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Abstract
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researchers new tools for exploring large scale data sets and allows developing
and testing new psychological theories. We review the development of these
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provide example code for doing these analyses in R.
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Prologue: A brief history of Open Source Statistical Software

It is hard to imagine early in the 21st century that many of the statistical techniques
we think of as modern statistics were developed in the late 19th and early 20th centuries.
What we now call regression was the degree of “reversion to mediocrity” as introduced
by Francis Galton (1886). A refinement of regression was the measure of “co-relations”
(Galton, 1888) which was specified as the relationship of deviations as expressed in units of
the probable error. Galton’s insight of standardization of units became known as ‘Galton’s
coefficient’ which, when elaborated by Pearson (1895,8,9) became what we now know as
the Pearson Product Moment Coefficient. Because the Pearson derivations were seen as too
complicated for psychologists, Charles Spearman (1904b) explained the developments of
Pearson and his associates to psychologists where “the meaning and working of the various
formulae have been explained sufficiently, it is hoped, to render them readily usable even
by those whose knowledge of mathematics is elementary” (p 73 Spearman, 1904b). Later in
that same paper, he then developed reliability theory and the correction for attenuation.
In his second amazing publication that year he developed the basic principles of factor
analysis and laid out his theory of general intelligence (Spearman, 1904a).

Fundamental theorems of factor analysis (Thurstone, 1933; Eckart and Young, 1936)
and estimates of reliability (Brown, 1910; Spearman, 1910; Kuder and Richardson, 1937;
Guttman, 1945) came soon after and were all developed when computation was done by
“computers” who were humans operating desk calculators. If not difficult, computation was
tedious in that it required repeatedly finding sums of squares and sums of cross products.
When examining the correlation structure of multiple items, the number of correlations
went up by the square of the number of items, and thus so did the computational load.
Test theory as developed in the 1930s and 1940s led to a number of convenient short cuts by
which the sums of test and item variances could be used to estimate what the correlations
of composites of items would be if certain assumptions were met. Thus, the coefficients of
Cronbach (1951); Guttman (1945); Kuder and Richardson (1937) (α, λ3 and KR20) were
meant to be estimates based upon the structure of covariances without actually finding the
covariances.

Another short cut was to dichotomize continuous data in order to find correlations.
For example, in an ambitious factor analysis of individual differences in behavior among
psychiatric patients (Eysenck, 1944) made use of this shortcut by dichotomizing continuous
variables and then finding the Yule (1912) coefficient. Unfortunately, such a procedure
produced a non-positive definite matrix which makes reanalysis somewhat complicated.

With the need to calculate flight paths for large artillery shells and rockets, the ideas
developed by Babbage for his “Analytical Engine” in 1838 (Bromley, 1982) and algorithms
for programming (Lovelace, 1842) were converted from punched cards and automatic looms
into the electrical tubes and circuit boards of von Neuman (Isaacson, 2014). The age of
computation had arrived. It was now possible to properly analyze covariance structures.

For personality psychologists, these were exciting times, for it allowed for the cal-
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culation of larger correlation matrices and the use of factor analysis with more elegant
algorithms than the centroid approach. Indeed, Raymond Cattell moved from Harvard to
the University of Illiinois because he was promised access to the new ‘ILLIAC’ computer
(and would not have to teach undergraduates).

Main frame computers and proprietary software

At first, software for these new devices was tailor made for the particular machine,
and there was a plethora of programming languages and operating systems. In the late
1950s the programming language FORTRAN (later renamed to be Fortran when computers
learned about lower case) was developed at IBM for the numeric computation necessary for
scientific computing and then translated for other operating systems. While some programs
would run on IBM 709 and 7090s, others would only work on the super computers of the
time, the Control Data Corporation’s 1604 and 6400. An early package of statistical
programs, developed for the IBM 7090 in 1961 at UCLA was the BioMedical Package
(BMDP). At first BMDP was distributed for free to other universities but BMDP (Dixon
and Brown, 1979) eventually became a commercial package which has since disappeared.
Two other statistical systems (SAS R© and SPSS), originally developed at other universities
(North Carolina State and Stanford) and shared with others, were also developed.

These three major software systems for doing statistics came from three somewhat
different traditions. BMDP was developed for biomedical research, SAS R© for agriculture
research, and SPSS for statistics in the social sciences (SPSS, 2008). Although all three
systems were originally developed at universities and were freely distributed to colleagues,
all three soon became incorporated as for profit corporations. All were developed for
main frame computers where instructions were originally given in stacks of Hollerith Cards
(known to many as IBM cards), containing 80 characters per card. All of the programs
made use of the FORTRAN programming language and still, many years later, have some
of their main frame geneaology embedded in their systems. Older researchers still shudder
at the memories of needing to wait for 24 hours after turning in a box of cards only to
discover one typo negated the entire exercise.

S and R: interactive statistics

In contrast to the statistical analyses done on mainframes, S and subsequently R were
developed for interactive statistics. The S computing ‘environment’ was developed for Unix
in the 1970’s at Bell labs by John Chambers and his associates (Becker, Chambers, and
Wilks, 1988). It was meant to take advantage of interactive computing where the user could
work with his/her data to better display it and understand it. After several iterations it
became the defacto statistical package for those using the Unix operating system. In 1992,
two statisticians, Ross Ihaka and Robert Gentleman, at the University of Otago, in New
Zealand started adapting S to run on their Mac computers. It incorporated the list oriented
language Scheme and emphasized object-oriented programming. Most importantly, they
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shared the design specifications with other interested developers around the world and
intentionally did not copyright the code. Rather, they, with the help of John Chambers
and the rest of the R Development Core Team, deliberately licensed R under the GNU
General Public License of the Free Software Foundation which allows users to copy, use,
and modify the code as long as the product remains under the GPL (R Core Team, 2018).

Perhaps the real power of R is that because it is open source, it is extensible. That
means that anyone can contribute packages to the overall system. That, and the power
of the GPL and open source software movement has led to an amazing effect. From the
original functions in R and the ones written by the R Core Team, more than 12,600 packages
have been contributed to the CRAN, the Comprehensive R Archive Network, and at least
(as of this writing) more than 34,000 packages are available on GitHub. R has become
the lingua franca of statistics and many new developments in psychological statistics are
released as R functions or packages. When writing methodology chapters or articles, the
associated R code to do the operations may also be given (as we do in this chapter).

With the growing recognition of the importance of replicable research, the publication
of the R scripts and functions to do the analysis, as well as the release of R readable data
sets is an essential step in allowing others to understand and repeat what we have done.
Because the source code of all of the R packages is available, users can check the accuracy of
the code and report bugs to the developers of the particular package. This is the ultimate
peer review system, in that users use, review, and add to the entire code.

Given its open source nature and growing importance in scientific computing, much
of the rest of this chapter will be devoted to discussing how particular analyses can be done
in R. This is not to deny that commercial packages exist, but to encourage the readers of
this handbook to adopt modern statistics. The actual code used for the tables and figures
is included in the Appendix.

Finally, little appreciated by many users of R is that it is not just a statistical
environment, it is also a very high level programing language. Although some of the
packages in R are written in Fortran or C++, many packages are written in R itself. R
allows operations at the higher matrix level and allows for object-oriented programming.
Each function operates on ‘objects’ and returns another ‘object’. That is, functions can be
chained together to add value to previous operations. This allows users to include standard
functions in their own functions with the output available for even more functions. Actual
programming in R is beyond the scope of this chapter, but is worth learning for the serious
quantitative researcher. Without developing packages, a willingness to write more and
more complicated scripts is a positive benefit.

Getting and using R

R may be found at https://www.r-project.org and the current release is dis-
tributed through the Comprehensive R Archive Network https://cran.r-project.org.
Popular interfaces to R include Rstudio (https://www.rstudio.com) which is particularly
useful for PCs (the Mac version comes with its own quite adequate interface). Once R is

https://www.r-project.org
https://cran.r-project.org
https://www.rstudio.com
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downloaded and installed, it is useful to install some of the powerful packages that have
been added to it. We will make use of some of these packages, particularly the psych
package which has been specifically developed for personality and psychological research
(Revelle, 2018). See the appendix for detailed instructions.

Data, Models, and Residuals

The basic equation in statistics is that:

Data = Model +Residual ⇐⇒ Residual = Data−Model. (1)

That is, the study of statistics is the process of modeling our data. Our models
are approximations and simplifications of the data (Rodgers, 2010). Our challenge as re-
searchers is to find models that are good approximations of the data but that are not overly
complicated. There is a tradeoff between the two goals of providing simple descriptions
of our data and providing accurate descriptions of the data. Consider the model that the
sun rises in the East. This is a good model on average and as a first approximation, but is
actually correct only twice a year (the equinoxes). A more precise model will consider sea-
sonal variation and recognize that in the northern hemisphere, the sun rises progressively
further north of east from the spring equinox until the summer solstice and then becomes
more easterly until the fall equinox. An even more precise model will consider the latitude
of the observer.

If we think of degrees of freedom in models as money, we want to be frugal but
not stingy. Typically we evaluate the quality of our models in terms of some measure of
goodness of fit. Conceptually, fit is some function of the size of the residuals as contrasted
to the data. Because almost all models will produce mean residuals of zero, we typically
invoke a cost function such as ordinary least squares to try to find a model that minimizes
our squared residual. As an example, the algebraic mean is that model of the data that
minimizes the squared deviations around it (the variance).

The following pages will consider a number of statistical models, how to estimate
them, and how to evaluate their fit. All of what follows can be derived from a serious
consideration of Equation 1.

In what follows we discuss two types of variables and three kinds of relationships.
In a distinction reminiscent of the prisoners in the cave discussed by Plato in the The
Republic (Plato, 1892), we consider two classes of variables: those which we can observe,
and those which we can not observe but are the latent causes of the observed variables.
Our observations are of the movement of the shadows on the cave’s wall; we need to
infer the latent causes of these shadows. Many of our tools of data analysis (e.g., factor
analysis, reliability theory, structural equation modeling, and item response theory) are just
methods for estimating latent variables and their inter-relationships from the pattern of
relationships between observed variables. Traditionally we make this distinction by using
Greek letters for unobserved (latent) population values and Roman letters for observed
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values. When we portray patterns of relationships graphically (e.g., Figure 1) we show
observed variables as boxes and latent variables as circles. As may be seen in Figure 1,
there are three kinds of relationships between our variables: relations between observed
variables, relations between latent and observed variables, and relations between latent
variables. Theories are organizations of latent variables as they represent the relationships
between observed variables.

Basic Descriptive Statistics

Before any data analysis may be done, the data must be collected. This is more
complicated than it seems, for it involves consideration of the latent variables of interest;
presumed observed markers of these latent variables; the choice of subjects (are they se-
lected randomly, systematically, are they volunteers, are they WEIRD (Henrich, Heine,
and Norenzayan, 2010)), the means of data collection (self report, observer ratings, life
narratives, computerized measurement, web based measures, etc.); the number of times
measures are taken (e.g., once, twice for test-retest measures or measures of change, multi-
ple times in studies of growth changes or of emotions over time); the lags between repeated
measures (minutes, hours, days, or years) and whether there are experimental manipula-
tions to distinguish particular conditions (Revelle, 2007).

Once the data are collected, it is of course necessary to prepare them for data analysis.
That is to say, to transfer the original data into a form suitable for computer analysis. If
hand coding must be done (e.g., scoring life narratives, Guo, Klevan, and McAdams, 2016)
the separate ratings must be entered in a way that allows for computer based analysis (e.g.,
a reliability calculation) to be made.

Typically the data are organized as a two dimensional table (e.g., a spreadsheet
in EXCEL or OpenOffice) with subjects as rows and variables as columns. If there are
repeated measures per subject, the data might have a separate row for each occasion, but
with one column identifying the subject and another the occasion. Consider the data in
Table 1 which are taken from an example data set msqR in the psych package (Revelle,
2018) from R1. The msqR data set was collected over about 10 years as part of a long term
series of studies of the interactive effect of personality and situational stressors on cognitive
performance.

An under-appreciated part of data analysis is the basic data cleaning necessary to
work with real data. Mistakes are made at data entry, participants fall asleep, other par-
ticipants drop out, some do not answer every question, some participants are intentionally
deceptive in their responses. It is important before doing any analysis to find basic descrip-
tive statistics to look for impossible responses, to examine the distribution of responses, and
to attempt to detect outliers. However, as discussed by Wilcox (2001), merely examining
the shape of the distribution is not enough to detect outliers and it is useful to apply robust
estimators of central tendency and relationships. The WRS2 package (Mair, Schoenbrodt,

1In the following pages, we use boldfaced text for functions and italics for packages.
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Figure 1. The basic set of statistical relationships may be seen as relations among and between
observed variables (boxes) and latent variables (circles).
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Table 1: A representative sample of eight subjects with time 1 and time 2 observations on 10
emotion terms. The data are from the msqR data set (N=3,032) which has repeated measures for
2,086 participants. The full data set is used for many of following examples. It is included in the
psych package. The data are shown in ‘long’ format with repeated measures ‘stacked’ on top of each
other to represent multiple time points. ‘Wide’ format would represent the different time points as
separate columns for each subject.

