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1 Overview of this and related documents

To do basic and advanced personality and psychological research using R is not as complicated as

some think. This is one of a set of “How To” to do various things using R (R Core Team, 2019),

particularly using the psych (Revelle, 2020) package.

The current list of How To’s includes:

1. Installing R and some useful packages

2. Using R and the psych package to find omegah and ωt .

3. Using R and the psych for factor analysis and principal components analysis. (This docu-

ment).

4. Using the score.items function to find scale scores and scale statistics.

5. An overview (vignette) of the psych package

Several functions are meant to do multiple regressions, either from the raw data or from a

variance/covariance matrix, or a correlation matrix. This is discussed in more detail in

6. How to do mediation and moderation analysis using mediate and setCor is discuseded

in the mediation, moderation and regression analysis tutorial.

1.1 Jump starting the psych package–a guide for the impatient

You have installed psych (section 3) and you want to use it without reading much more. What

should you do?

1. Activate the psych package:
R code

library(psych)

library(psychTools)

2. Input your data (section 4.1). Go to your friendly text editor or data manipulation program

(e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable

labels. Paste it into psych using the read.clipboard.tab command:
R code

myData <- read.clipboard.tab()

\end{Rnput}

\item Make sure that what you just read is right. Describe it (section~\ref{sect:describe}) and perhaps

\begin{Rinput}

describe(myData)

headTail(myData)
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3. Look at the patterns in the data. If you have fewer than about 10 variables, look at the

SPLOM (Scatter Plot Matrix) of the data using pairs.panels (section 4.4.1).
R code

pairs.panels(myData)

4. Find the correlations of all of your data.

• Descriptively (just the values) (section 4.4.2)
R code

lowerCor(myData)

• Graphically (section 4.4.3)
R code

corPlot(r)

5. Test for the number of factors in your data using parallel analysis (fa.parallel, section

5.4.2) or Very Simple Structure (vss, 5.4.1) .
R code

fa.parallel(myData)

vss(myData)

6. Factor analyze (see section 5.1) the data with a specified number of factors (the default is

1), the default method is minimum residual, the default rotation for more than one factor is

oblimin. There are many more possibilities (see sections 5.1.1-5.1.3). Compare the solution

to a hierarchical cluster analysis using the ICLUST algorithm (Revelle, 1979) (see section

5.1.6). Also consider a hierarchical factor solution to find coefficient ω (see 5.1.5). Yet

another option is to do a series of factor analyses in what is known as the “bass akward" pro-

cedure (Goldberg, 2006) which considers the correlation between factors at multiple levels

of analysis (see ??).
R code

fa(myData)

iclust(myData)

omega(myData)

bassAckward(myData)

7. Some people like to find coefficient α as an estimate of reliability. This may be done for a

single scale using the alpha function (see 6.1). Perhaps more useful is the ability to create

several scales as unweighted averages of specified items using the scoreIems function

(see 6.4) and to find various estimates of internal consistency for these scales, find their

intercorrelations, and find scores for all the subjects.
R code

alpha(myData) #score all of the items as part of one scale.

myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16)))

my.scores <- scoreItems(myKeys,myData) #form several scales

my.scores #show the highlights of the results
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At this point you have had a chance to see the highlights of the psych package and to do some

basic (and advanced) data analysis. You might find reading the entire overview vignette helpful to

get a broader understanding of what can be done in R using the psych. Remember that the help

command (?) is available for every function. Try running the examples for each help page.
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2 Overview of this and related documents

The psych package (Revelle, 2020) has been developed at Northwestern University since 2005

to include functions most useful for personality, psychometric, and psychological research. The

package is also meant to supplement a text on psychometric theory (Revelle, prep), a draft of

which is available at http://personality-project.org/r/book/.

Some of the functions (e.g., read.clipboard, describe, pairs.panels, scatter.hist,

error.bars, multi.hist, bi.bars) are useful for basic data entry and descriptive analy-

ses.

Psychometric applications emphasize techniques for dimension reduction including factor analysis,

cluster analysis, and principal components analysis. The fa function includes five methods of fac-

tor analysis (minimum residual, principal axis, weighted least squares, generalized least squares

and maximum likelihood factor analysis). Determining the number of factors or components to

extract may be done by using the Very Simple Structure (Revelle and Rocklin, 1979) (vss), Min-

imum Average Partial correlation (Velicer, 1976) (MAP) or parallel analysis (fa.parallel) cri-

teria. Item Response Theory (IRT) models for dichotomous or polytomous items may be found

by factoring tetrachoric or polychoric correlation matrices and expressing the resulting

parameters in terms of location and discrimination using irt.fa. Bifactor and hierarchical fac-

tor structures may be estimated by using Schmid Leiman transformations (Schmid and Leiman,

1957) (schmid) to transform a hierarchical factor structure into a bifactor solution (Holzinger

and Swineford, 1937). Scale construction can be done using the Item Cluster Analysis (Rev-

elle, 1979) (iclust) function to determine the structure and to calculate reliability coefficients

α (Cronbach, 1951)(alpha, scoreItems, score.multiple.choice), β (Revelle, 1979;

Revelle and Zinbarg, 2009) (iclust) and McDonald’s ωh and ωt (McDonald, 1999) (omega).

