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A B S T R A C T   

Compared to European countries, research is limited regarding if the Flynn effect, or its reversal, is a current 
phenomenon in the United States. Though recent research on the United States suggests that a Flynn effect could 
still be present, or partially present, among child and adolescent samples, few studies have explored differences 
of cognitive ability scores among US adults. Thirteen years of cross-sectional data from a subsample of adults (n 
= 394,378) were obtained from the Synthetic Aperture Personality Assessment Project (SAPA Project) to 
examine if cognitive ability scores changed within the United States from 2006 to 2018. Responses to an 
overlapping set of 35 (collected 2006–2018) and 60 (collected 2011–2018) items from the open-source multiple 
choice intelligence assessment International Cognitive Ability Resource (ICAR) were used to examine the trends 
in standardized average composite cognitive ability scores and domain scores of matrix reasoning, letter and 
number series, verbal reasoning, and three-dimensional rotation. Composite ability scores from 35 items and 
domain scores (matrix reasoning; letter and number series) showed a pattern consistent with a reversed Flynn 
effect from 2006 to 2018 when stratified across age, education, or gender. Slopes for verbal reasoning scores, 
however, failed to meet or exceed an annual threshold of |0.02| SD. A reversed Flynn effect was also present from 
2011 to 2018 for composite ability scores from 60 items across age, education, and gender. Despite declining 
scores across age and demographics in other domains of cognitive ability, three-dimensional rotation scores 
showed evidence of a Flynn effect with the largest slopes occurring across age stratified regressions.   

1. Introduction 

Labeled the Flynn effect (Herrnstein and Murray, 2010), intelligence 
quotient (IQ) scores substantially increased since 1932 and through the 
twentieth century, with differences ranging from 3.0 to 5.0 IQ points 
(0.20 to 0.33 SD) per decade (Flynn, 1984, 1987, 2007). These findings 
imply younger generations are expected to have higher IQ scores than 
the previous cohort. For example, if we tested a sample of Baby Boomers 
(born between 1946 and 1964) when they were 20 years old and 
compared their scores on the same test to a sample of Millennials (born 
between 1981 and 1996) tested at age 20, we would expect the latter 
group’s IQ scores to be between 0.66 and 1.1 SD higher. This isn’t to say 
that the sample of Millennials are smarter or more able than the group of 
Baby Boomers, but that a difference in scores exists favoring the younger 
generation. These results, however, should prompt other important 
questions – what demographic factors are contributing to the difference? 

Do these results generalize across adulthood? How long should the trend 
of increasing scores be expected to persist? Does this trend still exist in 
the United States? 

1.1. Domains of intelligence 

While brief conceptual definitions are provided regarding domains of 
intelligence, we recognize and caution that the distinction between any 
number of components of cognitive ability is difficult to disentangle 
from measurement and testing. This is especially true as most 
performance-based assessments will capture multiple, possibly over-
lapping, cognitive processes; thus, often making these theoretical dis-
tinctions somewhat obtuse. Regardless, we provide this information to 
help familiarize those less experienced with theories of intelligence and 
provide the necessary framework for understanding separate domains 
discussed throughout this manuscript. 
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Researchers often differentiate intelligence as fluid and crystallized 
reasoning (Carroll, 1993; Cattell, 1943, 1963; Horn and Cattell, 1966; 
McGrew, 2009; McGrew and Wendling, 2010). Fluid intelligence or 
more abstract reasoning is often described as an individual’s ability to 
abstractly reason and solve problems. On average, fluid ability peaks in 
adulthood at age 25 and steadily decreases (Salthouse, 2010, 2012, 
2019). In comparison, crystallized intelligence is understood as knowl-
edge that is accumulated and learned overtime. Normally, crystallized 
intelligence increases, on average, until age 60 and then declines 
(Salthouse, 2010, 2012, 2019). Given that these average peaks are based 
on cross-sectional data, it should be noted that variation exists around 
these peaks due to individual differences. 

Although the fluid-crystalized model, or Cattell–Horn model, is 
dominant across the cognitive ability field, some researchers argue that 
the structure of ability is split into the two components of v:ed (verbal/ 
educational) and k:m (spatial/mechanical) (Vernon, 1965) or three 
components of verbal, perceptual, and image rotation (Johnson and 
Bouchard, 2005). Verbal intelligence and v:ed are comparable to crys-
talized intelligence in that they rely on knowledge gained over time. 
These domains include verbal fluency, general knowledge gained 
through schooling, and arithmetic/numerical abilities. Perceptual in-
telligence and k:m are similar to fluid intelligence in that they rely on 
reasoning through tasks and problem solving skills such as two- 
dimensional spatial ability, memory, perceptual speed, and some nu-
merical abilities. Finally, image rotation intelligence is an individual’s 
ability to mentally rotate an object to solve a puzzle. For Vernon’s 
verbal-perceptual model, this third category of image rotation is often 
grouped with k:m as it covers spatial tasks. 

Despite the impressive differences in IQ scores represented by the 
Flynn effect, research has shown that higher IQ scores in more recent 
cohorts are most likely driven by boosts in fluid intelligence scores. 
Specifically, higher scores have been observed across nonverbal tasks 
such as the Raven’s Progressive Matrices; which also contains a spatial 
component; and the more verbally dependent Wechsler Intelligence 
Scale for Children’s (WISC) and Wechsler Adult Intelligence Scale’s 
(WAIS) Similarities subtest (Ceci and Kanaya, 2010; Flynn, 1999; Sun-
det, Barlaug, and Torjussen, 2004; Weiss, 2010). Likewise, Pietschnig 
and Voracek (2015) found fluid intelligence scores had the largest dif-
ference from 1909 to 2013, with more recent scores being higher, 
compared to other domains of cognitive ability. Following the largest 
differences of fluid intelligence scores, studies have found that spatial/ 
rotation ability and crystalized intelligence scores have also observed 
notable differences over the last century, with more recent scores being 
higher than older scores (Pietschnig and Voracek, 2015; Weiss, 2010); 
though the magnitude of higher crystalized intelligence scores for more 
recent cohorts are thought to have plateaued around 1987 (Pietschnig 
and Voracek, 2015). Taken together, these studies imply that rather than 
all domains of intelligence equally being on the rise, the magnitude for 
the differences in scores often discussed for the Flynn effect over the last 
century are more related to problem solving skills and abstract 
reasoning. 

1.2. Critiques of the Flynn effect representing changes in intelligence 

Though these findings are substantial, researchers such as Jensen 
argued these higher scores likely did not reflect true gains in intelligence 
but rather the Flynn effect was a difference between the latent and 
observed scores (Jensen, 1998; Rushton and Jensen, 2010). That is, even 
though observable IQ scores could be shown to be increasing, this did 
not necessarily indicate that latent general intelligence was also 
increasing. Moreover, while Jensen recognized that scores on fluid in-
telligence tasks were increasing, their overall g-ness or factor loadings on 
g did not correlate with these increases (Jensen, 1998). Thus, he posited 
higher observed scores were likely an artifact and either simply due to 
participants becoming more familiar with testing or tests losing their g- 
ness. Other researchers have critiqued Flynn’s work by noting his 

findings were inflated and required additional corrections (Kaufman, 
2010). 

Rodgers (1998) questioned if higher scores for newer generations 
reflected a true rise in mean IQ scores or if the Flynn effect simply 
captured a change in variability. Specifically, he posited that a change in 
variance, such as decreased variance in the lower tail of the distribution 
and an increase in variability in the upper tail, might produce the results 
observed by Flynn (1984, 1987). For example, Teasdale and Owen 
(1989) found their results were heavily driven by increasing scores in 
their lower tail whereas Zhou, Zhu, and Weiss (2010) found results 
varied across level of ability. However, in examining Flynn’s previous 
findings, Rodgers was unable to determine if the Flynn effect was due to 
a change in tail variability or differences across the distribution. 

Despite these results, researchers have also posited if the observed 
Flynn effect could also be an artifact due to measurement invariance 
across different standardized test. That is, could the differences in scores 
by ability level be due to tests functioning differently between groups? 
Interested in examining this question, Benson, Beaujean, and Taub 
(2015) explored if various Wechsler tests were invariant and concluded 
that only some versions were. These findings have implications for Flynn 
effect results that rely on comparisons between tests that contain 
different items, as changes in scores cannot be distinguished between 
the assessment, the cohort, or their interaction. 

Rodgers (1998) would ultimately propose 10 areas of research that 
would improve the understanding of the Flynn effect. These suggestions 
ranged from better understanding the Flynn effect across various back-
ground demographics and generalizability to questions about its 
persistence overtime and what changes or differences in IQ truly means. 
Though some of these questions remain unanswered, the Rodgers’ out-
lined questions would prompt further criticisms and investigations into 
the overall Flynn effect. 

1.3. Reverse Flynn effect 

While it’s appealing to think that the human IQ could be higher with 
each generation, Flynn (2007) admitted that these gains would not go on 
forever; nor did these differences in scores necessarily reflect greater 
mental ability of younger cohorts. Using data from the WAIS, WAIS 
Revised (WAIS-R), and WAIS Third Edition (WAIS-III) norming samples, 
Russell (2007) estimated that Full Scale IQ would likely plateau by 2024 
if these samples were truly representative of the overall population. 
However, due to the introduction of more stringent exclusion criteria for 
the norming sample of the WAIS-III, Russell (2007) estimated that the 
scores from the WAIS-III norming sample were likely inflated compared 
to previous norming samples. Thus, he anticipated that the Flynn effect 
of Full Scale IQ scores could plateau as early as 2004. 

Mirroring these estimates, research and meta-analyses over the last 
two decades suggest that the Flynn effect had already stagnated or 
begun to reverse. In a meta-analysis examining IQ scores across 31 
countries from 1909 to 2013, Pietschnig and Voracek (2015) found that 
the magnitude of higher IQ scores observed for newer cohorts has 
declined. Dutton and Lynn (2013) found Finnish IQ scores had differed 
− 2.0 IQ points (0.13 SD) from 1997 to 2009, while French IQ scores 
differed − 3.8 IQ points (0.25 SD) from 1999 to 2009 (Dutton and Lynn, 
2015); for these studies, more recent samples had lower IQ scores than 
previous samples. In a meta-analysis examining nine original studies 
that observed a reverse Flynn effect, differences ranged between − 0.38 
IQ points (0.03 SD) and − 4.3 IQ points (0.29 SD) per decade (Dutton, 
van der Linden, and Lynn, 2016). Recent evidence within German- 
speaking countries, also suggests that the magnitude of higher visual- 
spatial ability scores in newer cohorts could be declining across 
certain regions of Europe (Pietschnig and Gittler, 2015). 

1.4. Recent work in the United States and demographic differences 

With previous literature primarily focused on European countries, 
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often due to the large-scale cognitive ability data collected by a nation’s 
military, research examining whether the Flynn effect or its reversal is a 
current phenomenon in the United States is limited. The most notable 
studies using adult samples include the original investigations con-
ducted by Flynn (1984, 1987, 2007, 2009) using norming data. When 
examining the standardized sample scores from the systematic re- 
norming of intelligence tests between 1932 and 1984, Flynn (1984) 
uncovered that scores of more recent samples were higher than those in 
older samples. Specifically, the results of Flynn’s study indicated that the 
accelerated scores between cohorts were largely consistent regardless of 
age. Flynn (1987, 2007, 2009) would reproduce these results using new 
samples and data from other countries. While the results of this study 
inform and inspire the current research, we focus on summarizing sub-
sequent research within the United States. These studies include a meta- 
analysis (Trahan, Stuebing, Fletcher, and Hiscock, 2014), research using 
child and adolescent samples (Ang, Rodgers, and Wänström, 2010; 
Giangrande, Beam, Finkel, Davis, and Turkheimer, 2022; O’Keefe and 
Rodgers, 2017; Platt, Keyes, McLaughlin, and Kaufman, 2019; Rodgers 
and Wänström, 2007; Shakeel and Peterson, 2022), and a study exam-
ining vocabulary scores in adults (Twenge, Campbell, and Sherman, 
2019). 

