilty theory (Cronbach et al., 1963; Gleser et al., 1965) is one way to
estimate the individual variance components rather than their ratio. Another approach is
Item Response Theory (e.g., Embretson, 1996; Lord & Novick, 1968; Lumsden, 1976; Rasch,
1966; Reise & Waller, 2009) which addresses this problem by attempting to get a measure
of precision for a person’s estimate that is independent of the variance of the population
and depends upon just the probability of a particular person answering particular items.

Consistency, reliability and the data box

When Cattell (1946) introduced his data box it was a three way organization of
measures taken over people, tests, and time. In typical Cattellian fashion, over the years
this basic data relations matrix (BDRM or data box) grew to as many as 10 dimensions
Cattell (1966a); Cattell & Tsujioka (1964). However, the three primary distinctions are
still useful today (Nesselroade & Molenaar, 2016; Revelle & Wilt, 2016). Using these
dimensions, Cattell (1964) distinguished between three ways that tests can be consistent:
across occasions (reliability), across items (homogeneity), and across people ( transferability
or hardiness).

The generic concept of test consistency from which the above three parameters
derive can be verbally defined as: the extent to which a test continues to
measure the same psychological concept despite such changes as inevitably and
normally occur in a test, its administration and the populations to which it is
administered. ... Thus our estimate of the true reliability will be affected by a
sampling of people and occasions; of the true homogeneity by sampling of items
(or test elements) and people, and of the true transferability across populations
by the sampling of people from various cultures and occasions. (Cattell, 1964,
p 11)

These various types of reliability may be summarized graphically in terms of latent
traits, paths, observed variables and correlations (Figure 2).

Alternative estimates of an elusive concept

Test-retest of total scores

Perhaps the most obvious measure of reliability is the correlation of test with the
same test some time later. For Guttman (1945), this was reliability. If we have only two
time points (t1 and t2), this correlation is an unknown mixture of Trait, State and specific
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Time 1 Time 2 Time 3

Latent

Measures

Observed

Measures

χ1 χ2 χ3

x1 x1′ x2 x2′ x3 x3′

ρ12

Dependability ρ23

Stability

√rx1x′1

√rx1x′1

√rx2x′2

√rx2x′2

√rx3x′3

√rx3x′3

rx1x′1
rx2x′2

rx3x′3rx′1x2

rx′2x3

ε1 ε2 ε3 ε4 ε5 ε6

Figure 2. Reliability has many forms. Items within the same test provide estimates of internal
consistency. Observed correlation between alternate forms or parallel tests given at the same time
(rx1x′

1
, rx2x′

2
) estimate parallel test reliability. Tests given at (almost) the same time (times 1 and

2 e.g., rx1x2
, rx′

1x
′
2
) provide measures of dependabilty, while measures taken over a longer period

(times 2 and 3, e.g., rx1x3
, rx2x3

) are measures of stability. These measures differ in the amount
of Trait and State and specific variance in the measures. Observed variables and correlations are
shown in conventional Roman fonts, latent variables and latent paths in Greek fonts.
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variance and, additionally, a function of the length of time between the two measures:

rt1t2 =
σ2
T + τ t2−t1σ2

S + σ2
s

σ2
T + σ2

S + σ2
s + σ2

e

(9)

where τ (the auto-correlation due to short term state consistency) is less than 1 and thus
the state effect (τ t2−t1σ2

S) will become smaller the greater the time lag. If the intervening
time is long enough that the State effect is minimal, we will still have specific variance,
and the correlation of a test with the same test later is

rxx =
σ2
T + σ2

s

Vx
=

σ2
T + σ2

s

σ2
T + σ2

S + σ2
s + σ2

e

. (10)

An impressive example of a correlation of the same measure over time is the correla-
tion of .66 of ability as measured by the Moray House Exam at age 11 with the same test
given to the same participants 69 years later when they were 80 years of age (Deary et al.,
2004). This correlation was partially attenuated due to restriction of range for the 80 year
old participants. (The less able 11 year olds were less likely to appear in the 80 year old
sample.) When correcting for this restriction (Sackett & Yang, 2000), the correlation was
found to be .73.

But the Scottish Longitudinal Study is unusually long, and is it more common to
take test-retests over much shorter periods of time. In most cases it is important that
we do not assume that the State effect is 0 (Chmielewski & Watson, 2009). It is more
typical to find a pattern of correlations diminishing as a function of the time lag but not
asymptotically approaching zero (Cole et al., 2005). This pattern is taken to represent
a mixture of stable Trait variance and diminishing State effects such that the test-retest
reliability across two time periods as shown in Equation 9 will become smaller the greater
the time lag. Unfortunately, with only two time points we can not distinguish between
the Trait and State effects. However, with three or more time points (t1, t2, t3, ..., tn),
we can decompose the resulting correlations (rx1x2 ,rx1x3 , rx2x3 , ...), into Trait and State
components using Structural Equation Modeling (SEM) procedures (Hamaker et al., 2017)
or simple path tracing rules (Chmielewski & Watson, 2009) and the resolution continues
to improve with four or more time points (Cole et al., 2005; Kenny & Zautra, 1995).

A large test-retest correlation over a long period of time indicates temporal stability
(Boyle et al., 1995; Cattell, 1964; Chmielewski & Watson, 2009). This should be expected if
we are assessing something trait like (such as cognitive ability or perhaps emotional stability
or extraversion) but not if we are assessing something thought to represent an emotional
state (e.g., alertness or arousal). Because we are talking about correlations, mean levels
can increase or decrease over time with no change in the correlation3. Measures of trait
stability are a mixture of immediate test-retest dependability and longer term trait effects

3For example, participants in the Scottish Longitudinal Study performed better in adulthood than they
did as 11 year olds but the correlations showed remarkable stability.
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Time 1 Time 2 Time ... Time n

Latent

Measures

Observed

Measures

T

S1 S2 S... Sn

χ1 χ2 χ... χn

X1 X ′1 X2 X ′2 X... X ′... Xn X ′n

ε2 ε... εn

τ1 τ2 τn−1

δ1 δ1′ δ2 δ2′ δ... δ...′ δn δn′

Figure 3. How traits and states affect short term and long term reliability. Observed scores
(X1 ... Xn) of the same trait measured over time reflect a latent Trait, time varying States (S1 ... Sn)
and measurement errors (δ1 ... δn′). The latent states are assumed to be auto-correlated (τi), such
that over longer time periods the correlation will tend towards 0 (τn → 0) (see Equation 9).
Adapted from (Cole et al., 2005).

(Cattell, 1964; Chmielewski & Watson, 2009). For Boyle et al. (1995) and Cattell (1964),
dependability was the immediate test-retest correlation, for Chmielewski & Watson (2009)
the time lag of two weeks is considered an index of dependability. To Wood et al. (2017),
dependability is assessed by repeating the same items later in one testing session.

All of these indicators of dependability and stability are in contradiction to the long
held belief that a problem with test-retest reliability is that it produces

“estimates that are too high, because of material remembered on the second
application of the test. This memory factor cannot be eliminated by increasing
the length of time between the two applications, because of variable growth in
the function tested within the population of individuals. These difficulties are
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so serious that the method is rarely used” (Kuder & Richardson, 1937, p 151).4

As evidence for the memory effect, Wood et al. (2017) reports that the average response
times to the second administration of identical items in the same session is about 80% of
the time of the first administration.

To compare the effects of an immediate retest versus a short delay versus a somewhat
longer delay, consider the msqR, sai and tai example data sets from the psych package
(Revelle, 2018) in the R open statistical system (R Core Team, 2018); the analyses dis-
cussed below are demonstrated the Appendix. The data (N > 4, 000) were collected as
part of a long term series of studies of the interrelationships between the stable personality
dimensions of extraversion, neuroticism, and impulsivity (e.g., Eysenck & Eysenck, 1964;
Revelle et al., 1980), situational stressors (caffeine, time of day, movie induced affect, e.g.,
Anderson & Revelle, 1983, 1994; Rafaeli et al., 2007; Rafaeli & Revelle, 2006) momentary
affective and motivational state (e.g. energetic and tense arousal (Thayer, 1978, 1989),
state anxiety (Spielberger et al., 1970)), and cognitive performance (Humphreys & Rev-
elle, 1984). The Motivational State Questionnaire (MSQ) included 75 items taken from
a number of mood questionnaires (e.g., Thayer, 1978; Larsen & Diener, 1992; Watson et
al., 1988) and had 10 anxiety items that overlapped with the state version of the State
Trait Anxiety Inventory (Spielberger et al., 1970). The MSQ and STAI were given before
any motivational manipulations were given, and then sometimes given at the end of the
experimental session. We will use these 10 items in the subsequent examples evaluating
and comparing the immediate dependability and the 45 minute and multi-day stability
coefficients of these measures. These 10 items were given as part of the STAI and then
immediately given again (with a slightly different wording) as part of the MSQ. Five of
the items were scored in a positive (anxious) direction, five in the negative (non-anxious)
direction. An additional 20 items of the STAI were given with trait instructions and are
reported as the tai dataset. The movie manipulation used minute film clips to induce
fear (Halloween), depression (concentration camp), happiness (Parenthood), and a control
movie (a nature film). The caffeine condition contrasted 4 mg/kg of caffeine to a placebo,

As is seen in Table 1, the immediate correlations for the 10 item state scales (test
dependability) was .85. As expected, the 45 minute correlations were smaller (.42-.76) and
those with one day delay were smaller yet (ranging from .36 to .39) with a mean of .38.
This is in contrast to the immediate correlations of state with trait measures (.48) and
after two days (.43) suggesting that the state measure has a trait component (or that the
trait measure has a state component). The state retest measures were also much lower
than the retest correlations of the EPI Impulsivity (.70) and Sociability (.81) subscales.

4In performance measures (e.g. cognitive ability assessment), this memory effect is described in terms
of learning or practice effects.
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Table 1: Comparing multiple estimates of reliability. SAI and MSQ contained 10 items measuring
anxious vs. calm mood. Test-retest values include very short term (dependability) and longer term
(stability) measures. Short term dependabilities are of mood measures pre and post various mood
manipulations. One- to two-day delay stabilities are mood measures pre any mood manipulation.
Dependability measures are based upon these 10 items given in the same session although using
two different questionnaires. Trait anxiety was given with “how you normally feel”, state anxiety
asked “do you feel ”. The two-four week delay compares personality trait measures (Impulsivity and
Sociability) given as part of a group testing session and then part of various experimental sessions.
Internal consistency estimates for α and ω do not require retesting. When giving the test twice, it
is possible to find the consistency of each item (rii).The particular functions for estimating these
coefficients are all part of the psych package.