Guttman’s six estimates of internal consistency reliability (Guttman (1945), as well as additional

estimates (Revelle and Zinbarg, 2009) are in the guttman function. The six measures of Intraclass

correlation coefficients (ICC) discussed by Shrout and Fleiss (1979) are also available.

Graphical displays include Scatter Plot Matrix (SPLOM) plots using pairs.panels, corre-

lation “heat maps” (cor.plot) factor, cluster, and structural diagrams using fa.diagram,

iclust.diagram, structure.diagram, as well as item response characteristics and item

and test information characteristic curves plot.irt and plot.poly.

3 Getting started

Some of the functions described in this overview require other packages. Particularly useful for

rotating the results of factor analyses (from e.g., fa or principal) or hierarchical factor models

using omega or schmid, is the GPArotation package. These and other useful packages may be

installed by first installing and then using the task views (ctv) package to install the “Psychometrics"

task view, but doing it this way is not necessary.
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4 Basic data analysis

A number of psych functions facilitate the entry of data and finding basic descriptive statistics.

Remember, to run any of the psych functions, it is necessary to make the package active by using

the library command:
R code

library(psych)

library(psychTools)

The other packages, once installed, will be called automatically by psych.

It is possible to automatically load psych and other functions by creating and then saving a “.First"

function: e.g.,
R code

.First <- function(x) {library(psych)}

4.1 Data input from a local or remote file

Find and read standard files using read.file. This will open a search window for your operating

system which you can use to find the file. If the file has a suffix of .text, .txt, .TXT, .csv, ,dat, .data,

.sav, .xpt, .XPT, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, Rdata, or .RData, then the file will be opened

and the data will be read in (or loaded in the case of Rda files)

myData <- read.file() # find the appropriate file using your normal operating system

Alternatively, if you have a file name for a remote file, you can read it using read.file as

well.

myData <- read.file(fn) # where file name is the the remote address of the file

4.2 Data input from the clipboard

There are of course many ways to enter data into R. Reading from a local file using read.file

is perhaps the most preferred. However, many users will enter their data in a text editor or spread-

sheet program and then want to copy and paste into R. This may be done by using read.table

and specifying the input file as “clipboard" (PCs) or “pipe(pbpaste)" (Macs). Alternatively, the

read.clipboard set of functions are perhaps more user friendly:

read.clipboard is the base function for reading data from the clipboard.

read.clipboard.csv for reading text that is comma delimited.

read.clipboard.tab for reading text that is tab delimited (e.g., copied directly from an Ex-

cel file).
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read.clipboard.lower for reading input of a lower triangular matrix with or without a di-

agonal. The resulting object is a square matrix.

read.clipboard.upper for reading input of an upper triangular matrix.

read.clipboard.fwf for reading in fixed width fields (some very old data sets)

For example, given a data set copied to the clipboard from a spreadsheet, just enter the com-

mand
R code

my.data <- read.clipboard()

This will work if every data field has a value and even missing data are given some values (e.g.,

NA or -999). If the data were entered in a spreadsheet and the missing values were just empty

cells, then the data should be read in as a tab delimited or by using the read.clipboard.tab

function.
R code

my.data <- read.clipboard(sep="\t") #define the tab option, or

my.tab.data <- read.clipboard.tab() #just use the alternative function

For the case of data in fixed width fields (some old data sets tend to have this format), copy to

the clipboard and then specify the width of each field (in the example below, the first variable is 5

columns, the second is 2 columns, the next 5 are 1 column the last 4 are 3 columns).
R code

my.data <- read.clipboard.fwf(widths=c(5,2,rep(1,5),rep(3,4))

4.3 Basic descriptive statistics

Once the data are read in, then describe will provide basic descriptive statistics arranged in

a data frame format. Consider the data set sat.act which includes data from 700 web based

participants on 3 demographic variables and 3 ability measures.

describe reports means, standard deviations, medians, min, max, range, skew, kurtosis and

standard errors for integer or real data. Non-numeric data, although the statistics are mean-

ingless, will be treated as if numeric (based upon the categorical coding of the data), and will

be flagged with an *.

It is very important to describe your data before you continue on doing more complicated multi-

variate statistics. The problem of outliers and bad data can not be overemphasized.

> options(width=160)

> library(psych)

> library(psychTools)

> data(sat.act)

> describe(sat.act) #basic descriptive statistics

vars n mean sd median trimmed mad min max range skew kurtosis se

gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 -0.61 -1.62 0.02

education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 -0.68 -0.07 0.05
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age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.42 0.36

ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 -0.66 0.53 0.18

SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 -0.64 0.33 4.27

SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 -0.59 -0.02 4.41

4.4 Simple descriptive graphics

Graphic descriptions of data are very helpful both for understanding the data as well as communi-

cating important results. Scatter Plot Matrices (SPLOMS) using the pairs.panels function are

useful ways to look for strange effects involving outliers and non-linearities. error.bars.by

will show group means with 95% confidence boundaries.