With respect to gaining a comprehensive understanding to the extent 
and magnitude of the Flynn effect, a meta-analysis examined studies and 
test manuals containing norming data collected between 1951 and 2010 
within the United States and United Kingdom (Trahan et al., 2014). This 
study found that IQ scores were rising on average 2.31 points (0.15 SD) 
per decade or 2.93 points (0.195 SD) per decade after excluding older 
data. In addition to the overall findings, the meta-analysis found evi-
dence the Flynn effect was consistent across age, level of ability, sample 
type (test manuals vs. research study), order of administration, and test 
pairings; though, ability level showed mixed results when limited to 
only examining the subsamples of modern data. In their conclusion, 
Trahan et al. (2014) note that the United States may not be experiencing 
the reversal observed in Scandinavian countries due to differences in 
social policies and/or educational values. 

In a series of studies using data from the National Longitudinal 
Survey of Youth (NLSY), researchers have examined if the Flynn effect 
was present for children and adolescents (5- to 13-year-olds) across a 
series of fluid and crystallized cognitive assessments before and after 
controlling for maternal IQ (Ang et al., 2010; O’Keefe and Rodgers, 
2017; Rodgers and Wänström, 2007). Using scores from the Wechsler 
Memory of Digit Span, Peabody Picture Vocabulary Test, and Peabody 
Individual Achievement Test subscales of Math, Reading Recognition, 
and Reading Comprehension, Rodgers and Wänström (2007) found that 
between 1986 and 2000 differences in scores generally remained stable 
or decreased after entering maternal IQ as a covariate. The exception to 
these findings was that math scores for the Peabody Individual 
Achievement Test were higher for newer test periods by an average of 
0.23 points per year for each age group and an average of 0.30 points per 
year for 9- to 13-year-olds. 

To further understand the results of this study, Ang et al. (2010) later 
investigated if demographic factors contributed to the observed rise in 
Peabody Individual Achievement Test Math scores using the 1986 to 
2004 NLSY data. Using a series of regressions, this study examined if the 
Flynn effect was observed across the demographic categories of gender, 
race, maternal education, income, and location (urban/rural). Results 
indicated that regardless of demographic subsamples, increasing scores 
were present at varying rates for each subgroup. However, the authors 
note that the largest and most stable divergence in slopes across each age 
were for models that included mother’s highest level of education; with 
higher educational attainment relating to greater magnitudes of co-
efficients. Expanding this work even further, O’Keefe and Rodgers 
(2017) applied double decomposition and multilevel modeling to the 
NLSY data collected between 1986 and 2012. The results of this study 
showed both within- and between-person gains in math scores with the 
largest difference of scores reaching 0.33 points per year; though the 

authors concluded that these differences in scores were predominantly 
observed between-family. 

Building upon the work completed by O’Keefe and Rodgers (2017), 
Giangrande et al. (2022) used scores on various Wechsler tests (WISC, 
WISC-R, and WISC-III) to investigate if the Flynn effect was present for 
children and adolescents (7- to 15-year-olds) in the Louisville Twin 
Study. Using scores collected across a span of four decades, this study 
found evidence of a Flynn effect at both the level of within-and between- 
person was present in a United States sample between 1957 and 1999. 
Specifically, verbal, performance (i.e., visual spatial), and full-scale IQ 
scores showed an average difference of 0.20 SD per decade (3 points per 
decade; or approximately 0.02 SD per year). In another study using a 
collection of math and reading scores for children and adolescents 
(approximately for ages 9-, 13-, 15-, and 17-year-olds and those in 
grades 4, 8, and 12), Shakeel and Peterson (2022) examined if the Flynn 
effect was present across a series of large-scale achievement tests 
including the National Assessment of Educational Progress (NAEP), the 
Long-Term Trend NAEP, Trends in International Math and Science 
Study, Progress in International Reading Literacy Study, and the Pro-
gram for International Student Assessment. This study found that the 
direction and magnitude of differences in scores varied by test with 
magnitudes of differences diminishing over time, with greater differ-
ences being present for math than reading scores. In addition to these 
results, Shakeel and Peterson (2022) observed that the magnitude and 
direction of differences often varied by age, ethnicity, and SES. As 
observed by Ang et al. (2010), they also found that that scores across 
gender were relatively consistent. 

Using nonverbal scores from the Kaufman Brief Intelligence Test 
from between 1988 and 1989 and between 2001 and 2004, Platt et al. 
(2019) were unable to find a Flynn effect across their entire sample. 
Likewise, they did not find evidence of differences between de-
mographic categories (i.e., gender, parental education, geographic re-
gion) for their observed effects. In further exploring the tails of fluid 
ability across age, this study found fluid ability were higher for younger 
adolescents and for those with higher ability (0.11 and 0.167 SD per 
decade) but were lower for older adolescents and those with lower 
ability (− 0.076 and − 0.233 SD per decade). This suggests that the Flynn 
effect may no longer generalize across all ages or levels of ability. 
Alternatively, as fluid ability remained stable across the sample these 
results could indicate that the Flynn effect has simply stagnated or at 
least plateaued in the United States. Despite these results, it’s important 
to note that these findings are limited as fluid ability does not devel-
opmentally peak until young adulthood (Salthouse, 2010, 2012, 2019) 
and the authors note that changes are often limited during adolescence. 

More recently, Twenge et al. (2019) found that vocabulary scores 
were lower for more recent adult samples, tested between 1974 and 
2016, regardless of educational attainment (approximately between 
− 0.047 SD to − 0.126 SD per decade). To further understand what could 
account for the observed differences in vocabulary scores, they also 
applied a hierarchical age-period-cohort analysis controlling for edu-
cation, where age was the participants age, period was the year when the 
participant took the measure, and cohort was the participant’s year of 
birth (Fosse and Winship, 2019; Yang and Land, 2006). The results of 
this age-period-cohort analysis indicated that there were large effects for 
time period and age, but a lack of cohort effects. After controlling for 
education, age, and cohort, period effects showed approximately a 0.08 
SD decrease in vocabulary scores per decade. This indicated that the 
decline in scores was related to a change over time that uniformly 
affected all groups (i.e., age, cohort, education). Cohort, on the other 
hand, showed a decrease, indicating that differences on vocabulary 
scores were less dependent on birth cohort differences. Vocabulary 
scores declined for participants ages 50 and older, indicating that they 
followed a similar maturation to crystalized intelligence. The results of 
this study ultimately supported previous conclusions that gains in 
crystalized intelligence scores may have plateaued around 1987 
(Pietschnig and Voracek, 2015). Because vocabulary scores are often 
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classified as a measure of crystallized intelligence, it is likely that the 
lower vocabulary scores are contributing to the recent diminished dif-
ferences of crystalized intelligence scores. While this study relied on a 
crystallized measure of intelligence, given the sparse research on the 
Flynn effect in the United States using an adult sample, this study pro-
vides insight into how at least one component of cognitive ability may 
currently differ with previous scores within the United States. 

Taken together, this collection of studies prompts the question, will 
the Flynn effect observed for children and adolescents in the United 
States generalize to an adult sample as observed by Trahan et al. (2014)? 
Likewise, will previous results regarding demographic subgroups also be 
present when considering the education of an individual rather than 
parental education? Will a lack of gender difference still be present for 
an adult sample? 

1.5. Current research 

Using a set of public-domain cognitive ability measures, the present 
study aims to investigate the evidence for differences in cognitive ability 
scores in the United States between 2006 and 2018. We used 13 years of 
cross-sectional data from the Synthetic Aperture Personality Assessment 
Project (SAPA Project; Condon and Revelle, 2016; Revelle et al., 2017), a 
free web-based survey, to test if there was a Flynn effect for adult par-
ticipants. Starting in 2006, 35 ability items, that would become part of 
the International Cognitive Ability Resource (ICAR; Condon and Revelle, 
2014, 2016; Dworak, Revelle, Doebler, and Condon, 2021; Revelle, 
Dworak, and Condon, 2020), were administered. These items were used 
to form a composite cognitive ability score or domain scores for matrix 
reasoning (11 items), letter and number series (8 items), and verbal 
reasoning (16 items). Starting in 2011 an additional item for letter and 
number series and 24 three-dimensional rotation items began to be 
administered, with the original items, to allow for a 60-item composite 
score. Unlike previous Flynn effect studies, participants were dispro-
portionately female identifying (65.03%) and between the ages of 18 
and 90. 

A preregistration for this study can be found on the Open Science 
Framework (OSF) at https://osf.io/kmgx8. All deviations from this 
preregistration, such as the inclusion of one month of additional data 
and exploratory analyses, are detailed throughout the manuscript. 

2. Methods 

2.1. Database 

The archival data used in this study were collected through the SAPA 
Project (https://www.sapa-project.org/; Condon and Revelle, 2015, 
2016; Condon, Roney, and Revelle, 2017; Revelle et al., 2017), a free 
web-based personality survey that uses stratified matrix sampling 
methodology to administer items. Since 2004, the SAPA Project has 
successfully collected cross-sectional data from over 1.5 million partic-
ipants across the world. Generally, participants have found the survey 
through varying mechanisms such as search engines, posts on social 
media, or websites related to personality or psychometrics. While the 
breadth of what data the SAPA Project collected has grown over the last 
19 years, its approach has largely remained the same in that the items 
administered to participants are sampled from a larger item bank using 
stratified matrix sampling (Revelle et al., 2017; Revelle, Dworak, and 
Condon, 2021; Revelle, Wilt, and Rosenthal, 2010). The data used for 
this study were specifically collected from April 2006 through December 
2018. Although this study was preregistered to only use data collected 
until November 2018, more data than anticipated were available; thus, 
the November and December 2018 data were included in the analyses. 
From this larger dataset, participants for this study were included if they 
reported growing up in the United States and were between the ages of 
18 and 90. Participants who indicated that they had previously 
completed the SAPA Project by responding “Yes” to the question, “Have 

you taken this survey before?” or had unusual response patterns (i.e., 
giving the same response for >8 items in a row) were excluded from the 
sample during data cleaning. 

2.2. Participants 

Participants (N = 394,378) recruited between 2006 and 2018 were 
used to examine the 35-item composite ability score, matrix reasoning, 
verbal reasoning, and the 8-item letter and number series. A detailed 
breakdown of participant’s demographics for the overall sample and 
annual samples is provided in the supplementary materials. These par-
ticipants were disproportionately female (65.03%; see Table S1 in the 
supplementary materials) and between the ages of 18 and 90 (M =
33.72, SD = 15.16, Median = 29). Participants under the age of 18 were 
excluded from the sample as this study aimed to understand differences 
in cross-sectional ability scores in adulthood. While an argument could 
be made that 18- to 25-year-olds should be excluded from the analyses 
due to fluid ability peaking in cross-sectional data, on average, in the 
mid-twenties (Salthouse, 2010, 2012, 2019), including this subset of 
participants allows comparisons with studies on the Flynn effect using 
European samples over the last 20 years. Participants above the age of 
90 were automatically excluded during data cleaning procedures as 
these older participants are beyond the scope of the SAPA Project 
(Condon and Revelle, 2016). The largest proportion of these participants 
reported they were currently attending college (36.02%; see Table S2 in 
the supplementary materials). Examining annual samples indicated that 
education attainment was higher for participants recruited during later 
years of assessment (see Fig. S1 in the supplementary materials). 

Participants recruited between 2011 and 2018 (n = 303,540) were 
subset into an additional sample to examine the 60-item composite 
ability scores, the 9-item letter and number series, and three- 
dimensional rotation; scores for these domains were only collected 
during this time range. This subset of participants was between the ages 
of 18 to 90 (M = 35.43, SD = 15.80, Median = 31), but slightly older than 
the overall 13-year sample. Like the overall sample, the subsample of 
participants that completed the SAPA Project survey were dispropor-
tionately female (65.03%) and a majority of participants reported that 
they were currently attending college (32.02%). 

2.3. Measures 

2.3.1. Intelligence 
The SAPA Project administered intelligence items from the Interna-

tional Cognitive Ability Resource (ICAR; Condon and Revelle, 2014; 
Dworak et al., 2021; Revelle et al., 2020). ICAR is an open-source 
multiple choice intelligence assessment. Although originally validated 
against the Shipley-2 and self-reported SAT and ACT scores (Condon and 
Revelle, 2014), more recently a subset of 16 ICAR items, commonly 
referred to as ICAR16 or the ICAR sample test, were validated against 
the Wechsler Adult Intelligence Scale Fourth Edition (WAIS-IV). Using a 
small sample of students (N = 97), this study explored how the ICAR 
sample test loaded on to a Cattell-Horn-Carroll (CHC) model (Carroll, 
1993; Cattell, 1943, 1963; Horn and Cattell, 1966; McGrew, 2009; 
McGrew and Wendling, 2010). Results indicated that the latent general 
factor models of the two tests correlated 0.94 (Young and Keith, 2020). 
Despite this validation study examining less than half of the items 
administered by the present study, we believe it’s important to highlight 
Young and Keith’s (2020) findings when describing each ICAR domain 
as research on the Flynn effect has traditionally been completed on 
standardized proprietary licensed assessments such as Wechsler tests. 

