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SAPA

Synthetic Aperture Personality Assessment (SAPA)

. SAPA gives each subject a sample of items (25-200) sampled

from larger (1,000-10,000) items.

2. We do this for many subjects taken over time.

3. Allows us to recover structure of large item pool without

giving everyone the same items

. I will first show analyses on a sample data set of 135 items for

4,000 subjects.

. | will then use a data set of 250K taken from the larger data

set of 850K

3/31



SAPA

SAPA is not just for large samples

. Although David Condon and | tend to report SAPA results

from large samples, it also works for smallish samples.

. Elizabeth Dworak and Sonja Heintz (U. Zurich) have

examined SAPA results for as few as 200-400 subjects with
120 items

. Each subject is given 30 items but we recover the structure for

120 items.

4. Can apply this technique to ESM data as well

5. Recommendation is to use SAPA procedures to increase item

pool at low cost to precision
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Best Items Scales that are Cross validated, Unit weighted,
Informative, and Transparent

1. BISCUIT: Old fashioned unit weighted item derivation and
cross validation

® Choose items with largest zero order correlations with a
criterion
Replicate across 10 folds or 10-1000 bootstrap resamples
Unit weight them to form predictive scales
Compare to more elegant machine learning algorithms
Work being done by Lorien Elleman and Sarah McDougald
2. Compare BISCUIT to

® LASSO regression

® Elastic Nets

® Random Forests
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GWAS/PWAS
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Thinking by analogy: GWAS and the genetic correlation

1. GWAS is the analysis across the entire Genome

. In genetic research it is possible to examine the effect size of
each SNP across 10° SNPS across 5 * 10° subjects

each SNP has a very low effect size, but the power allows
detection of reliable (but tiny) effects

The genetic correlation is then the correlation of the pattern
of effect size for two phenotypic variables

. For instance, although the phenotypic correlation of two
neuroticism items is & .2 — .3, the genetic correlation > .6

Can we do this across the Persome?
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Persome wide studies

. If we have 100-10,000 items, can we apply GWAS techniques
to people?

2. The math is basically the same
3. Focus on the item level data, not the “Big 5" or facet level

analysis
. Examples will be from the SPI data set in psych
® 135 items, 10 criteria, complete data for 4000 subjects
. Further example from the “demonstration set” of SAPA (the
first 250K subjects)
® 900 items, college majors, 250K participants
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Sample items from each of the SPI 27

Each scale has 5 items

SPI

Item

Item

Compassion
Irritability
Sociability
WellBeing
SensationSeeking
Anxiety

Honesty

Industry

Intellect
Creativity
Impulsivity
AttentionSeeking
Order
Authoritarianism
Charisma

Trust

Humor
EmotionalExpressiveness
ArtAppreciation
Introspection
Perfectionism
SelfControl
Conformity
Adaptability
EasyGoingness
EmotionalStability
Conservatism

Am sensitive to the needs of others.
Get angry easily.

Usually like to spend my free time with people.
Dislike myself.

Love dangerous situations.

Worry about things.

Tell a lot of lies.

Find it difficult to get down to work.
Learn things slowly.

Am full of ideas.

Act without thinking.

Make myself the center of attention.
Keep things tidy.

Believe that laws should be strictly enforced.
Am skilled in handling social situations.
Trust what people say.

Laugh a lot.

Am open about my feelings.

Do not enjoy going to art museums.
Love to reflect on things.

Dislike imperfect work.

Never splurge.

Like to be thought of as a normal kind of person.

Dislike changes.
Like to take it easy.
My moods don't change more than most people

Tend to vote for conservative political candidates.

Am concerned about others.

Lose my temper.

Avoid company.

Feel a sense of worthlessness or hopeless
Seek danger.

Would call myself a nervous person.

Tell the truth.

Start tasks right away.

Am quick to understand things.

Am able to come up with new and differ
Make rash decisions.

Like to attract attention.

Leave a mess in my room.

Respect authority.

Find it difficult to approach others.
Trust people to mainly tell the truth.
Laugh aloud.

Have difficulty expressing my feelings.
Believe in the importance of art.

Spend time reflecting on things.

Want every detail taken care of.

Rarely overindulge.

Would hate to be considered odd or stra
Dont like the idea of change.

Like a leisurely lifestyle.

Experience very few emotional highs anc
Don't consider myself religious.
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Items as analogous to SNPs in GWAS studies

. In Genome Wide Association Studies one examines phenotypic
variation as it correlates with differences in SNP frequencies
across the genome.
. Do the same by examining phenotypic variation and
correlation across the persome (Mattus, Sinick, A Terracciano, Hrebickova, Kandler
& Jang, 2018)
. A typical approach is to show the correlations and their
probability values (corrected for multiple tests)
® Typically displayed in “Manhattan Plots” across the genome.
We do this across the “Persome”.
. First show plots for an open source data set (spi) available in
the psych package.
® This is a set of 135 temperament items with 10 criteria for
4,000 subjects.
. Then do the same for items from the Big 5, then an extend
set (the little 27), then for a bigger data set with even more
Iitems.
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A “Manhattan plot” of the spi items on the big 5 for 10 criteria
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A “Manhattan plot” of the spi items for 3 criteria big 5
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More predictors: 3 criteria big 5 + spi 27, N =4000

sex age health

Correlations
(absolute
values)