4.4.1 Scatter Plot Matrices

Scatter Plot Matrices (SPLOMS) are very useful for describing the data. The pairs.panels

function, adapted from the help menu for the pairs function produces xy scatter plots of each

pair of variables below the diagonal, shows the histogram of each variable on the diagonal, and

shows the lowess locally fit regression line as well. An ellipse around the mean with the axis length

reflecting one standard deviation of the x and y variables is also drawn. The x axis in each scatter

plot represents the column variable, the y axis the row variable (Figure 1). When plotting many

subjects, it is both faster and cleaner to set the plot character (pch) to be ’.’. (See Figure 1 for an

example.)

pairs.panels will show the pairwise scatter plots of all the variables as well as histograms,

locally smoothed regressions, and the Pearson correlation. When plotting many data points

(as in the case of the sat.act data, it is possible to specify that the plot character is a period to

get a somewhat cleaner graphic.

4.4.2 Correlational structure

There are many ways to display correlations. Tabular displays are probably the most common. The

output from the cor function in core R is a rectangular matrix. lowerMat will round this to (2)

digits and then display as a lower off diagonal matrix. lowerCor calls cor with use=‘pairwise’,

method=‘pearson’ as default values and returns (invisibly) the full correlation matrix and displays

the lower off diagonal matrix.

> lowerCor(sat.act)

gendr edctn age ACT SATV SATQ

gender 1.00

education 0.09 1.00

age -0.02 0.55 1.00

ACT -0.04 0.15 0.11 1.00

SATV -0.02 0.05 -0.04 0.56 1.00

SATQ -0.17 0.03 -0.03 0.59 0.64 1.00
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> png( 'pairspanels.png' )

> pairs.panels(sat.act,pch='.')

> dev.off()

null device

1

Figure 1: Using the pairs.panels function to graphically show relationships. The x axis in

each scatter plot represents the column variable, the y axis the row variable. Note the extreme

outlier for the ACT. The plot character was set to a period (pch=’.’) in order to make a cleaner

graph.
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When comparing results from two different groups, it is convenient to display them as one matrix,

with the results from one group below the diagonal, and the other group above the diagonal. Use

lowerUpper to do this:

> female <- subset(sat.act,sat.act$gender==2)

> male <- subset(sat.act,sat.act$gender==1)

> lower <- lowerCor(male[-1])

edctn age ACT SATV SATQ

education 1.00

age 0.61 1.00

ACT 0.16 0.15 1.00

SATV 0.02 -0.06 0.61 1.00

SATQ 0.08 0.04 0.60 0.68 1.00

> upper <- lowerCor(female[-1])

edctn age ACT SATV SATQ

education 1.00

age 0.52 1.00

ACT 0.16 0.08 1.00

SATV 0.07 -0.03 0.53 1.00

SATQ 0.03 -0.09 0.58 0.63 1.00

> both <- lowerUpper(lower,upper)

> round(both,2)

education age ACT SATV SATQ

education NA 0.52 0.16 0.07 0.03

age 0.61 NA 0.08 -0.03 -0.09

ACT 0.16 0.15 NA 0.53 0.58

SATV 0.02 -0.06 0.61 NA 0.63

SATQ 0.08 0.04 0.60 0.68 NA

It is also possible to compare two matrices by taking their differences and displaying one (below

the diagonal) and the difference of the second from the first above the diagonal:

> diffs <- lowerUpper(lower,upper,diff=TRUE)

> round(diffs,2)

education age ACT SATV SATQ

education NA 0.09 0.00 -0.05 0.05

age 0.61 NA 0.07 -0.03 0.13

ACT 0.16 0.15 NA 0.08 0.02

SATV 0.02 -0.06 0.61 NA 0.05

SATQ 0.08 0.04 0.60 0.68 NA

4.4.3 Heatmap displays of correlational structure

Perhaps a better way to see the structure in a correlation matrix is to display a heat map of the

correlations. This is just a matrix color coded to represent the magnitude of the correlation. This

is useful when considering the number of factors in a data set. Consider the Thurstone data

set which has a clear 3 factor solution (Figure 2) or a simulated data set of 24 variables with a

circumplex structure (Figure 3). The color coding represents a “heat map” of the correlations, with
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darker shades of red representing stronger negative and darker shades of blue stronger positive

correlations. As an option, the value of the correlation can be shown.

4.5 Polychoric, tetrachoric, polyserial, and biserial correlations

The Pearson correlation of dichotomous data is also known as the φ coefficient. If the data, e.g.,

ability items, are thought to represent an underlying continuous although latent variable, the φ

will underestimate the value of the Pearson applied to these latent variables. One solution to this

problem is to use the tetrachoric correlation which is based upon the assumption of a bivariate

normal distribution that has been cut at certain points. The draw.tetra function demonstrates

the process (Figure ??). A simple generalization of this to the case of the multiple cuts is the

polychoric correlation.