Starting in 2006, the SAPA Project measured cognitive ability using 
35 items from the ICAR. Over the next several years, Condon began to 
supplement the assessment resulting in cognitive ability being measured 
by 60 items by 2011 and nearly 1000 items by 2022. Although the larger 
International Cognitive Ability Resource (ICAR) contains 19 domains 
and 1000s of intelligence items (Dworak et al., 2021), the 60 items 
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administered and included in this study were representative of ICAR’s 
four original domains: matrix reasoning, verbal reasoning, letter and 
number series, and three-dimensional rotation (Condon and Revelle, 
2014; Revelle et al., 2021). 

Ability items were administered through the SAPA Project using a 
multiple-choice format with eight response options for three- 
dimensional rotation items and six response options for matrix 
reasoning, verbal reasoning, and letter and number series items. Of the 
options, only one answer was correct. Items were scored whether items 
were correct (1) or incorrect (0). Items that were not administered to 
participants (due to the stratified matrix sampling methods used by the 
SAPA Project) or items skipped by participants were coded as NA and 
not included in the analysis. To ensure that skipping behaviors would 
not influence participant scores and the analyses used in this study, a 
Pearson correlation between number of skipped items and participant 
scores was run. Results of these analyses ranged from r = − 0.05 to r =
0.00, indicating there was no relationship between the number of items 
skipped and average scores. Domain scores and overall scores were 
calculated by finding each participant’s average score across answered 
items. Using a participant’s average score rather than the sum of an 
individual’s scores is more representative of a participant’s performance 
due to the stratified matrix sampling methods used by the SAPA Project; 
the random sampling procedures from this method results in some 
participants receiving more items than other participants. Though it was 
not preregistered, scores for the entire sample were also standardized 
across the pooled 13 years of data to help with the interpretation of our 
findings. 

Matrix reasoning. Matrix reasoning is measured using 11 items that 
contain 3 × 3 arrays of geometric shapes. Within this grid, one of the 
nine shapes is intentionally excluded. Participants are then prompted to 
respond by choosing which of six geometric shapes best fits within the 
stimuli. This task is often compared to stimuli seen in the Raven’s Pro-
gressive Matrices (Condon and Revelle, 2014). Matrix reasoning items 
are meant to measure nonverbal reasoning, visual processing, and fluid 
reasoning. Of the four items validated from the ICAR sample test, matrix 
reasoning was found to load primarily on the CHC constructs fluid 
reasoning and visual-spatial processing tasks (Young and Keith, 2020). 
These 11 items have been administered over the 13 years of SAPA 
Project data included in this study. 

Verbal reasoning. Verbal reasoning is measured using 16 items that 
use various general knowledge, logic, and vocabulary questions. Verbal 
reasoning items are meant to measure verbal reasoning, comprehension- 
knowledge, and crystallized reasoning, however, Young and Keith 
(2020) found the four verbal reasoning items from the ICAR sample test 
primarily related to the CHC construct visual-spatial processing tasks. 
Like matrix reasoning, these 16 items have been administered over the 
13 years of SAPA Project data included in this study. 

Letter and number series. For approximately 4.5 years (from April 
2006 to August 2010), letter and number series was exclusively 
measured using 8 items. To improve this measure, collection of a ninth 
item began in August 2010, thus, letter and number series has been 
measured using 9 items for 8.5 years. Letter and number series items 
present participants with a sequence of digits or letters and asks the 
participant to choose the digit or letter that occurs next. Letter and 
number series items are meant to measure computational/mathematical 
reasoning, however, Young and Keith (2020) found that the four letter 
and number series items from the ICAR sample test primarily related to 
the CHC construct fluid reasoning tasks. 

Three-dimensional rotation. Three-dimensional rotation is 
measured using 24 items inspired by Gittler and Glück (1998) that 
present participants with a marked cubic shape. Participants are then 
asked to choose a possible rotation of the shape. Three-dimensional 
rotation items measure visuospatial and mental rotation and the four 
items from the ICAR sample test load on the CHC construct visual-spatial 
processing tasks (Young and Keith, 2020). Collection of these items 
began in May 2011; thus, this study contains 8 years of three- 

dimensional rotation data. 
35 ICAR items. A participant’s overall ability was scored from the 35 

ICAR items collected between 2006 and 2018. The 35 ICAR items are 
composed of the original 8 letter and number series items, 11 matrix 
reasoning items, and 16 verbal reasoning items. One reason to examine 
the 35 variables in addition to the 60 ability items is due to the history of 
the SAPA Project. From April 2006 to August 2010 data were only 
collected for the 35 items. 

60 ICAR items. A participant’s overall ability was scored from the 60 
ICAR items collected between 2011 and 2018. The 60 ICAR items are 
composed of the 9 letter and number series items, 11 matrix reasoning 
items, 24 three-dimensional rotation items, and 16 verbal reasoning 
items. One reason to examine the 60 variables in addition to the 35 
ability items is due to the history of the SAPA Project. In August 2010 
one additional letter and number series item was added and in May 2011 
24 three-dimensional rotation items were added to data collection. 
Thus, less data were available for the 60-item composite score of ICAR 
despite it being considered a better scale than the 35-item composite 
score. 

2.3.2. Demographics 
Age and estimated birth year. Age was collected by asking their 

participants to indicate their age. During data cleaning, participants 
under the age of 18 and above the age of 90 were removed. An estimated 
birth year was created for each participant. To do this, the participant’s 
age was subtracted from the year the survey was taken. However, as 
estimated birth year could misestimate respondents by one year, this 
transformed variable should be interpreted with caution. 

Gender. From April 2006 to February 2017 participants reported 
gender by choosing from a drop-down menu between male, female, and 
prefer not to answer. It was not until February 2017 that the option 
“other” was included. Because we only have data collected for this 
additional category (n = 1239; 0.31%; see Table S1 in the supplemen-
tary materials) for two years, the choice to only include binary gender in 
analyses was made in advance during preregistration. 

Highest level of educational attainment. Education was measured 
using six categories (excluding associate degree and currently in grad-
uate or professional school) from April 2006 to August 2010. From 
August 2010 to February 2017 educational attainment was measured 
with seven categories (excluding associate degree). Starting in February 
2017, education was measured using eight categories. These categories 
allowed participants report their educational attainment as <12 years of 
education, high school graduate, currently in college/university, some 
college/university (but did not graduate), associate degree (2 year), 
college/university degree (4 year), currently in graduate or professional 
school, or graduate or professional school degree. 

2.4. Planned analyses 

2.4.1. Regression analyses using estimated birth year 
This study preregistered to examine how average ability scores 

changed between estimated birth years across 13 years of SAPA data. 
First, estimated birth year was used in six different simple regressions to 
predict the average composite scores of the 35-item ICAR, the average 
composite scores of the 60-item ICAR, and the average domain scores of 
matrix reasoning, letter and number series (8 items), and verbal 
reasoning, and three-dimensional rotation. After these analyses, multi-
ple regressions controlling for gender and education as covariates 
(separately and together) were performed to examine how well esti-
mated birth year predicted the six ability scores. Next, an additional set 
of exploratory multiple regressions were run to also control the year the 
assessment was completed. Based on feedback from reviewers, the value 
of these analyses, and the potential misspecification created in how birth 
year was estimated, the results of the simple and multiple regressions are 
presented and discussed in the supplementary materials to adhere with 
this study’s preregistration. 
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2.4.2. Annual scores by age 
In line with previous Flynn effect research (Ang et al., 2010; Rodgers 

and Wänström, 2007), we also regressed each ability score on the year 
the assessment was completed separately for each age to examine and 
compare the annual trends of ability scores and their standard errors. 
Rather than aggregating data by cohort, this analysis allowed us to 
compare participants at the same age across years and determine the 
annual difference in scores (in standard deviations); thus, allowing for 
different intercepts and slopes for each age across the year of assess-
ment. For example, we were able to compare mean scores by estimating 
the slope and their associated standard errors for 18-year-olds who took 
the ICAR items in 2006 to 18-year-olds who completed the ICAR items in 
2007 and all subsequent years of testing (2008–2018). In addition to 
these analyses, the slopes of mean scores and their standard errors were 
also examined across the full sample and are discussed in the supple-
mentary materials. 

2.5. Results 

2.5.1. Annual scores by age 
Differences in average ability scores were examined across the 18- to 

90-year-old participants by modeling a separate regression at each level 
of age. For this series of regressions, ability scores from one composite/ 
domain were regressed on the year the assessment was completed using 
the subset data associated with that level of age; this process was 
completed for each of the composite and domain scores acting as the 
dependent variable. Doing so would provide the slopes of each level of 
age across the 13 or 8 years of data and the slope’s associated standard 
error. These analyses revealed that the results may be affected by 
frequent missing observations and low (n < 20) annual observations for 
participants between the ages of 61 to 90 years old (histogram of ages 
illustrated in Fig. S2 and described in Table S17 in the supplementary 
materials). To adhere with this study’s preregistration, a full description 
of the results based on analyses using the participants within the full age 
range (18- to 90-year-olds) are further discussed in the supplementary 
materials. We justify providing the results of those between 18 and 60 
years old in the main text as they are less likely to be influenced by 
fluctuations in the annual sample size of each age (see Table S5 in the 
supplementary materials). Rather than detailing the slopes observed for 
all 43 unadjusted regressions across the two overall ability scores and 
five domain scores, we report the 1) average annual change in ability 
score, 2) the range of the slopes across the 43 ages, 3) the number of 
slopes that equaled or exceeded the magnitude of original Flynn effect 
observation or its reversal (|0.02| SD per year), 4) the direction of these 
slopes (negative or positive), and 5) the age level associated with each 
regression. Rather than listing out each individual level of age, some 
summaries of these regression results include age ranges; thus, indi-
cating each level of age within the range is being described. For 
example, some levels of ages have been listed as 18- to 24-year-olds 
rather than 18-, 19-, 20-, 21-, 22-, 23-, and 24-year-olds. While we 
provide a summary of the results, tables of the individual regression 
slopes, and their associated standard errors, and the number of obser-
vations by regression are provided in Tables S3-S5 of the supplementary 
materials. 

On average, the slopes for overall ICAR scores, measured with 35 
items or 60 items, showed small annual differences with more recent 
participants exhibiting lower scores; albeit these averages did not 
exceed the threshold of |0.02| SD per year. For ICAR scores assessed with 
35 items from 2006 through 2018, a small average annual slope of 
− 0.013 SD (Range = [− 0.037, 0.004] SD per year) was observed across 
all ages, however, only 12 of the slopes for 18- to 60-year-olds met or 
exceeded the threshold set by this study. All 12 of these slopes were 
negative, thus indicating participants who completed the items more 
recently had lower scores over this period (levels of age associated with 
the regression models: 18- to 24-, 51-, 54-, 55-, 57-, and 60-year-olds). 
Likewise, after accounting for the new item types collected in 2010 

and 2011, overall ICAR scores measured with 60 items from 2011 
through 2018 showed a small average annual slope of − 0.009 SD (Range 
= [− 0.063, 0.017] SD per year). For this measure, 11 of the slopes were 
greater than or equal to |0.02| SD per year, with all slopes being negative 
(levels of age associated with the regression models: 18- to 24-, 55- to 
57-, and 59-year-olds). 

Unlike the slopes for the overall ICAR scores, the results observed for 
the domain scores revealed a more nuanced pattern regarding the dif-
ference in annual cognitive ability scores by age. Matrix reasoning scores 
showed a small average annual slope of − 0.009 SD from 2006 to 2018. 
Annual differences in scores ranged between − 0.024 and 0.003 SD per 
year with 4 of the examined ages reaching or exceeded the established 
threshold. As observed with the composite scores, these 4 slopes were all 
negative (levels of age associated with the regression models: 18- to 21- 
year-olds). In contrast, the average regression slopes for verbal 
reasoning across the separate ages remained flat across this period (M =
0.002 SD per year). Despite showing a similar pattern to matrix 
reasoning, differences in verbal reasoning scores from 2006 to 2018 
ranged between − 0.014 and 0.015 SD per year with 0 of the slopes 
equaling or exceeding the magnitude of the expected Flynn effect or its 
reversal. 