State Trait estimation
SAI MSQ SAI TAI EPI functions

Types of reliability MSQ (SAI) Imp Soc
Test-retest

Short term (test dependability)
45 minutes (control) .76 .74 testRetest

45 minutes (caffeine) .73 .71 testRetest

45 minutes (films) .42 .43 testRetest

Longer delay (stability)
1-2 days .36 .39 .43* testRetest

1-4 weeks .70 .81
Average rii over time (item dependability)

45 minutes (control) .60 .57 testRetest

45 minutes (caffiene) .61 .58 testRetest

45 minutes (film) .39 .40 testRetest

1-2 days .29 .30 testRetest

1-4 weeks 52 .56 testRetest

Parallel form approach
Parallel tests .74 .74 .48* scoreItems

Duplicated tests (test dependability) .85 testRetest

average rii(item dependability) .67 testRetest

Internal consistency
greatest split half (λ4) .91 .89 .94 .61 .83 splitHalf

ωt .90 .87 .92 .62 .80 omega

SMC adjusted (λ6) .89 .86 .92 .52 .78 splitHalf

α (λ3) .87 .83 .90 .51 .76 alpha

average split half .86 .83 .90 .50 .76 splitHalf

ωg .56 .45 .67 .31 .62 omega

smallest split half .66 .57 .79 .41 .66 splitHalf

worst split half (β) .66 .57 .50 .05 .27 iclust

average r .39 .33 .32 .11 .19 alpha

Other forms of reliability
ICC .87 .83 .90 .51 .76 ICC

kappa

*Trait Anxiety x State Anxiety
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Components of variance estimated by test-retest measures

A powerful advantage of repeating items is that it allows for an assessment of subject
consistency across time (the correlation for each subject of their pattern of responses across
the two administrations) as well as the consistency of the items (the correlation across
subjects of responses to each item) (DeSimone, 2015; Wood et al., 2017). This allows
for identification of unstable items and inconsistent responders. In addition, by using
multi-level analyses5 it is possible to estimate the variance components due to people,
items, the person x item interaction, time, the person x time interaction, and the residual
(error) variance (DeSimone, 2015; Revelle & Wilt, 2017; Shrout & Lane, 2012). This is
implemented for example as the testRetest function in the psych package. The responses
to any particular item can be thought to represent multiple sources of variance, and the
reliability of a test made up of items is thus a function of those individual sources of
variance. If we let Pi represent the ith person, Ij the jth item, Tk the first or second
administration of the item, then the response to any item is

Xijk = µ+ Pi + Ij + Tk + PiIj + PiTk + IjTk + PiIjTk + ε. (11)

With complete data, we can find these components using conventional repeated mea-
sures analysis of variance of the data (i.e.., aov in core R) or using multi-level functions
such as lmer in the lme4 package (Bates et al., 2015) for R. As an example of such a
variance decomposition consider the 10 overlapping items in the STAI and MSQ discussed
earlier (Table 2). 19% of the variance of the anxiety scores was due to between person
variability, 25% to the very short period of time, 19% to the interaction of person by time,
etc. and 13% was residual (unexplained) variance. From these components of variance, we
can find several different reliability estimates (Cranford et al., 2006; Shrout & Lane, 2012).
The first is the reliability of the total score for each individual across the 10 overlapping
items if the test is thought of as composed of those (fixed) 10 items.

R1F =
σ2
Person +

σ2
Person x Item

k

σ2
Person +

σ2
Person x Item

k +
σ2
Residual
k

(12)

The second is the reliability of the average of the two measurement occasions6 this is

RkF =
σ2
Person +

σ2
Person x Item

k

σ2
Person +

σ2
Person x Item

k +
σ2
Residual

2k

. (13)

5Analytic strategies for analyzing such multi-level data have been given different names in a variety
of fields and are known by a number of different terms such as the random effects or random coefficient
models of economics, multi-level models of sociology and psychology, hierarchical linear models of education
or more generally, mixed effects models (Fox, 2016).

6Functionally, just the Spearman-Brown prophecy formula applied to R1F . This will be discussed later
in terms of split half reliability.
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Additional estimates can be found for the reliability of a single item (R1R) or the average
of an item across both time points (R2R) (Shrout & Lane, 2012).

Table 2: A variance decomposition of the 10 overlapping items from the STAI and MSQ measures
(N= 200). Data taken from the example for the testRetest function in the psych package. Four
different variance ratios and reliabilities may be found from these (Cranford et al., 2006; Shrout &
Lane, 2012).

Multilevel components of variance due to
Variance Percent

Subjects 0.34 0.19
Time 0.44 0.25
Items 0.17 0.10
Subjects x time 0.24 0.13
Subjects x items 0.01 0.01
time x items 0.34 0.19
Residual 0.23 0.13
Total 1.78 1.00

This leads to four reliability estimates:
R1F = 0.94 Reliability of average of all items for one time (Random time effects)
RkF = 0.97 Reliability of average of all ratings across all items and times (Fixed time effects)
R1R = 0.33 Generalizability of a single time point across all items (Random time effects)
R2R = 0.49 Generalizability of average time points across all items (Fixed time effects)

Multi-level modeling approaches are particularly appropriate if repeating the same
measure multiple times in for instance an experience sampling study (e.g., Bolger & Lau-
renceau, 2013; Fisher, 2015; Mehl & Conner, 2012; Mehl & Robbins, 2012; Wilt et al., 2011,
2016a,b). We can derive multiple measures of reliability, across subjects, across time, across
items and the various person x time, person x items, time x item interactions (Cranford
et al., 2006; Shrout & Lane, 2012). This is implemented in the multilevel.reliability

function and discussed in more detail in a tutorial for analyzing dynamic data (Revelle
& Wilt, 2017). Although these variance components can be found using traditional re-
peated measures analysis of variance, it is more appropriate to use multi-level techniques,
particularly in the case of missing data.

Stability needs to be adjusted for dependability and thus the .36 stability over two
days of the SAI should be adjusted for the immediate dependability of .85 to suggest a
two day stability of anxious mood of .42 which is notably similar to that of the state-trait
correlation of .43. When measuring mood, we need to disentangle the episodic memory
components of the state measure from the semantic memory involved when answering trait
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like questions (Cattell, 1964; Chmielewski & Watson, 2009). State measures of affectivity
probably involve episodic memory whereas trait measures of similar constructs (e.g., trait
anxiety or neuroticism) likely tap semantic memory (Klein et al., 2002). With only two
measures of state anxiety and one of trait anxiety, we can not disentangle how much of
the trait measure is state (Equation 9) but if we had more measures over longer periods of
time we would be able to do so.

Alternate Forms

If we do not want to wait for a long time and we do not want to exactly repeat the
same items, we can estimate reliability by creating another test (an alternate form) that
has conceptually similar but semantically different items. If measuring the same construct
(e.g. arithmetic performance) we can subtly duplicate items on each form and even match
for possible difficulty of order effects (a1: what is 6+3?, a2: what is 4 + 5? versus b1: what
is 3+6? and b2: what is 5 + 4 ?). Cattell (1964) discusses “Herringbone” consistency,
which are essentially parallel forms: Each half of the test is made up of half of the items of
multiple constructs, and each is duplicated in the other half (math, english, social studies).
Although creating alternate forms by hand is tedious, it has become possible to generate
alternate forms using computer Automatic Item Generation techniques (Embretson, 1999;
Leon & Revelle, 1985; Loe & Rust, 2017). Alternate forms given at the same time eliminate
the effect of the specific item variance but do not remove any motivational state effect:

rx1x2 =
σ2
T + σ2

S

VX
=

σ2
T + σ2

S

σ2
T + σ2

S + σ2
s + σ2

e

If given with a long enough delay, then the state effect will tend towards zero and the
alternate form correlation will be an estimate of the percentage of trait variance in each of
the two test forms.

rx1x2 =
σ2
T

VX
=

σ2
T

σ2
T + σ2

S + σ2
s + σ2

e

. (14)

Sometimes alternate forms can be developed when a longer test is split into multiple
shorter tests. As an example of this, consider the sai data set which includes 20 items, 10
of which overlapped with the msqR data set and were used for our examples of test-retest
and repeated measure reliability. The other 10 can be thought of as an alternate form
of the anxiety measure and indeed correlate .74 with the target items from the sai and
msqR. Note how these correlation are less than when we actually repeat the same items by
correlating the overlapping items of the sai and msqR (.85).

Split half (adjusted for test length)

If we have gone to the trouble of developing two alternate forms for a concept, and
then administered both forms to a sample of participants, it is logical to ask what is
the reliability of the composite formed from both of these tests. That is, if we have the
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correlation between two five item tests, what would be the reliability of the composite 10
item test? With a bit of algebra, we can predict it using a formula developed by Spearman
(1910) and Brown (1910):

rxx =
2 ∗ rx1x2

1 + rx1x2

. (15)

It is important to note the correlation between the two parts (rx1x2) is not the split half
reliability, but is used to find the split half reliability (rxx) found by the “Spearman-Brown
prophecy formula” (Equation 15)

Given that we have written n items and formed them into two splits of length n/2,
what if we formed a different split? How should we split the items into two groups?
Odd/even, first half/last half, randomly? This is a combinatorially difficult problem, in
that there are n!

2(n/2)!(n/2)! unique ways to split a test into two equal parts. While there
are only 126 possible splits for the 10 anxiety items discussed above, this becomes 6,435
for a 16 item ability test, 1,352,078 for the 24 item EPI Extraversion scale (Eysenck &
Eysenck, 1964) and over 4.5 billion for a 36 item test. The splitHalf function will try all
possible splits for tests of 16 items or less, and then sample 10,000 splits for tests longer
than that. The distribution of all possible splits for the 10 state anxiety items discussed
earlier show that greatest split-half reliability is .92, the average is .87, and the lowest is .66
(Figure 4 panel A). This is in contrast to all the possible splits of 16 ability items taken from
the International Cognitive Ability Resource (ICAR, Condon & Revelle, 2014) where the
greatest split half reliability was .87, the average is .83, and the lowest is .73 (Figure 4 panel
B). The 24 items of the EPI show strong evidence for non-homogeneity, with a maximum
split half reliability of .81, an average of .73, and a minimum of .42 (Figure 4 part C). This
supports the criticism that the EPI E scale tends to measure two barely related constructs
of sociability and impulsivity (Rocklin & Revelle, 1981). The EPI-N scale, on the other
hand, shows a maximum split half of .84, a mean of .8, and a minimum of .68, providing
strong evidence for a relatively homogeneous scale (Figure 4 part D)

Internal consistency and domain sampling

All of the above procedures are finding the correlation between two forms or occasions
of a test. But what if there is just one form and one occasion? The approaches that consider
just one test are collectively known as internal consistency procedures but also borrow
from the concepts of domain sampling and can use the variance decomposition techniques
discussed earlier. Some of these techniques, e.g., Cronbach (1951); Guttman (1945); Kuder
& Richardson (1937) were developed before advances in computational speed made it
trivial to find the factor structure of tests, and were based upon test and item variances.
These procedures (α, λ3, KR20) were essentially short cuts for estimating reliability. The
variance decomposition procedures continued this approach but expanded to be known as
generalizability theory (Cronbach et al., 1963; Gleser et al., 1965; Vispoel et al., 2018) and
allow for the many reliability estimates discussed before.
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A: Split half reliabilities of the msqR anxiety items

Split half reliability

Fr
eq
ue
nc
y

0.5 0.6 0.7 0.8 0.9

0
2

4
6

8
10

12

B: Split half reliabilities of 16 ICAR ability items
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C: Split half reliabilities of the EPI E scale
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D: Split half reliabilities of the EPI N scale
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Figure 4. The distribution of 126 split half reliabilities for the 10 state anxiety items (panel A)
and the 1,352,078 splits of the 24 EPI Extraversion items (panel C) suggests that the tests are not
univocal while that of the 6,435 splits of the ICAR ability items (panel B) and the 1,352,078 splits
of the EPI N scale (panel D) suggests greater homogeneity .