Line # id time anxis at.es calm cnfdn cntnt jttry nervs relxd tense upset
1 1 1 1 2 2 2 2 1 0 2 0 0
2 2 1 1 2 2 1 2 0 1 2 1 1
3 3 1 2 2 2 2 2 0 1 2 1 0
4 4 1 0 2 2 2 3 0 0 2 0 0
5 5 1 0 3 3 2 2 1 0 2 0 0
6 6 1 1 3 2 3 3 0 0 3 0 0
7 7 1 0 1 1 1 1 0 0 2 0 0
8 8 1 0 2 3 1 2 0 0 2 0 0
69 1 2 1 2 2 2 2 1 0 1 0 0
70 2 2 1 2 2 1 2 1 1 2 1 1
71 3 2 1 2 1 2 2 0 1 2 1 0
72 4 2 1 1 0 2 3 1 1 1 1 0
73 5 2 0 2 3 2 1 0 0 2 0 0
74 6 2 1 2 2 3 3 1 0 3 0 0
75 7 2 0 1 1 1 1 1 0 1 0 0
76 8 2 0 2 2 1 2 0 0 2 0 0

and Wilcox, 2017) implements many of the robust statistics discussed by Wilcox and his
colleagues (Wilcox and Keselman, 2003; Wilcox, 2005). For example, the algebraic mean
is just the sum of the observations divided by the number of observations. The trimmed
mean is the same after a percentage (e.g., 10%) are removed from the top and bottom of
the distribution. The trimmed mean is more robust to outliers than is the algebraic mean.
The median is the middle observation (the 50th percentile) and is an extreme example
of a trimmed mean (with trim=.5). The minimum and maximum observations, and the
resulting range are most useful for detecting improper observations. Skew and Kurtosis are
functions of the third and fourth power of the deviations from the mean (Mardia, 1970).
The describe function will also report various percentiles of the distribution including the
Inter Quartile Range (25th to 75th percentiles) (Table 2).

Tests of statistical significance: Normal theory and the bootstrap

Those brought up in the Fisherian tradition of Null Hypothesis Significance Testing
(NHST) traditionally compare fit statistics to their expected value given normal theory.
Fits are converted into standardized scores (z scores) and then probabilities are found from
the normal distribution. This works well with large samples where errors are in fact random.
For smaller samples, the variation of estimates of mean differences compared to the sample
based standard error are larger than expected given the normal. This problem led to the
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Table 2: Descriptive statistics for the data in Table 1. An important step before doing any more
advanced analysis is to search for outliers by examing the data for impossible values and comparing
the values of the algebraic versus trimmed mean versus the median.

Variable vars n mean sd medin trmmd mad min max range skew kurtosis se IQR
id 1 16 4.50 2.37 4.5 4.50 2.97 1 8 7 0.00 -1.45 0.59 3.50
time 2 16 1.50 0.52 1.5 1.50 0.74 1 2 1 0.00 -2.12 0.13 1.00
anxious 3 16 0.62 0.62 1.0 0.57 0.74 0 2 2 0.35 -0.96 0.15 1.00
at.ease 4 16 1.94 0.57 2.0 1.93 0.00 1 3 2 -0.02 -0.19 0.14 0.00
calm 5 16 1.88 0.81 2.0 1.93 0.00 0 3 3 -0.51 -0.20 0.20 0.25
confident 6 16 1.75 0.68 2.0 1.71 0.74 1 3 2 0.29 -1.04 0.17 1.00
content 7 16 2.06 0.68 2.0 2.07 0.00 1 3 2 -0.06 -0.98 0.17 0.25
jittery 8 16 0.44 0.51 0.0 0.43 0.00 0 1 1 0.23 -2.07 0.13 1.00
nervous 9 16 0.31 0.48 0.0 0.29 0.00 0 1 1 0.73 -1.55 0.12 1.00
relaxed 10 16 1.94 0.57 2.0 1.93 0.00 1 3 2 -0.02 -0.19 0.14 0.00
tense 11 16 0.31 0.48 0.0 0.29 0.00 0 1 1 0.73 -1.55 0.12 1.00
upset 12 16 0.12 0.34 0.0 0.07 0.00 0 1 1 2.06 2.40 0.09 0.00

introduction of the t statistic for comparing the means of smaller groups (Student, 1908)
( t.test ) and the r to z transformation (r2z) for tests of correlations (Fisher, 1921).
(Use cor.test for one correlation, corr.test for many correlations). Most functions
in R will return both the statistic and the probability of that statistic. Many will also
return a confidence interval for the statistic. But the probabilities (and therefore the
confidence intervals) are a function of the effect size, the sample size, and the distribution
of the parameter being estimated. Unfortunately, not all tests can be assumed to be
normally distributed and it is unclear how to find the distribution of arbitrary parameters
of a distribution (e.g., the median). Extending ideas such as the ‘Jackknife’ proposed by
Tukey (1958), Efron (1979) proposed the ‘bootstrap’ (having considered such names as the
‘shotgun’), a powerful use of random sampling (Efron and Gong, 1983).

The basic concept of the bootstrap is to treat the observed sample as the entire
population, and then to sample repeatedly from this ‘population’ with replacement; find
the desired estimate (e.g, the mean, the median, the regression weight) and then do this
again, and again, and many times again. Each sample, although the same size as the
original sample, will contain (on average) 63.2% of the subjects in the original sample,
with 36.8% being repeated at least once2 The resulting distribution of the estimated value
can be used to find confidence intervals without any appeal to normal theory.

For those who use NHST, it is important to understand the probability that a real
effect is detected, the power, is not the same as the probability of rejecting the ‘nil’ hy-
pothesis that an effect is 0 (Cohen, 1988,9,9; Streiner, 2003). A number of R packages (e.g.

2This perhaps unintuitive amount is 1 − 1
e

and is the limit of the probability of an item not being
repeated as the number of cases increases (p = 1 − (1 − 1

n
)n).
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pwr , Champely, 2018) include easy to use power calculators to find the the power of a
design given an effect size, sample size, and desired α level.

One of the great advances of modern statistics is the use of the bootstrap and other
randomization tests. In the space of seconds, 1,000 to 100,000 bootstrap resamples can be
calculated for almost any statistic. We will use this procedure when we find the confidence
intervals for correlation coefficients (Table 5) and in particular for the effect of mediation
in a regression model.

Correlation and Regression

Originally proposed by Galton (1888) and refined by Pearson (1895) and Spearman
(1904b), the linear regression coefficient and its standardized version, the correlation coef-
ficient are the fundamental statistics of research. In terms of deviation scores (x = X − X̄
and y = Y − Ȳ )

rxy =
Σxy√

Σx2Σy2
. (2)

Depending upon the characteristics of the data, the correlation as defined in Equation 2
has many different names. If both X and Y are continuous, then the resulting correlation
is known as the Pearson Product Moment Correlation Coefficient (or just Pearson r).
If converted to ranks, as Spearman’s ρ, and if both X and Y are dichotomous as the
φ coefficient (Table 3). Three of the correlations shown are estimates of what the latent
continuous correlation would be if two continuous latent variables (χ and ψ) were artificially
dichotomized (the tetrachoric), or split into multiple levels (the polychoric) correlation.

Because the first four of these correlations are just different forms of the Pearson
r (albeit it in different forms), the same estimation function can be used. In core R this
is just the cor function or to find covariances the cov function. The last three require
specialized functions written for polytomous (or dichotomous) data (i.e., the psych package
functions polyserial, tetrachoric and polychoric. All of these functions are combined
in mixed.cor.)

The tetrachoric correlations of ability data (answers are right or wrong) and the
polychoric correlations of self report temperament scales (typically on a 1-4, 1-5, or 1-6
scale), being the modeled correlation of continuous latent scores, will be larger in absolute
value than the Pearson correlations of the same data. In addition, these estimates of the
latent correlations are not affected by differences in distributions the way the Pearson r on
the observed variables is. An example of the difference between a Tetracoric and a Pearson
φ is seen in Table 7 where φ = .32 but the inferred relationship between two continuous
variables was .54.

The ubiquitous correlation coefficient

The correlation is also a convenient measure of the size of an effect (Ozer, 2007).
It has long been been known that the difference in means compared to the within group
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Table 3: A number of correlations are Pearson r in different forms, or with particular assumptions.

The first four use r =
∑
xiyi√∑
x2
i

∑
y2i

, The last three are based upon assumptions of normality of

a latent X and Y, with an artificial dichotomization or categorization into discrete (but ordered)
groups.

Coefficient symbol X Y Assumptions

Pearson r continuous continuous
Spearman rho (ρ) ranks ranks
Point bi-serial rpb dichotomous continuous
Phi φ dichotomous dichotomous
Bi-serial rbis dichotomous continuous normality
Tetrachoric rtet dichotomous dichotomous bivariate normality
Polychoric rpc categorical categorical bivariate normality

standard deviation: the d statistic of Cohen (1962,9,9) is a better way to compare the
difference between two groups than Student’s t statistic. For it is the size of the difference
that is important, not the significance. An undue reliance of “statistical significance” has
ignored the basic observation that the test of significance = size of effect x size of study
(Rosenthal, 1994) and that the resulting p value is a non-linear function of the size of the
effect. To remedy this problem, Cohen (1962) developed the d statistic for the comparison
of two groups (use cohen.d). Generalizations for multiple groups or continuous variables
allow the translation of many alternative indices of effect size into units of the correlation
coefficient (see Table 4). Robust alternatives to d (found by d.robust) express differences
in terms of trimmed means and Winsorized variances (Algina, Keselman, and Penfield,
2005; Erceg-Hurn and Mirosevich, 2008). Basic principles in reporting effect sizes are
available in a recent tutorial (Pek and Flora, 2018).

Multiple Regression and the general linear model

Just as the t-test and the F -test may be translated into correlations units, so they
can be thought of in terms of the general linear model (Judd and McClelland, 1989):

Ŷ = µ+ βX + ε. (3)

X can be an experimental design matrix with one or more independent grouping
variables but it can also include a set of person variables. In the case of just one dichotomous
grouping variable, then Equation 3 is just the regression of the two levels of X with the
dependent variable and is similar to the comparison of the means of Student’s t (Student,
1908). t is typically expressed as difference of means compared to the standard error of
that difference but is better expressed as an effect size multiplied by one half the square
root of the degrees of freedom (df) or the ratio of the correlation times the square root of
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Table 4: Alternative Estimates of effect size. Using the correlation as a scale free estimate of
effect size allows for combining experimental and correlational data in a metric that is directly
interpretable as the effect of a standardized unit change in x leads to r change in standardized y.

Statistic Estimate r equivalent as a function of r

Pearson correlation rxy =
Cxy

σxσy
rxy

Regression by.x = Cxy
σ2
x

r = by.x
σy
σx

by.x = r σxσy
Cohen’s d d = X1−X2

σx
r = d√

d2+4
d = 2r√

1−r2

Hedge’s g g = X1−X2
sx

r = g√
g2+4(df/N)

g =
2r
√
df/N√

1−r2

t - test t = d
√
df

2 r =
√
t2/(t2 + df) t =

√
r2df
1−r2

F-test F = d2df
4 r =

√
F/(F + df) F = r2df

1−r2
Chi Square r =

√
χ2/n χ2 = r2n

Odds ratio d = ln(OR)
1.81 r = ln(OR)

1.81
√

(ln(OR)/1.81)2+4
ln(OR) = 3.62r√

1−r2

requivalent r with probability p r = requivalent

the degrees of freedom to the coefficient of alienation (
√

1− r2, Brogden, 1946).

t =
X̄1 − X̄2√
σ2
1
n1

+
σ2
2
n2

=
d
√
df

2
=

r√
1− r2

√
df (4)

where the degrees of freedom are n1 + n2 − 2 (Rosnow and Rosenthal, 2003). The slope of
the regression is the effect size, dividing this by the coefficient of alieniation and multiplying
by the square root of df converts the regression to a t. It is found in R with the t.test

function.

If X has two categorical grouping variables (e.g., x1 and x2), then we have

ŷ = µ+ β1x1 + β2x2 + β12x1x2 + ε (5)

which for categorical values of X is just the traditional analysis of variance of two main
effects and an interaction (Fisher, 1925). This may be found using the aov function which
acts on categorical variables and returns the traditional ANOVA output. With unbalanced
repeated measures designs, the lme function included in the lme4 package (Bates, Maechler,
Bolker, and Walker, 2015) allows a specification of random and fixed effects.

The advantage of the general linear model for psychologists interested in individ-
ual differences is that continuous person variables can be included in the same model as
experimental variables. This is a great improvement from prior approaches which would
artificially dichotomize the person variable into high and low groups in order to use an
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ANOVA approach. By retaining the continuous nature of the predictor, we improve the
power over the ANOVA test.