Like the results observed for matrix reasoning, 8-item letter and 
number series annual differences in scores ranged between − 0.033 and 
0.003 SD per year with a small average slope of − 0.012 SD per year 
across the 13 years of data. Only 5 of the 43 slopes met the designated 
threshold, with all 5 slopes being negative (levels of age associated with 
the regression models: 18- to 22-year-olds). After adding one item to the 
letter and number series domain, 9-item letter and number series 
showed a similar pattern from 2011 to 2018. Specifically, the average 
slope of 9-item letter and number series scores remained flat, on 
average, across all ages (M = 0.000 SD per year). While the differences 
in scores ranged between − 0.042 and 0.019 SD per year, 5 of the slopes 
continued to meet or exceed the threshold. Again, these 5 slopes were 
negative (levels of age associated with the regression models: 18- to 22- 
year-olds). 

Contrary to the other domains, three-dimensional rotation showed 
overwhelming evidence of average increasing scores (M = 0.030 SD per 
year) between 2011 and 2018. Differences in three-dimensional rotation 
scores occurred regardless of age and ranged between 0.004 and 0.056 
SD per year. For this domain of cognitive ability, 32 of the 43 slopes 
exceeded the threshold of 0.02 SD per year. These positive slopes were 
associated with the regression models for those between the ages of 24 
and 54 years and for 59-year-olds. 

2.6. Exploratory analyses 

In addition to the preregistered analyses, follow up analyses were 
completed to further understand what accounted for the observed trends 
in the annual ability scores by age for 18- to 60-year-olds. Specifically, 
because differences in ability scores all appeared to follow a curvilinear 
pattern peaking in the thirties, we were concerned that a participant’s 
level of education could be driving the results. Thus, the ability scores 
were regressed on to year of assessment separately for each age with the 
participant’s self-reported highest level of education entered as a co-
variate. An additional series of regression models were then fit to the 
data with both highest level of education and gender entered as a 
covariate. 

Following these analyses, we further investigated how ability scores 
differed across the demographic categories. For the highest level of 
education, we compared annual trends in ability scores by separately 
regressing average ability scores on the year they were taken for each 
level of education; those reporting they had an associate degree were 
excluded due to data being limited to two time points (2017 and 2018). 
As completed with the previous age stratified regressions, analyses were 
repeated with age as a covariate and then with age and gender as 
covariates in the regression models. This process was then repeated for 
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binary gender, where average ability scores were regressed on the year 
the assessment was taken 1) separately for each gender; 2) separately for 
each gender with age as a covariate; and 3) separately for each gender 
with age and education as a covariate. 

Analyses were also completed by fitting separate regressions to 
grouped age ranges to provide a further understanding as to how ages 
with less participants (61- to 90-year-olds) may be changing in relation 
to a larger sample. For these analyses, ages were subset into five cohorts. 
The first cohort, consisting of participants between the ages of 18 and 
19, was formed to provide a clear comparison to previous Flynn effect 
findings for this age range (Bratsberg and Rogeberg, 2018; Dutton and 
Lynn, 2013; Rönnlund, Carlstedt, Blomstedt, Nilsson, and Weinehall, 
2013; Sundet et al., 2004; Teasdale and Owen, 2008). As those between 
the ages of 20 and 24 didn’t align with previous studies, we subset these 
participants into a second group; However, this sample encapsulates a 
large proportion of participants who have commonly completed the 
SAPA Project survey. Participants between the ages of 25 and 29 years 
old and those between 30 and 49 years of age were subset into their own 
groups because they would most likely be from the same or similar birth 
cohorts as individuals recruited in previous Flynn effect research 
(Bratsberg and Rogeberg, 2018; Dutton et al., 2016). For example, 
participants within the 25 to 29 and 30 to 49 groups that completed the 
survey in 2006 should respectively have been born between 1977 and 
1981 and 1957–1976; in 2018 these cohorts should have been born 
between 1989 and 1993 and 1969–1988. Finally, the last cohort con-
tained participants between 50 and 90 years of age to mimic the sample 
initially included in Skirbekk, Stonawski, Bonsang, and Staudinger 
(2013). After completing these analyses for age cohort alone, the ana-
lyses were again completed with education as a covariate, and then 
education and gender as covariates. 

2.7. Results 

2.7.1. Annual scores by age controlling for education 
Detailed results of the individual slopes of the 43 regressions after 

entering education as a covariate can be found in the supplementary 
materials (see Tables S6-S7). Again, rather than discussing all 43 
adjusted regressions across the seven different ability scores, we high-
light the 1) average annual change in ability score, 2) the range of the 
slopes across the 43 ages, 3) the number of slopes that equaled or 
exceeded the magnitude of original Flynn effect observation (|0.02| SD 
per year), 4) the direction of these slopes (negative or positive), and 5) 
what level of age the regression was associated with. Rather than listing 
out each individual level of age, some summaries of these regression 
results include age ranges; thus, indicating each level of age within the 
range is being described. 

After adjusting the regressions for the participant’s highest level of 
education, on average the slopes for overall ICAR scores, measured with 
35 items or 60 items, became steeper. For composite ICAR scores 
assessed with 35 items from 2006 through 2018, the average annual 
slope was − 0.021 SD (Range = [− 0.037, − 0.008] SD per year). Of the 43 
regression models for 18- to 60-year-olds, 26 slopes met or exceeded the 
magnitude of |0.02| SD and were negative (levels of age associated with 
the regression models: 18- to 25-, 39-, 40-, 42-, 43-, 45- to 48-, 50- to 57-, 
59-, and 60-year-olds). Likewise, after entering education as a covariate, 
composite ICAR scores measured with 60 items from 2011 through 2018 
showed an average slope of − 0.033 SD per year. Differences in ability 
scores ranged from − 0.062 to − 0.015 SD per year. The number age 
slopes that were equal or greater to the threshold increased from 11 to 
37 after entering education as a covariate. As observed with the 35 ICAR 
items, the 37 slopes were all negative (levels of age associated with the 
regression models: 18- to 32-, 35- to 37-, 39-, 40-, 42- to 46-, 48-, and 50- 
to 60-year-olds). 

After including education as a covariate, slopes for domain ability 
scores became steeper or flattened for some ages. The pattern of results 
across different ages, however, were similar to those of the unadjusted 

regressions. This included annual differences ranging between − 0.023 
to − 0.002 SD per year for matrix reasoning scores (M = − 0.013 SD per 
year), − 0.033 to − 0.005 SD per year for 8-item letter and number series 
scores (M = − 0.018 SD per year), and − 0.041 to − 0.002 SD per year for 
9-item letter and number series scores (M = − 0.017 SD per year). Across 
all three domains, the number of negative slopes increased. Of the 43 
slopes, matrix reasoning had 6 negative slopes (levels of age associated 
with the regression models: 18- to 22-, and 50-year-olds), 8-item letter 
and number series scores had 12 negative slopes (levels of age associated 
with the regression models: 18- to 24-, 39-, 42-, 51-, 52-, and 54-year- 
olds), and 9-item letter and number series scores had 14 negative 
slopes (levels of age associated with the regression models: 18- to 25-, 
27- to 29-, 45-, 52-, and 59-year-olds). 

Comparable to these annual differences, the range of the slopes 
originally observed for verbal reasoning scores diminished (Range =
[− 0.013, 0.003]) after entering education as a covariate. Regardless of 
this shift in the range, slopes of verbal reasoning scores from 2006 to 
2018 remained flat on average (M = − 0.006 SD per year) and 0 of the 43 
slopes were equal to or exceeded the threshold used by this study. 

Despite three-dimensional rotation scores exhibiting only positive 
slopes when examining the unadjusted age regressions, many of the 
slopes decreased after controlling for education (Range = [− 0.005, 
0.038] SD per year; see Table S7 in the supplementary materials). 
Regardless, three-dimensional rotation scores displayed an average 
annual difference of 0.015 SD. In contrast with the other domains, 12 of 
the 43 slopes for the age stratified regressions with education entered as 
a covariate resulted in slopes that were equal to or greater than the Flynn 
effect (levels of age associated with the regression models: 29-, 32-, 33-, 
35-, 36-, 37-, 40-, 41-, 44-, 47-, 49-, and 59-year-olds). 

2.7.2. Annual scores by age controlling for education and gender 
As the data used for this study was disproportionately female, 

additional analyses were completed to control for gender in addition to 
education. After entering gender as a covariate, small decreases to the 
magnitude of differences were again observed across the slopes of 
composite and domain scores (see Tables 1 and 2). As seen previously, 
35-item and 60-item composite ICAR scores were generally lower across 
all ages. Specifically, the 35-item ICAR scores measured from 2006 to 
2018 differed an average − 0.023 SD per year (Range = [− 0.037, 
− 0.012] SD per year) and the 60-item ICAR scores measured from 2011 
to 2018 differed an average − 0.034 SD per year (Range = [− 0.062, 
− 0.016] SD per year). For the composite score using 35 items, 30 of the 
43 slopes met or exceeded the cut-off magnitude of |0.02| SD per year, 
whereas 38 of the 43 slopes for the composite score using 60 items met 
or surpassed this criterion. As observed with the unadjusted and edu-
cation adjusted models, all slopes were negative indicating a decline in 
scores (levels of age associated with the regression models predicting 35- 
item ICAR composite: 18- to 25-, 27-, 29-, 39- to 43-, 45- to 57-, 59-, and 
60-year-olds; levels of age associated with the regression models pre-
dicting 60-item ICAR composite: 18- to 33-, 35- to 40-, 42- to 46-, and 
48- to 59-year-olds). 

The previous pattern of results when controlling for education held 
after adding gender as a covariate. On average, matrix reasoning scores 
(M = − 0.014 SD per year), 8-item letter and number series scores (M =
− 0.019 SD per year), and 9-item letter and number series scores (M =
− 0.018 SD per year) showed small annual differences across their 
respective regression models (see Tables 1 and 2). For these domains, 
the rate of these differences varied by age with matrix reasoning dis-
playing slopes between − 0.023 to − 0.003 SD per year, 8-item letter and 
number series scores exhibiting slopes between − 0.033 and − 0.008 SD 
per year, and 9-item letter and number series scores regression slopes 
ranging between − 0.041 and − 0.001 SD per year. Within these results, 
6 of the matrix reasoning slopes were steeper than |0.02| SD per year 
(levels of age associated with the regression models: 18-, 19-, 21-, 22-, 
24-, and 50-year-olds), whereas 15 of the 43 slopes met or exceeded this 
threshold for letter and number series measured with 8 items (levels of 
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age associated with the regression models: 18- to 24-, 29-, 37-, 39-, 42-, 
48-, 51-, 52-, and 54-year-olds) and letter and number series measured 
with 9 items (levels of age associated with the regression models: 18- to 
25-, 27- to 29-, 35-, 45-, 48-, and 52-year-olds). After entering gender as 
a covariate, regressions for verbal reasoning scores had an average slope 
of − 0.007 SD per year (Range = [− 0.014, 0.001]). As observed with the 
unadjusted and education adjusted models, 0 of the 43 slopes exceeded 
the established threshold. 

Unlike the other ICAR domain scores, three-dimensional rotation 
scores continued to show positive slopes (Range = [− 0.006, 0.038] SD 
per year) after entering gender and education as covariates into the 
regressions. On average, differences in annual three-dimensional rota-
tion scores were 0.013 SD. Of the 43 slopes, only 10 were large enough 
to meet or exceed the differences in score observed by Flynn (1984), 
with all 10 slopes being positive (levels of age associated with the 
regression models: 29-, 32-, 33-, 35-, 37-, 40-, 41-, 44-, 47-, and 59-year- 
olds). 

2.7.3. Annual scores by education with and without covariates 
Differences in average ability scores were examined by regressing 

overall and domain scores on the year of assessment separately for each 
level of educational attainment. After completing these unadjusted 

analyses, the regressions were rerun with age entered as a covariate, and 
then age and gender entered as a covariate. Individual slopes and their 
standard errors for each model are provided in Tables S8 and S9 the 
supplementary materials. As the option to report education level as 
“associates degree (2yr)” was not added until February 2017, those with 
an associate degree were excluded from analyses as reporting the dif-
ference between two time points could be misleading. 