Other estimated correlations based upon the assumption of bivariate normality with cut points

include the biserial and polyserial correlation.

If the data are a mix of continuous, polytomous and dichotomous variables, the mixed.cor

function will calculate the appropriate mixture of Pearson, polychoric, tetrachoric, biserial, and

polyserial correlations.

The correlation matrix resulting from a number of tetrachoric or polychoric correlation matrix

sometimes will not be positive semi-definite. This will also happen if the correlation matrix is

formed by using pair-wise deletion of cases. The cor.smooth function will adjust the smallest

eigen values of the correlation matrix to make them positive, rescale all of them to sum to the

number of variables, and produce a “smoothed” correlation matrix. An example of this problem

is a data set of burt which probably had a typo in the original correlation matrix. Smoothing the

matrix corrects this problem.

5 Item and scale analysis

The main functions in the psych package are for analyzing the structure of items and of scales

and for finding various estimates of scale reliability. These may be considered as problems of

dimension reduction (e.g., factor analysis, cluster analysis, principal components analysis) and of

forming and estimating the reliability of the resulting composite scales.

5.1 Dimension reduction through factor analysis and cluster analysis

Parsimony of description has been a goal of science since at least the famous dictum commonly

attributed to William of Ockham to not multiply entities beyond necessity1. The goal for parsimony

is seen in psychometrics as an attempt either to describe (components) or to explain (factors) the

1Although probably neither original with Ockham nor directly stated by him (Thorburn, 1918), Ockham’s razor

remains a fundamental principal of science.
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> png('corplot.png')

> cor.plot(Thurstone,numbers=TRUE,main="9 cognitive variables from Thurstone")

> dev.off()

null device

1

Figure 2: The structure of correlation matrix can be seen more clearly if the variables are grouped

by factor and then the correlations are shown by color. By using the ’numbers’ option, the values

are displayed as well.
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> png('circplot.png')

> circ <- sim.circ(24)

> r.circ <- cor(circ)

> cor.plot(r.circ,main='24 variables in a circumplex')

> dev.off()

null device

1

Figure 3: Using the cor.plot function to show the correlations in a circumplex. Correlations are

highest near the diagonal, diminish to zero further from the diagonal, and the increase again towards

the corners of the matrix. Circumplex structures are common in the study of affect.
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relationships between many observed variables in terms of a more limited set of components or

latent factors.

The typical data matrix represents multiple items or scales usually thought to reflect fewer un-

derlying constructs2. At the most simple, a set of items can be be thought to represent a random

sample from one underlying domain or perhaps a small set of domains. The question for the psy-

chometrician is how many domains are represented and how well does each item represent the

domains. Solutions to this problem are examples of factor analysis (FA), principal components

analysis (PCA), and cluster analysis (CA). All of these procedures aim to reduce the complexity of

the observed data. In the case of FA, the goal is to identify fewer underlying constructs to explain

the observed data. In the case of PCA, the goal can be mere data reduction, but the interpretation of

components is frequently done in terms similar to those used when describing the latent variables

estimated by FA. Cluster analytic techniques, although usually used to partition the subject space

rather than the variable space, can also be used to group variables to reduce the complexity of the

data by forming fewer and more homogeneous sets of tests or items.

At the data level the data reduction problem may be solved as a Singular Value Decomposition of

the original matrix, although the more typical solution is to find either the principal components

or factors of the covariance or correlation matrices. Given the pattern of regression weights from

the variables to the components or from the factors to the variables, it is then possible to find (for

components) individual component or cluster scores or estimate (for factors) factor scores.

Several of the functions in psych address the problem of data reduction.

fa incorporates five alternative algorithms: minres factor analysis, principal axis factor analysis,

weighted least squares factor analysis, generalized least squares factor analysis and maxi-

mum likelihood factor analysis. That is, it includes the functionality of three other functions

that will be eventually phased out.

(bassAckward) will do multiple factor and principal components analyses and then show the

relationship between factor levels by finding the interfactor correlations.

fa.extend will extend the factor solution for an X set of variables into a Y set (perhaps of

criterion variables).

principal Principal Components Analysis reports the largest n eigen vectors rescaled by the

square root of their eigen values.

factor.congruence The congruence between two factors is the cosine of the angle between

them. This is just the cross products of the loadings divided by the sum of the squared load-

ings. This differs from the correlation coefficient in that the mean loading is not subtracted

before taking the products. factor.congruence will find the cosines between two (or

2Cattell (1978) as well as MacCallum et al. (2007) argue that the data are the result of many more factors than

observed variables, but are willing to estimate the major underlying factors.
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more) sets of factor loadings.

vss Very Simple Structure Revelle and Rocklin (1979) applies a goodness of fit test to determine

the optimal number of factors to extract. It can be thought of as a quasi-confirmatory model,

in that it fits the very simple structure (all except the biggest c loadings per item are set to

zero where c is the level of complexity of the item) of a factor pattern matrix to the original

correlation matrix. For items where the model is usually of complexity one, this is equivalent

to making all except the largest loading for each item 0. This is typically the solution that

the user wants to interpret. The analysis includes the MAP criterion of Velicer (1976) and a