As an example of using the general linear model, we use a data set from Tal-Or,
Cohen, Tsfati, and Gunther (2010) that is discussed by Hayes (2013). Tal-Or et al. (2010)
measured the effect of an experimental manipulation of salience of a news article (cond) on
presumed media influence (PMI), perceived importance of the issue (import), and reported
willingness to change one’s behavior (reaction)3. The observed correlations are found by
using the lowerCor function and are given in Table 5.

Table 5: Correlations of the conditions with Perceived Media Influence, Importance of the message,
and Reaction to the message (Tal-Or et al., 2010). As is traditional in NHST, correlations that are
larger than would be expected by chance are marked with ‘magic astericks’. Confidence intervals
for these correlations are shown given normal theory (upper and lower normal) as well as estimated
by 1,000 bootstrap resamplings of the data (lower and upper empirical).

The Tal-Or et al. correlation matrix from lowerCor

Variable cond pmi imprt rectn

cond 1.00
pmi 0.18* 1.00
import 0.18* 0.28** 1.00
reaction 0.16 0.45*** 0.46*** 1.00

Note: ***p < .001; **p < .01; *p < .05.

Empirical and normal theory based confidence intervals from cor.ci.

Variable lwr.m lwr.n estmt uppr.n uppr.m

cond-pmi 0.01 0.01 0.18 0.36 0.36
cond-imprt 0.02 0.00 0.18 0.35 0.35
cond-rectn -0.01 -0.01 0.16 0.33 0.33
pmi-imprt 0.09 0.09 0.28 0.45 0.45
pmi-rectn 0.31 0.31 0.45 0.57 0.56
imprt-rectn 0.32 0.32 0.46 0.60 0.61

There are multiple ways to analyze these data. We could naively do three t-tests of
the experimental manipulation, find all of the intercorrelations, or do a regression predicting
reaction from the condition, perception of media influence (PMI) and perceived importance
of the message (Importance). All of these alternatives are shown in the appendix. The
setCor and mediate functions will also draw the regressions as path diagrams (Figure 3).

3With the kind permission of Nurit Tal-Or, Jonathan Cohen, Yariv Tsfati, and Albert C. Gunther, these
data were added to the psych package as the Tal Or data set.



STATISTICAL ANALYSIS 14

Mediation and Moderation

In the Tal-Or et al. (2010) data set, the experimental manipulation affected the
dependent variable of interest (reaction) but also two other variables (perception of media
influence and perceived importance of the message). There is a direct effect of condition on
reaction, as well as indirect effects through PMI and Importance. Conventional regression
shows the direct effect of reaction controlling for the indirect effects that go through PMI
and import. The total effect of condition on reaction is their covariance divided by the
condition variance and is known as the c effect (c =

σxy
σ2
x

= .125
.25 = .5). If we label the

paths from cond to PMI (a1 = .48) and from condition to import (a2 = .63), then the
indirect effects are the sum of the products through the two mediators (b1 = .40, b2 =
.32 → a1b1 + a2b2 = .48 ∗ .40 + .63 ∗ .32 = .4) then the direct effect is the total less the
indirect effect (c’ = c - ab = .1). We say that the effect of the experimental manipulation
is mediated through its effect on perceived importance and perceived media influence. The
error associated with the mediating term (ab) or the sum of product terms (a1b1 + a2b2)
needs to be found by bootstrapping the model multiple times (Preacher, 2015; Hayes,
2013; Preacher, Rucker, and Hayes, 2007; MacKinnon, 2008). By default, the mediate

function in psych does 5,000 bootstrap iterations. See the Appendix for sample output.
Other packages in R that are specifically designed to test mediation hypotheses include the
mediation (Tingley, Yamamoto, Hirose, Keele, and Imai, 2014) and MBESS (Kelley, 2017)
packages.

When doing regressions, we sometimes are interested in the interactions of two of
the predictor variables. For instance, when examining how women react to discriminatory
treatment of a hypothetical other Garcia, Schmitt, Branscombe, and Ellemers (2010)4

considered the interactive effects of beliefs about inequality and type of protest (individual
vs. collective vs. none) as they affected the appraisal of the other person. This example
of a moderated regression is discussed by Hayes (2013).

Interactions (also known as moderation, or moderated regression) are found by en-
tering the product term of the two interacting variables. There are several questions to ask
in this analysis that will change the interpretability of the results. For example, should the
data be mean-centered before finding the product term, and should the path models be
done using standardized or unstandardized regressions? The recommendation from Aiken
and West (1991) and Cohen, Cohen, West, and Aiken (2003) is to mean center. However,
Hayes (2013) rejects this advice. In both cases, the interaction terms will be identical,
but the main effects will differ depending upon centering or not centering. The argument
for mean centering is to remove the artificial correlation between the main effects and the
interaction term. For with positive numbers X and Y, their product XY will be highly
correlated with X and Y. This means that the linear effects of X and Y will be underes-
timated. The setCor and mediate functions will by default mean center the data before

4With the kind permission of Donna M. Garcia, Michael T. Schmitt, Nyla R. Branscombe, and Naomi
Ellemers, the data are included as the Garcia data set in the psych package
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A:  Regression
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Figure 2. Regression and mediation approaches to the Tal-Or et al. (2010) data set. The curved
lines represent covariances, the straight lines, regressions. Panel A shows the full regression model,
Panel B shows the total effect (c=.5) and the direct effect (c’ = .1) removing the indirect effect
(ab) through PMI (.19) and through Import (.20).

finding the product term, however this option can be modified. The lm does not and so we
need to take an extra-step to do so. The function scale will mean center (and by default
standardize). The second question, whether to standardize or not, is one of interpretability.
Unstandardized coefficients are in the units of the predictors and the criteria and show how
much the DV changes per unit change in each IV. The standardized coefficients, on the
other hand are unit free and show how much change occurs per standard deviation change
in the predictors. Standardization allows for easier comparison across studies but at the
cost of losing the direct meaning of the regression slope. In the Appendix we show the code
for mean centering using scale and then using the lm function to do the regression with
the interaction term. We also show how the setCor function combines both operations.

Correlation, regression and decision making

When reporting standardized regression weights (βi) the amount of variance in the
dependent variable accounted for by the regression model is R2 = Σβiri. However it is
important to recognize that the slopes (βi) are the optimal fit for the observed data and
that the fit will probably not be as good in another sample. This problem of overfitting
is particularly problematic in machine learning (see below) when the number of variables
used in the regression is very large. Thus, regression functions will report the R2 as well
as shrunken or adjusted R2 which estimate what the fit would be in another sample. For
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A:  Moderated regression (std. and mean centered)
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Figure 3. Two ways of showing moderation effects: Panel A, as a path diagram with the product
term or Panel B: as a plot of the continuous variable (sexism) showing the individual regression
slopes for the three protest conditions. Data from Garcia et al. (2010).

n subjects and k variables, the adjusted R̃2 = 1− (1−R2) n−1
n−k−1 (Cohen et al., 2003), that

is, there will be more shrinkage for small sample sizes and a large number of predictors.

The R2 for a particular model is maximized by using the regression weights, but
because of what is known as the “Robust beauty of improper linear models” (Dawes, 1979)
or the principal that “it don’t make no nevermind” (Wainer, 1976), as long as the predictors
are moderately correlated with the criterion, using unit weights (1, 0, -1) works almost as
well. Weights are said to be ‘fungible’ (Waller, 2008; Waller and Jones, 2010) in that an
infinite set of weights will do almost as good a job as the optimal weights.

Although the variance in the criterion accounted for by the predictors is R2, it is
better to report the actual R, which reflects the amount of change in the criterion for unit
changes in the predictors (Ozer, 2007). Change is linear with R, not R2. This is particularly
important when discussing the correlation of a dichotomous predictor with a dichotomous
outcome (e.g., applicants are selected or not selected for a job, they succeed or they fail).
Consider the four outcomes shown in Table 6 applied to a decision study by Danielson and
Clark (1954) and elaborated on by Wiggins (1973). Of 504 military inductees, 89 were
later diagnosed as having psychiatric problems requiring their discharge. How well could
this future diagnosis be predicted? Using a screening test given to all of the inductees, 55%
of the future psychiatric diagnoses could be predicted, with a false alarm (false positive)
rate of 19%. This leads to an accuracy of classification (Valid Positives + Valid Negatives)
of .76 and a sensitivity of .55 and a specificity of .81 (Table 7). In this kind of binary



STATISTICAL ANALYSIS 17

decision, the φ coefficient is a linear function of the difference between the percent of Valid
Positives and the number expected due to the base rates (BR) times the selection ratio
(SR):

φ =
V P −BR ∗ SR√

(BR)(1−BR)(SR)(1− SR)
(6)

In the case of BR = SR =.5, 50% accuracy means a 0 correlation, 60 % a correlation of .2,
70% a correlation of .4, etc. That is, the number of correct predictions is a linear function
of the correlation (Ozer, 2007; Rosenthal and Rubin, 1982; Wiggins, 1973).

An alternative approach when considering accuracy in decision making is known
as ‘signal detection theory’ which was developed to model the detection of a signal in a
background of noise (Green and Swets, 1966). d’ (d-prime) relects the sensitivity of the
observer and β the criterion the observer was using to make the decision. Similar ideas
are seen in the NHST approach to significance testing, where effect size is equivalent to
d’ and the criterion used (.05, .01) is the decision criterion. The relationship predicted
accuracy as a function of the selection ratio, the base rates, and the size of the correlation
was discussed by Taylor and Russell (1939) who present tables for different values. The
equivalance of these various procedures in seen in (Figure 4) which presents graphically the
cell entries in Table 7. The AUC (area under the curve) function will take the two by two
table of decision theory and report d′, φ, rtetrachoric as well as total accuracy, sensitivity,
and specificity.

Table 6: The four outcomes of a decision. Subjects above a particular score on the decision axes
are accepted, those below are rejected. Similarly, the criterion of success is such that those above
a particular value are deemed to have succeed, those below that value to have failed. All numbers
are converted into percentages of the total.

Decision = Predicted Outcome
Accept Reject

Success Valid Positive (VP) False Negative (FN) Base Rate (BR)
Outcome

Failure False Positive (FP) Valid Negative (VN) 1 - Base Rate (1-BR)

Selection Rate (SR) 1-Selection Rate (1-SR)

Accuracy = Valid Positive + Valid Negative
Sensitivity = Valid Positive /(Valid Positive + False Negative)
Specificity = Valid Negative / (Valid Negative + False Positive)

Phi = V P−BR∗SR√
BR(1−BR)∗SR∗(1−SR)
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Table 7: Applying decision theory to a prediction problem: the case of predicting future psychiatric
diagnoses from military inductees. (Data from Danielson and Clark (1954) as discussed by Wiggins
(1973).

Raw Data
Predicted Positive Predicted Negative Row Totals

True Positive 49 40 99
True Negative 79 336 406
Column Totals 118 376 505

Fraction of Total
Predicted Positive Predicted Negative Row Totals

True Positive .097 .079 .196
True Negative .157 .667 .804
Column Totals .234 .746 1.00

Accuracy = .097 + .667 = .76
Sensitivity = .097/(.097 + .079) = .55
Specificity = .667 / (.667+.157) = .81
Phi = .097−.196∗.234√

.196∗.804∗.234∗.747
= .32

Latent Variable Modeling: EFA, CFA and SEM

There has long been tension in psychological research between understanding and
causal explanation versus empirical prediction and control. The concept of the underlying
but unobservable cause that accounts for the patterns of observed correlations was implicit
in the measurement models of Spearman (1904a) and considered explicitly by Borsboom,
Mellenbergh, and van Heerden (2003). This is the logic of the reflective latent variable
indicate in the paths of Figure 1 from the latent variables χ1 or χ2 to the observed variables
X1...X6. Figure 1 represents multiple causal paths: from the latent χ1..3 to the observed
X1..9 and from the latent η1..2 to the observed Y1..6 as well as from the latent predictors
( χ1..3) to the latent criteria ( η1..2). In this perspective, items are reflective measures
of the latent trait (Loevinger, 1957; Bollen, 2002) and can be thought to be caused by
the latent trait. The contrasting approach of prediction and control was traditionally the
domain of behaviorists emphasizing the power of environmental stimuli upon particular
response patterns. Stimulus-response theory had no need for latent variables; outcomes
were perfectly predictable from the stimulus conditions. In personality research this was
the appeal of empirical keys for the MMPI (Hathaway and McKinley, 1943; Butcher,
Dahlstrom, Graham, Tellegen, and Kaemmer, 1989), or Strong’s Vocational Interest Test
(Strong, 1927), and continues now with the statistical learning procedures we will discuss
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Figure 4. Signal detection theory converts the frequencies of a 2 x 2 table into normal equivalents
and shows the relative risks of false positives and false negatives. The number of valid positives
will increase at a cost of increasing false positives. Figure from the AUC function with input from
Table 7.

later. In this empirical approach, scales are composites formed of not necessarily related
items. The items are said to be formative indicators that “cause” the latent variable.