The unadjusted slopes for overall ICAR scores, measured with 35 
items of 60 items, showed difference in annual ability scores exceeding 
the threshold of |0.02| SD per year, with more recent scores being lower 
than prior scores. For ICAR scores assessed with 35 items from 2006 
through 2018, a small average annual difference of − 0.029 SD (Range =
[− 0.041, − 0.018] SD per year; see Fig. 1) was observed across all levels 
of education, however, only the slopes for individuals with <12 years of 
education, high school graduates, those currently in college/university, 
those with some college/university experience without graduating, and 
those that completed a graduate or professional school degree met or 
exceeded the threshold set by this study. After adding age as a covariate, 
the magnitude of the annual differences reduced for composite ICAR 
scores measured with 35 items (M = − 0.024; Range = [− 0.038, − 0.013] 
SD per year). As such, the slope for individuals who completed a grad-
uate or professional school degree became flatter and was no longer less 

Table 1 
Annual differences in ICAR scores between 2006 and 2018 for 18- to 60-year-olds adjusted for education and gender.  

Age ICAR35 95% CI MR 95% CI VR 95% CI LNS (8) 95% CI 

Mean slope ¡0.023 [− 0.035, − 0.011] − 0.014 [− 0.024, − 0.004] − 0.007 [− 0.015, 0.001] − 0.019 [− 0.029, − 0.009] 
18 ¡0.035 [− 0.037, − 0.032] ¡0.021 [− 0.024, − 0.018] − 0.013 [− 0.016, − 0.010] ¡0.031 [− 0.034, − 0.028] 
19 ¡0.037 [− 0.040, − 0.034] ¡0.023 [− 0.027, − 0.020] − 0.013 [− 0.016, − 0.009] ¡0.033 [− 0.037, − 0.030] 
20 ¡0.029 [− 0.033, − 0.026] − 0.019 [− 0.022, − 0.016] − 0.010 [− 0.013, − 0.006] ¡0.026 [− 0.029, − 0.022] 
21 ¡0.036 [− 0.040, − 0.033] ¡0.022 [− 0.026, − 0.019] − 0.013 [− 0.017, − 0.010] ¡0.030 [− 0.034, − 0.027] 
22 ¡0.034 [− 0.038, − 0.030] ¡0.021 [− 0.025, − 0.017] − 0.013 [− 0.017, − 0.009] ¡0.029 [− 0.034, − 0.025] 
23 ¡0.028 [− 0.032, − 0.023] − 0.018 [− 0.022, − 0.014] − 0.008 [− 0.012, − 0.004] ¡0.023 [− 0.028, − 0.019] 
24 ¡0.026 [− 0.030, − 0.021] ¡0.020 [− 0.024, − 0.015] − 0.007 [− 0.011, − 0.002] ¡0.022 [− 0.026, − 0.017] 
25 ¡0.023 [− 0.027, − 0.018] − 0.015 [− 0.020, − 0.010] − 0.007 [− 0.011, − 0.002] − 0.019 [− 0.024, − 0.015] 
26 − 0.019 [− 0.024, − 0.014] − 0.015 [− 0.020, − 0.010] − 0.004 [− 0.009, 0.001] − 0.015 [− 0.020, − 0.010] 
27 ¡0.021 [− 0.026, − 0.016] − 0.012 [− 0.017, − 0.007] − 0.005 [− 0.010, 0.000] − 0.019 [− 0.024, − 0.014] 
28 − 0.018 [− 0.023, − 0.013] − 0.012 [− 0.017, − 0.007] − 0.003 [− 0.008, 0.002] − 0.017 [− 0.021, − 0.012] 
29 ¡0.022 [− 0.027, − 0.017] − 0.015 [− 0.020, − 0.010] − 0.005 [− 0.010, 0.000] ¡0.020 [− 0.026, − 0.015] 
30 − 0.016 [− 0.021, − 0.011] − 0.010 [− 0.015, − 0.004] − 0.001 [− 0.006, 0.005] − 0.013 [− 0.018, − 0.008] 
31 − 0.017 [− 0.023, − 0.012] − 0.011 [− 0.017, − 0.005] − 0.003 [− 0.009, 0.002] − 0.014 [− 0.019, − 0.008] 
32 − 0.019 [− 0.025, − 0.014] − 0.014 [− 0.019, − 0.008] − 0.003 [− 0.008, 0.003] − 0.015 [− 0.021, − 0.009] 
33 − 0.012 [− 0.018, − 0.007] − 0.010 [− 0.016, − 0.004] 0.001 [− 0.005, 0.007] − 0.008 [− 0.014, − 0.003] 
34 − 0.014 [− 0.019, − 0.008] − 0.006 [− 0.012, 0.000] − 0.002 [− 0.008, 0.004] − 0.015 [− 0.021, − 0.009] 
35 − 0.014 [− 0.020, − 0.008] − 0.003 [− 0.009, 0.003] − 0.002 [− 0.008, 0.003] − 0.015 [− 0.021, − 0.009] 
36 − 0.013 [− 0.019, − 0.008] − 0.008 [− 0.014, − 0.002] 0.000 [− 0.006, 0.006] − 0.015 [− 0.021, − 0.008] 
37 − 0.018 [− 0.024, − 0.012] − 0.010 [− 0.016, − 0.004] 0.000 [− 0.006, 0.006] ¡0.020 [− 0.026, − 0.013] 
38 − 0.015 [− 0.021, − 0.009] − 0.005 [− 0.011, 0.001] − 0.003 [− 0.009, 0.003] − 0.017 [− 0.023, − 0.010] 
39 ¡0.024 [− 0.031, − 0.018] − 0.015 [− 0.022, − 0.008] − 0.007 [− 0.014, − 0.001] ¡0.021 [− 0.028, − 0.015] 
40 ¡0.023 [− 0.029, − 0.016] − 0.019 [− 0.025, − 0.012] − 0.005 [− 0.012, 0.001] − 0.018 [− 0.024, − 0.011] 
41 ¡0.020 [− 0.027, − 0.014] − 0.007 [− 0.015, 0.000] − 0.008 [− 0.015, − 0.001] − 0.019 [− 0.026, − 0.012] 
42 ¡0.024 [− 0.031, − 0.018] − 0.015 [− 0.022, − 0.008] − 0.011 [− 0.018, − 0.004] ¡0.022 [− 0.029, − 0.015] 
43 ¡0.021 [− 0.028, − 0.014] − 0.008 [− 0.015, − 0.001] − 0.011 [− 0.018, − 0.004] − 0.017 [− 0.024, − 0.010] 
44 − 0.017 [− 0.024, − 0.010] − 0.005 [− 0.013, 0.002] − 0.005 [− 0.013, 0.002] − 0.014 [− 0.022, − 0.007] 
45 ¡0.024 [− 0.031, − 0.017] − 0.019 [− 0.026, − 0.012] − 0.006 [− 0.014, 0.001] − 0.019 [− 0.026, − 0.012] 
46 ¡0.029 [− 0.036, − 0.022] − 0.019 [− 0.026, − 0.011] − 0.012 [− 0.019, − 0.004] − 0.018 [− 0.026, − 0.011] 
47 ¡0.021 [− 0.028, − 0.014] − 0.010 [− 0.018, − 0.002] − 0.008 [− 0.015, 0.000] − 0.017 [− 0.024, − 0.009] 
48 ¡0.025 [− 0.032, − 0.017] − 0.011 [− 0.019, − 0.003] − 0.010 [− 0.017, − 0.002] ¡0.020 [− 0.028, − 0.013] 
49 ¡0.021 [− 0.029, − 0.014] − 0.014 [− 0.022, − 0.006] − 0.007 [− 0.015, 0.001] − 0.015 [− 0.023, − 0.007] 
50 ¡0.026 [− 0.033, − 0.018] ¡0.021 [− 0.028, − 0.013] − 0.006 [− 0.014, 0.001] − 0.015 [− 0.022, − 0.007] 
51 ¡0.032 [− 0.040, − 0.024] − 0.015 [− 0.024, − 0.007] − 0.014 [− 0.022, − 0.006] ¡0.026 [− 0.034, − 0.017] 
52 ¡0.022 [− 0.030, − 0.015] − 0.014 [− 0.022, − 0.005] − 0.005 [− 0.013, 0.003] ¡0.024 [− 0.032, − 0.015] 
53 ¡0.023 [− 0.031, − 0.014] − 0.012 [− 0.021, − 0.003] − 0.005 [− 0.014, 0.003] − 0.018 [− 0.026, − 0.009] 
54 ¡0.029 [− 0.037, − 0.020] − 0.019 [− 0.028, − 0.010] − 0.010 [− 0.019, − 0.001] ¡0.020 [− 0.029, − 0.011] 
55 − 0.024 [− 0.033, − 0.015] − 0.014 [− 0.024, − 0.005] − 0.012 [− 0.021, − 0.003] − 0.017 [− 0.026, − 0.008] 
56 ¡0.022 [− 0.032, − 0.012] − 0.018 [− 0.029, − 0.008] − 0.003 [− 0.013, 0.008] − 0.015 [− 0.025, − 0.004] 
57 ¡0.027 [− 0.037, − 0.017] − 0.018 [− 0.029, − 0.008] − 0.007 [− 0.017, 0.003] − 0.018 [− 0.028, − 0.008] 
58 − 0.019 [− 0.030, − 0.008] − 0.006 [− 0.018, 0.005] − 0.010 [− 0.022, 0.001] − 0.014 [− 0.025, − 0.002] 
59 ¡0.020 [− 0.032, − 0.009] − 0.014 [− 0.025, − 0.002] − 0.003 [− 0.015, 0.009] − 0.019 [− 0.031, − 0.007] 
60 ¡0.021 [− 0.033, − 0.010] − 0.014 [− 0.026, − 0.002] − 0.008 [− 0.020, 0.004] − 0.011 [− 0.023, 0.001] 

Note. Standardized ability scores were regressed on year of assessment with highest level of education and gender as covariates separately for each age. Overall and 
domain slopes are in SD per year. Any values equal or greater than |0.02| are bolded. ICAR = International Cognitive Ability Resource, ICAR35 = 35-item ICAR 
composite score, LNS (8) = 8-item Letter and Number Series, MR = Matrix Reasoning, VR = Verbal Reasoning. 
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than − 0.02 SD per year; thus, only leaving 4 slopes that met or exceeded 
our threshold. Next, gender was entered as a covariate into the regres-
sion for each education level. The magnitude and direction of the slopes 
after adding gender as a covariate were almost identical to those 
observed to the models without gender for overall ICAR measured with 
35 items (M = − 0.024; Range = [− 0.038, − 0.014] SD per year). Given 
these results, the slopes for the 4 groups with less than a four-year col-
lege degree all exhibited annual differences in overall ability scores that 
exceeded the threshold of |0.02| SD. 

Accounting for the new item types, composite ICAR scores measured 
with 60 items from 2011 through 2018 showed a similar but more 
extreme pattern for the slopes of the unadjusted regressions (M =
− 0.050; Range = [− 0.072, − 0.032] SD per year). For the unadjusted 
regression models stratified by highest level of education, annual dif-
ferences for all 7 slopes were negative and surpassed the threshold of | 
0.02| SD. After entering age as a covariate, the pattern of annual dif-
ferences held for the 7 slopes (M = − 0.042; Range = [− 0.065, − 0.020] 
SD per year). However, entering both age and gender as covariates 
marginally reduced the slopes (M = − 0.042; Range = [− 0.064, − 0.019] 
SD per year) so that the slopes for participants with four-year college 
degrees no longer met or exceeded this study’s threshold. 

Similar to the results observed for each age regression, annual 

differences in ability scores varied by domain. Slopes for the unadjusted 
matrix reasoning regressions (M = − 0.020; Range = [− 0.027, − 0.015] 
SD per year) and slopes for matrix reasoning scores where age was a 
covariate (M = − 0.016; Range = [− 0.022, − 0.008] SD per year) only 
exceeded the |0.02| SD per year threshold for individuals with <12 years 
of education, high school graduates, and those currently in college/ 
university. Once gender was added as a covariate to the regression (M =
− 0.016; Range = [− 0.023, − 0.008] SD per year), only the slopes for 
high school graduates and those currently in college/university 
continued to meet or exceed this specified cut-off. 