In order to understand these procedures, it is useful to think about what goes into
the correlation between two tests or two times. Consider two tests, X and X′, both made
up of two subtests. The simple correlation rxx′ =

Cxx′√
VxV x′

may be expressed in terms of

elements (items) in X and X ′. The reliability of X is just its correlation with X′ and can
be thought of in terms of the elements of the variance-covariance matrix, ΣXX′ :

ΣXX′ =

 Vx
... Cxx′

. . . . . . . . . . . . . .

Cxx′
... Vx′

 (16)

and letting Vx = 1′Vx1 and CXX′ = 1′CXX′1 where 1 is a column vector of 1s and 1′ is
its transpose, the correlation between the two tests will be

ρxx′ =
Cxx′√
VxVx′

.
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But the variance of a test is simply the sum of the true covariances and the error variances
and we can break up each test (X and X′) into their individual items (x1 x2 ... xi) and
their respective variances and covariances. We can split each test into two parts and then
the structure of the two tests seen in Equation 16 becomes

ΣXX′ =



Vx1

... Cx1x2 Cx1x′1

... Cx1x′2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2 Cx2x′1

... Cx2x′2

Cx1x′1

... Cx2x′1
Vx′1

... Cx′1x
′
2

Cx1x′2

... Cx2x′2
Cx′1x

′
2

... Vx′2


(17)

But what if we don’t have two tests? We need to make assumptions about the
structure of what the covariance between a test (X) and a test just like it (X′) would be
based upon what we know about test X.

Because the splits are done at random and the second test is parallel with the first
test, the expected covariances between splits are all equal to the true score variance of one
split (Vt1), and the variance of a split is the sum of true score and error variances:

ΣXX′ =



Vt1 + Ve1

... Vt1 Vt1

... Vt1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt1

... Vt1 + Ve1 Vt1

... Vt1

Vt1

... Vt1 Vt′1
+ Ve′1

... Vt′1

Vt1

... Vt1 Vt′1

... Vt′1
+ Ve′1


The correlation between a test made up of two halves with intercorrelation (r1 = Vt1/Vx1)
with another such test is

rxx′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1
2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus

rxx′ =
2r1

1 + r1
. (18)

There are a number of different approaches for estimating reliability when there is
just one test and one time. The earliest was to split the test into two random split halves
and then adjust the resulting correlation between these two splits using the Spearman-
Brown prophecy formula (Brown, 1910; Spearman, 1910):

2 ∗ r
1 + r

. (19)
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Unfortunately, as we showed in Figure 4 not all random splits produce equal esti-
mates. If we consider all of the items in the test to be randomly sampled from some larger
domain (e.g., trait-descriptive adjectives sampled from all words in the Oxford Unabridged
Dictionary or sociability items sampled from a potentially infinite number of ways of being
sociable) then we can think of the test as a sample of that domain. Because the item co-
variances should reflect just shared domain variance, but item variance will be an unknown
mixture of domain and specific and error variance, the amount of domain variance in a test
would vary as the square of the number of items in the test times the average covariance of
the items in the test. Considering items as measuring ability (e.g., right with probability
p and wrong with probability q = 1 − p), Kuder & Richardson (1937) proposed several
estimates of the reliability of the average split half, with their most well known being their
20th equation (and thus known as KR20):

rtt =
n

n− 1

σ2
t − npq
σ2
t

. (20)

A more general form of KR20 allows items to be not just right or wrong and thus
corrects for the sum of the individual item variances. This is known as coefficient α
(Cronbach, 1951) as well as λ3 (Guttman, 1945)

α = λ3 =
n

n− 1

Vt −
∑
vi

Vt
(21)

where Vt is the total test variance, vi is the variance for a particular item, and there are n
items in the test.

α and λ3 may be thought of as the correlation of a test with a non-existent test just
like it. That is, they are estimates of reliability based upon a fictitious parallel test. α
estimates the correlation between the observed test and its hypothetical twin by assuming
that the average covariance within the observed test is the same as the average covariance
with the hypothetical test. It is correct to the extent that the average inter-item correlation
correctly estimates the amount of domain score variance (an unknown mixture of trait and
state variance) in each item. But this is only correct if all the items have equal covariances
and differ only in their observed variances. In this case they are said to be τ equivalent,
which is a fancy way of saying that they all have equal covariances with the latent score
represented by the test and have equal factor loadings on the single factor of the test. This is
very unlikely in practice and deviations from this assumption will lead to α underestimating
reliability (Teo & Fan, 2013).

In addition to λ3, Guttman (1945) considered five alternative ways of estimating
reliability by correcting for the error variance of each item. All of these equations recognize
that some of the item is reliable variance, the problem is how much? λ3 and α assume that
the average item covariance is a good estimate, λ6 uses the Squared Multiple Correlation
(smc) for each item as an estimate of its reliable variance. λ4 is just the maximum split
half reliability.
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One advantage of using the mean item covariance is that it can be identified from
an analysis of variance perspective rather than actually finding all the inter-covariances.
That is, just decompose the total test variance into three components: the between person
variance σ2

P , the between item variance, σ2
I , and the interaction of person x item, σ2

e . Then

reliability is just 1− σ2
e

σ2
P

(Feldt et al., 1987; Hoyt, 1941). By expressing it in this manner,

Feldt et al. (1987) were able to derive an F distribution for α, and thus a means for finding
confidence intervals. This is implemented as the alpha.ci function in the psych package.
Alternative procedures for the confidence interval for α have been developed by Duhachek
& Iacobucci (2004). Perhaps the biggest advantage to the variance approach to KR20, α,
or λ3 was that in the 1930s-1950s calculations were done with desk calculators rather than
computers and it was far simpler to find the n item variances and one total test variance
than it was to find the n*(n-1)/2 item covariances. In the modern era, such short cuts are
no longer necessary.

Two problems with α. Although easy to calculate from just the item statistics and
the total score, α and λ3 are routinely criticized as poor estimates of reliability because
they do not reflect the structure of the test (Bentler, 2009; Cronbach & Shavelson, 2004;
S. Green & Yang, 2009; Revelle & Zinbarg, 2009; Sijtsma, 2009). Perhaps because the
ability to find α is available in easy to use software packages, it is routinely used. This is
unfortunate; except for very rare conditions, α is both an underestimate of the reliability
of a test (because of the lack of τ equivalancy, Bentler, 2009, 2017; Sijtsma, 2009) and an
overestimate of the fraction of test variance that is associated with the general variance
in the test (Revelle, 1979; Revelle & Zinbarg, 2009; Zinbarg et al., 2005, 2006). As we
saw in Table 1, α provides no information about the constancy or stability of the test.
For our mood items, α (.83 - .87) exceeded the short term constancy estimates (.42 - .76)
and greatly exceeded the two day stability coefficients (.36 - .39). For the trait measures
(particularly of impulsivity), the low α (.51) did not reflect the relatively high (.70) two-four
week stability of the measures. That is to say, knowing α told us nothing about test-retest
constancy or stability.

If not an estimate of reliability, does α measure internal consistency? No. For it
is just a function of the number of items and the average correlation between the items.
It is not a function of the uni-dimensionality of the test. It is easy to construct example
tests with equal α values that reflect one test with homogenous items, two slightly related
subtests or even two unrelated subtests each with homogeneous items (see, e.g., Revelle,
1979; Revelle & Wilt, 2013).

Model based estimates

That “internal consistency” estimates do not reflect the internal structure of the
test becomes apparent when we apply “model based” techniques to examine the factor
structure of the test. These procedures actually examine the correlations or covariances of
the items in the test. Thanks to improvements in computational power, the task of finding
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correlations and the factor structure of a 10 item test has been transformed over the past
two generations from being a summer research project for an advanced graduate student to
an afternoon homework assignment for undergraduates. Using the latent variable modeling
approach of factor analysis, these procedures decompose the test variance into that which is
common to all items (g, a general factor), that which is specific to some items (orthogonal
group factors, f) and that which is unique to each item (typically confounding specific, s,
and error variance, e). Many researchers have discussed this approach in great detail (e.g.,
Bentler, 2017; McDonald, 1999; Revelle & Zinbarg, 2009; Zinbarg et al., 2005) and we just
summarize the main points here. Most importantly for applied researchers, model based
techniques are just as easy to implement in modern software as are the more conventional
approaches.

The observed score on a test item may be modeled in terms of the sum of the products
of factor scores and loadings on these factors:

x = cg + Af + Ds + e.

But the covariances of items reflect the factors common to all or some of the items (g and
f) and the variance/covariance matrix (C) of a test made up n items is just the sum of the
product of the c vector and its transpose and the Group vectors (A) and their transpose.
The total test variance (Vx) is just the sum of the elements of this matrix

VX = 1′C1 = 1′cc′1 + 1′AA′1 + 1′DD′1 + 1′ee′1

where 1 is a vector of 1s and with matrix multiplication allows us to find the sum of
the elements. The communality of an item is the amount of its variance modeled by the
common factors and is

h2 = c2
i + ΣA2

ij .

The unique variance for each item is its total variance less the common variance:

u2
i = σ2

i (1− h2
i ).

Because the reliable variance of the test is that which is not error, the reliability of a test
with standardized items should be

ωt =
1′cc′1 + 1′AA′1

Vx
= 1− Σ(1− h2

i )

Vx
= 1− Σu2

i

Vx
. (22)

The percentage of the total variance that is due to the general factor (ωg, McDonald,
1999) is

ωg =
1′cc′1

VX
=

1′cc′1

1′cc′1 + 1′AA′1 + 1′DD′1 + 1′ee′1
. (23)
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That is, the sum of the squared loadings on the g factor divided by the sum of the corre-
lations or covariances of all of the items. In summation notation this is just

ωg =
Σn
i=1g

2
i

Σn
i=1Σn

j=1Rij
.

Normally, the specific item variance is confounded with the residual item (error) vari-
ance, but if we have a way of estimating the specific variance by examining the correlations
with items not in the test, (e.g., repeated items, Wood et al., 2017) then we can include
it as part of the reliable variance (Bentler, 2017):

ωt =
1′cc′1 + 1′AA′1 + 1′DD′1

VX
=

1′cc′1 + 1′AA′1 + 1′DD′1

1′cc′1 + 1′AA′1 + 1′DD′1 + 1′ee′1
. (24)

Unfortunately, in his development of ω, McDonald (1999) refers to two formulae
(6.20a and 6.20b) one for ωt and one for ωg and calls them both ω (Zinbarg et al., 2005).
These two coefficients are very different, for one is an estimate of the total reliability
of the test (ωt), the second is an estimate of the amount of variance in the test due to
single, general factor (ωg). Then to make it even more complicated, there are two ways
to find the general factor. One method uses a bifactor solution (Holzinger & Swineford,
1937; Reise, 2012; Rodriguez et al., 2016) using structural equation modeling software (e.g.,
lavaan, Rosseel (2012)), the other extracts a higher order factor from the correlation matrix
of lower level factors and then applies a transformation developed by Schmid & Leiman
(1957) to find the general loadings on the original items. The bi-factor solution (ωg) tends
to produce slightly larger estimates than the Schmid-Leiman procedure (ωh) because it
forces all the cross loadings of the lower level factors to be 0. Following Zinbarg et al.
(2005) we designate the Schmid-Leiman solution as ωh recognizing the hierarchical nature
of the solution. Both approaches are implemented in the psych package.