Exploratory Factor Analysis

The original concept for factor analysis was Spearman’s recognition that the correla-
tions between a number of cognitive ability tests was attenuated due to poor measurement.
When correcting for measurement error (see the reliability section where we discuss such
corrections for attenuation) all of the cognitive domains were correlated almost perfectly.
The underlying latent factor of these tests was thought to be a measure of general intelli-
gence.

Although the initial calculations were done on tables of correlations, when a kindly
mathematician told Thurstone in 1931 that his generalization of Spearman’s procedure was
just the taking the square root of a matrix (Bock, 2007), Thurstone immediately applied
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this new matrix algebra to his ability measures and produced his Vectors of the Mind
(Thurstone, 1933). Correlations were no longer arranged in tables, they were now elements
of “correlation matrices”. Factor analysis was seen as the approximation of a matrix with
one of lesser rank. In modern terminology, factor analysis is just an eigen decomposition
problem and is a very straight forward procedure.

For any symmetric matrix, R of rank n there is a set of eigen vectors that solve the
equation xiR = λixi and the set of n eigenvectors are solutions to the equation

XR = λX

where X is a matrix of orthogonal eigenvectors and λ is a diagonal matrix of the eigenvalues,
λi. Finding the eigenvectors and eigenvalues is computationally tedious, but may be done
using the eigen function. That the vectors making up X are orthogonal means that
XX′ = I and they form the basis space for R that is: R = XλX′. In plain terms, it is
possible to recreate the correlation matrix R in terms of an orthogonal set of vectors (the
eigenvectors) scaled by their associated eigenvalues.

We can find the principal components of R by letting

C = X
√
λ

and therefore
R = CC′. (7)

But such a decomposition is not very useful, because the size (rank) of the X matrix is
the same as the original R matrix. However, if the components are in rank order of their
eigenvalues, the first k (k < n) components will provide the best fit to the R matrix when
compared to any other set of vectors. Such a principal components analysis (PCA) is useful
for optimally describing the observed variables. The components are merely weighted sums
of the variables and may be used in applied prediction settings. The components are the
k orthgonal sums that best summarize the the total variability of the correlation matrix.
The pca function will do this analysis.

An alternative model, the common factor model attempts to fit the variance that
the n variables have in common and ignores that variance which is unique to each variable.

R ≈ FF′ + U2. (8)

where F is of rank k, and U2 is a diagonal matrix of rank n. The U2 matrix may be
thought of as the residual variance when we subtract the model (FF′) from the data (R)
U2 = R− FF′. Although it would seem that these two equations (7, 8) are quite similar,
they are not. For in the first case, the components are formed from linear sums of the
variables, while in the second, the variables reflect the linear sums of the factors.

Equation 7 can be solved directly for C, but equation 8 has different solutions for F
depending upon the values in the U2 matrix which in turn depend upon the value of k.
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If we know the amount of variance each variable shares in common with all of the other
variables (this is known as the communality and is h2

i = 1−U2
i ) then we can solve for the

factors. But, unfortunately, we do not know U2 unless we know F. The solution to this
conundrum takes advantage of the power of computers to do iterative solutions. Make an
initial guess of U2, solve equation 8 for F and take the resulting U2 as the input for the
next iteration. Repeat these steps until the change in U2, from one step to the next is very
small and then quit (Spearman, 1927; Thurstone, 1933,9,9).

Consider the correlation matrix in Table 8. A conventional initial estimate for the
communalities (diag(I-U2)) might be the Squared Multiple Correlation (SMC) of each
variable with all the others (the last line of Table 8 shows these values). Enter these in
the diagonal of the matrix and solve for F. Unfortunately exploratory factor analysis is
not quite as simple as this for there are at least four decisions that need to be made: what
kind of correlation to use, which factor extraction algorithm to use, how many factors to
extract, and what rotation or transformation should be applied?

Table 8: The Thurstone correlation matrix is a classic data set discussed in detail by R. P. Mc-
Donald (McDonald, 1985,9) and and is used as example in the sem package as well as in the PROC
CALIS manual for SAS. These nine tests were grouped by Thurstone and Thurstone (1941) (based
on other data) into three factors: Verbal Comprehension, Word Fluency, and Reasoning). The
original data came from Thurstone and Thurstone (1941) but were reanalyzed by Bechtoldt (1961)
who broke the data set into two. McDonald, in turn, selected these nine variables from the larger
set of 17 found in Bechtoldt.2. The sample size is 213.

Variable Sntnc Vcblr Snt.C Frs.L F.L.W Sffxs Ltt.S Pdgrs Ltt.G
Sentences 1.00
Vocabulary 0.83 1.00
Sent.Completion 0.78 0.78 1.00
First.Letters 0.44 0.49 0.46 1.00
Four.Letter.Words 0.43 0.46 0.42 0.67 1.00
Suffixes 0.45 0.49 0.44 0.59 0.54 1.00
Letter.Series 0.45 0.43 0.40 0.38 0.40 0.29 1.00
Pedigrees 0.54 0.54 0.53 0.35 0.37 0.32 0.56 1.00
Letter.Group 0.38 0.36 0.36 0.42 0.45 0.32 0.60 0.45 1.00
SMC 0.74 0.75 0.67 0.55 0.52 0.43 0.48 0.45 0.43

Which correlation?

If the data are continuous (or have at least 8-10 response levels), then the normal
Pearson r is the appropriate measure of relationship. But if the data are dichotomous (as
would be the case for items if scoring correct/correct on an ability test) or polytomous
(as is normally the case when scoring personality questionnaires with a 1-5 or 1-6 rating
scale), then it is better to use the tetrachoric correlation (for dichotomous items) or its
generalization to polytomous items, the polychoric correlation. The principal reason for
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doing so is that the Pearson correlation for items that differ in their mean endorsement
rate can not have a high correlation value and is attenuated. As discussed earlier, the
tetrachoric is the modeled correlation of the latent traits affecting the scores on the items
not the observed scores of the items themselves.

Unfortunately, using tetrachoric correlations will frequently produce correlation ma-
trices which are said to be non-positive-definite, which means some of the eigen values of
the matrix are negative. With appropriate assumptions, such matrices can be corrected
(smoothed) by adding a small number to any negative eigen value, adjusting the positive
ones to keep the same total, and then recreating the matrix from the original eigen vectors
and the adjusted eigen values (Wothke, 1993). This is done in the cor.smooth function.

Factor extraction. Factors are approximate solutions to Equation 8 and have a
degree of misfit. Each factoring method attempts to minimize this misfit. The basic fitting
equation is

E =
1

2
tr[(R− FF′)W]2 (9)

where tr means the trace (sum of the diagonals) of a matrix. If W is the identity matrix,
minimizing E is equivalent to ordinary least squares (OLS); if W = R−1, it is generalized
least squares (GLS), and if W = FF′−1 it is maximum likelihood (ML) (Loehlin, 2004).
Maximum likelihood (Lawley and Maxwell, 1962,9) has the advantage that under normal
theory it finds the model that maximizes the likelihood of the data given the model, but
with the disadvantage that it requires taking the inverse of the model. GLS is a close
approximation of ML, but requires that the original correlation matrix be invertible. OLS
does not require taking inverses but will not produce ‘optimal’ solutions (in the ML sense).
OLS (and the variant known as minimum residual (Harman and Jones, 1966) has the
advantage that it is more robust to violations of the model and will produce meaningful
solutions even in the presence of many, minor, ‘nuisance’ factors (MacCallum, Browne, and
Cai, 2007). Empirically, although not minimizing the ML criterion, minres solutions are
very close to it. All of these factor extraction techniques are available in the fa function
in the psych package as are alpha factoring (Kaiser and Caffrey, 1965) and minimum rank
factoring (Shapiro and ten Berge, 2002).

Number of factors. An unsolved problem in EFA is how many factors to extract.
Henry Kaiser is said to have solved the problem every day before breakfast, but the chal-
lenge is to find the solution (Horn and Engstrom, 1979). Perhaps the best known solution
(Kaiser, 1970) is also the worst: extract as many factors as the number of principal com-
ponents with eigen values larger than 1. This procedure, although the default for many
commercial packages, routinely will extract too many factors (Revelle and Rocklin, 1979).
Statistical criteria (e.g., extract factors as long as the χ2 of the residual matrix is signifi-
cant) suffer from the problem of being dependent upon sample size: the larger the sample,
the more factors are extracted. An appealing technique is to plot the successive eigen
values and look for a sharp break. Where the scree of trivial factors suddenly jumps to
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larger values, stop factoring (Cattell, 1966b). Another useful technique involving the plot
of the eigen values is to compare observed values versus those from random data (Horn,
1965). When the observed eigen values are less than those from random data, too many
factors have been extracted. This is a useful rule of thumb, but seems to break down
with more than about 500-1000 subjects, at which point the random eigen values are all
essentially 1.0. Yet another approach is to plot the size of the average minimum partial
correlation of the residual matrix. Where this achieves a minimum is an appropriate place
to stop (Velicer, 1976). For factoring items, a comparison of the goodness of fit of models
which zero out all except the largest loading for each item seems to produce a reasonable
estimate (Revelle and Rocklin, 1979). Finally, continuing the the extraction of factors as
long as they are interpretable is not unreasonable advice, although those of us unable to
interpret many factors will tend to be biased towards extracting fewer. The nfactors

function applies all of these tests, but unfortunately the typical result is that none of them
agree.

Rotations and Transformation. Given a factor solution F with elements (loadings) of
fij what is the best way to interpret it? The loadings reflect the correlation of the factors
with the items and differ by item and by factor. The sum of the squared loadings for each
item (row wise) is the amount of variance in that item accounted for by all of the factors.
This is known as the communality (h2

i = Σf2
ij). Items with high communality are well

explained by all of the factors, those with low communality are badly explained. For the
same value of communality, a variable is said to be more complex if several variables are
needed to explain its variance (have high loadings) and less complex if just one variable has

a high loading. An index of item complexity is ci =
(Σf2ij)2

Σf4ij
which will achieve a minimum

of 1 if all of the explained variance in an item is due to one factor (Hofmann, 1978). A
similar measure of factor complexity is to do the operation column wise. Multiplying the
F matrix by a orthogonal transformation matrix(T) will not change the communalities
but can change the item and factor complexities. In the orthogonal case, this is known
as rotation, if the resulting solution has correlated factors, we should refer to this as an
oblique transformation. We want to chose a transformation that provides a more ‘simple
structure’ (Thurstone, 1947) than the original F matrix. A number of different solutions to
this problem take advantage of the GPArotation package (Bernaards and Jennrich, 2005)
and are included in the fa function. Browne (2001) discusses how many of these are part
of the (Crawford and Ferguson, 1970) family of rotations. Some of the most frequently
used include Varimax (Kaiser, 1958,9) and Quartimax (Neuhaus and Wrigley, 1954) for or-
thogonal rotations and oblimin (Harman, 1976; Jennrich, 1979), Promax (Hendrickson and
White, 1964) Bifactor (Holzinger and Swineford, 1937; Reise, 2012) and Geomin (Yates,
1988) for oblique solutions. Unfortunately, some of these rotation procedures achieve local
minima in their fitting functions and it is recommended to do multiple random restarts to
confirm solutions. The net result of an oblique tranformation is the factor pattern matrix
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(F) and the factor structure matrix (S = Fφ) where φ is the correlation between the fac-
tors. When reporting an oblique transformation, it is important to show both the pattern
(F) and the correlation (φ).

Factor score indeterminancy. A problem with factor analysis is that although the
model is well defined at the structure level (modeling the covariances of the variables) it is
indeterminate at the individual score level (Grice, 2001). Factor scores are best estimates
of an individual’s score but should not be equated with the factor. Factor score estimates
correlate with the latent factors, but this correlation may be far from unity. The fa function
returns the correlation of the factor scores with the factor. If the correlation is less than
.707 (an R2 of .5), then two estimates of the factor score vector may actually be negatively
correlated with each other. Correlations of the factors with the factor score estimates are
a function of the number of variables marking the factor as well as the communality of the
variables.

Table 9: The minres solution using the fa function of the Thurstone data set. The factor solution
was then transformed to simple structure using the oblimin transformation. h2 is the communality
estimate, u2 is the unique variance associated with the variable, com is the degree of item complexity.
The pattern coefficients are shown as well as the correlation (φ) between the factors. Because this
is an oblique solution, the correlation matrix) is reproduced by FφF′ + U2. The sums of squares
for an oblique solution are the diagonal elements of φF′F.