Regardless of measuring letter and number series with 8 items (from 
2006 to 2018) or 9 items (from 2011 to 2018), the slopes of the unad-
justed regressions showed, on average, that participants who completed 
letter and number series items more recently had lower scores than those 
recruited earlier in the survey (MLNS8 = − 0.024; RangeLNS8 = [− 0.036, 
− 0.012]; MLNS9 = − 0.029; RangeLNS9 = [− 0.050, − 0.014] SD per year). 
Across these 7 slopes, only 4 slopes met or exceeded the threshold for the 
education levels of <12 years of education, high school graduates, those 
currently in college/university, and those with some college/university 
experience without graduating. These results and the magnitude of the 
slopes were still present after adding age as a covariate into the 
regression (MLNS8 = − 0.020; RangeLNS8 = [− 0.033, − 0.009]; MLNS9 =

Table 2 
Annual differences in ICAR scores between 2011 and 2018 for 18- to 60-year-olds adjusted for education and gender.  

Age ICAR60 95% CI LNS (9) 95% CI R3D 95% CI 

Mean slope ¡0.034 [− 0.057, − 0.011] − 0.018 [− 0.038, 0.002] 0.013 [− 0.007, 0.032] 
18 ¡0.062 [− 0.067, − 0.057] ¡0.039 [− 0.044, − 0.034] 0.011 [0.006, 0.016] 
19 ¡0.062 [− 0.067, − 0.056] ¡0.041 [− 0.047, − 0.036] 0.004 [− 0.001, 0.010] 
20 ¡0.061 [− 0.067, − 0.056] ¡0.034 [− 0.040, − 0.029] 0.009 [0.003, 0.015] 
21 ¡0.056 [− 0.062, − 0.051] ¡0.029 [− 0.036, − 0.023] 0.004 [− 0.002, 0.011] 
22 ¡0.055 [− 0.062, − 0.048] ¡0.035 [− 0.042, − 0.028] − 0.001 [− 0.008, 0.006] 
23 ¡0.047 [− 0.055, − 0.040] ¡0.028 [− 0.036, − 0.021] 0.005 [− 0.004, 0.013] 
24 ¡0.046 [− 0.054, − 0.038] ¡0.031 [− 0.040, − 0.023] 0.009 [0.000, 0.018] 
25 ¡0.037 [− 0.046, − 0.029] ¡0.026 [− 0.034, − 0.018] 0.011 [0.002, 0.020] 
26 ¡0.036 [− 0.045, − 0.027] − 0.018 [− 0.027, − 0.010] 0.014 [0.004, 0.024] 
27 ¡0.034 [− 0.043, − 0.025] ¡0.023 [− 0.031, − 0.014] 0.012 [0.002, 0.022] 
28 ¡0.037 [− 0.046, − 0.028] ¡0.023 [− 0.032, − 0.013] 0.006 [− 0.004, 0.017] 
29 ¡0.036 [− 0.046, − 0.027] ¡0.030 [− 0.040, − 0.021] 0.024 [0.013, 0.035] 
30 ¡0.031 [− 0.041, − 0.022] − 0.014 [− 0.024, − 0.005] 0.017 [0.006, 0.028] 
31 ¡0.025 [− 0.035, − 0.015] − 0.010 [− 0.020, 0.001] 0.007 [− 0.005, 0.018] 
32 ¡0.028 [− 0.039, − 0.018] − 0.018 [− 0.029, − 0.008] 0.022 [0.010, 0.034] 
33 ¡0.020 [− 0.031, − 0.009] − 0.005 [− 0.015, 0.006] 0.028 [0.016, 0.041] 
34 − 0.019 [− 0.030, − 0.007] − 0.009 [− 0.020, 0.003] 0.016 [0.003, 0.029] 
35 ¡0.034 [− 0.045, − 0.022] ¡0.021 [− 0.033, − 0.010] 0.026 [0.013, 0.039] 
36 ¡0.023 [− 0.035, − 0.012] − 0.007 [− 0.018, 0.005] 0.018 [0.004, 0.031] 
37 ¡0.021 [− 0.033, − 0.009] − 0.019 [− 0.031, − 0.007] 0.027 [0.013, 0.041] 
38 − 0.019 [− 0.031, − 0.007] − 0.011 [− 0.024, 0.001] 0.011 [− 0.003, 0.025] 
39 ¡0.025 [− 0.038, − 0.013] − 0.014 [− 0.027, − 0.001] 0.018 [0.003, 0.033] 
40 ¡0.031 [− 0.043, − 0.019] − 0.012 [− 0.024, 0.001] 0.029 [0.014, 0.043] 
41 − 0.018 [− 0.031, − 0.005] − 0.017 [− 0.030, − 0.003] 0.032 [0.017, 0.047] 
42 ¡0.033 [− 0.046, − 0.020] − 0.019 [− 0.033, − 0.006] 0.012 [− 0.003, 0.026] 
43 ¡0.031 [− 0.045, − 0.018] − 0.014 [− 0.028, 0.000] 0.011 [− 0.005, 0.026] 
44 ¡0.021 [− 0.035, − 0.006] − 0.012 [− 0.026, 0.003] 0.027 [0.010, 0.043] 
45 ¡0.035 [− 0.048, − 0.022] ¡0.021 [− 0.035, − 0.007] − 0.006 [− 0.021, 0.009] 
46 ¡0.036 [− 0.051, − 0.022] − 0.018 [− 0.033, − 0.003] 0.014 [− 0.003, 0.030] 
47 − 0.016 [− 0.030, − 0.003] − 0.003 [− 0.018, 0.011] 0.038 [0.022, 0.053] 
48 ¡0.033 [− 0.048, − 0.018] ¡0.021 [− 0.036, − 0.005] 0.008 [− 0.009, 0.026] 
49 ¡0.021 [− 0.037, − 0.006] − 0.007 [− 0.022, 0.009] 0.019 [0.002, 0.037] 
50 ¡0.034 [− 0.048, − 0.019] − 0.016 [− 0.031, − 0.001] 0.011 [− 0.005, 0.028] 
51 ¡0.039 [− 0.054, − 0.023] − 0.016 [− 0.034, 0.001] 0.017 [− 0.001, 0.035] 
52 ¡0.033 [− 0.049, − 0.017] ¡0.022 [− 0.039, − 0.005] 0.012 [− 0.007, 0.031] 
53 ¡0.037 [− 0.054, − 0.021] − 0.013 [− 0.031, 0.004] 0.000 [− 0.019, 0.019] 
54 ¡0.042 [− 0.059, − 0.026] − 0.019 [− 0.037, − 0.001] 0.005 [− 0.014, 0.025] 
55 ¡0.039 [− 0.056, − 0.022] − 0.006 [− 0.024, 0.012] 0.003 [− 0.016, 0.022] 
56 ¡0.040 [− 0.058, − 0.022] − 0.010 [− 0.030, 0.009] − 0.004 [− 0.026, 0.017] 
57 ¡0.032 [− 0.051, − 0.014] − 0.006 [− 0.026, 0.014] 0.005 [− 0.015, 0.025] 
58 ¡0.026 [− 0.047, − 0.006] − 0.001 [− 0.023, 0.021] 0.012 [− 0.011, 0.035] 
59 ¡0.036 [− 0.057, − 0.014] − 0.019 [− 0.042, 0.004] 0.022 [− 0.003, 0.046] 
60 − 0.018 [− 0.040, 0.004] − 0.003 [− 0.026, 0.021] 0.006 [− 0.018, 0.030] 

Note. Standardized ability scores were regressed on year of assessment with highest level of education and gender as covariates separately for each age. Overall and 
domain slopes are in SD per year. Any values equal or greater than |0.02| are bolded. ICAR = International Cognitive Ability Resource, ICAR60 = 60-item ICAR 
composite score, LNS (9) = 9-item Letter and Number Series, R3D = Three-Dimensional Rotation. 
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− 0.023; RangeLNS9 = [− 0.041, − 0.006] SD per year) and after including 
both age and gender as covariates (MLNS8 = − 0.020; RangeLNS8 =

[− 0.034, − 0.009]; MLNS9 = − 0.023; RangeLNS9 = [− 0.040, − 0.005] SD 
per year). 

Finally, despite the unadjusted regression of verbal reasoning scores 
(M = − 0.007; Range = [− 0.016, 0.001] SD per year) having predomi-
nantly negative slopes across the levels of education and three- 
dimensional rotation scores (M = 0.009; Range = [− 0.001, 0.016] SD 

per year) having positive slopes, 0 slopes met or exceeded the specified 
threshold. This trend continued after adding age to the separate re-
gressions (MVR = − 0.007; RangeVR = [− 0.015, 0.004]; MR3D = 0.009; 
RangeR3D = [− 0.001, 0.016] SD per year) and after both age and gender 
were included as covariates (MVR = − 0.007; RangeVR = [− 0.016, 0.005]; 
MR3D = 0.011; RangeR3D = [− 0.001, 0.018] SD per year). 

Fig. 1. Trends of 35-item composite ICAR scores stratified by education. 
Note. Data collection for the category “currently in graduate or professional school” did not start until August 2010. The dashed lines in the top graph connect the 
average standardized score and its associated standard error for each year and level of education. The solid lines in the top graph represent the associated slope of the 
average standardized score for each level of education. The lines in the bottom graph are the associated slope of the average standardized score for each level of 
education split between male (left) and female (right) participants. ICAR = International Cognitive Ability Resource, Grad/prof grad = Graduate or professional 
degree, In grad/prof = Currently in graduate or professional school, College grad = College graduate, Some college = Some college, did not graduate, In college =
Currently attending college, HS = High school graduate, <12 years = <12 years of education. 
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2.7.4. Annual scores by gender with and without covariates 
Differences in average ability scores were examined by regressing 

overall and domain scores on the year of assessment separately for each 
level of gender (binary). After completing these unadjusted analyses, the 
regressions were rerun with age entered as a covariate, and then age and 
education entered as a covariate. Individual regression slopes and their 
standard errors for each model are provided in Tables S10 and S11 of the 
supplementary materials. As the option to report gender as “Other” was 
not added until February 2017, those with that did not report their 
gender as male or female were excluded from analyses as reporting the 
difference between two time points could be misleading. 

The unadjusted slopes for overall ICAR scores, measured with 35 
items of 60 items, showed differences in annual ability scores that did 
not exceed the threshold established by this study. For ICAR scores 
assessed with 35 items, the average annual difference across gender was 
− 0.014 SD (Male = − 0.010; Female = − 0.017 SD per year) for the 
unadjusted regressions, whereas the average annual difference was 
− 0.016 SD (Male = − 0.018; Female = − 0.014 SD per year) for overall 
ICAR scores measured with 60 items. Once age was added as a covariate 
in the regression, these slopes became steeper, such that the average 
slope was − 0.017 SD per year (Male = − 0.014; Female = − 0.020 SD per 
year) for overall ICAR scores measured with 35 items and − 0.020 SD 
per year (Male = − 0.023; Female = − 0.017 SD per year) for overall 
ICAR scores measured with 60 items. Including education as a covariate 
in the regression with age, the slopes became steeper with an average 
difference of − 0.024 SD per year (Male = − 0.021; Female = − 0.027 SD 
per year) for overall ICAR scores measured with 35 items and − 0.040 
SD per year (Male = − 0.040; Female = − 0.041 SD per year) for overall 
ICAR scores measured with 60 items. 

In terms of the domain scores, unadjusted regressions showed similar 
patterns across gender with only three-dimensional rotation scores 
exceeding the magnitude observed by the Flynn effect (M = 0.022; Male 
= 0.021; Female = 0.024 SD per year). Although the other unadjusted 
slopes did not exceed the threshold, similar differences were observed 
for the scores for males and females for matrix reasoning (M = − 0.013; 
Male = − 0.011; Female = − 0.015 SD per year), verbal reasoning (M =
− 0.006; Male = 0.009; Female = 0.004 SD per year), and letter and 
number series measured using 8 items (M = − 0.013; Male = − 0.009; 
Female = − 0.017 SD per year) or 9 items (M = − 0.005; Male = − 0.005; 
Female = − 0.004 SD per year). While including age as a covariate in the 
separate regressions for each gender increased the magnitude of differ-
ences observed for the scores, slopes continued to not meet or exceed the 
specified threshold for most of the domain scores. On average, matrix 
reasoning scores (M = − 0.012; Male = − 0.010; Female = − 0.013 SD per 
year), 8-item letter and number series scores (M = − 0.015; Male =
− 0.011; Female = − 0.019 SD per year), and 9-item letter and number 
series scores (M = − 0.008; Male = − 0.008; Female = − 0.008 SD per 
year) showed small annual differences. Contrary to these slopes, verbal 
reasoning scores had no average difference (M = 0.000; Male = 0.001; 
Female = − 0.002 SD per year) and three-dimensional rotation scores 
had notable annual differences (M = 0.026; Male = 0.022; Female =
0.029 SD per year) between newer and older participants. 