An important question when examining a hierarchical structure is how many group
factors to specify when calculating ωh? The Schmid-Leiman procedure is defined if there are
three or more group factors, and with only two group factors the default is to assume that
they are both equally important (Zinbarg et al., 2007). While the Schmid-Leiman approach
is exploratory, the bifactor approach is a confirmatory model that requires specifying which
variables load on each group factor.

How do these various approaches differ and what difference does it make? If we want
to correct observed correlations for attenuation by using Equation 3 then underestimating
reliability will lead to serious overestimation of the true validity of a measure. This is why
there has been so much work on trying to estimate the greatest lower bound of reliability
(e.g., Bentler, 2017). In this case because α underestimates reliability it is a poor measure
to use when correcting for attenuation. In addition, many of the conventional measures
do not reflect the percentage of total variance that is actually common to all of the items
in the test. For factor analytic approaches, this is only done by ωg and ωh; for non-model
based procedures this is the worst split half reliability.
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In order to show how these various approaches can give very different values, we
consider a real life data set consisting of the 10 anxiety items discussed earlier. We show
the correlation matrix as well as different reliability estimates in Table 3. Even though the
greatest reliability estimates exceed .90, it is important to remember that this does not
imply anything about the stability of the measure which is just .30 after two days (Table 1).

The ωt based value of .88 agrees closely with the greatest split half of .91 or the
duplicate item estimate of .92. These are all estimates of the total reliable variance. The
worst split half .57 and ωg values of .59 suggest that slightly less than 60% of the test reflects
one general factor of anxiety. The difference between the .9 and the .6 values suggest that
roughly 30% of the total test variance is due to the positively worded versus negatively
worded group variance. That is, roughly 2/3 of the reliable test variance represents one
construct, and about 1/3 represents something not shared with total test. Note that the
α of .83 does not provide as much information.

Tetrachoric, polychoric, and Pearson correlations

Test scores are typically the sum or average of a set of individual items. Each item is
thought to reflect some underlying latent trait. Because the items are not continuous but
rather are dichotomous or polytomous, the normal Pearson inter-item correlation will be
attenuated from what would be observed if it were possible to correlate the latent scores
associated with each item. The latent correlation can be estimated using tetrachoric or
polychoric correlations which find what a continuous bivariate normal correlation would be
given the observed pair-wise cell frequencies. The use of such correlations is recommended
when examining the structure of a set of items using factor analysis for a clearer struc-
ture will appear and artificial difficulty factors will not be found. The temptation to use
tetrachoric or polychoric correlations when finding the reliability of a test using any of the
formulas in Table 3 should be resisted, for this will lead to overestimates of the amount of
variance in the observed test made up of the observed items (Revelle & Condon, 2018).

Reliability and test length

With the exception of the worst split half reliability (β) and hierarchical ω (estimated
either by a bi-factor approach, ωg or the Schmid-Leiman procedure ωh) all of the reliability
estimates in Table 3 are functions of test length and will tend asymptotically towards 1 as
the number of items increases. Examining the equations in Table 3 makes this clear: each
method replaces the diagonal of the test, tr(Vx), with the sum of some estimate based on
the item reliability (rii, h

2, the SMC, or r̄ij) and then compares this adjusted test variance
to the total test variance. But as the number of items in the test increases, the effect of
the diagonal elements becomes less as a fraction of the total test variance. Thus, the limit
of the glb, λ4, ωt, λ6, α as n increases to infinity is 1. ωh does not have this problem as it
will increase towards the limit of ωg∞ = 1′cc′1

VX
= 1′cc′1

1′cc′1+1′AA′1+1′DD′1 . When comparing
reliabilities between tests of different lengths, it is useful to include the reliability of each
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Table 3: Calculating multiple measures of internal consistency reliability demonstrated on 10 items
from the Motivational State Questionnaire (msqR data set, N = 3032.) The ten items may be thought
of as measures of state anxiety. Five are positively scored, five negatively. General factor loadings
(g) and group factor loadings were found from the omegaSem function which applies a bi-factor
solution. The hierarchical solution from omega applies the Schmid-Leiman transformation and has
slightly lower general factor loadings. Split half calculations were done by finding all possible splits
of the test. Although the statistics shown are done by hand, they are all done automatically in
various psych fuctions (see Table 1).

10 anxiety items from the msqR data set
Variable anxis jttry nervs tense upset at.s- calm- cnfd- cntn- rlxd- g F1* F2* h2
anxious 1.00 0.46 0.49 0.52 0.27 0.22 0.24 -0.01 0.08 0.24 0.35 0.59 0.47
jittery 0.46 1.00 0.46 0.47 0.16 0.25 0.31 -0.01 0.04 0.33 0.43 0.43 0.37
nervous 0.49 0.46 1.00 0.56 0.37 0.28 0.32 0.11 0.13 0.32 0.44 0.58 0.53
tense 0.52 0.47 0.56 1.00 0.48 0.36 0.38 0.11 0.19 0.42 0.55 0.57 0.63
upset 0.27 0.16 0.37 0.48 1.00 0.32 0.26 0.19 0.27 0.32 0.39 0.31 0.25
at.ease- 0.22 0.25 0.28 0.36 0.32 1.00 0.63 0.45 0.55 0.60 0.68 0.43 0.65
calm- 0.24 0.31 0.32 0.38 0.26 0.63 1.00 0.35 0.44 0.58 0.72 0.27 0.59
confident- -0.01 -0.01 0.11 0.11 0.19 0.45 0.35 1.00 0.60 0.38 0.22 0.71 0.55
content- 0.08 0.04 0.13 0.19 0.27 0.55 0.44 0.60 1.00 0.45 0.34 0.73 0.65
relaxed- 0.24 0.33 0.32 0.42 0.32 0.60 0.58 0.38 0.45 1.00 0.71 0.29 0.59

SMC 0.37 0.36 0.42 0.52 0.29 0.55 0.48 0.40 0.48 0.49
rii 0.73 0.67 0.66 0.74 0.73 0.61 0.62 0.67 0.72 0.57

Formula Calculation Reliability
measure

Total variance = VX = Σ(Rij) = 39.80

Total reliable item variance = Σrii = 6.71 glb =
Vx−tr(R)+Σ(rii)

Vx

39.80−10+6.71
38.90

= .917

r best split (A= 1, 4, 6, 7, 10 vs B = 2,3,5, 8, 9) = .834 λ4 = best split half = 2rab
1+rab

2∗834
1+.834

= .909

Total common variance = Σh2
i = 5.27 ωt =

Vx−tr(R)+Σh2
i

Vx

39.80−10+5.27
39.80

= .881

Total squared multiple correlations Σ(SMC) = 4.36 λ6 =
Vx−tr(R)+Σ(SMC)

Vx

39.80−10+4.36
39.80

= .858

α = n
n−1

Vx−tr(R)
Vx

10
9

39.80−10
39.80

= .832

Average correlation =
VX−tr(VX )
n∗(n−1)

= 0.331 α = nr̄
1+(n−1)r̄

10∗.331
1+9∗.331

= .832

r worst split (A = 1-5 vs. B= 6-10) = .397 β = worst split half = 2rab
1+rab

2∗.397
1+.397

= .569

Sum of g loadings = 4.84 (bi-factor) ωg =
(Σgi)

2

VX

4.842

39.80
= .589

Sum of g loadings = 4.21 (Schmid-Leiman) ωh =
(Σgi)

2

VX

4.212

39.80
= .446
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test as if they were just one item each. In the case of α, α1 = r̄ij , Other single item
reliability measures are the average item test retest (glb1 = r̄ii), the average communality
(ωt1 = h̄2

i ), or the average SMC (λ61 = SMCi).

Generalizability Theory

Most discussions of reliability consider reliability as the correlation of a test with a
test just like it. Test-retest and alternate form reliabilities are the most obvious examples.
Internal consistency measures are functionally estimating the correlation of a test with an
imaginary test just like it. These estimates are based upon the patterns of correlations
of the items within the test. An alternative approach makes use of Analysis of Variance
procedures to decompose the total test variance into that due to individuals, to items,
to time, relevant interactions, and to residual (Cronbach et al., 1963; Gleser et al., 1965;
Shavelson et al., 1989; Vispoel et al., 2018). We have already discussed this in the context
of test-retest reliability. This technique is most frequently applied to the question of the
reliability of judges who are making ratings of targets, but the logic can be applied equally
easily to item analysis.

Reliability of raters

Consider the case where we are rating numerous subjects with only a few judges.
We might do a small study first to determine how much our judges agree with each other,
and depending upon this result, decide upon how many judges to use going forward. As an
example, examine the data from 5 judges (raters) who are rating the anxiety of 10 subjects
(Table 4). If raters are expensive, we might want to use the ratings of just one judge rather
than all five. In this case, we will want to know how ratings of any single judge will agree
with those from the other judges. In this case, differences in leniency (the judges’ means)
between judges will make a difference in their judgements. In addition, different judges
might use the scale differently, with some having more variance than others. We also need
to think about how we will use the judges. Will we use their ratings as given, will we use
their ratings as deviations from their mean, or will we pool the judges? All of these choices
lead to different estimates of generalizability. Shrout & Fleiss (1979) provide a very clear
exposition of three different cases and the resulting equations for reliability. Although they
express their treatment in terms of Mean Squares derived from an analysis of variance (e.g.,
the aov function in R), it is equally easy to do this with variance components estimated
using a mixed effects linear model (e.g., lmer from the lme4 package (Bates et al., 2015)
in R). Both of these procedures are implemented in the ICC function in the psych package.

In Case 1 each subject is rated by k randomly chosen judges. The variance of the
ratings is thus a mixture of between person and between judges. We can estimate these
variance components from a one way analysis of variance treating subjects as random
effects. Within person variance is an unknown mixture of rater and and residual (which
includes error and the interaction) effects. Reliability for a single judge (ICC1) is the ratio
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of person variance to total variance, while reliability for multiple judges (ICC1k) adjusts
the residual variance (σ2

w) by the number of judges

ICC1 =
σ2
p

σ2
p + σ2

w

ICC1k =
σ2
p

σ2
p + σ2

w
k

. (25)

Case 2 is more typical, in that we are still using the ratings of k randomly chosen
judges, but each judge rates all subjects. We are trying to generalize to another set of
randomly chosen judges. This is a two way random effects model where both subjects and
raters are chosen at random. By partitioning out the raters effects (σ2

r ) from the residual,
we improve our estimate for the person variance (σ2

p). Once again, by having multiple

raters, the residual term (σ2
r + σ2

e) is reduced by the number of raters (σ
2
r+σ2

e
k ):

ICC2 =
σ2
p

σ2
p + σ2

r + σ2
e

ICC2k =
σ2
p

σ2
p + σ2

r+σ2
e

k

. (26)

Case 3 is unusual when considering judges, but is typical when considering items. It
assumes judges are fixed rather than random effects. Thus, this is a two-way mixed model
(subjects are random, judges are fixed). The estimate of the person variance is the same as
in Case 2, but by assuming judges are fixed, the variance associated with judges is removed
from the divisor of our reliability coefficient:

ICC3 =
σ2
p

σ2
p + σ2

e

ICC3k =
σ2
p

σ2
p + σ2

e
k

. (27)

Each of these cases can be examined for the reliability of a single judge, or for k
judges. The effect of pooling judges is identical to the effect of pooling items and is just
the Spearman-Brown correction. When applied to items, the ICC3k is the same as α
because we typically associate item differences as fixed effects. The ICC function reports
6 different relliability estimates: three for the case of single judges, three for the case of
multiple judges. It also reports the results in terms of a traditional analysis of variance
aa well as a mixed effects linear model as well as confidence intervals for each coefficient
(Table 5).