Variable MR1 MR2 MR3 h2 u2 com
Sentences 0.90 -0.03 0.04 0.82 0.18 1.01
Vocabulary 0.89 0.06 -0.03 0.84 0.16 1.01
Sent.Completion 0.84 0.03 0.00 0.74 0.26 1.00
First.Letters 0.00 0.85 0.00 0.73 0.27 1.00
Four.Letter.Words -0.02 0.75 0.10 0.63 0.37 1.04
Suffixes 0.18 0.63 -0.08 0.50 0.50 1.20
Letter.Series 0.03 -0.01 0.84 0.73 0.27 1.00
Pedigrees 0.38 -0.05 0.46 0.51 0.49 1.96
Letter.Group -0.06 0.21 0.63 0.52 0.48 1.25

SS loadings 2.65 1.87 1.49

MR1 1.00 0.59 0.53
MR2 0.59 1.00 0.52
MR3 0.53 0.52 1.00

Confirmatory Factor Analysis

With the introduction of statistical measures of fit, it is now possible to fit and
then test particular factor models (Jöreskog, 1978; Rindskopf and Rose, 1988). Because
most models do not fit in an absolute sense, model comparison is recommended. Fit
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Table 10: Comparing the Varimax orthogonally rotated PCA (RC1..3) Minimum Residual (MR1..3),
obliquely transformed PCA (TC1..3) and oblique Minimum Residual (MR1..3) solutions. In order
to show the structure more clearly, loadings > .30 are boldfaced.

Variable RC1 RC2 RC3 MR1 MR2 MR3 TC1 TC2 TC3 MR1 MR2 MR3
Sentences 0.86 0.24 0.23 0.90 0.01 0.03 0.83 0.25 0.26 0.90 -0.03 0.04
Vocabulary 0.85 0.31 0.19 0.88 0.10 -0.02 0.83 0.32 0.22 0.89 0.06 -0.03
Sent.Completion 0.85 0.26 0.19 0.89 0.04 -0.01 0.78 0.28 0.23 0.84 0.03 0.00
First.Letters 0.23 0.82 0.23 0.03 0.84 0.07 0.23 0.79 0.23 0.00 0.85 0.00
Four.Letter.Words 0.18 0.79 0.30 -0.03 0.81 0.16 0.21 0.71 0.29 -0.02 0.75 0.10
Suffixes 0.31 0.77 0.06 0.17 0.79 -0.14 0.31 0.62 0.13 0.18 0.63 -0.08
Letter.Series 0.25 0.16 0.83 0.10 -0.01 0.84 0.23 0.18 0.80 0.03 -0.01 0.84
Pedigrees 0.53 0.08 0.61 0.49 -0.14 0.55 0.45 0.17 0.52 0.38 -0.05 0.46
Letter.Group 0.10 0.31 0.80 -0.11 0.21 0.82 0.16 0.31 0.63 -0.06 0.21 0.63

statistics include χ2, the Root Mean Square Error of Approximation (RMSEA) which

adjusts the χ2 for the degrees of freedom and sample size (N) (RMSEA =
√

χ2−df
df(N−1)), the

standard deviation of the residuals (RMSR), the Akaike Information Criterion (AIC =
χ2 + k(k − 1) − 2df) which also considers the number of variables in the model (k), and
the Baysian Information Criterion (BIC = χ2 + ln(N)(k(k + 1)/2 + df)). These fits are
actually estimates of misfit. That is, the larger the χ2, the less well the model fits the data.
The question then becomes how bad is bad? Barrett (2007) gives very strict interpretation
of what makes a good model; Marsh, Hau, and Wen (2004) suggests there is no golden
rule of fit, and Loehlin and Beaujean (2017) give a very useful discussion of how to report
fit statistics. The most important thing to remember is that this is a model comparison
procedure where we compare multiple models to see which is better, not which is correct.

EFA is seen as a hypothesis generation procedure and CFA as a hypothesis confirma-
tion procedure: the initial model might be derived from an EFA and then tested using CFA
on a different data set. A powerful but easy to use package to do this is lavaan (Rosseel,
2012). Other CFA packages include sem (Fox, Nie, and Byrnes, 2016) and OpenMX (Neale,
Hunter, Pritikin, Zahery, Brick, Kickpatrick, Estabrook, Bates, Maes, and Boker, 2016).
lavaan syntax is very straightforward, and allows one to specify and test any particular
model.

An important use of CFA is evaluating whether the factor structure of a set of vari-
ables is the same across time, or across groups. These are important questions when com-
paring people across groups or people over time, for it is not possible to make comparisons
if the measures are different. Three tests of factor invariance are typically considered:
configural, metric, and scaler (also known as weak, strong, and strict). Configural asks
whether the structure is the same across groups, metric asks whether the loadings are the
same (or do not differ very much), and scaler ask whether the means and intercepts of
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the factors are the same. Testing for invariance is thus a set of comparisons of structures
across groups. The measurementInvariance function in the semTools package (semTools
Contributors, 2016) has been developed to do this in lavaan.

Structural Equation Modeling

Combining observations, latent variables and regression into one structural model
(see Figure 1) seems to be an obvious step. How to combine the path tracing rules of
Wright (1920,9) with factor analysis and reliability theory by using modern estimation
algorithms was, however, an important insight. Developed independently by Keesling
(1972), Jöreskog (1977) and Wiley (1973) the use of fitting regression models with latent
variables was soon identified with a computer algorithm for Linear Structural Relations
(LISREL) (Jöreskog, 1978; Joreskog and Sorbom, 1993) (see Tarka (2018) for a thorough
history). Very influential texts on SEM include those of Bollen (1989, 2002), Loehlin and
Beaujean (2017) and Mulaik (2009). How to report SEM is discussed by McDonald and
Ho (2002) and others.

In addition to LISREL, the development of the proprietary programs EQS (Bentler,
1995) and MPLUS (Muthén and Muthén, 2007) made SEM available to many. Now, with
the introduction into R of the sem (Fox, Nie, and Byrnes, 2013), lavaan (Rosseel, 2012)
and OpenMx (Neale et al., 2016) packages, SEM and CFA are part of the open source
armamentarium for all. Bayesian approaches are available in the blavaan (Merkle and
Rosseel, 2016) which takes advantage of the lavaan package.

Combining formative causal variables with reflective indicator variables is done in
MIMIC models (multiple indicators, multiple causes) where a latent variable is seen as
formed from a set of causal variables but in turn causes another latent variable which is
indicated by a number of reflective measured variables. An early example of a MIMIC
model is the causative effect of education, occupation, and income on the latent variable
of social status which in turn effects the latent variable of social participation which is
measured by church attendance, memberships and the number of friends seen (Jöreskog
and Goldberger, 1975).

Perhaps one of the most powerful uses of SEM techniques is in examining growth
curves over time. Given a set of participants at time 1, what happens to them over weeks,
months, or years? Growth curve models allow for the separation of trait and state effects
(Cole, Martin, and Steiger, 2005) as well as an examination of change (McArdle and Bell,
2000; McArdle, 2009). Tutorials for using lavaan include growth curve analysis and are
included in the help pages for lavaan.

In an important generalization of the problem of fungible regression weights (Waller,
2008; Waller and Jones, 2010) Lee, MacCallum, and Browne (2018) showed how with a
very small decrease in fit (increase in RMSEA), path coefficients in equivalent models that
fit equally well can actually differ in sign. This is just one of the many cautions in how to
interpret SEM results. For SEM fit statistics are merely fits of a model to the data. What is
needed is comparisons of the fit of alternative/equivalent models. It is important to realize
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that reversing the direction of causal arrows in many SEM models does not change the fit,
but drastically changes the interpretation (MacCallum, Wegener, Uchino, and Fabrigar,
1993).

Reliability: correlating a test with a test just like it

A powerful use of correlation is assessing reliability. All measures are contaminated
with an unknown amount of error. Reliability is just the fraction of the measures that is
not error and is the correlation of a measure with another measure that is just like the first
measure (Revelle and Condon, 2018a,0). Using Vx to represent observed total test variance
and σ2

e to represent unobserved error variance then the reliability (rxx ) of a measure is

rxx = 1− σ2
e

Vx
. (10)

In terms of the observed and latent variables in Figure 5, x = χ + ε1, and a test just like
it is x′ = χ+ ε2 with correlation rxx. To infer the latent correlation between χ and η, rχη,
we can correct the observed correlation rxy for the reliabilities rxx and ryy

rχη =
rxy√
rxxryy

, (11)

Equation 11 was proposed by Spearman (1904b) and the problem since then has been how
to estimate the reliability. This is important because if we underestimate the reliability, we
will overestimate the disattenuated correlation (Equation 11). There are several different
ways to estimate reliability. All agree on the basic principle that items represent some
unknown amount of latent score and another unknown amount of error score; the problem
is how to measure the relative contributions. Before the era of modern computers, several
shortcuts were proposed that – with some very strong assumptions – would allow reliability
to be found from the total test variance and the sum of the item variances. Equivalent
forms of this procedure are known as (KR20, Kuder and Richardson, 1937) (λ3, Guttman,
1945) and (α, Cronbach, 1951). Essentially these coefficients are a function of the average
inter-item correlation and do not depend upon the structure of the test items. They are
all available in the alpha function in psych.

Model based reliability measures

Procedures that take into account the internal structure of the test using factor
analysis (so called model based procedures) include ωt and ωh of McDonald (1999), and
various estimates of the greatest lower bound of the test reliability (Bentler, 2017). By
applying factor analytic techniques, it is possible to estimate the amount of variance in
a test that is attributable to a general factor (ωh) (Revelle and Zinbarg, 2009; Zinbarg,
Revelle, Yovel, and Li, 2005), as well as the general plus all group factors (total reliability
or ωt). With modern computing techniques, these model based estimates are easy to find
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Construct 1 Construct 2

Latent

Measures

Observed

Measures

χ η

x′ x y y′

δ1 δ2 ε1 ε2

ρχη

V alidity

√
rxx′

√
rxx′

√
ryy′

√
ryy′

rxx′ ryy′rxy

Observed

Figure 5. The basic concept of reliability and correcting for attenuation. All four observed variables
(x, x’, y, y’) reflect the latent variables χ and η) but are contaminated by error (δ1..2, ε1..2). Adjusting
observed correlations (rxy) by reliabilities (rxx′ , ryy′) estimates underlying latent correlations (ρχη).
(See Equation 11). Observed variables and correlations are shown in conventional Roman fonts,
latent variables and latent paths in Greek fonts.

(e.g., omega will find ωh and ωt as well as α). Estimates of ωh and ωt are preferred over α
because they are sensitive to the actual structure of the test. α is an estimate based upon
the average correlation and the very strong assumption that all the items are equally good
measures of the latent trait. (More formally, the items are assumed to be τ equivalent: they
all have equal loadings on the latent trait). This was a reasonable assumption to make as a
short cut before we had computers. Now, there is no reason to settle for the shortcut. It is
not uncommon to find tests with moderate levels of α that actually measure two unrelated
or only partially related constructs. It is only by applying model based techniques that we
can identify the problem (e.g., Rocklin and Revelle, 1981).



STATISTICAL ANALYSIS 29

Reliabilty of raters

Rather than evaluating the reliability of a test, sometimes we want to know how much
raters agree with each other when making judgements. If the ratings are numeric, this is
done by finding one of several Intraclass Correlations (ICC). Depending upon whether we
view raters as random or fixed, and whether the raters rate all subjects or just one each,
and whether we pool the judgements of different raters, we end up with six different ICCs
(Shrout and Fleiss, 1979; Revelle and Condon, 2018b), all of which are found by the ICC

function. ICC uses the power of R to chain functions together: it performs a one or two
way analysis of variance, extracts the mean squares or estimates of variance components,
and find the appropriate ratio of variance components.

If the ratings are categorical rather than numeric, it is possible to compare the
agreement of two raters in terms of Cohen’s Kappa statistic (Cohen, 1960,9) which corrects
the observed proportions of agreement for the expectations given the marginal base rates.
This is done by the cohen.kappa function. An example of such ratings is given by Guo
et al. (2016) who had raters evaluate the presence or absence of particular themes in a set
of life narratives.

Structure vs. Process

Factor analysis and estimates of reliability typically examine the structure of person-
ality items and tests. In terms of Cattell’s data box of people by measures by occassions
(Cattell, 1946,9) this an example of what Cattell called “R” analysis (people over mea-
sures). They do not tell us about how people differ over time. Repeated measures allow
us to examine the process of change. With the use of multi-level modeling techniques, it
is possible to examine individual differences in within person structure over time (Cattell
called this “S” analysis).