After including education as a covariate with age for the separate 
regressions across gender, the magnitude of the differences for three- 
dimensional rotation diminished to an average slope of 0.013 SD per 
year (Male = 0.010; Female = 0.015 SD per year) and the slopes for 
letter and number series scores became steeper to an average of − 0.020 
SD per year (Male = − 0.016; Female = − 0.024 SD per year) when using 
8 items and − 0.022 SD (Male = − 0.020; Female = − 0.025 SD per year) 
when using 9 items over a shorter time period. The slopes of the matrix 
reasoning scores (M = − 0.014; Male = − 0.013; Female = − 0.016 SD per 
year) and verbal reasoning scores (M = − 0.006; Male = − 0.004; Female 
= − 0.008 SD per year), however, only showed small annual differences 
with the inclusion of the two covariates. 

2.7.5. Annual scores by age cohort 
Annual differences in composite and domain scores for individual 

regressions can be found in the supplementary materials (see 
Tables S12–S13). As a reminder, these scores may differ from those 
observed looking at individual age slopes as the grouped cohorts of age 
include 61- to 90-year-old participants and grouping across ages pro-
vides a larger group sample size; thus, decreasing the size of the standard 
error. Composite ability scores from 35 items showed differences across 
age groups between − 0.037 to − 0.005 SD per year (M = − 0.021 SD per 
year) from 2006 to 2018 when examining age alone in relation to the 
year the assessment was taken with 3 of the 5 slopes exceeding the cut- 
off score (levels of age group associated with the regression models: 
18–19, 20–24, and 50–90). The range grew in magnitude to differences 
between − 0.036 to − 0.017 SD per year entering education as a covariate 
(M = − 0.027 SD per year), however, the number of slopes exceeding the 
threshold remained the same. Finally, including both education and 
gender as covariates into the regressions resulted in differences between 
− 0.036 to − 0.019 SD per year (M = − 0.027 SD per year). After ac-
counting for these covariates, 4 of the slopes for the five age cohorts 
exceeded the rate of change observed by the Flynn effect (level of age 
group associated with the regression models: 18–19, 20–24, 25–29, and 
50–90).The domain scores showed respective differences across all age 
groups ranging from − 0.023 to − 0.004 SD per year for matrix reasoning 
scores (M = − 0.015 SD per year) and − 0.033 to − 0.007 SD per year for 
8-item letter and number series scores (M = − 0.020 SD per year). After 
controlling for education as a covariate, matrix reasoning scores 
generally dropped to range between differences of − 0.023 to − 0.010 SD 
per year (M = − 0.017 SD per year). This range of slopes decreased be-
tween differences of − 0.023 to − 0.011 SD per year (M = − 0.018 SD per 
year) after gender was also entered as a covariate. A similar pattern was 
observed for 8-item letter and number series scores as the results from 
the analysis controlling for education ranged between differences of 
− 0.032 to − 0.015 SD per year (M = − 0.023 SD per year) and − 0.032 to 
− 0.016 SD per year (M = − 0.024 SD per year) after education and 
gender were controlled for. Across all the unadjusted and adjusted 
models containing covariates, only 3 of the 5 slopes exceeded the 
established threshold for differences in matrix reasoning and 8-item 
letter and number series scores (levels of age group associated with 
the regression models: 18–19, 20–24, and 50–90). Unlike the other 
domains, slopes across age cohorts never met or exceeded this study’s 
threshold. Using the unadjusted regressions, verbal reasoning scores 
initially showed differences between − 0.013 to 0.008 SD per year (M =
− 0.002 SD per year). Once education was controlled for, all slopes 
became negative with verbal reasoning scores showing differences be-
tween − 0.013 to − 0.002 SD per year (M = − 0.007 SD per year) and 
between − 0.013 to − 0.005 SD per year (M = − 0.008 SD per year) once 
gender was added as a covariate. 

Analyses of composite and domain scores administered from 2011 to 
2018 yielded similar results. Specifically, composite ability scores from 
60 items showed annual differences that exceeded the established 
threshold for all but one of the slopes (levels of age group associated 
with the regression models: 18–19, 20–24, 25–29, and 50–90). The 
slopes of these overall scores ranged from − 0.062 to 0.006 SD per year 
(M = − 0.028 SD per year). As observed with verbal reasoning, slopes 
became steeper after education was entered as a covariate; resulting in 
the slopes for all age groups to exceed the threshold of |0.02| SD per 
year. For this set of regressions, the slopes ranged between − 0.062 and 
− 0.026 SD per year (M = − 0.045 SD per year). Including gender as a 
covariate with education further increased the magnitude of the dif-
ferences observed in the previous composite score models to range be-
tween − 0.062 to − 0.027 SD per year (M = − 0.046 SD per year). When 
examining domain scores for age groups over this shorter period, 9-item 
letter and number series scores annual differences ranged between 
− 0.042 and 0.009 SD per year (M = − 0.015 SD per year) for unadjusted 
regression models. Of the 5 slopes, only 2 slopes exceeded the estab-
lished threshold (levels of age group associated with the regression 
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models: 18–19 and 20–24). After including education as a covariate in 
these regressions, differences in letter and number series scores 
measured with 9 items increased in magnitude with one of the slopes 
flipping from positive to negative. For education adjusted models, 
annual differences ranged between − 0.040 to − 0.013 SD (M = − 0.027 
SD per year) and the number of slopes that met or exceeded the Flynn 
effect threshold increased from to 2 slopes to 4 slopes (levels of age 
group associated with the regression models: 18–19, 20–24, 25–29, and 
50–90). Models where both gender and education were entered as 
covariates yielded similar results with slopes ranging between annual 
differences of − 0.040 to − 0.014 SD (M = − 0.027 SD per year). For this 
model, the same 4 slopes showed magnitudes that exceeded the estab-
lished threshold for this study. 

In contrast with the other domains of cognitive ability exhibiting 
lower scores for more years of assessment, unadjusted models for three- 
dimensional rotation scores regressed across the different age groups 
showed positive slopes that ranged between 0.007 and 0.040 SD per 
year (M = 0.021 SD per year). However, despite the positive direction of 
these slopes, only 2 of the 5 slopes exceeded the established threshold 
(levels of age group associated with the regression models: 25–29 and 
30–49). Including education as a covariate in the regression resulted in 
the magnitude of the annual differences to decrease to 0.001 to 0.019 SD 
per year (M = 0.010 SD per year) with 0 of the slopes exceeding the 
established threshold. Likewise, the slopes from the models adjusting for 
both education and gender decreased in magnitude to range between 
0.001 and 0.017 SD per year (M = 0.009 SD per year). 

3. Discussion 

The present study aimed to examine if a Flynn effect or a reverse 
Flynn effect was a phenomenon within a large sample of adults from the 
United States between 2006 and 2018. To our knowledge, this is one of 
the first studies of this size to examine differences in ability scores with 
an adult United States sample during the twenty-first century. The re-
sults of the analyses completed with composite cognitive ability scores 
and domain scores had five primary findings: 1) There was no evidence 
of a Flynn effect across composite ability scores but possible evidence of 
a reversal; 2) one domain showed possible evidence for a Flynn effect, 
one domain showed no differences, and the remaining domains showed 
evidence of a reversal of varying magnitudes; 3) lower average scores 
were frequently observed for more recent participants across all levels of 
education; 4) differences in scores were similar across gender; 5) the 
greatest differences in annual scores were observed for 18- to 22-year- 
olds and individuals with less than a 4-year college degree. 

Regardless of using a composite score assessed with 35 items (from 
2006 through 2018) or 60 items (from 2011 through 2018), differences 
meeting or exceeding the magnitude of a Flynn effect, or its reversal, 
were not present across the full sample of 18- to 60-year-olds when 
examining unadjusted regressions stratified by age. When magnitudes of 
the observed slopes did exceed the anticipated threshold, the trends 
were consistently negative; thus, indicating more recent scores were 
lower than preceding scores. After rerunning the age stratified regres-
sion models with education as a covariate and both education and 
gender as covariates, the number and magnitude of differences 
increased such that most of the slopes for the age stratified regressions 
were equal to or exceeded − 0.02 SD per year. Repeating these analyses 
using cohorts of participants, rather than individual levels of age, yiel-
ded similar outcomes. These results are directly at odds with the dif-
ferences of 0.20 to 0.33 SD per decade observed by Flynn (1984, 1987, 
2007) and the 0.15 to 0.195 SD per decade observed by Trahan et al. 
(2014), where more recent norming samples had higher IQ scores. 
Likewise, these differences do not reflect more recent results using child 
and adolescent samples (Ang et al., 2010; Rodgers and Wänström, 2007; 
Shakeel and Peterson, 2022). Instead, these findings are consistent with 
studies that have found a reversal of the Flynn effect (Dutton and Lynn, 
2013, 2015; Rönnlund et al., 2013; Sundet et al., 2004; Teasdale and 

Owen, 2008; Woodley and Meisenberg, 2013). In particular, the range of 
slopes for the 35 and 60-item composite scores overlapped and exceeded 
the differences of − 0.03 to − 0.29 SD per decade observed by Dutton 
et al. (2016). 

Like the composite scores, differences were not consistent across the 
full sample of 18- to 60-year-olds or across domains of cognitive ability 
scores. Taken together, the 0.20 to 0.33 SD per decade gains observed by 
Flynn (1984, 1987, 2007) were not substantially present for the ICAR 
domain scores. Rather, slopes from stratified age regressions of matrix 
reasoning, letter and number series, and verbal reasoning scores support 
a reversal or stagnation of the Flynn effect. Given that matrix reasoning 
and letter and number series scores can be used to assess components of 
fluid reasoning, one interpretation of these results is that average fluid 
ability scores are lower for more recent participants within the sample. 
This evidence is a stark contrast to previous research showing positive 
differences in ability scores were largely driven by nonverbal fluid tasks 
like Raven’s Progressive Matrices (Ceci and Kanaya, 2010; Flynn, 2007; 
Neisser, 1997; Sundet et al., 2004; Weiss, 2010). 

Contrary to these other results, domain scores for three-dimensional 
rotation exhibited differences such that more recently recruited partic-
ipants had higher scores than prior participants. Using the unadjusted 
age stratified regressions, a majority of the slopes for three-dimensional 
rotation scores met or exceeded those originally observed by Flynn, 
however, the magnitude and number of slopes that met or surpassed this 
threshold decreased after adding covariates to the model. The results in 
this study align with findings by Rönnlund et al. (2013) that visual- 
spatial tests exhibited some of the largest gains across test domains. 
The observed differences for three-dimensional rotation seem to counter 
some of the recent findings that positive differences in spatial ability 
scores have decelerated (Pietschnig and Voracek, 2015) or that more 
recent spatial ability scores are lower than previously tested scores 
(Pietschnig and Gittler, 2015); albeit Pietschnig and Gittler (2015) only 
examined German-speaking countries. 

As the number and size of slopes that exceeded the magnitude of the 
Flynn effect or its reversal frequently changed after adding education or 
education and gender as covariates, we also explored if the results were 
consistent across demographic categories. While differences for com-
posite and domain scores were relatively consistent between gender and 
highest level of education, the magnitude of these differences varied. In 
particular, the rate of differences in scores were generally greater for 
individuals with less than a 4-year college degree than those with a 
college degree or higher. As observed with the regressions stratified by 
age, the coefficients exceeding the magnitude of the Flynn effect were 
present for composite (measured with 35 or 60 items), matrix reasoning, 
and letter and number series scores were lower for more recent partic-
ipants than proceeding participants. Slopes for verbal reasoning and 
three-dimensional rotation scores, however, never met or exceeded the 
criteria established by this study. As a limited number of studies have 
considered the role of education or parental education in the differences 
of various domains of IQ scores over time, our results do not directly 
align with previous studies. This is partially due to the direction of the 
coefficients and differences observed across the levels of educational 
attainment, but also likely due to the differences in the assessment being 
used. Notably, Ang et al. (2010) found that the rate of their observed 
Flynn effect in Peabody Individual Achievement Test Math scores was 
greater for children and adolescents with more educated mothers. Platt 
et al. (2019), on the contrary, found no differences in Kaufman Brief 
Intelligence Test matrices scores when examining parental education. 
Finally, Twenge et al. (2019) reported that despite observing negative 
slopes across all levels of education, that differences in vocabulary 
scores were greatest for those with a college degree or higher. Taken 
together, our results are arguably most consistent with those found by 
Ang et al. (2010) as the differences observed in our study indicated that 
those with higher levels of education were at least buffered from the 
decreasing rates of scores. 