χ2 estimate.

fa.parallel The parallel factors technique compares the observed eigen values of a correla-

tion matrix with those from random data.

fa.plot will plot the loadings from a factor, principal components, or cluster analysis (just a

call to plot will suffice). If there are more than two factors, then a SPLOM of the loadings is

generated.

nfactors A number of different tests for the number of factors problem are run.

fa.diagram replaces fa.graph and will draw a path diagram representing the factor struc-

ture. It does not require Rgraphviz and thus is probably preferred.

fa.graph requires Rgraphviz and will draw a graphic representation of the factor structure.

If factors are correlated, this will be represented as well.

iclust is meant to do item cluster analysis using a hierarchical clustering algorithm specifically

asking questions about the reliability of the clusters (Revelle, 1979). Clusters are formed

until either coefficient α Cronbach (1951) or β Revelle (1979) fail to increase.

5.1.1 Minimum Residual Factor Analysis

The factor model is an approximation of a correlation matrix by a matrix of lower rank. That is, can

the correlation matrix, nRn be approximated by the product of a factor matrix, nFk and its transpose

plus a diagonal matrix of uniqueness.

R = FF ′+U2 (1)

The maximum likelihood solution to this equation is found by factanal in the stats package.

Five alternatives are provided in psych, all of them are included in the fa function and are called

by specifying the factor method (e.g., fm=“minres", fm=“pa", fm=“"wls", fm="gls" and fm="ml").

In the discussion of the other algorithms, the calls shown are to the fa function specifying the

appropriate method.

factor.minres attempts to minimize the off diagonal residual correlation matrix by adjusting

the eigen values of the original correlation matrix. This is similar to what is done in factanal,
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but uses an ordinary least squares instead of a maximum likelihood fit function. The solutions tend

to be more similar to the MLE solutions than are the factor.pa solutions. min.res is the default

for the fa function.

A classic data set, collected by Thurstone and Thurstone (1941) and then reanalyzed by Bechtoldt

(1961) and discussed by McDonald (1999), is a set of 9 cognitive variables with a clear bi-factor

structure Holzinger and Swineford (1937). The minimum residual solution was transformed into an

oblique solution using the default option on rotate which uses an oblimin transformation (Table 1).

Alternative rotations and transformations include “none", “varimax", “quartimax", “bentlerT", and

“geominT" (all of which are orthogonal rotations). as well as “promax", “oblimin", “simplimax",

“bentlerQ, and“geominQ" and “cluster" which are possible oblique transformations of the solution.

The default is to do a oblimin transformation, although prior versions defaulted to varimax. The

measures of factor adequacy reflect the multiple correlations of the factors with the best fitting

linear regression estimates of the factor scores (Grice, 2001).

5.1.2 Principal Axis Factor Analysis

An alternative, least squares algorithm, factor.pa, does a Principal Axis factor analysis by

iteratively doing an eigen value decomposition of the correlation matrix with the diagonal replaced

by the values estimated by the factors of the previous iteration. This OLS solution is not as sensitive

to improper matrices as is the maximum likelihood method, and will sometimes produce more

interpretable results. It seems as if the SAS example for PA uses only one iteration. Setting the

max.iter parameter to 1 produces the SAS solution.

The solutions from the fa, the factor.minres and factor.pa as well as the principal

functions can be rotated or transformed with a number of options. Some of these call the GPAro-

tation package. Orthogonal rotations are varimax and quartimax. Oblique transformations in-

clude oblimin, quartimin and then two targeted rotation functions Promax and target.rot.

The latter of these will transform a loadings matrix towards an arbitrary target matrix. The default

is to transform towards an independent cluster solution.

Using the Thurstone data set, three factors were requested and then transformed into an independent

clusters solution using target.rot (Table 2).

5.1.3 Weighted Least Squares Factor Analysis

Similar to the minres approach of minimizing the squared residuals, factor method “wls" weights

the squared residuals by their uniquenesses. This tends to produce slightly smaller overall residuals.

In the example of weighted least squares, the output is shown by using the print function with

the cut option set to 0. That is, all loadings are shown (Table 3).