Statistical analysis of within subject variability

Although initially done using daily diaries (Bolger, Davis, and Rafaeli, 2003), with
the use of personal digital assistants and now cell phone apps, it is possible to collect
intensive within subject data once to many times per day for several weeks or even months
(Fisher, 2015; Wilt, Funkhouser, and Revelle, 2011; Wilt, Bleidorn, and Revelle, 2017,0;
Wilt and Revelle, 2017). Excellent reviews of how to analyze these intensive longitudinal
data include Hamaker, Ceulemans, Grasman, and Tuerlinckx (2015) and Hamaker and
Wichers (2017). Shrout and Lane (2012) and Revelle and Wilt (2019) provide useful
tutorials for examining multilevel reliability, and the multilevel.reliability function
will do all these calculations in R. A basic question is whether the data are ergodic (each
individual subject can be seen as representing the entire group) or whether the patterning
of each individual is a meaningful signal in its own right. Different approaches to ergodicity
include those of Nesselroade and Molenaar (2016) and Revelle and Wilt (2016).
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Functions to do these within subject analyses include multilevel regression using
lme4 and nlme, correlational structures within and between groups using statsBy and
examining factor structures for invariance across subjects using measurementinvariance

in the semTools package. The multilevel package (Bliese, 2016) comes with very useful
documentation on doing some of the more complicated forms of multilevel analyses.

Computational modeling of process

Another very powerful approach to studying within person processes is computa-
tional modeling. This is not a statistical approach so much as a way to develop and test
the plausibility of theories. It is however, an important use of computer analysis for it can
compare and test the fit of alternative dynamic models. Read and Miller and their col-
leagues (Read, Vanman, and Miller, 1997; Read, Monroe, Brownstein, Yang, Chopra, and
Miller, 2010; Yang, Read, Denson, Xu, Zhang, and Pedersen, 2014; Read, Brown, Wang,
and Miller, 2018) have implemented a neural network model of the structure and dynamics
of individual differences. (Read et al., 2010). Pickering (2008) has implemented several
different representations of Gray’s Reinforcement Sensitivity Theory (Gray, 1991; Gray
and McNaughton, 2000). Although written in MatLab, it is straight forward to translate
them into R. A model of the dynamics of action (DOA, Atkinson and Birch, 1970) was
implemented as program for main frame computers (Atkinson, Bongort, and Price, 1977)
and then reparameterized as the Cues-Tendency Action model and implemented as the cta
function (Revelle, 1986; Revelle and Condon, 2015). The CTA model has been combined
with the RST model into the cta.rst function by Brown (2017) and provided good fits to
empirical data.

Other statistical techniques

Aggregating data by geographic location

Most personality analysis focuses on individuals, but many interesting questions
may be asked concerning differences in the aggregated personality of groups. Whether
aggregating the scores of subjects by college major, socioeconomic status, or geographic
location, the typical first step is the same: find the mean score for each group. The
statsBy function provides mean values for any number of variables by a selected grouping
variable, as well as a suite of statistics and output for analysis of aggregated variables.
For example, the statsBy function outputs a correlation matrix for both between groups
(the rbg object) and within groups (the rwg object). The correlation between aggregated
groups is known to sociologists as the ecological correlation (Robinson, 1950). The rbg

object weights correlations by the number of subjects in each group due to the fact that
estimates of a mean are more accurate with more subjects. A non-weighted between groups
correlation matrix could be obtained by applying the cor function to the mean object of
statsBy output.
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When analyzing aggregated data, it is critical to keep in mind that a correlation
between two variables may not be consistent between groups and within groups (Yule,
1903; Simpson, 1951). Kievit, Frankenhuis, Waldorp, and Borsboom (2013) provide some
excellent illustrations of this phenomenon, known as the Yule-Simpson paradox, where the
within group correlations are of the opposite sign of the between groups correlations; for
example, although a higher dosage of a medication is positively related to the likelihood
of patient recovery across genders, dosage is negatively correlated with patient recovery
within each gender. Another striking example of the effect is the finding that although
at the aggregate level, the University of California seemed to discriminate against women
in their admission policy, the individual departments actually discriminate in their favor
(Bickel, Hammel, and O’Connell, 1975). The simpsons package (Kievit and Epskamp,
2012) allows for detailed examination of data that can produce this effect. The important
point, as made by Kievit et al. (2013) and Robinson (1950) is not to dismiss aggregate level
relationships but to realize that that the level of generalization depends upon the level of
analysis.

How large are the effects of aggregation? Two coefficients (intraclass correlations
or ICCs) are reported when examining aggregated data. ICCs describe variance ratios
for each aggregated variable in terms of within and between group variance components.
ICC1 is an effect size that indicates the percentage of variance in subjects’ scores that is
explained by group membership (Shrout and Fleiss, 1979). Although sometimes expressed
in terms of the between group and within group means squares from the traditional analysis
of variance approach, a clearer definition may be expressed as the variance ratio of between
group variance (σ2

bg) to the total variance. The total is the sum of the between (σ2
bg) and

within group (σ2
wg) variance. ICC2 (also known as ICC1k) takes into account the average

number of observations within group (n̄) and is a measure of the reliability of the group
mean differences. It is the Spearman-Brown reliability formula applied to ICC1:

ICC1 =
σ2
bg

σ2
bg + σ2

wg

ICC2 =
σ2
bg

σ2
bg +

σ2
wg

n̄

. (12)

In plain English, ICC2 indicates the extent to which the aggregated scores of a
variable are reliably different from one another. Assuming one’s current data are a random
sample, if a new random sample is collected with the same average number of participants
per group, ICC2 estimates the correlation between the group scores of the first sample
and the second sample (James, 1982). ICC2 indicates that aggregated scores are still
reliable (i.e., a high ICC2) even if there is a miniscule amount of variance explained in
aggregation (i.e., a low ICC1), provided one has enough subjects per group (i.e., a large
n̄). The statsBy function outputs ICC1 (the ICC1 object), ICC2 (the ICC2 object) and
the number of subjects in each group who responded to each variable (the n object).

In the last two decades, international collaborations and online personality assess-
ments have collected enormous data sets with samples an order of magnitude larger than
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what was possible a few decades ago (e.g., Gosling, Vazire, Srivastava, and John, 2004;
Revelle, Condon, Wilt, French, Brown, and Elleman, 2016). Geographical psychology is
a subfield that has taken advantage of these large data sets, investigating how and why
psychological phenomena are aggregated by residence of geographic locations (Rentfrow
and Jokela, 2016), both large (e.g., countries; McCrae and Terracciano, 2008) and small
(e.g., postal codes; Jokela, Bleidorn, Lamb, Gosling, and Rentfrow, 2015) . Relatively
straightforward correlational analyses at an aggregated geographic level (e.g., Rentfrow,
Gosling, and Potter, 2008) are replicable (e.g., Elleman, Condon, Russin, and Revelle,
2018). Geographical psychology researchers have started to explore novel approaches, such
as determining the extent to which a psychological phenomenon is spatially clustered be-
tween locations; for a psychological variable, is a given location more similar to neighbor
locations than more distant locations (e.g., Jokela et al., 2015). Bleidorn, Schönbrodt,
Gebauer, Rentfrow, Potter, and Gosling (2016) explored both individual and aggregated
levels of their data to calculate “person-city personality fit” and found that this fit was re-
lated to the life satisfaction of individuals. The complexities of spatial analysis are beyond
the scope of this chapter but see Rentfrow and Jokela (2016) for an overview and Rent-
frow (2014) for details. The spdep package (Bivand and Piras, 2015) supplies functions
pertaining to spatial autocorrelation, weights, statistics, and models.

Statistical Learning Theory

The study of individual differences has expanded beyond academic personality re-
search to computer scientists who are taking advantage of the “big data” possible to collect
though web based techniques. Algorithms popular among computer scientists to analyze
individual differences data in a prediction context are known generically as “machine learn-
ing” or “statistical learning theory.” Although some of these techniques are new, some of
them repackage traditional methods with new labels (e.g., the φ coefficient of Pearson
and Heron, 1913, has been ‘rediscovered’ as a measure of fit but with a new name: the
Matthews Correlation Coefficient). We include a brief discussion of these techniques as
many personality researchers will likely interact with computer scientists and it is worth
learning the “new” vocabulary.

Machine learning is a term without a universally agreed-upon definition. In general,
it concerns the prediction of outcome variables from models trained on other datasets and
it can be used to refer to a broad range of techniques from logistic regression to neural
networks (Hastie, Tibshirani, and Friedman, 2001). The core emphasis in machine learning
is on generalization of algorithmic performance to new data, meaning that researchers must
shift their focus away from explanation of underlying constructs and toward prediction
when using these techniques (Yarkoni and Westfall, 2017). For the purposes of this chapter,
it is useful to illustrate some of the methods in the domain of machine learning that are
distinct from the traditional regression-based modeling that is more common in psychology.

One such method falls underneath the umbrella term of classification and regression
tree (CART) methods. CART methods involve the recursive separation of observations
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into distinct subgroups with a goal of enhancing subgroup homogeneity. The algorithm
will first segment the observations based on the value of the variable that it has found to
lead to the largest reduction in impurity, the exact measure of which depends on the type
of problem at hand (e.g., Gini impurity index, entropy). Each of the subgroups created in
this split will then be considered separately for further partitioning, until a desired fit to
the training data has been reached. This process can be computed automatically through
the rpart package (Therneau and Atkinson, 2018). CART methods are readily amenable
to the creation of attractive output in the form of decision trees, which graphically display
a series of sequential steps constituting the final partitions determined by the algorithm.
These figures are interpretable by non-statisticians with little training, enhancing the ap-
plicability of these methods to a variety of applied contexts. Unfortunately, there is a
downside to these methods: classification and regression trees tend to overfit the training
sample data, meaning that they tend to extend beyond interpretable signal in a dataset
to incorporate noise.Decision tree methods tend to produce models with a high amount of
variability. As such, while predictive accuracy may be acceptable on the training dataset,
these methods tend to not perform as well as simpler models when applied to out-of-sample
data. Fortunately, their predictive capabilities can be dramatically enhanced by incorpo-
rating a class of techniques called ensemble methods, which aggregate many different trees
to harness their power.

In general, ensemble methods take advantage of the power of averages to create
estimates that have lower variance than any of the constituent observations. The logic
behind the utility of averages can be understood through an extension of the Central Limit
Theorem, in which the variance of the mean of a group of n independent observations,
each with a variance of σ2, is σ2/n. As such, if we were able to create trees from many
different training datasets and aggregate the results, the resultant model would have lower
variance than any individual model alone (James, Witten, Hastie, and Tibshirani, 2013).
Unfortunately, this is not typically a feasible process, as it would be rare to have many
different training datasets at the ready. However, we are able to approximate this process
through a method of bootstrap random sampling in which we repeatedly take random
samples with replacement from our training dataset, creating many different bootstrapped
datasets. This method of aggregation can be applied to a variety of statistical techniques,
but applying this method to decision trees, we are able to fit a tree to each of these boot-
strapped training datasets, aggregate the results, and get an ultimate prediction that does
not suffer as much from the high variance concerns of the individual trees. Thus, ensemble
methods form a relatively simple means by which the predictive power of classification
and regression trees can be enhanced, making them compelling options for personality
researchers with the goal of enhancing prediction.

Three of the most popular ensemble techniques used in the context of tree-based
machine learning methods are bagging, random forests, and boosting. In bagging, obser-
vations are randomly sampled from the training dataset through bootstrapping methods
to create many distinct datasets. A different tree is then grown based on each of these
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bootstrapped datasets, resulting in many trees, each of which have a potentially different
set of decision rules on which they based their predictions. The results of these trees are
then aggregated to create a final prediction for each observation. Predictions are evaluated
on the ‘out-of-bag’ observations that were left out of the bootstrap samples, providing a
validation set of all observations not used in the creation of a subset of trees (James et al.,
2013). Random forest methods can be viewed as special forms of bagging in which variables
are randomly selected alongside the observations in the training dataset. More specifically,
during the process of growing the tree from the training dataset, variables are randomly
selected at each node to be used in the creation of the tree. Why add this additional
step? While the general process of bagging reduces variance by bootstrapping multiple
trees, each of the trees will be correlated due to the inclusion of identical variables at every
split. In certain cases (i.e., when one variable is much more important in the prediction of
the outcome than others) this will lead to many trees that are nearly identical. Averaging
trees that are very similar will not lead to as large a reduction in variance as averaging
uncorrelated trees. Random forest methods address this by changing the variables made
available at each potential node split in the trees, effectively decorrelating the trees and
theoretically decreasing the variance of a given predictive model. In general, if p is the
number of predictors,

√
p is the number of variables selected at each split for classification

problems and p/3 variables are selected at each split for regression problems, although this
number should be determined based on hyperparameter tuning given the dataset at hand
(Hastie et al., 2001). Both bagging and random forest techniques can be computed in R
using the randomForest package (Liaw and et al., 2002). By setting the ‘mtry’ argument
to equal the number of variables in the model, a bagged model will be run, otherwise it
will be random forest.