For gender, the magnitude of differences for female participants was 
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marginally greater, on average, than male participants after including 
the covariates in the regression models. Nevertheless, coefficients across 
the two regression models often did not meet or exceed annual differ-
ences of |0.20| SD until after models were adjusted for both age and 
education. Like the results observed for age stratified and education 
stratified regressions, composite scores, matrix reasoning scores, and 
letter and number series scores showed evidence of a reverse Flynn ef-
fect. Despite examining an adult sample, the similar magnitude and 
direction of coefficients between male and female participants gener-
alize to previous research examining data from children and adolescents 
(Ang et al., 2010; Platt et al., 2019; Shakeel and Peterson, 2022). 

The overall results of the present study were mixed. While composite 
ability scores and scores for certain domains of cognitive ability (matrix 
reasoning and letter and number series) showed patterns consistent with 
a reverse Flynn effect across age and demographic variables, three- 
dimensional rotation scores showed evidence of a Flynn effect when 
stratified by age or gender. Taken together, these results reinforce the 
importance of Flynn effect research examining scores at both the com-
posite and domain level. As this study did not test for specific factors that 
could be driving the differences in mean ability scores over time, we 
cannot make definitive statements as to what caused the varying di-
rections or magnitudes of slopes. However, we reflect on what con-
flicting differences in cognitive ability scores represent in relation to 
previously debated causal factors for the Flynn effect. 

There is a plethora of theories as to both why the Flynn effect and its 
reversal or diminished differences are occurring. Though Pietschnig and 
Voracek (2015) provides a succinct overview, posited causal hypotheses 
are briefly described here. The main factors believed to contribute to 
rising IQ scores range from environmental or biological effects to more 
hybrid and health related factors. Of these theories, Pietschnig and 
Voracek (2015) note that only a few factors, such as nutrition (Colom, 
Lluis-Font, and Andrés-Pueyo, 2005; Lynn, 2009), education (Teasdale 
and Owen, 2005), and test-taking behavior (Must and Must, 2013; 
Pietschnig, Tran, and Voracek, 2013), could account for both the gains 
and stagnation observed with the Flynn effect. Specifically, previously 
observed gains in mean ability scores cannot produce indefinite growth 
or are eventually restricted by a ceiling effect (Pietschnig and Voracek, 
2015; Pietschnig, Voracek, and Gittler, 2018). Recent work by Bratsberg 
and Rogeberg (2018) examining biological and environmental hypoth-
eses, however, suggests that in addition to changes in the caliber and 
exposure to education and nutrition, that worse health and increased 
media exposure could also account for the reversal of the Flynn effect. As 
the present study found differential slopes in mean cognitive ability 
scores, it seems unlikely that that quality of nutrition or health would 
account for conflicting differences among the three-dimension rotation 
tasks and the remaining tasks. Rather, we would expect to see a reverse 
Flynn effect across all domains if the differences were due to changes in 
nutrition or worsening health as cognitive processes impacted by these 
variables are likely overlapping. This, however, was not observed in the 
present study as the signs and magnitudes of the slopes varied between 
domains. As this study did not examine variables related to nutrition or 
health, further analyses would be required to rule out these factors from 
the current study. Regardless, we believe education, test-taking, and 
media exposure emerge as potential moderators for explaining the 
observed gains in three-dimensional rotation scores and declines or 
stagnation in matrix reasoning, letter and number series, verbal 
reasoning, and composite ability scores. 

While Pietschnig (2016) and Pietschnig and Voracek (2015) suggest 
that technology is not likely a singular causal contributor to IQ gains and 
their declines due to the emergence of widespread access to digital de-
vices following the first studies describing stagnation and declines of 
ability scores, it is not impossible to posit that greater exposure to media 
and video games could be buffering declines for visual-spatial oriented 
tasks compared to fluid ability or reasoning tasks as these tasks are more 
salient in this type of media (Clark, Lawlor-Savage, and Goghari, 2016). 
This is not to say that positive coefficients observed in differences of 

three-dimensional scores are due to playing video games, as much as the 
relationship between playing video games and spatial ability (Sala, 
Tatlidil, and Gobet, 2018) may be acting as a greater protective factor 
for lower scores that could be observed in this domain of ability. This 
theory, however, would again require additional testing to understand if 
it has a moderating role within the sample. 

As the present study explored the differences in scores across levels 
of educational attainment and the highest level of education has 
increased across the testing period of the SAPA Project sample, our re-
sults suggest the causal hypothesis that exposure to education accounts 
for the direction and strength of the Flynn effect (Bratsberg and Roge-
berg, 2018; Pietschnig and Voracek, 2015) was not observed within this 
sample. Rather, exposure to education may only be protective for certain 
age groups. Not only did the present study find that the steepest negative 
slopes of composite or domain scores occurred for individuals with less 
than a 4-year college degree, the largest differences for age stratified 
regressions after controlling for educational attainment were exhibited 
for those between the ages of 18 and 22. While these findings comple-
ment previous research with 18- to 20-year-old conscripts (Bratsberg 
and Rogeberg, 2018; Dutton and Lynn, 2013; Sundet et al., 2004; 
Teasdale and Owen, 2008) and a subsample of 18-year-old study par-
ticipants within United States (Platt et al., 2019), exposure to education 
has not been able to explain the differential gains and declines across 
fluid and crystallized IQ scores observed in previous research (Pietsch-
nig and Voracek, 2015). However, it could be the case that our results 
indicate a change of quality or content of education and test-taking skills 
within this large United States sample. As scores were lower for more 
recent participants across all levels of education, this might suggest that 
either the caliber of education has decreased across this study’s sample 
and/or that there has been a shift in the perceived value of certain 
cognitive skills (Clark et al., 2016). 

Resembling this causal argument, Flynn (2007) proposed that 
increased fluid IQ scores could simply be due to society deeming it as 
valuable. Applying this logic, one could speculate that skills related to 
matrix reasoning, letter number and series, and verbal reasoning are less 
valued by society than they were when the original Flynn effect was 
observed within the United States. Regardless, it should be remembered 
that the results of this study and differences in ability scores measured 
by the Flynn effect and its reversal in general may not equate to real 
gains or declines in intelligence. 

3.1. Limitations 

Despite including 394,378 participants with varying levels of edu-
cation and gender, the sample used for our analyses may be unrepre-
sentative of the United States population. In particular, demographics of 
these subsamples are sometimes under- or oversampled (i.e., over half of 
the participants identified as female). Thus, the SAPA Project suffers as 
findings from its data may not be generalized to its target population or 
subpopulations without appropriate weighting. Future work should 
repeat the analyses after applying post-stratification methods, such as 
raking, using available demographics before any results are discussed in 
terms of how these scores relate to shifts in mean cognitive ability scores 
within the United States. Alternatively, post-hoc weighted sampling by 
geographic location (ZIP Code or state) could also be used to ensure the 
data approximate regional distributions within the United States. 

Although post-stratification would allow for the overall sample and 
subsamples to be more representative of the distributions of the United 
States population, it should also be recognized that the SAPA Project 
relies on participants finding or seeking out the survey; meaning mem-
bers of the population do not have an equal probability of being 
recruited into the survey (Condon, 2018). Thus, selection bias has likely 
been introduced into the sample due to those voluntarily taking the 
survey being non-representative of the target population (Lohr, 2010). 
This significantly differs from previous Flynn effect studies that relied on 
systematic norming data collected by proprietary licensed measures 
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using probability sampling or population-based conscript data where 
participation was required. However, despite these norming data using 
stratified proportional sampling to match the United States Census in 
terms of sex, ethnicity, geographic region, and highest level of educa-
tional attainment (Wechsler, 2008), these methods do not eliminate all 
selection bias for a given sample (Lohr, 2010). 

Rodgers (1998) makes a similar point in his proposed list of questions 
and notes that those exploring the Flynn effect should reflect on their 
selection methods. Thus, we contemplate how selection bias and sam-
pling in the SAPA Project could be influencing the current study. The 
largest inconsistency over the 13-year sample is that the 2018 sample is 
significantly larger than the previous years. Likewise, participants 
recruited in 2018 had a higher average and median level of educational 
attainment and age than previous annual samples. As the coefficients for 
regression models stratified by education did not exhibit the same 
magnitude of declines for those with a 4-year college degree or higher as 
those with less than a college degree (4-yr), the difference in sampling 
might account for why the slopes for higher levels of education were 
flatter, on average. Another inconsistency was that there was a dispro-
portionate number of 20- year-olds recruited in 2010 (approximately 
6000 to 7000 more than the observed in other samples). While it doesn’t 
explicitly appear that this oversampling of 20-year-olds for this one year 
of data directly influenced the regression coefficients associated with 
this age across the 13 years of data, it cannot not be completely ruled 
out. Further sampling inconsistencies over the 13 years of data include 
the 2006 and 2007 samples having fewer male participants observed in 
previous years and more male than female participants in 2010. Despite 
the magnitude of differences across scores being similar between male 
and female participants, discrepant annual sampling could be limiting 
the trends observed in this study and how they generalize to the United 
States population. 

As sampling demographics and sizes were inconsistent across the 13 
years of data and the SAPA Project depends on individuals who are 
interested in taking an online survey, it might also be the case that those 
interested in taking an online personality survey have changed. In the 
early years of recruitment for the SAPA Project, it is likely that a large 
proportion of individuals who originally took the survey were either 
directed to it by an instructor, heard about it at a research conference, or 
found it through websites/sources associated with academia. As the 
annual sample sizes have increased in more recent years and the SAPA 
Project has discussed in more public outlets such social media (mis-
tressredditor, 2013; Murray, 2017; SAPAPsych, 2014a, 2014b) or online 
articles (Guarino, 2018), it’s plausible that newer annual samples are 
more “average” or normal representation than those recruited during 
the SAPA Project’s former years. 

Beyond inconsistencies in demographics across the sample, another 
factor that could be accounting for lower scores for more recent par-
ticipants could be due to a decline in motivation. As the SAPA Project is 
advertised as a personality survey, individuals seeking out the SAPA 
Project may not be fully engaged with items not measuring temperament 
at the capacity as they are with more typically considered personality 
items. As performance is a function of both ability and motivation, 
participants not trying as hard on ICAR items might also help explain 
why a reverse Flynn effect was observed despite more recent samples 
having greater proportions of participants with higher education. This 
lack of motivation, however, would fail to explain why scores for the 
most difficult ICAR domain, three-dimensional rotation, were higher for 
the most recent samples. 

4. Concluding remarks 

This study set out to investigate if a Flynn effect or a reverse Flynn 
effect was a phenomenon in a large United States sample recruited be-
tween 2006 and 2018. Regardless of education, gender, and age, lower 
annual scores were observed for composite cognitive ability measured 
by 35 items, and the matrix reasoning and letter and number series 

scores measured across the 13 years of assessment. These differences 
were replicated across the 60-item composite ability scores from 2011 to 
2018, however, three-dimensional rotation scores measured during this 
8-year period showed evidence of a Flynn effect of varying magnitudes 
across 18- to 60-year-olds. The largest differences in mean ability scores 
were often observed for participants between the ages of 18 to 22. 
Beyond age, a reverse Flynn effect was also present across all levels of 
educational attainment, with the rate of decreasing scores being steeper 
for those with less than a 4-year college degree. While additional work 
needs to be done to further incorporate other demographic measures 
from the SAPA Project, the current study indicates that the Flynn effect 
and its associated reversal may no longer generalize across all ages or 
levels of education. It also underlines the need for further research using 
large adult samples to understand if the Flynn effect or if its reversal is a 
phenomenon in the United States during the twenty-first century. 
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