The intraclass correlation is appropriate when ratings are numerical, but sometimes
ratings are categorical (particularly in clinical diagnosis or in evaluating themes in stories).
This then leads to measures of agreement of nominal ratings. Rediscovered multiple times
and given different names (Conger, 1980; Scott, 1955; Hubert, 1977; Zapf et al., 2016)
perhaps the most standard coefficient is known as Cohen’s Kappa (Cohen, 1960, 1968)
which adjusts observed proportions of agreement by the expected proportion:

κ =
po − pe
1− pe

=
fo − fe
N − fe

(28)
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Table 4: An example of rater reliability. Five judges (raters) rate 10 subjects on a trait. The
subjects differ in their overall mean score across judges, the judges differ in their mean ratings.
These data produce six different estimates of reliability (Table 5).

Judge or Rater
Subject J1 J2 J3 J4 J5 Mean
S1 1 1 3 2 3 2.0
S2 1 1 3 2 5 2.4
S3 1 2 3 2 4 2.4
S4 4 1 2 6 2 3.0
S5 2 4 3 5 3 3.4
S6 3 4 3 4 6 4.0
S7 1 4 6 4 6 4.2
S8 3 4 4 4 6 4.2
S9 3 5 4 6 5 4.6
S10 5 5 5 6 5 5.2
Mean 2 2.4 2.4 3 3.4 4.0

where po = fo
N is the observed proportion (po) or frequency of agreement (fo) between two

observers, and pe = fe
N is the expected proportion or frequency of agreement (fe) (Cohen,

1960). Because raw agreements will reflect the base rates of judgements, κ corrects for the
expected agreement on the assumption of independence of the raters. Thus, if two raters
each use one category 60% of the time, we would expect them to agree by chance 36% of the
time in their positive judgements and 16% in their negative judgements. Various estimates
of correlations of nominal data have been proposed and differ primarily in the treatment
of the correction for chance agreement (Feng, 2015). Thus, κ adjusts for differences in the
marginal likelihood of judges, while Krippendorf’s αk does not (Krippendorff, 1970, 2004).
To Krippendorff (2004) this is a strength of αk, but to Fleiss it is not (Krippendorff &
Fleiss, 1978).

If some disagreements are more important than others, we have weighted κ which
with appropriate weights is equal to the intraclass correlation between the raters (Cohen,
1968; Fleiss & Cohen, 1973). For multiple raters, the average κ is known as Light’s κ
(Conger, 1980; Light, 1971).

Consider a study where four coders are asked to rate 10 narratives for three mutually
exclusive categories: Achievement, Intimacy, and Power. A hypothetical example of such
data is shown in Table 6. Raters 1 and 2 and 3 and 4 show high agreement, but there is
no agreement between raters 2 and 4.

Real life examples of a range of κ values are given by Freedman et al. (2013) in
a discussion of the revised DSM where the κ values for clinical diagnoses range from
“very good agreement” (> .60) for major neurocognitive disorders or post-traumatic stress
disorder, to “good” (.40-.60) for bipolar II, or schizophrena, to “questionable agreement”
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Table 5: Intra class correlations summarize the amount of variance due to subjects, raters, and their
interactions. Depending upon the type of generalization to be made, one of six different reliability
coefficients is most appropriate. Scores may be analyzed as a one way (Case 1) or two way (Cases 2
and 3) ANOVAs with random (Cases 1 and 2) or mixed effects (Case 3). Variance components may

be derived from the MS from ANOVA or directly from the ICC output: For Case 1, σ2
p =

MSp−MSw

k .

Similarly, for Cases 2 and 3 , σ2
p =

MSp−MSresidual

k . ICCs may be based upon 1 rater or k raters.
Data from Table 4 are analyzed using the ICC function from the psych package.

Analysis of Variance and the resulting decomposition into variance components

df SS MS Variance Value by case % of total
C1 C2 C3 C1 C2 C3

Person 9 51.22 5.69 σ2
p 0.76 0.87 0.87 29 32 40

Within 40 75.20 1.88 σ2
w 1.88 71

Rater 4 27.32 6.83 σ2
r 0.55 20

Residual (P x R) 36 47.88 1.33 σ2
e 1.33 1.33 48 60

Total σ2
t 2.64 2.75 2.20 100 100 100

Intraclass correlations and their confidence intervals (From the ICC function).

Variable type ICC F df1 df2 p lower bound upper bound

Single raters absolute ICC1 0.29 3.03 9 40 0.01 0.04 0.66
Single random raters ICC2 0.32 4.28 9 36 0.00 0.09 0.67
Single fixed raters ICC3 0.40 4.28 9 36 0.00 0.13 0.74
Average raters absolute ICC1k 0.67 3.03 9 40 0.01 0.19 0.91
Average random raters ICC2k 0.70 4.28 9 36 0.00 0.32 0.91
Average fixed raters ICC3k 0.77 4.28 9 36 0.00 0.42 0.93

Number of subjects = 10 Number of raters = 5
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Table 6: Cohen’s κ can be used to assess the change corrected agreement between raters for categor-
ical data. κ adjusts observed agreement by expected agreement. It is found using the cohen.kappa

function.
Hypothethetical ratings from four raters for 10 subjects on three strivings.

Subject R1 R2 R3 R4
1 Achieve Achieve Achieve Power
2 Achieve Achieve Intimacy Power
3 Achieve Achieve Intimacy Power
4 Achieve Achieve Power Power
5 Achieve Intimacy Achieve Achieve
6 Intimacy Achieve Achieve Achieve
7 Intimacy Intimacy Intimacy Intimacy
8 Intimacy Power Intimacy Intimacy
9 Power Power Intimacy Intimacy

10 Power Power Power Power

Produces this measure of % agreement
Rater R1 R2 R3 R4
R1 100 70 50 40
R2 70 100 40 30
R3 50 40 100 70
R4 40 30 70 100

Which, when adjusted for chance becomes
Kappa by each pair of raters
( Unweighted below the diagonal, weighted above)
Rater R1 R2 R3 R4
R1 1.00 0.78 0.30 -0.14
R2 0.52 1.00 0.29 -0.17
R3 0.24 0.13 1.00 0.52
R4 0.15 -0.01 0.57 1.00
Average Cohen kappa for all raters 0.27
Average weighted kappa for all raters 0.26

(.2-4) for generalized anxiety or obsessive compulsive disorder, to values which did not
exceed the confidence values of 0. When comparing the presence or absence of each of five
narrative themes in a life story interview, Guo et al. (2016) report how two independent
raters of each of 12 different interview segments showed high reliability of judgements with
κ values ranging from .61 (did the story report early advantage) to .83 (did the story
discuss prosocial goals).

Multilevel reliability

With the introduction of cell phones and various apps, it has become much easier
to collect data within subjects over multiple occasions (e.g., Bolger & Laurenceau, 2013;
A. S. Green et al., 2006; Mehl & Conner, 2012; Wilt et al., 2011, 2016b). This has taken
us from the daily diary to multiple mood measures taken multiple times per day. These
techniques lead to fascinating data, in that we can examine patterns of stability and change
within individuals over time. These intensive longitudinal methods (Walls & Schafer, 2006)
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“captures life as it is lived” (Bolger et al., 2003). They also lead to important questions
about reliability. How consistent is one person over time? How stable are the differences
between people over time? The same decomposition of variance techniques discussed for
raters and for generalizability theory can be applied to an analysis of temporal patterns of
reliability (Shrout & Lane, 2012; Revelle & Wilt, 2017). That is to say, we decompose the
responses into variance components due to stable individual differences (σ2

p), to differences
due to time (σ2

t ), to the interaction of person by time effects (σ2
p∗t, and to residual error

σ2
e). Shrout & Lane (2012) give the SPSS and SAS syntax to do these calculations. In R

this merely requires calling the multilevel.reliability function in psych.

Table 7: An abbreviated data set (adapted from Shrout & Lane (2012). Four subjects give responses
to three items over four time points. See also Figure 5.

Variable Person Time Item1 Item2 Item3
1 1 1 3 4 4
2 2 1 6 6 5
3 3 1 3 4 3
4 4 1 7 8 7
5 1 2 5 7 7
6 2 2 6 7 8
7 3 2 3 5 9
8 4 2 8 8 9
9 1 3 4 6 7
10 2 3 7 8 9
11 3 3 5 6 7
12 4 3 6 7 8
13 1 4 5 9 7
14 2 4 8 9 9
15 3 4 8 7 9
16 4 4 6 8 6

Shrout & Lane (2012) discuss six reliability (or generalizability) coefficients that may
be found from these variance components. Although the next six equations are probably
challenging, it might be a relief to realize that the resulting estimates are all reported in
the multilevel.reliablity function.

If we are interested in how stable the between person differences are when averaged
over all the (m) items and all (k) occasions, then we need to compare the variance due to
people and to people by items to those variances plus error variance:

RkF =
σ2
p +

σ2
p∗i
m

σ2
p +

σ2
p∗i
m + σ2

e
km

. (29)

But, if the interest is individual differences from one randomly chosen time point (R), then
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Four subjects over time
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Figure 5. Four subjects are measured over four time points on three variables. The data are shown
in Table 7 and adapted from Shrout & Lane (2012). Figure drawn using the mlPlot function in
psych.

we need to add time and its interaction with person in the denominator and we find

R1R =
σ2
p +

σ2
p∗i
m

σ2
p +

σ2
p∗i
m + σ2

t + σ2
p∗t + σ2

e
m

. (30)

An extension of the reliability coefficient from one randomly chosen time point (R1R) to
the average of k times (RkR) is analogous to the benefit of Spearman-Brown formula and
is

RkR =
σ2
p +

σ2
p∗i
m

σ2
p +

σ2
p∗i
m +

σ2
t +σ2

p∗t
k + σ2

e
km

. (31)

To measure the reliability of within individual change, we do not need to consider between
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person variability, just variability within people over time:

RC =
σ2
p∗t

σ2
p∗t + σ2

e
m

. (32)

The four equations above assume that time points are fixed and that all subjects are
measured at the same time points (e.g., perhaps every evening, or at fixed times through
out the day). But if the timing differs across subjects we need to think of time as nested
within subjects and we derive two more reliabilities, that between subjects and that within
subjects:

RkRN =
σ2
p

σ2
p +

σ2
t(p)

k + σ2
e

km

. (33)

RCN =
σ2
t(p)

σ2
t(p) + σ2

e
m

. (34)

The previous six equations might seem daunting, but are included to show the logic of gen-
eralizability theory as applied to the problems associated with measuring individual differ-
ences in mood over time. All six are included as the output for the multilevel.reliabiity
function, see Table 8.