Boosting methods are conceptually similar to bagging and random forests, but alter
the way that the trees update their information. Specifically, boosting involves sequentially
updating each tree by fitting the residuals of the tree before it. In this manner, boosting
attempts to target the areas of weakness of the previous trees and update them accordingly.
The boosting algorithm completes this procedure slowly to avoid overfitting, each time
fitting the residuals of the previous model before adding this fitted tree back to the original
tree after applying a shrinkage parameter, thus updating the residuals. The power in
the predictive ability of boosting comes from its slow progression and sequential growth
based on residuals of previous trees. However, this practice of fitting residuals can lead
to overfitting if the tree grows too fast and thus we want the algorithm to proceed slowly.
Boosting tends to outperform bagging and random forest on prediction metrics, but may
not be as conceptually clear as those methods due to the fitting of residuals. The preference
is up to the researcher. Popular packages in R to fit boosted models include xgboost (Chen,
He, Benesty, Khotilovich, Tang, Cho, Chen, Mitchell, Cano, Zhou, Li, Xie, Lin, Geng, and
Li, 2018) and gbm (Ridgeway et al., 2017). Python is another language commonly used in
machine learning as it allows somewhat faster processing of very large data sets.

Taken together, these ensemble methods are referred to as “black box” methods,
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which means that their exact inner workings remain unknown to the practitioner. In other
words, while a researcher may be able to tell that a random forest model provides excellent
predictive accuracy, they would not be able to view each decision tree used in the crafting
of the prediction. As such, these ensemble methods are best used when the major aim of
a project is prediction and they may not be appropriate for situations in which a precise
theoretical model is desired. This may be discomforting to personality psychologists who
have largely been trained to prioritize theoretical modeling, but it is simply another possible
way to analyze data with a predictive focus. Researchers are not left completely in the dark
about the inner workings of the models, however: they are able to influence the way that the
model constructs and aggregates the individual trees in these ensemble methods through
the selection of various hyperparameters. These hyperparameters include the number of
trees grown in all three methods, number of variables selected at each node in random
forests, and how slowly the trees grow in boosting. Adjusting these hyperparameters to
influence the performance of the ensemble methods is critical to predictive performance
and can be done with through trial and error or cross validation.

The aforementioned methods are intriguing in that they provide the tools for cre-
ating a more prediction-focused study of individual differences. While promising in their
potential impact on the field in the future, machine learning results should generally be
viewed through a lens of caution, as many complicated methods may be outperformed by
comparatively simpler methods of linear and logistic regression. A shift toward a more
predictive science would be welcomed, but we must be sure to select methods to suit the
problem at hand and not just apply these methods with abandon.

Conclusion

Personality research has come a long way from the simple correlation of Galton
(1888), Pearson (1895), and Spearman (1904b). Advances in the past few years have
brought powerful computation to the desk or lap of the individual researcher. Open source
software has made complex research questions answerable by people anywhere in the world.
Computational model techniques that used to take days on multi-million dollar computers
can now be done in seconds on very affordable laptops. Data can be shared across the web,
analyses can be duplicated using published and open source computer code. Statistical
testing and modeling of psychological data and theory has never been easier for those
willing to learn the modern methods.
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Appendix

The R code for the various examples is shown here.
Table 1 was a subset of the msqR data set which is included in the psych package.

Here we show the size of the entire data set (6411 rows by 79 columns) , the number of
subjects with repeated measures (2086), and how to form a subset of the first eight cases
for both time 1 and time 2.

R code

msq.items <- c("anxious" , "at.ease" , "calm" , "confident", "content",
"jittery", "nervous", "relaxed" , "tense" , "upset" ) #these overlap with the sai
dim(msqR) #show the dimensions of the data set
colnames(msqR) #what are the variables

table(msqR$time) #show the number of observations with various repeated values
example <- msqR[c(1:8,69:76),c(cs(id,time),msq.items)]
df2latex(example) #make a \LateX table of the example data

Descriptive statistics

Table 2 shows descriptive statistics.
R code

describe(msqR[c(1:8,69:76),c(cs(id,time),msq.items)],IQR=TRUE) #for the data in table 1
describe(msqR[c(cs(id,time),msq.items) #describe the entire data set

Correlation and regression

Table 5 shows the correlation matrix from the Tal-Or et al. (2010) data set. Here we
show several different ways to show those correlations and to test for their significance. In
this and the subsequent examples, we use the standard notation for y ∼ x. Unfortunately,
the ∼ symbol renders poorly and for those who want to directly copy from the pdf, the ∼
symbol should be written in by hand.

R code

describe(Tal_Or) #the descriptive statistics for the data.

t.test(reaction ˜ cond, data=Tal_Or) # The t.test of interest
t.test(pmi ˜ cond, data=Tal_Or) # Also test the effects on pmi
t.test(import ˜ cond, data=Tal_Or) #and import

cor(Tal_Or) #the core-R command displays to 9 decimals

#or just show the lower diagonal of the correlations,
lowerCor(Tal_Or) #round the results to two decimals and abbreviate the names

corr.test(Tal_Or) # find the correlations, the raw p values and the adjusted p values

cor.ci(Tal_Or[1:4], n.iter=1000)
cor2latex(Tal_Or[1:4],stars=TRUE,adjust="none") #create the Table
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Produces this output:

> describe(Tal_Or) #the descriptive statistics for the data.
vars n mean sd median trimmed mad min max range skew kurtosis se

cond 1 123 0.47 0.50 0.00 0.46 0.00 0 1 1 0.11 -2.00 0.05
pmi 2 123 5.60 1.32 6.00 5.78 1.48 1 7 6 -1.17 1.30 0.12
import 3 123 4.20 1.74 4.00 4.26 1.48 1 7 6 -0.26 -0.89 0.16
reaction 4 123 3.48 1.55 3.25 3.44 1.85 1 7 6 0.21 -0.90 0.14
gender 5 123 1.65 0.48 2.00 1.69 0.00 1 2 1 -0.62 -1.62 0.04
age 6 123 24.63 5.80 24.00 23.76 1.48 18 61 43 4.71 24.76 0.52

> t.test(reaction ˜ cond, data=Tal_Or) # The t.test of interest

Welch Two Sample t-test

data: reaction by cond
t = -1.7964, df = 120.98, p-value = 0.07492
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.04196792 0.05058861
sample estimates:
mean in group 0 mean in group 1

3.25000 3.74569
... output omitted

cor(Tal_Or) #the core-r command
cond pmi import reaction gender age

cond 1.00000000 0.180773560 0.18091083 0.16026292 -0.12717905 0.025245417
pmi 0.18077356 1.000000000 0.28207107 0.44649392 -0.02112095 -0.004947199
import 0.18091083 0.282071074 1.00000000 0.46477681 0.02700985 0.073431563
reaction 0.16026292 0.446493916 0.46477681 1.00000000 0.01436459 -0.083728952
gender -0.12717905 -0.021120953 0.02700985 0.01436459 1.00000000 -0.318450715
age 0.02524542 -0.004947199 0.07343156 -0.08372895 -0.31845072 1.000000000

lowerCor(Tal_Or) #round the results to two decimals and abbreviate the names
cond pmi imprt rectn gendr age

cond 1.00
pmi 0.18 1.00
import 0.18 0.28 1.00
reaction 0.16 0.45 0.46 1.00
gender -0.13 -0.02 0.03 0.01 1.00
age 0.03 0.00 0.07 -0.08 -0.32 1.00
>
> corr.test(Tal_Or) # find the correlations, the raw p values and the adjusted p values
Call:corr.test(x = Tal_Or)
Correlation matrix

cond pmi import reaction gender age
cond 1.00 0.18 0.18 0.16 -0.13 0.03
pmi 0.18 1.00 0.28 0.45 -0.02 0.00
import 0.18 0.28 1.00 0.46 0.03 0.07
reaction 0.16 0.45 0.46 1.00 0.01 -0.08
gender -0.13 -0.02 0.03 0.01 1.00 -0.32
age 0.03 0.00 0.07 -0.08 -0.32 1.00
Sample Size
[1] 123
Probability values (Entries above the diagonal are adjusted for multiple tests.)
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cond pmi import reaction gender age
cond 0.00 0.50 0.50 0.69 1 1
pmi 0.05 0.00 0.02 0.00 1 1
import 0.05 0.00 0.00 0.00 1 1
reaction 0.08 0.00 0.00 0.00 1 1
gender 0.16 0.82 0.77 0.87 0 0
age 0.78 0.96 0.42 0.36 0 0

To see confidence intervals of the correlations, print with the short=FALSE option
>
> cor.ci(Tal_Or[1:4], n.iter=1000)
Call:corCi(x = x, keys = keys, n.iter = n.iter, p = p, overlap = overlap,

poly = poly, method = method, plot = plot, minlength = minlength)

Coefficients and bootstrapped confidence intervals
cond pmi imprt rectn

cond 1.00
pmi 0.18 1.00
import 0.18 0.28 1.00
reaction 0.16 0.45 0.46 1.00

scale correlations and bootstrapped confidence intervals
lower.emp lower.norm estimate upper.norm upper.emp p

cond-pmi 0.02 0.02 0.18 0.35 0.34 0.03
cond-imprt 0.00 0.00 0.18 0.35 0.34 0.05
cond-rectn -0.02 -0.02 0.16 0.33 0.32 0.09
pmi-imprt 0.10 0.11 0.28 0.44 0.43 0.00
pmi-rectn 0.30 0.30 0.45 0.57 0.58 0.00
imprt-rectn 0.32 0.31 0.46 0.60 0.59 0.00
To see confidence intervals of the correlations, print with the short=FALSE option
> cor2latex(Tal_Or[1:4],stars=TRUE,adjust="none") #create the Table
.... omitted

Mediation and Moderation

Mediation is just a different way of thinking of regression. It can be done using
the mediate function. The first example just shows the regression analysis and draws the
figure, The second example adds pmi and import as mediators. Compare the two outputs.
See Figure 3.

R code

reg <- mediate(reaction ˜ pmi +cond + import,data=Tal_Or)
moderate.diagram(reg,main="Regression")
reg

med <- mediate(reaction ˜ cond + (pmi)+ (import),data=Tal_Or)
print(med,short=FALSE)

> reg <- mediate(reaction ˜ pmi +cond + import,data=Tal_Or)
> moderate.diagram(reg,main="Regression")
> reg

Mediation/Moderation Analysis
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Call: mediate(y = reaction ˜ pmi + cond + import, data = Tal_Or)

The DV (Y) was reaction . The IV (X) was pmi cond import . The mediating variable(s) = .
DV = reaction

slope se t p
pmi 0.40 0.09 4.26 4.0e-05
cond 0.10 0.24 0.43 6.7e-01
import 0.32 0.07 4.59 1.1e-05

With R2 = 0.33
R = 0.57 R2 = 0.33 F = 19.11 on 3 and 119 DF p-value: 3.5e-10
>
> med <- mediate(reaction ˜ cond + (pmi)+ (import),data=Tal_Or)
> print(med,short=FALSE)

Mediation/Moderation Analysis
Call: mediate(y = reaction ˜ cond + (pmi) + (import), data = Tal_Or)

The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = pmi import .

Total effect(c) of cond on reaction = 0.5 S.E. = 0.28 t = 1.79 df= 119
with p = 0.077

Direct effect (c’) of cond on reaction removing pmi import = 0.1
S.E. = 0.24 t = 0.43 df= 119 with p = 0.67

Indirect effect (ab) of cond on reaction through pmi import = 0.39
Mean bootstrapped indirect effect = 0.4 with standard error = 0.17

Lower CI = 0.09 Upper CI = 0.73
R = 0.57 R2 = 0.33 F = 19.11 on 3 and 119 DF p-value: 3.5e-10

Full output

Total effect estimates (c)
reaction se t df Prob

cond 0.5 0.28 1.79 119 0.0766

Direct effect estimates (c’)
reaction se t df Prob

cond 0.10 0.24 0.43 119 6.66e-01
pmi 0.40 0.09 4.26 119 4.04e-05
import 0.32 0.07 4.59 119 1.13e-05

’a’ effect estimates
cond se t df Prob

pmi 0.48 0.24 2.02 121 0.0454
import 0.63 0.31 2.02 121 0.0452

’b’ effect estimates
reaction se t df Prob

pmi 0.40 0.09 4.26 119 4.04e-05
import 0.32 0.07 4.59 119 1.13e-05

’ab’ effect estimates
reaction boot sd lower upper

cond 0.39 0.4 0.17 0.09 0.73

’ab’ effects estimates for each mediator
pmi boot sd lower upper
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cond 0.19 0.19 0.11 0.01 0.42
import boot sd lower upper

cond 0.2 0.2 0.11 0.01 0.45

To show moderation, we use the Garcia et al. (2010) data set. We use the scale

and lm functions from Core-R to do the regressions. We compare the mean centered versus
non-mean centered results. Then we use setCor to combine these two steps. We include a
demonstration of how to create the interaction plot of Figure 3