The unweighted least squares solution may be shown graphically using the fa.plot function

which is called by the generic plot function (Figure 4. Factors were transformed obliquely using
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Table 1: Three correlated factors from the Thurstone 9 variable problem. By default, the solution

is transformed obliquely using oblimin. The extraction method is (by default) minimum residual.
> f3t <- fa(Thurstone,3,n.obs=213)

> f3t

Factor Analysis using method = minres

Call: fa(r = Thurstone, nfactors = 3, n.obs = 213)

Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 MR3 h2 u2 com

Sentences 0.90 -0.03 0.04 0.82 0.18 1.0

Vocabulary 0.89 0.06 -0.03 0.84 0.16 1.0

Sent.Completion 0.84 0.03 0.00 0.74 0.26 1.0

First.Letters 0.00 0.85 0.00 0.73 0.27 1.0

Four.Letter.Words -0.02 0.75 0.10 0.63 0.37 1.0

Suffixes 0.18 0.63 -0.08 0.50 0.50 1.2

Letter.Series 0.03 -0.01 0.84 0.73 0.27 1.0

Pedigrees 0.38 -0.05 0.46 0.51 0.49 2.0

Letter.Group -0.06 0.21 0.63 0.52 0.48 1.2

MR1 MR2 MR3

SS loadings 2.65 1.87 1.49

Proportion Var 0.29 0.21 0.17

Cumulative Var 0.29 0.50 0.67

Proportion Explained 0.44 0.31 0.25

Cumulative Proportion 0.44 0.75 1.00

With factor correlations of

MR1 MR2 MR3

MR1 1.00 0.59 0.53

MR2 0.59 1.00 0.52

MR3 0.53 0.52 1.00

Mean item complexity = 1.2

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.2 with Chi Square of 1081.97

The degrees of freedom for the model are 12 and the objective function was 0.01

The root mean square of the residuals (RMSR) is 0.01

The df corrected root mean square of the residuals is 0.01

The harmonic number of observations is 213 with the empirical chi square 0.52 with prob < 1

The total number of observations was 213 with Likelihood Chi Square = 2.98 with prob < 1

Tucker Lewis Index of factoring reliability = 1.026

RMSEA index = 0 and the 90 % confidence intervals are 0 0

BIC = -61.36

Fit based upon off diagonal values = 1

Measures of factor score adequacy

MR1 MR2 MR3

Correlation of (regression) scores with factors 0.96 0.92 0.90

Multiple R square of scores with factors 0.93 0.85 0.82

Minimum correlation of possible factor scores 0.86 0.71 0.63
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Table 2: The 9 variable problem from Thurstone is a classic example of factoring where there is a

higher order factor, g, that accounts for the correlation between the factors. The extraction method

was principal axis. The transformation was a targeted transformation to a simple cluster solution.
> f3 <- fa(Thurstone,3,n.obs = 213,fm="pa")

> f3o <- target.rot(f3)

> f3o

Call: NULL

Standardized loadings (pattern matrix) based upon correlation matrix

PA1 PA2 PA3 h2 u2

Sentences 0.89 -0.03 0.07 0.81 0.19

Vocabulary 0.89 0.07 0.00 0.80 0.20

Sent.Completion 0.83 0.04 0.03 0.70 0.30

First.Letters -0.02 0.85 -0.01 0.73 0.27

Four.Letter.Words -0.05 0.74 0.09 0.57 0.43

Suffixes 0.17 0.63 -0.09 0.43 0.57

Letter.Series -0.06 -0.08 0.84 0.69 0.31

Pedigrees 0.33 -0.09 0.48 0.37 0.63

Letter.Group -0.14 0.16 0.64 0.45 0.55

PA1 PA2 PA3

SS loadings 2.45 1.72 1.37

Proportion Var 0.27 0.19 0.15

Cumulative Var 0.27 0.46 0.62

Proportion Explained 0.44 0.31 0.25

Cumulative Proportion 0.44 0.75 1.00

PA1 PA2 PA3

PA1 1.00 0.02 0.08

PA2 0.02 1.00 0.09

PA3 0.08 0.09 1.00
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Table 3: The 9 variable problem from Thurstone is a classic example of factoring where there is

a higher order factor, g, that accounts for the correlation between the factors. The factors were

extracted using a weighted least squares algorithm. All loadings are shown by using the cut=0

option in the print.psych function.
> f3w <- fa(Thurstone,3,n.obs = 213,fm="wls")

> print(f3w,cut=0,digits=3)

Factor Analysis using method = wls

Call: fa(r = Thurstone, nfactors = 3, n.obs = 213, fm = "wls")

Standardized loadings (pattern matrix) based upon correlation matrix

WLS1 WLS2 WLS3 h2 u2 com

Sentences 0.905 -0.034 0.040 0.822 0.178 1.01

Vocabulary 0.890 0.066 -0.031 0.835 0.165 1.01

Sent.Completion 0.833 0.034 0.007 0.735 0.265 1.00

First.Letters -0.002 0.855 0.003 0.731 0.269 1.00

Four.Letter.Words -0.016 0.743 0.106 0.629 0.371 1.04

Suffixes 0.180 0.626 -0.082 0.496 0.504 1.20

Letter.Series 0.033 -0.015 0.838 0.719 0.281 1.00

Pedigrees 0.381 -0.051 0.464 0.505 0.495 1.95

Letter.Group -0.062 0.209 0.632 0.527 0.473 1.24

WLS1 WLS2 WLS3

SS loadings 2.647 1.864 1.489

Proportion Var 0.294 0.207 0.165

Cumulative Var 0.294 0.501 0.667

Proportion Explained 0.441 0.311 0.248

Cumulative Proportion 0.441 0.752 1.000

With factor correlations of

WLS1 WLS2 WLS3

WLS1 1.000 0.591 0.535

WLS2 0.591 1.000 0.516

WLS3 0.535 0.516 1.000

Mean item complexity = 1.2

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.198 with Chi Square of

The degrees of freedom for the model are 12 and the objective function was 0.014

The root mean square of the residuals (RMSR) is 0.006

The df corrected root mean square of the residuals is 0.01

The harmonic number of observations is 213 with the empirical chi square 0.531 with prob < 1