When doing multilevel reliability, it is straightforward to find the reliability of each
individual subject over items and over time. People are not the same and the overall
indices do not reflect how some subjects show a very different pattern of response. The
multilevel.reliability function returns reliability estimates for each subject over time,
as well as the six estimates shown in Table 8. In the Appendix, we show multi-level
reliabilities for 77 subjects on our ten anxiety items across four time points.

Composite Scores

The typical use of reliability coefficients is to estimate the reliability of relatively
homogeneous tests. Indeed, the distinctions made between ωh, α, and ωt are minimized if
the test is completely homogeneous. But if the test is intentionally made up of unrelated
or partly unrelated content, then we need to consider the reliability of such a composite
score. Such a composite is sometimes referred to as a stratified test, where the strata may
be difficulty or content based (Cronbach et al., 1965). The stratified reliability (ρxxs) of
such a test is found by replacing the variance of each subtest in the total test with its
reliable variance and then dividing the resulting sum by the total test variance:

ρxxs =
Vt − Σvi + Σpxxivi

Vt
(35)

where ρxxi is reliability of the subtest and vi is the variance of the subtest (Rae, 2007).
Conceptually, this approach is very similar to ωt (McDonald, 1999).
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Table 8: Alternative estimates of reliability based upon Generalizability theory for the example
data set. Analysis done by the multilevel.reliability function.

RkF = 0.92 Reliability of average of all ratings across all items and times (Fixed time effects)
R1R = 0.25 Generalizability of a single time point across all items (Random time effects)
RkR = 0.57 Generalizability of average time points across all items (Random time effects)
Rc = 0.79 Generalizability of change (fixed time points, fixed items)
RkRn = 0.44 Generalizability of between person differences averaged over time (time nested within people)
Rcn = 0.73 Generalizability of within person variations averaged over items (time nested within people)

The data had 4 observations taken over 4 time intervals for 3 items.

Source Variance Percentage
Person σ2

p 0.57 0.15
Time σ2

t 0.82 0.21
Items σ2

i 0.48 0.12
Person x Time σ2

pt 0.84 0.22

Person x Items σ2
pi 0.12 0.03

Time x items σ2
ti 0.31 0.08

Residual σ2
e 0.68 0.18

Total σ2
T 3.82 1.00

Nested model
Person σ2

p 0.38 0.11
Time(person) σ2

p(t)
1.46 0.43

Residual σ2
e 1.58 0.46

Total σ2
T 3.43 1.00

A procedure for weighting the elements of the composite to maximize the reliability
of composite scores is discussed by Cliff & Caruso (1998) who suggest this as a procedure
for Reliable Components Analysis (RCA) which they see as an alternative to a EFA or
PCA.

Beyond Classical Test Theory

Reliability is a joint property of the test and the people being measured by the
test (refer back to Equation 2). For fixed amount of error, reliability is a function of the
variance of the people being assessed. A test of ability will be reliable if given to a random
sample of 18-20 year olds, but much less reliable if given to students at a particularly
selective college because there will be less between person variance. The reliability of a
test of emotional stability will be higher if given to a mixture of psychiatric patients and
their spouses than it will be if given just to the patients. That is, reliability is not a
property of test independent of the people taking it. This is the basic concept of Item
Response Theory (IRT), called by some the “new psychometrics” (Embretson, 1996, 1999;
Embretson & Reise, 2000) and which models the individual’s patterns of response as a
function of parameters (discrimination, difficulty) of the item. Classical test theory has
been likened to a “flogging wall” where we count the number of whips hitting subjects as
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they move down a conveyer belt as a measure of height rather than calibrating items to
the targets (Lumsden, 1976).

By focusing on item difficulty (endorsement frequency) it is possible to consider the
range of application of our scores. Items are most informative if they are equally likely to be
passed or failed (endorsed or not endorsed). But this can only be the case for a particular
person taking the test and can not be the case for a person with a higher or lower latent
score. Although tests are maximally reliable if all of the items are equally difficult, such
a test will not be very discriminating at any other than at that level (Loevinger, 1954).
Thus, we need to focus on spreading out the items across the range to be measured.

The essential assumptions of IRT is that items can differ in how hard they are, as
well as how well they measure the latent trait. Although seemingly quite different from
classical aproaches, there is a one-to-one mapping between the difficulty and discrimination
parameters of IRT and the factor loadings and item response thresholds found by factor
analysis of the polychoric correlations of the items (Kamata & Bauer, 2008; McDonald,
1999). The relationship of the IRT approach to classical reliability theory is given a very
clear explication by Markon (2013) who examines how test information (and thus the
reliability) varies by subject variance as well as trait level. A test can be developed to
be reliable for certain discriminations (e.g. between psychiatric patients) and less reliable
for discriminating between members of a control group. The particular strength of IRT
approaches is the use in tailored or adaptive testing where the focus is on the reliability
for a particular person at a particular level of the latent trait.

The several uses of reliability

Reliability is measured for at least three different purposes: correcting for attenua-
tion, estimating expected scores, and providing confidence intervals around these estimates.
When comparing test reliabilities, it is useful to remember that reliability has non-linear
relations with the standard error as well as with the signal/noise ratio (Cronbach et al.,
1965). That is, seemingly small differences in reliability between tests can reflect large
differences in the ratio of reliable signal to unreliable noise or the size of the standard error
of measurement. Consider the signal to noise ratio of tests with reliability of .7, .8., .9, and
.95.

Signal

Noise
=

ρxx
1− ρxx

.

Thus an improvement in reliability from .7 ( .7.3 = 2.33) to .8 ( .8.2 = 4) is much smaller than
that from .8 to .9 ( .9.1 = 9) which in turn is much less than from .9 to .95 ( .95

.05 = 19).

Corrections for attenuation

Reliability theory was originally developed to adjust observed correlations between
related constructs for the error of the measurement in each construct (Spearman, 1904b).
Such corrections for attenuation were perhaps the primary purpose behind reliability and



RELIABILITY: α TO ω 35

are the reason that some recommend routinely correcting for reliability when doing meta
analyses (Schmidt & Hunter, 1999). However such a correction is appropriate only if the
measure is seen as the expected value of a single underlying construct. Examples of when
the expected score of a test is not the same as the theoretical construct that accounts for
the correlations between the observed variables include chicken sexing (Lord & Novick,
1968) or the diagnosis of Alzheimers (Borsboom & Mellenbergh, 2002). Modern software
for Structural Equation Modeling (e.g., Rosseel, 2012) models the pattern of observed
correlations in terms of a measurement (reliability) model as well as a structural (validity)
model.

Reversion to mediocrity

Given a particular observed score, what do we expect that score to be if the measure
is given again? That high scores decrease and low scores increase is just a function of the
reliability of the test (Equation 5) with larger drops and gains for extreme scores than
for moderate scores. Although expected, these regression effects can mislead those who
do not understand reliability and lead to surprise when successful baseball players are less
successful the next year (Schall & Smith, 2000) or when poorly performing pilots improve
but better performing pilots get worse (Kahneman & Tversky, 1973). That superior per-
formance is partly due to good luck is hard for high performers to accept and that poor
performance is partly due to bad luck leads to false beliefs about the lack of effect for
rewards and the strong effect of punishment (Kahneman & Tversky, 1973).

Confidence intervals, expected scores, and the standard error

Not only does reliability affect the regression towards the mean, it also affects the
precision of measurement. The standard error of measurement is a function of sample
variability as well as the reliability (Equation 4). Confidence intervals for observed scores
are symmetric around the expected score (Equation 5), but therefore are not symmetric
around the observed score. Combining these two equations we see that the confidence
interval for an observed score, X, with a sample variance of Vx, mean of X̄ and estimated
reliability of ρxx is

ρxx(X − X̄)−
√
Vx(1− ρxx) + X̄ < ρxx(X − X̄) < ρxx(X − X̄) +

√
Vx(1− ρxx) + X̄

which is probably easier to understand in terms of deviation scores (x = X − X̄):

ρxx(x)−
√
Vx(1− ρxx) < ρxx(x) < ρxx(x) +

√
Vx(1− ρxx). (36)

Estimating and reporting reliability

We have included many equations and referred to many separate R functions. What
follows is a brief summary with an accompanying flow chart (Table 9).
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Preliminary steps

The most important question to ask should be done before collecting the data: what
are we trying to measure and how are we trying to measure it? Does the measure to be
analyzed represent a single construct or is the factor structure more complicated? The
next question is who are the subjects of interest? Reliability is not a function of a test,
but a joint function of the people taking the test and of the test itself. Thus specifying the
latent construct and the population of interest is essential before collecting and analyzing
data.

Once one has decided what to measure, the test items must be given to willing
(and one can hope interested) participants. Steps should be taken to ensure participant
involvement. Measures to take include the classic issues of data screening. Subjects who
respond too rapidly or carelessly will not provide reliable information Wood et al. (2017).
If response times are available, it is possible to screen for responses that implausibly fast
responses. If items are repeated in the same session, it is also possible to screen for temporal
consistency (DeSimone, 2015; Wood et al., 2017).

Type of measurement and tests for unidimensionality.

Is the test given more than once? Is it given many times? Are the data based
upon item responses or ratings. Are the data categorical, dichotomous, polytomous, or
continuous? For the latter three, examining the structure of the correlations should be
done to confirm the factor structure is as expected.

Which reliability to estimate

As we have discussed before, there is no one reliability estimate. If giving just one
test on one occasion we need to rely on internal consistency measures: ωh, β and the
worst split half reliability are estimates of the amount of general factor variance in a test.
Simulations suggest that for very low levels of general factor saturation that the EFA based
ωh is positively biased and that a CFA based estimate (ωg) is more accurate. ωt is a model
based estimate of the Greatest Lower Bound of the total reliability of a test as is the best
split half reliability (λ4). If the items are repeated within one form, the glb can be found
based upon the item test-retest values.

If tests are given twice, then test-retest measures dependability over the short term
or stability over a longer term. Variance decomposition techniques can be used to estimate
how much variance is due to individuals, to the items, and to changes over time.

If tests are given many times, then multiple measures of reliability are relevant, each
implying a different generalization: is time treated as fixed or random effect, are items seen
as fixed or random. A powerful addition to this design is that reliability over time can be
found for each subject as well as all of the subjects. Some subjects may be much more
reliable than others.
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If the measures are nor items, but rather raters, and we want to know the limits of
generalizability of the raters to different raters, or for pooled raters, we can find estimates
of the intra-class correlations. There are several of these, all can be estimated the same
way.