R code

#First do the regular linear model
mod1 <- lm(respappr ˜ prot2 * sexism ,data=Garcia) #do not mean center
centered <- scale(Garcia,scale=FALSE) #mean center, do not standardize
centered.df <- data.frame(centered) #convert to a data frame
mod.centered <- lm(respappr ˜ prot2 * sexism ,data=centered.df)
summary(mod1) #the uncentered model
summary(mod.centered) #the centered model

par(mfrow=c(1,2))
#compare two models (bootstrapping n.iter set to 5000 by default
# 1) mean center the variables prior to taking product terms
mod <- setCor(respappr ˜ prot2 * sexism ,data=Garcia,
,main="A: Moderated regression (std. and mean centered)")
mod
#demonstrate interaction plots
plot(respappr ˜ sexism, pch = 23- protest, bg = c("black","red", "blue")[protest],
data=Garcia, main = "B: Response to sexism varies as type of protest")
by(Garcia,Garcia$protest, function(x) abline(lm(respappr ˜ sexism,

data =x),lty=c("solid","dashed","dotted")[x$protest+1]))
text(6.5,3.5,"No protest")
text(3.1,3.9,"Individual")
text(3.1,5.2,"Collective")

> summary(mod1) #the uncentered model

Call:
lm(formula = respappr ˜ prot2 * sexism, data = Garcia)

Residuals:
Min 1Q Median 3Q Max

-3.4984 -0.7540 0.0801 0.8301 3.1853

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.5667 1.2095 5.429 2.83e-07 ***
prot2 -2.6866 1.4515 -1.851 0.06654 .
sexism -0.5290 0.2359 -2.243 0.02668 *
prot2:sexism 0.8100 0.2819 2.873 0.00478 **
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 1.144 on 125 degrees of freedom
Multiple R-squared: 0.2962, Adjusted R-squared: 0.2793
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F-statistic: 17.53 on 3 and 125 DF, p-value: 1.456e-09

> summary(mod.centered) #the centered model

Call:
lm(formula = respappr ˜ prot2 * sexism, data = centered.df)

Residuals:
Min 1Q Median 3Q Max

-3.4984 -0.7540 0.0801 0.8301 3.1853

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01184 0.10085 -0.117 0.90671
prot2 1.45803 0.21670 6.728 5.52e-10 ***
sexism 0.02354 0.12927 0.182 0.85579
prot2:sexism 0.80998 0.28191 2.873 0.00478 **
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 1.144 on 125 degrees of freedom
Multiple R-squared: 0.2962, Adjusted R-squared: 0.2793
F-statistic: 17.53 on 3 and 125 DF, p-value: 1.456e-09

> #compare two models (bootstrapping n.iter set to 5000 by defalt
> # 1) mean center the variables prior to taking product terms
> mod <- setCor(respappr ˜ prot2 * sexism ,data=Garcia,
+ ,main="A: Moderated regression (std. and mean centered)")
> mod
Call: setCor(y = respappr ˜ prot2 * sexism, data = Garcia,

main = "A: Moderated regression (std. and mean centered)")

Multiple Regression from raw data

DV = respappr
slope se t p VIF

prot2 0.51 0.08 6.73 5.5e-10 1
sexism 0.01 0.08 0.18 8.6e-01 1
prot2*sexism 0.22 0.08 2.87 4.8e-03 1

Multiple Regression
R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

respappr 0.54 0.3 0.42 0.18 0.28 0.06 17.53 3 125 1.46e-09
> #demonstrate interaction plots
> plot(respappr ˜ sexism, pch = 23- protest, bg = c("black","red", "blue")[protest],
+ data=Garcia, main = "B: Response to sexism varies as type of protest")
> by(Garcia,Garcia$protest, function(x) abline(lm(respappr ˜ sexism,
+ data =x),lty=c("solid","dashed","dotted")[x$protest+1]))
Garcia$protest: 0
NULL
------------------------------------------------------------------------------------------------------------------------------------------------------------------
Garcia$protest: 1
NULL
------------------------------------------------------------------------------------------------------------------------------------------------------------------
Garcia$protest: 2
NULL
> text(6.5,3.5,"No protest")
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> text(3.1,3.9,"Individual")
> text(3.1,5.2,"Collective")
>

Decision theory and Area under the curve

Table 6 and Figure 4 are example of signal detection theory. This is done by giving
the four cells to the AUC function.

R code

AUC(c(49,40,79,336))

Decision Theory and Area under the Curve

The original data implied the following 2 x 2 table
Predicted.Pos Predicted.Neg

True.Pos 0.097 0.079
True.Neg 0.157 0.667

Conditional probabilities of
Predicted.Pos Predicted.Neg

True.Pos 0.55 0.45
True.Neg 0.19 0.81

Accuracy = 0.76 Sensitivity = 0.55 Specificity = 0.81
with Area Under the Curve = 0.76
d.prime = 1 Criterion = 0.88 Beta = 0.15
Observed Phi correlation = 0.32
Inferred latent (tetrachoric) correlation = 0.53
>

EFA

The factor analysis of the Thurstone data set was done using the fa function. We
specify that the number of subjects was 213. By default, we find a minres solution and use
the oblminin rotation. We also show how to specify other factor extraction techniques,
and other rotations. We just show the first solution.

R code

fa(Thurstone,nfactors=3,n.obs=213)
fa(Thurstone,nfactors=3,n.obs=213,fm="mle") #use the maximum likelihood algorithm
fa(Thurstone,nfactors=3,n.obs=213, rotate="Varimax") #use an orthogonal rotation.

> fa(Thurstone,nfactors=3,n.obs=213)
Factor Analysis using method = minres
Call: fa(r = Thurstone, nfactors = 3, n.obs = 213)
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 MR3 h2 u2 com
Sentences 0.90 -0.03 0.04 0.82 0.18 1.0
Vocabulary 0.89 0.06 -0.03 0.84 0.16 1.0



STATISTICAL ANALYSIS 56

Sent.Completion 0.84 0.03 0.00 0.74 0.26 1.0
First.Letters 0.00 0.85 0.00 0.73 0.27 1.0
Four.Letter.Words -0.02 0.75 0.10 0.63 0.37 1.0
Suffixes 0.18 0.63 -0.08 0.50 0.50 1.2
Letter.Series 0.03 -0.01 0.84 0.73 0.27 1.0
Pedigrees 0.38 -0.05 0.46 0.51 0.49 2.0
Letter.Group -0.06 0.21 0.63 0.52 0.48 1.2

MR1 MR2 MR3
SS loadings 2.65 1.87 1.49
Proportion Var 0.29 0.21 0.17
Cumulative Var 0.29 0.50 0.67
Proportion Explained 0.44 0.31 0.25
Cumulative Proportion 0.44 0.75 1.00

With factor correlations of
MR1 MR2 MR3

MR1 1.00 0.59 0.53
MR2 0.59 1.00 0.52
MR3 0.53 0.52 1.00

Mean item complexity = 1.2
Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.2 with
Chi Square of 1081.97

The degrees of freedom for the model are 12 and the objective function was 0.01

The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.01

The harmonic number of observations is 213 with the empirical chi square 0.52 with prob < 1
The total number of observations was 213 with Likelihood Chi Square = 2.98 with prob < 1

Tucker Lewis Index of factoring reliability = 1.026
RMSEA index = 0 and the 90 % confidence intervals are 0 0
BIC = -61.36
Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1 MR2 MR3
Correlation of (regression) scores with factors 0.96 0.92 0.90
Multiple R square of scores with factors 0.93 0.85 0.82
Minimum correlation of possible factor scores 0.86 0.71 0.63

Reliability

Here we find the reliability of the msqR items found in the first example. We select
just the time 1 data. We show several different approaches. Because we have just 8 items
and they represent two subfactors, we find ωh using a two factor solution.

R code

msq.items <- c("anxious" , "at.ease" , "calm" , "confident", "content",
"jittery", "nervous", "relaxed" , "tense" , "upset" ) #these overlap with the sai
msq1 <- subset(msqR,msqR$time==1)
alpha(msq1[msq.items], check.keys=TRUE)
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omega(msq1[msq.items], nfactors=2)

alpha(msq1[msq.items], check.keys=TRUE)

Reliability analysis
Call: alpha(x = msq1[msq.items], check.keys = TRUE)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.83 0.83 0.86 0.33 5 0.0046 2 0.54 0.32

lower alpha upper 95% confidence boundaries
0.82 0.83 0.84

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

anxious- 0.83 0.83 0.85 0.34 4.7 0.0047 0.026 0.34
at.ease 0.80 0.80 0.83 0.31 4.1 0.0055 0.028 0.32
calm 0.80 0.81 0.84 0.32 4.2 0.0054 0.030 0.32
confident 0.83 0.83 0.85 0.36 5.0 0.0046 0.022 0.32
content 0.82 0.82 0.84 0.34 4.6 0.0049 0.025 0.32
jittery- 0.83 0.83 0.85 0.35 4.8 0.0047 0.027 0.33
nervous- 0.82 0.82 0.84 0.33 4.4 0.0049 0.030 0.32
relaxed 0.80 0.81 0.84 0.31 4.1 0.0055 0.030 0.31
tense- 0.81 0.81 0.83 0.32 4.2 0.0051 0.029 0.32
upset- 0.82 0.82 0.85 0.34 4.7 0.0049 0.033 0.35

Item statistics
n raw.r std.r r.cor r.drop mean sd

anxious- 1871 0.54 0.56 0.51 0.42 2.3 0.86
at.ease 3018 0.77 0.74 0.72 0.67 1.6 0.94
calm 3020 0.74 0.71 0.68 0.63 1.6 0.92
confident 3021 0.54 0.50 0.43 0.38 1.5 0.93
content 3010 0.64 0.59 0.55 0.50 1.4 0.92
jittery- 3026 0.52 0.55 0.48 0.41 2.3 0.83
nervous- 3017 0.59 0.64 0.60 0.52 2.6 0.68
relaxed 3023 0.76 0.73 0.70 0.66 1.6 0.91
tense- 3017 0.67 0.71 0.69 0.60 2.4 0.78
upset- 3019 0.54 0.58 0.50 0.45 2.6 0.68

Non missing response frequency for each item
0 1 2 3 miss

anxious 0.53 0.29 0.13 0.04 0.38
at.ease 0.14 0.33 0.35 0.18 0.00
calm 0.14 0.34 0.36 0.17 0.00
confident 0.16 0.33 0.37 0.14 0.00
content 0.17 0.35 0.35 0.13 0.01
jittery 0.54 0.31 0.12 0.04 0.00
nervous 0.70 0.22 0.06 0.02 0.00
relaxed 0.12 0.30 0.40 0.18 0.00
tense 0.59 0.28 0.10 0.03 0.00
upset 0.74 0.18 0.05 0.02 0.00
Warning message:
In alpha(msq1[msq.items], check.keys = TRUE) :

Some items were negatively correlated with total scale and were automatically reversed.
This is indicated by a negative sign for the variable name.
> omega(msq1[msq.items], nfactors=2)
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Three factors are required for identification -- general factor loadings set to be equal.
Proceed with caution.
Think about redoing the analysis with alternative values of the ’option’ setting.

Omega
Call: omega(m = msq1[msq.items], nfactors = 2)
Alpha: 0.83
G.6: 0.86
Omega Hierarchical: 0.45
Omega H asymptotic: 0.51
Omega Total 0.87

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* h2 u2 p2

anxious- 0.36 -0.57 0.46 0.54 0.28
at.ease 0.52 0.59 0.64 0.36 0.43
calm 0.49 0.47 -0.21 0.51 0.49 0.48
confident 0.31 0.58 0.46 0.54 0.21
content 0.40 0.65 0.59 0.41 0.26
jittery- 0.35 -0.52 0.40 0.60 0.31
nervous- 0.43 -0.57 0.51 0.49 0.36
relaxed 0.51 0.48 -0.22 0.53 0.47 0.48
tense- 0.50 -0.62 0.63 0.37 0.39
upset- 0.35 -0.29 0.25 0.75 0.50

With eigenvalues of:
g F1* F2*

1.8 1.6 1.5

general/max 1.13 max/min = 1.05
mean percent general = 0.37 with sd = 0.1 and cv of 0.28
Explained Common Variance of the general factor = 0.37

The degrees of freedom are 26 and the fit is 0.24
The number of observations was 3032 with Chi Square = 721.36 with prob < 2.4e-135
The root mean square of the residuals is 0.04
The df corrected root mean square of the residuals is 0.05
RMSEA index = 0.094 and the 10 % confidence intervals are 0.088 0.1
BIC = 512.92

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 35 and the fit is 1.67
The number of observations was 3032 with Chi Square = 5055.64 with prob < 0
The root mean square of the residuals is 0.21
The df corrected root mean square of the residuals is 0.24

RMSEA index = 0.218 and the 10 % confidence intervals are 0.213 0.223
BIC = 4775.04

Measures of factor score adequacy
g F1* F2*

Correlation of scores with factors 0.67 0.77 0.76
Multiple R square of scores with factors 0.45 0.60 0.59
Minimum correlation of factor score estimates -0.09 0.19 0.17

Total, General and Subset omega for each subset
g F1* F2*
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Omega total for total scores and subscales 0.87 0.84 0.79
Omega general for total scores and subscales 0.45 0.33 0.30
Omega group for total scores and subscales 0.36 0.51 0.49
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