Correlations with sex
Correlations with age
Correlations with health

Log p values
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More subjects: 3 criteria - 904 items (temperament, abilities,

Correlations with age
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Profile correlations are analogous to the “genetic correlation”

1. For any set of criteria or grouping variables we can find a
vector of validity correlations across our predictor set.

2. We can then correlate these vectors. This is analogous to the
genetic correlation across SNPs.

3. Basically, we are correlating the profiles of the Manhattan
plots

| show this using the 10 criteria in the spi data set

First the raw correlations, then the profile correlations
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10 criteria from the SPI data set, raw correlations

Correlations of 10 SPI criteria

1
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10 criteria from the SPI data set, profile correlations

Profile correlations of 10 SPI criteria across 135 items

age

sex

health

pledu
p2edu
education

wellness

exer

-0.3

smoke

ER -0.45

age
sex
health
pledu —
p2edu —
exer
smoke
ER

education I

S
wellness - o
f

18/31



SAPA BISCUIT GWAS/PWAS Profiles Majors Summary Countries References

[e] [e] [e]o]e} 0000000 0000 [e] 0000000
o [elee] }

Comparing raw and profile correlations from the SPI dataset

Comparing raw to profile correlations
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Demographic correlates of college majors

Dummy code each major
Find the correlation of persome with each major
Similarity of majors to majors

Predictability of major profiles from demographic profiles

o b=

Caution is required
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Correlations with gender
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Profile correlations with Gender
Table: Gender

A table from the psych package in R

Variable gendr plccP pledu p2edu
Mechanical Engineering -0.79 0.29 0.32 0.32
Electrical Engineering -0.78 0.31 0.33 0.33
Computer Engineering -0.76 0.34 0.38 0.36
Other Engineering and Technology Major -0.70 0.16 0.21 0.22
Social Work 0.68 -0.46 -0.49 -0.48
Computer Programming -0.68 0.37 0.41 0.38
Elementary Education 0.68 -0.41 -0.42 -0.40
Physics -0.66 0.52 0.58 0.56
Psychology 0.66 -0.08 -0.07 -0.07
Aerospace Engineering -0.65 0.24 0.24 0.24
Civil Engineering -0.65 0.23 0.29 0.30
Computer and Information Systems - General -0.65 0.19 0.23 0.20
Other Computer and Information Sciences Major -0.63 0.24 0.28 0.26
Economics -0.63 0.46 0.55 0.56
Other Social Sciences Major 0.62 -0.30 -0.26 -0.23
Nursing 0.61 -0.56 -0.69 -0.70
Kindergarten/Preschool Education 0.58 -0.49 -0.51 -0.50
Other Medicine and Allied Health Major 0.57 -0.52 -0.60 -0.60
Special Education 0.57 -0.28 -0.31 -0.29
Industrial Engineering -0.55 0.19 0.21 0.21
Other Community and Social Services Major 0.54 -0.41 -0.40 -0.38
Chemical and Biological Engineering -0.54 0.36 0.40 0.39
Medical Assisting 0.54 -0.61 -0.74 -0.74
Health Services and Administration 0.53 -0.62 -0.72 -0.71
Mathematics -0.52 0.38 0.44 0.43

0.52

Health Sciences - General

-0.56

-0.66

-0.66

References
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A table from the psych package in R

Majors
oooe

Summary

[e]

Countries
0000000

Profile correlations of major with Parent 1 education

Variable gendr plccP pledu p2edu
Medical Assisting 0.54 -0.61 -0.74 -0.74
Health Services and Administration 0.53 -0.62 -0.72 -0.71
Nursing 0.61 -0.56 -0.69 -0.70
Health Sciences - General 0.52 -0.56 -0.66 -0.66
Criminal Justice and Corrections 0.17 -0.54 -0.63 -0.61
Philosophy -0.41 0.54 0.62 0.62
Other Medicine and Allied Health Major 0.57 -0.52 -0.60 -0.60
Physics -0.66 0.52 0.58 0.56
Neuroscience -0.31 0.54 0.56 0.54
Economics -0.63 0.46 0.55 0.56
Kindergarten/Preschool Education 0.58 -0.49 -0.51 -0.50
Social Work 0.68 -0.46 -0.49 -0.48
Political Science -0.33 0.42 0.48 0.49
Human Development and Family Studies 0.50 -0.43 -0.47 -0.45
Dentistry 0.31 -0.38 -0.46 -0.46
Music -0.14 0.39 0.45 0.43
Anthropology -0.05 0.37 0.45 0.43
Mathematics -0.52 0.38 0.44 0.43
English 0.06 0.33 0.43 0.43
Fiction Writing -0.05 0.38 0.43 0.41
Business Administration and Management -0.07 -0.38 -0.43 -0.40
History -0.08 0.34 0.42 0.43
Criminology 0.04 -0.33 -0.42 -0.40
Elementary Education 0.68 -0.41 -0.42 -0.40
Human Resource Administration 0.25 -0.42 -0.42 -0.41
Linguistics -0.13 0.33 0.42 0.41
Computer Programming -0.68 0.37 0.41 0.38
Chemical and Biological Engineering -0.54 0.36 0.40 0.39
Statistics -0.32 0.32 0.40 0.37
Other Community and Social Services Major