These many forms of reliability coefficients (Table 9) may all be found in the psych
package (Revelle, 2018) for the open source statistics environment, R (R Core Team, 2018).
psych was specially developed for personality oriented psychologists to be both thorough
and easy to use. Although some of these statistics are available in commercial software
packages, the psych package provides them all in one integrated set of functions. We show
the specific commands to use to find all of these coefficients in the appendix to this article.

Conclusions

Although we have used many equations to discuss it and many ways to estimate it,
at its essence, reliability is a very simple concept: Reliability is the correlation of a test
with a test just like it, or alternatively, the fraction of a test which is not due to error.
Unfortunately, there is not just one reliability that needs to be reported, but rather a variety
of coefficients, each of which is most appropriate for certain purposes. Are we trying to
generalize over items, over time, over raters? Are we estimating unidimensionality, general
factor saturation, or total reliable variance? Each of these questions leads to a different
estimate (Table 9). So rather than ask what is the reliability, we should ask which reliability
and reliability for what?

The initial appeal of α or KR20 reliability estimates were that they were simple to
calculate in the pre-computer era. But this has not been the case for the past 60 years. The
continued overuse of α is probably due to the ease of calculation in common commercial
software. But with modern, open source software such as R, this is no longer necessary. α,
ωh, ωt, minimum and maximum split halfs, six ICCs, and six repeated measure reliabilities
are all available with one or two simple commands. (See the appendix for a guided tour.)
It should no longer be acceptable to report one coefficient that is only correct if all items
are exactly equally good measures of a construct. Readers are encouraged to report at
least two coefficients (e.g., ωh and ωt) and then discuss why each is appropriate for the
inference that is being made. They are discouraged from reporting α unless they can justify
the assumptions implicit in using it (i.e., τ equivalence and unidimensionality). When
reporting the reliability of raters, it is useful to report all six ICCs and then explain why
one is most appropriate. Similarly, when reporting multilevel reliabilities, an awareness of
what generalizations one wants to make is required before choosing between the six possible
indices.
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Table 9: Steps toward reliability analysis: choosing the appropriate function to find reliability. All
functions except for the cfa function are in the psych package.

Steps Statistic R function
Preliminaries

Hypothesis development
Data collection
Data input read.file

Data screening
Descriptive statistics µ, σ, range describe

Analysis of internal structure

Exploratory Factor Analysis R = FφF′ + U2
fa

Hierarchical structure omega

Confirmatory Factor Analysis lavaan::cfa
Estimation of various reliabilities
Items (dichotomous, polytomous or continuous)

One occasion
general factor saturation ωh omega

total common variance ωt omega

average interitem r rij omega, alpha
median interitem r omega, alpha
mean test retest (tau equivalent) α, λ3 omega, alpha
smallest split half reliability β splitHalf iclust

greatest split half reliability λ4 splitHalf guttman

Two occasions
test-retest correlation r cor

variance components σ2
p, σ

2
i , σ

2
t testRetest

Multiple occasions
within subject reliability α multilevel.reliabiity

variance components σ2
p, σ

2
i , σ

2
t multilevel.reliabiity

Ratings (Ordinal or Interval)
Single rater reliability ICC1..31 ICC

Multiple rater reliability ICC1..3k ICC

Ratings (Categorical)
Two raters κ cohen.kappa
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Appendix

Here we include R code (R Core Team, 2018) to find the various reliability estimates
discussed above. All of these examples require installing the psych (Revelle, 2018) package
and then making it active. To install R on your computer, go to https://cran.r-project

.org and install the most recent version that is appropriate for your computer (PC, MacOS,
Linux). For details on installing and using R, go to the http://personality-project

.org/r. Many people find that RStudio (RStudio Team, 2016) is a very convenient interface
to R. It may be downloaded from https://www.rstudio.com.

First steps: installing psych and making it active
R code

install.packages("psych",dependencies = TRUE) #just need to do this once
library(psych) #make the psych package active-- need to do this everytime you start R

Detailed instructions for psych may be found by reading the accompanying vignettes
or reading the series of “HowTo”s from the personality-project.org. As is true of all R
packages, help for individual functions may be obtained by entering ? followed by the
command you do not understand. All functions in R operate upon objects and then return
the result as another object. This is the real power of R for it allows us to do a particular
analysis and then do a subsequent analyiss on the results. Most functions in R have default
values for certain options. These can be changed by specifying the option by name and
giving the desired value. To find the complete list of options for any functions, you can
ask for help for that function. RStudio will prompt with the available options when you
type the name of the function.

Entering your data

For the examples below, we will use datasets already available in R. However, it is
important to know how to enter your own data into R as well. The easiest way of doing
this is to read from an external file where the first row of the file gives the names of the

https://cran.r-project.org
https://cran.r-project.org
http://personality-project.org/r
http://personality-project.org/r
https://www.rstudio.com
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variables and the subsequent rows are one row for each subject. If you have a data file that
is a text file with the suffix .text, or .txt, or .csv, or that has been saved from e.g., SPSS
as a .sav file, then you can read the data using the read.file command. This will open a
search window on your computer and you can locate the file. Alternatively, you can copy
the data to your clipboard and use the read.clipboard command.

By default, read.file and read.clipboard assume that the first line of the file
includes “header” information. That is, the names of the variables. If this is not true, then
specify that header=FALSE. Examples of the code one might use to enter your data are
given below. All of the ‘R code’ chunks in this file can be copied and pasted directly into
the R console.

R code

my.data <- read.file() #opens a search window and reads the file
#or first copy your data to the clipboard and then
my.data <- read.clipboard()

Specifying the items we want

For these examples we use smaller subsets of the larger msqR data set and then specify
which items to score for which analysis.

R code

?msqR #ask for information about the sai data set
table(msqR$study,msqR$time) #show the study names and sample sizes
#Now, select some subsets for analysis using the subset function.
msq1 <- subset(msqR,msqR$time == 1) #just the first day measures
sai1 <- subset(sai,sai$time==1) #just the first set of observations
rim <- subset(sai,sai$study=="RIM") #choose the RIM study for test retest over days
vale <- subset(sai,sai$study=="VALE") #choose the VALE study for multilevel analysis

#create keying information for several analyses
sai.alternate.forms <- list( pos1 =c( "at.ease","calm","confident","content","relaxed"),
neg1 = c("anxious", "jittery", "nervous" ,"tense" , "upset"),
anx1 = c("anxious", "jittery", "nervous" ,"tense", "upset","-at.ease" , "-calm" ,

"-confident", "-content","-relaxed"),
pos2=c( "secure","rested","comfortable" ,"joyful" , "pleasant" ),
neg2=c("regretful","worrying", "high.strung","worried", "rattled" ),
anx2 = c("regretful","worrying", "high.strung","worried", "rattled", "-secure",

"-rested", "-comfortable", "-joyful", "-pleasant" ))
anx.keys <- sai.alternate.forms$anx1 #the keys to use for scoring

select <- selectFromKeys (anx.keys) #to be used later in alpha

Consistency using the testRetest function

To run the testRetest function, the data need to be in one of two forms: two data
objects with an equal number of rows or one object where the subjects are identified with
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an identification number and the time (1 or 2) of testing is specified. Here we show the
second way of doing this. We use the sai example data file included in psych package and
then extract just a small subset (the RIM data set measured State Anxiety on two different
days).

R code

rim.test.retest <- testRetest(rim,keys=anx.keys) #do the analysis
rim.test.retest #show the results

This results in the following output

Test Retest reliability
Call: testRetest(t1 = rim, keys = anx.keys)

Number of subjects = 342 Number of items = 10
Correlation of scale scores over time 0.33 <--- this is the test-retest correlation
Alpha reliability statistics for time 1 and time 2

raw G3 std G3 G6 av.r S/N se lower upper var.r
Time 1 0.86 0.86 0.89 0.39 6.35 0.04 0.75 0.92 0.03
Time 2 0.88 0.88 0.91 0.43 7.62 0.03 0.80 0.92 0.03

Mean between person, across item reliability = 0.26
Mean within person, across item reliability = 0.45
with standard deviation of 0.39

Mean within person, across item d2 = 1.09
R1F = 0.79 Reliability of average of all items for one time (Random time effects)
RkF = 0.88 Reliability of average of all items and both times (Fixed time effects)
R1R = 0.51 Generalizability of a single time point across all items (Random time effects)
Rc = 0.72 Generalizability of change (fixed time points, fixed items)
Multilevel components of variance

variance Percent
ID 0.11 0.10
Time 0.00 0.00
Items 0.20 0.19
ID x time 0.09 0.09
ID x items 0.20 0.19
time x items 0.11 0.10
Residual 0.35 0.33
Total 1.05 1.00

To see the item.stats, print with short=FALSE.
To see the subject reliabilities and differences, examine the ’scores’ object.

Split reliability using the splitHalf function

To find split half reliabilities and to graph the distributions of split halves (e.g.,
Figure 4) requires three lines. Here we use the built in ability data set of 16 items
for 1,525 participants taken from the Synthetic Aperture Personality Assessment (SAPA)
project ((http://sapa-project.org) (Revelle et al., 2010, 2016) and reported in (Condon &
Revelle, 2014).
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R code

sp <- splitHalf(ability,raw=TRUE, brute=TRUE)
sp #show the results
hist(sp$raw,breaks=101, xlab="Split half reliability",

main="Split half reliabilities of 16 ICAR ability items")

Split half reliabilities
Call: splitHalf(r = ability, raw = TRUE, brute = TRUE)

Maximum split half reliability (lambda 4) = 0.87
Guttman lambda 6 = 0.84
Average split half reliability = 0.83
Guttman lambda 3 (alpha) = 0.83
Minimum split half reliability (beta) = 0.73

2.5% 50% 97.5%
Quantiles of split half reliability = 0.77 0.83 0.86

Internal consistency using the alpha and omega functions

Although we do not recommend α as a measure of consistency, many researchers
want to report it. The alpha function will do that. Confidence intervals from normal
theory (Duhachek & Iacobucci, 2004) as well as from the bootstrap are reported. We use
10 items from the anxiety inventory as an example. We use all the cases from the msqR data
set. By default, items that are negatively correlated with the total score are not reversed.
However, if we specify that check.keys=TRUE, then items with negative correlations
with the total score are automatically reversed keys. A warning is produced.