The total number of observations was 213 with Likelihood Chi Square = 2.885 with prob < 0.996

Tucker Lewis Index of factoring reliability = 1.0264

RMSEA index = 0 and the 90 % confidence intervals are 0 0

BIC = -61.45

Fit based upon off diagonal values = 1

Measures of factor score adequacy

WLS1 WLS2 WLS3

Correlation of (regression) scores with factors 0.964 0.923 0.902

Multiple R square of scores with factors 0.929 0.853 0.814

Minimum correlation of possible factor scores 0.858 0.706 0.627
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a oblimin. These solutions may be shown as item by factor plots (Figure 4 or by a structure diagram

(Figure 5.

> plot(f3t)
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Factor Analysis

Figure 4: A graphic representation of the 3 oblique factors from the Thurstone data using plot.

Factors were transformed to an oblique solution using the oblimin function from the GPArotation

package.

A comparison of these three approaches suggests that the minres solution is more similar to a max-

imum likelihood solution and fits slightly better than the pa or wls solutions. Comparisons with

SPSS suggest that the pa solution matches the SPSS OLS solution, but that the minres solution

is slightly better. At least in one test data set, the weighted least squares solutions, although fit-

ting equally well, had slightly different structure loadings. Note that the rotations used by SPSS

will sometimes use the “Kaiser Normalization”. By default, the rotations used in psych do not

normalize, but this can be specified as an option in fa.
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> fa.diagram(f3t)

Factor Analysis

Sentences

Vocabulary

Sent.Completion

First.Letters

Four.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

MR1

MR2

MR3

0.9

0.9

0.8

0.9

0.7

0.6

0.8

0.6

0.5

0.6

0.5

0.5

Figure 5: A graphic representation of the 3 oblique factors from the Thurstone data using

fa.diagram. Factors were transformed to an oblique solution using oblimin.
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5.1.4 Principal Components analysis (PCA)

An alternative to factor analysis, which is unfortunately frequently confused with factor analysis, is

principal components analysis. Although the goals of PCA and FA are similar, PCA is a descriptive

model of the data, while FA is a structural model. Psychologists typically use PCA in a manner

similar to factor analysis and thus the principal function produces output that is perhaps more

understandable than that produced by princomp in the stats package. Table 4 shows a PCA of

the Thurstone 9 variable problem rotated using the Promax function. Note how the loadings from

the factor model are similar but smaller than the principal component loadings. This is because the

PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts

for just the common variance. This distinction becomes most important for small correlation ma-

trices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements,

is much worse than the fa solution.

5.1.5 Hierarchical and bi-factor solutions

For a long time structural analysis of the ability domain have considered the problem of factors

that are themselves correlated. These correlations may themselves be factored to produce a higher

order, general factor. An alternative (Holzinger and Swineford, 1937; Jensen and Weng, 1994) is

to consider the general factor affecting each item, and then to have group factors account for the

residual variance. Exploratory factor solutions to produce a hierarchical or a bifactor solution are

found using the omega function. This technique has more recently been applied to the personality

domain to consider such things as the structure of neuroticism (treated as a general factor, with

lower order factors of anxiety, depression, and aggression).

Consider the 9 Thurstone variables analyzed in the prior factor analyses. The correlations between

the factors (as shown in Figure 5 can themselves be factored. This results in a higher order factor

model (Figure 6). An an alternative solution is to take this higher order model and then solve for

the general factor loadings as well as the loadings on the residualized lower order factors using the

Schmid-Leiman procedure. (Figure 7). Yet another solution is to use structural equation modeling

to directly solve for the general and group factors.

Yet another approach to the bifactor structure is do use the bifactor rotation function in either

psych or in GPArotation. This does the rotation discussed in Jennrich and Bentler (2011).

5.1.6 Item Cluster Analysis: iclust

An alternative to factor or components analysis is cluster analysis. The goal of cluster analysis

is the same as factor or components analysis (reduce the complexity of the data and attempt to

identify homogeneous subgroupings). Mainly used for clustering people or objects (e.g., projectile

points if an anthropologist, DNA if a biologist, galaxies if an astronomer), clustering may be used

for clustering items or tests as well. Introduced to psychologists by Tryon (1939) in the 1930’s, the
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Table 4: The Thurstone problem can also be analyzed using Principal Components Analysis. Com-

pare this to Table 2. The loadings are higher for the PCA because the model accounts for the unique

as well as the common variance.The fit of the off diagonal elements, however, is much worse than

the fa results.
> p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax")