0.54

1

-0.40

References
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Summary

Conclusion

1. Item level responses have a great deal of information

2. More infomation than just scale scores.

3. Need to develop procedures for collecting many items across

people

. Thinking analogically leads to intriguing analyses
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Drop the USA

ICLUST of 39 country profiles across 908 items
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Countries
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Best Items correlating with being from Switzerland

Table: Top correlations with being from CHE

Top items

CHE item

0.05 ICAR Vi
0.05 Would like to play a musical instrument. Artistic - ONET
0.05 Would like to keep inventory records.  Conventional - ONET
-0.05 Would like to paint sets for plays. Artistic - ONET
0.05 Would like to teach a high-school class. Social - ONET
-0.04 Would like to operate a calculator.  Conventional - ONET
-0.04 Like to stand during the national anthem.

0.04 Would like to buy and sell stocks and bonds. Enterprising - ONET
0.04 ICAR R:
0.04 Would like to develop a spreadsheet using computer .  Conventional - ONET
0.04 ICAR \
0.04 Would like to do laboratory tests to identify diseases. Investigative - ONET
0.04  Would like to take care of children at a day-care center. Social - ONET
-0.03 Suffer from sleeplessness. El
0.03 ICAR Y
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Best Items correlating with being from the UK

Table: Top correlations with being from GBR

GBR item itm_s
-0.18  Like to stand during the national anthem. IPIP
-0.10 Just know that | will be a success. IPIP
-0.09 Believe in one true religion. IPIP
0.08 ICAR VRiql0
-0.08 Like to compete in athletic events. ORVIS - Adventure
-0.08 Am an extraordinary person. IPIP
0.08 Dont consider myself religious. IPIP
0.08 Dislike myself. IPIP
-0.07 Go straight for the goal. IPIP
0.07 Have a low opinion of myself. IPIP
0.07 ICAR VRiql4
0.07 Would like to put out forest fires.  Realistic - ONETshort
-0.07 Like to make important things happen. ORVIS - Leadership
0.07 Do too little work. IPIP
0.07 Waste my time. IPIP
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0 0000080

Best Items correlating with being from USA

Table: Top correlations with being from USA

USA iter
0.24 Like to stand during the national anthen
-0.20  People spend too much time safeguarding their future with savings and insurance
-0.19 ICAl
-0.18 Think marriage is old-fashioned and should be done away witt
0.18 Work harc
-0.18 Get even with other:
-0.17 Believe that there is no absolute right and wrong
0.17 Will do anything for other:
0.16 Laugh alouc
-0.16 Believe that | am better than other:
0.15 Push myself very hard to succeec
-0.15 Dislike routine
-0.15 ICAl
-0.15 Dont consider myself religiou:
-0.15 Admire a really clever scam
-0.15 Would like to be a foreign corresponden
-0.15 Never ﬁp}g{g(
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References

Profiles across 908 items of countries correlated with demographic

profiles suggest sampling differences across countries

Table: Profile correlations of demographics by countries

Variable  gendr age BMI exer smoke edctn pledu p2edu

USA 0.57 0.18 0.52 0.32 -0.13  -0.12 -0.40 -0.38
CAN -0.27 -0.23 -0.28 -0.37 0.24 -0.01 0.47 0.46
GBR -0.30 -0.37 -0.32 -0.55 029 -0.14 0.36 0.36
AUS -0.36 -0.10 -0.24 -0.31 0.31 0.16 0.48 0.47
DEU -0.38 -0.02 -0.44 -0.14 0.06 0.27 0.52 0.50
NLD -0.52 0.00 -0.45 0.08 0.06 0.26 0.50 0.48
NOR -0.30 0.02 -0.34 -0.07 0.05 0.23 0.41 0.39
SWE -0.39 0.37 -0.21 0.24 -0.11 0.56 0.36 0.34
CHE -0.26 0.20 -0.26 0.32 -0.07 0.36 0.31 0.27
SGP -0.17  -0.12 -0.25 -0.32 -0.17 0.01 0.01 0.02
HKG -0.24 -0.32 -0.33 -0.36 -0.02 -0.18 0.05 0.07
CHN -0.26 -0.04 -0.31 0.00 -0.15 0.08 0.02 0.02
IND -0.32 0.04 -0.17 0.06 0.03 0.13 0.02 0.01
PHL -0.03 -0.34 -0.14 -0.29 -0.07  -0.35 -0.23 -0.23
MYS 0.04 -0.23 -0.07 -0.28 -0.03  -0.30 -0.32 -0.32
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