R code

alpha(msq1[select],check.keys=TRUE)

Reliability analysis
Call: alpha(x = msq1[select], check.keys = TRUE)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
0.83 0.83 0.86 0.33 5 0.0046 2 0.54

lower alpha upper 95\% confidence boundaries
0.82 0.83 0.84

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se NA

anxious- 0.83 0.83 0.85 0.34 4.7 0.0047 0.026
jittery- 0.83 0.83 0.85 0.35 4.8 0.0047 0.027
nervous- 0.82 0.82 0.84 0.33 4.4 0.0049 0.029
tense- 0.81 0.81 0.83 0.32 4.2 0.0051 0.029
upset- 0.82 0.82 0.85 0.34 4.7 0.0049 0.033
at.ease 0.80 0.80 0.83 0.31 4.1 0.0055 0.028
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calm 0.80 0.81 0.84 0.32 4.2 0.0054 0.030
confident 0.83 0.83 0.85 0.36 5.0 0.0046 0.022
content 0.82 0.82 0.84 0.34 4.6 0.0049 0.025
relaxed 0.80 0.81 0.84 0.31 4.1 0.0055 0.030

Item statistics
n raw.r std.r r.cor r.drop mean sd

anxious- 1871 0.54 0.56 0.51 0.42 2.3 0.86
jittery- 3026 0.52 0.55 0.48 0.41 2.3 0.83
nervous- 3017 0.59 0.64 0.60 0.52 2.6 0.68
tense- 3017 0.67 0.71 0.69 0.60 2.4 0.78
upset- 3019 0.54 0.58 0.50 0.45 2.6 0.68
at.ease 3018 0.77 0.74 0.72 0.67 1.6 0.94
calm 3020 0.74 0.71 0.68 0.63 1.6 0.92
confident 3021 0.54 0.50 0.43 0.38 1.5 0.93
content 3010 0.64 0.59 0.55 0.50 1.4 0.92
relaxed 3023 0.76 0.73 0.70 0.66 1.6 0.91

Non missing response frequency for each item
0 1 2 3 miss

anxious 0.53 0.29 0.13 0.04 0.38
jittery 0.54 0.31 0.12 0.04 0.00
nervous 0.70 0.22 0.06 0.02 0.00
tense 0.59 0.28 0.10 0.03 0.00
upset 0.74 0.18 0.05 0.02 0.00
at.ease 0.14 0.33 0.35 0.18 0.00
calm 0.14 0.34 0.36 0.17 0.00
confident 0.16 0.33 0.37 0.14 0.00
content 0.17 0.35 0.35 0.13 0.01
relaxed 0.12 0.30 0.40 0.18 0.00

Now do it again, using the omegaSem function which calls the lavaan package to do
a SEM analysis and report both the EFA and CFA solutions. omega just reports the EFA
solution.

R code

omegaSem(msq1[select],nfactors = 2) #specify a two factor solution

Call: omegaSem(m = msq1[select], nfactors = 2)
Omega
Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,

digits = digits, title = title, sl = sl, labels = labels,
plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option)

Alpha: 0.83
G.6: 0.86
Omega Hierarchical: 0.45
Omega H asymptotic: 0.51
Omega Total 0.87

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* h2 u2 p2
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anxious- 0.36 -0.57 0.46 0.54 0.28
jittery- 0.35 -0.52 0.40 0.60 0.31
nervous- 0.43 -0.57 0.51 0.49 0.36
tense- 0.50 -0.62 0.63 0.37 0.39
upset- 0.35 -0.29 0.25 0.75 0.50
at.ease 0.52 0.59 0.64 0.36 0.43
calm 0.49 0.47 -0.21 0.51 0.49 0.48
confident 0.31 0.58 0.46 0.54 0.21
content 0.40 0.65 0.59 0.41 0.26
relaxed 0.51 0.48 -0.22 0.53 0.47 0.48

With eigenvalues of:
g F1* F2*

1.8 1.6 1.5

general/max 1.13 max/min = 1.05
mean percent general = 0.37 with sd = 0.1 and cv of 0.28
Explained Common Variance of the general factor = 0.37

The degrees of freedom are 26 and the fit is 0.24
The number of observations was 3032 with Chi Square = 721.36 with prob < 2.4e-135
The root mean square of the residuals is 0.04
The df corrected root mean square of the residuals is 0.05
RMSEA index = 0.094 and the 10 \% confidence intervals are 0.088 0.1
BIC = 512.92

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 35 and the fit is 1.67
The number of observations was 3032 with Chi Square = 5055.64 with prob < 0
The root mean square of the residuals is 0.21
The df corrected root mean square of the residuals is 0.24

RMSEA index = 0.218 and the 10 \% confidence intervals are 0.213 0.223
BIC = 4775.04

Measures of factor score adequacy
g F1* F2*

Correlation of scores with factors 0.67 0.77 0.76
Multiple R square of scores with factors 0.45 0.60 0.59
Minimum correlation of factor score estimates -0.09 0.19 0.17

Total, General and Subset omega for each subset
g F1* F2*

Omega total for total scores and subscales 0.87 0.84 0.79
Omega general for total scores and subscales 0.45 0.33 0.30
Omega group for total scores and subscales 0.36 0.51 0.49

The following analyses were done using the lavaan package

Omega Hierarchical from a confirmatory model using sem = 0.59
Omega Total from a confirmatory model using sem = 0.88
With loadings of

g F1* F2* h2 u2 p2
anxious 0.35 0.59 0.47 0.53 0.26
jittery 0.43 0.43 0.37 0.63 0.50
nervous 0.44 0.58 0.53 0.47 0.37
tense 0.55 0.57 0.63 0.37 0.48
upset 0.39 0.31 0.25 0.75 0.61
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at.ease- 0.69 0.43 0.65 0.35 0.73
calm- 0.72 0.27 0.59 0.41 0.88
confident- 0.22 0.71 0.55 0.45 0.09
content- 0.34 0.73 0.65 0.35 0.18
relaxed- 0.71 0.29 0.59 0.41 0.85

With eigenvalues of:
g F1* F2*

2.6 1.4 1.3

The degrees of freedom of the confimatory model are 25 and the fit is 529.8061 with p = 0
general/max 1.9 max/min = 1.07
mean percent general = 0.49 with sd = 0.28 and cv of 0.56
Explained Common Variance of the general factor = 0.5

Measures of factor score adequacy
g F1* F2*

Correlation of scores with factors 0.87 0.85 0.80
Multiple R square of scores with factors 0.75 0.72 0.64
Minimum correlation of factor score estimates 0.51 0.43 0.28

Total, General and Subset omega for each subset
g F1* F2*

Omega total for total scores and subscales 0.88 0.87 0.80
Omega general for total scores and subscales 0.59 0.48 0.35
Omega group for total scores and subscales 0.30 0.39 0.45

To get the standard sem fit statistics, ask for summary on the fitted object

Parallel Forms

The sai data set includes 20 items. 10 overlap with the msqR data set and are used
for most examples. But we may also score anxiety from the second set of items. We can
use either the scoreItems or the scoreOverlap functions. The latter function corrects for
the fact that the positive and negative subsets of the anxiety scales overlap with the total
scale.

R code

sai.parallel <- scoreOverlap(sai.alternate.forms,sai1)
sai.parallel

Call: scoreOverlap(keys = sai.alternate.forms, r = sai1)

(Standardized) Alpha:
pos1 neg1 anx1 pos2 neg2 anx2
0.86 0.82 0.87 0.83 0.73 0.80

(Standardized) G6*:
pos1 neg1 anx1 pos2 neg2 anx2
0.87 0.84 0.78 0.84 0.79 0.72

Average item correlation:
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pos1 neg1 anx1 pos2 neg2 anx2
0.54 0.48 0.40 0.50 0.36 0.28

Number of items:
pos1 neg1 anx1 pos2 neg2 anx2

5 5 10 5 5 10

Signal to Noise ratio based upon average r and n
pos1 neg1 anx1 pos2 neg2 anx2
5.9 4.7 6.6 4.9 2.8 4.0

Scale intercorrelations corrected for item overlap and attenuation
adjusted for overlap correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

pos1 neg1 anx1 pos2 neg2 anx2
pos1 0.86 -0.60 -0.90 0.95 -0.57 -0.95
neg1 -0.50 0.82 0.89 -0.40 0.98 0.81
anx1 -0.77 0.75 0.87 -0.77 0.87 1.00
pos2 0.80 -0.33 -0.66 0.83 -0.41 -0.86
neg2 -0.45 0.76 0.70 -0.32 0.73 0.82
anx2 -0.78 0.66 0.83 -0.70 0.63 0.80

In order to see the item by scale loadings and frequency counts of the data
print with the short option = FALSE

Inter rater reliability using the ICC function

We use the same data as in Table 5. This saved here in a compact form and then
analyzed.

R code

example <- structure(list(c(1, 1, 1, 4, 2, 3, 1, 3, 3, 5, 2), c(1, 1, 2,
1, 4, 4, 4, 4, 5, 5, 2.4), c(3, 3, 3, 2, 3, 3, 6, 4, 4, 5, 2.4
), c(2, 2, 2, 6, 5, 4, 4, 4, 6, 6, 3), c(3, 5, 4, 2, 3, 6, 6,
6, 5, 5, 3.4), c(2, 2.4, 2.4, 3, 3.4, 4, 4.2, 4.2, 4.6, 5.2,
4)), .Names = c("V1", "V2", "V3", "V4", "V5", "Mean"), row.names = c("S1",
"S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10", "Mean"), class = "data.frame")

example #show it

ICC(example[1:10,1:5]) #find the ICCs for the 10 subjects and 5 judges:

Call: ICC(x = example[1:10, 1:5])

Intraclass correlation coefficients
type ICC F df1 df2 p lower bound upper bound

Single_raters_absolute ICC1 0.29 3.0 9 40 0.00748 0.045 0.66
Single_random_raters ICC2 0.32 4.3 9 36 0.00078 0.085 0.67
Single_fixed_raters ICC3 0.40 4.3 9 36 0.00078 0.125 0.74
Average_raters_absolute ICC1k 0.67 3.0 9 40 0.00748 0.190 0.91
Average_random_raters ICC2k 0.70 4.3 9 36 0.00078 0.317 0.91
Average_fixed_raters ICC3k 0.77 4.3 9 36 0.00078 0.418 0.93

Number of subjects = 10 Number of Judges = 5
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Reliability over time: the multilevelReliability function

The VALE data set has four replications of the anxiety items. We use the
multilevel.reliability function. The first and third were separated by several days,
the second and fourth were 30 minutes following the first and third obserations.

R code

vale.mlr <- multilevel.reliability(vale,grp="id",Time="time",items=select)
vale.mlr #show the output

Multilevel Generalizability analysis
Call: multilevel.reliability(x = vale, grp = "id", Time = "time", items = select)

The data had 77 observations taken over 4 time intervals for 10 items.

Alternative estimates of reliabilty based upon Generalizability theory

RkF = 0.9 Reliability of average of all ratings across all items and times (Fixed time effects)
R1R = 0.58 Generalizability of a single time point across all items (Random time effects)
RkR = 0.84 Generalizability of average time points across all items (Random time effects)
Rc = 0.37 Generalizability of change (fixed time points, fixed items)
RkRn = 0.7 Generalizability of between person differences averaged over time (time nested within people)
Rcn = 0 Generalizability of within person variations averaged over items (time nested within people)

These reliabilities are derived from the components of variance estimated by ANOVA
variance Percent

ID 0.04 0.04
Time 0.00 0.00
Items 0.35 0.36
ID x time 0.02 0.02
ID x items 0.28 0.29
time x items 0.01 0.01
Residual 0.28 0.29
Total 0.98 1.00

The nested components of variance estimated from lme are:
variance Percent

id 5.5e-02 5.6e-02
id(time) 1.6e-09 1.6e-09
residual 9.2e-01 9.4e-01
total 9.8e-01 1.0e+00

To see the ANOVA and alpha by subject, use the short = FALSE option.
To see the summaries of the ICCs by subject and time, use all=TRUE
To see specific objects select from the following list:
ANOVA s.lmer s.lme alpha summary.by.person summary.by.time ICC.by.person ICC.by.time lmer long Call
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