> p3p

Principal Components Analysis

Call: principal(r = Thurstone, nfactors = 3, rotate = "Promax", n.obs = 213)

Standardized loadings (pattern matrix) based upon correlation matrix

RC1 RC2 RC3 h2 u2 com

Sentences 0.92 0.01 0.01 0.86 0.14 1.0

Vocabulary 0.90 0.10 -0.05 0.86 0.14 1.0

Sent.Completion 0.91 0.04 -0.04 0.83 0.17 1.0

First.Letters 0.01 0.84 0.07 0.78 0.22 1.0

Four.Letter.Words -0.05 0.81 0.17 0.75 0.25 1.1

Suffixes 0.18 0.79 -0.15 0.70 0.30 1.2

Letter.Series 0.03 -0.03 0.88 0.78 0.22 1.0

Pedigrees 0.45 -0.16 0.57 0.67 0.33 2.1

Letter.Group -0.19 0.19 0.86 0.75 0.25 1.2

RC1 RC2 RC3

SS loadings 2.83 2.19 1.96

Proportion Var 0.31 0.24 0.22

Cumulative Var 0.31 0.56 0.78

Proportion Explained 0.41 0.31 0.28

Cumulative Proportion 0.41 0.72 1.00

With component correlations of

RC1 RC2 RC3

RC1 1.00 0.51 0.53

RC2 0.51 1.00 0.44

RC3 0.53 0.44 1.00

Mean item complexity = 1.2

Test of the hypothesis that 3 components are sufficient.

The root mean square of the residuals (RMSR) is 0.06

with the empirical chi square 56.17 with prob < 1.1e-07

Fit based upon off diagonal values = 0.98
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> om.h <- omega(Thurstone,n.obs=213,sl=FALSE)

> op <- par(mfrow=c(1,1))
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Figure 6: A higher order factor solution to the Thurstone 9 variable problem
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> om <- omega(Thurstone,n.obs=213)
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Figure 7: A bifactor factor solution to the Thurstone 9 variable problem
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cluster analytic literature exploded in the 1970s and 1980s (Blashfield, 1980; Blashfield and Alden-

derfer, 1988; Everitt, 1974; Hartigan, 1975). Much of the research is in taxonmetric applications

in biology (Sneath and Sokal, 1973; Sokal and Sneath, 1963) and marketing (Cooksey and Soutar,

2006) where clustering remains very popular. It is also used for taxonomic work in forming clus-

ters of people in family (Henry et al., 2005) and clinical psychology (Martinent and Ferrand, 2007;

Mun et al., 2008). Interestingly enough it has has had limited applications to psychometrics. This

is unfortunate, for as has been pointed out by e.g. (Tryon, 1935; Loevinger et al., 1953), the theory

of factors, while mathematically compelling, offers little that the geneticist or behaviorist or per-

haps even non-specialist finds compelling. Cooksey and Soutar (2006) reviews why the iclust

algorithm is particularly appropriate for scale construction in marketing.

Hierarchical cluster analysis forms clusters that are nested within clusters. The resulting tree

diagram (also known somewhat pretentiously as a rooted dendritic structure) shows the nesting

structure. Although there are many hierarchical clustering algorithms in R (e.g., agnes, hclust,

and iclust), the one most applicable to the problems of scale construction is iclust (Revelle,

1979).

1. Find the proximity (e.g. correlation) matrix,

2. Identify the most similar pair of items

3. Combine this most similar pair of items to form a new variable (cluster),

4. Find the similarity of this cluster to all other items and clusters,

5. Repeat steps 2 and 3 until some criterion is reached (e.g., typicallly, if only one cluster

remains or in iclust if there is a failure to increase reliability coefficients α or β ).

6. Purify the solution by reassigning items to the most similar cluster center.

iclust forms clusters of items using a hierarchical clustering algorithm until one of two measures

of internal consistency fails to increase (Revelle, 1979). The number of clusters may be specified

a priori, or found empirically. The resulting statistics include the average split half reliability, α

(Cronbach, 1951), as well as the worst split half reliability, β (Revelle, 1979), which is an estimate

of the general factor saturation of the resulting scale (Figure 8). Cluster loadings (corresponding to

the structure matrix of factor analysis) are reported when printing (Table 7). The pattern matrix is

available as an object in the results.

The previous analysis (Figure 8) was done using the Pearson correlation. A somewhat cleaner

structure is obtained when using the polychoric function to find polychoric correlations (Fig-

ure 9). Note that the first time finding the polychoric correlations some time, but the next three

analyses were done using that correlation matrix (r.poly$rho). When using the console for input,

polychoric will report on its progress while working using progressBar.

A comparison of these four cluster solutions suggests both a problem and an advantage of clustering

techniques. The problem is that the solutions differ. The advantage is that the structure of the items
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> data(bfi)

> ic <- iclust(bfi[1:25])
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Figure 8: Using the iclust function to find the cluster structure of 25 personality items (the three

demographic variables were excluded from this analysis). When analyzing many variables, the tree

structure may be seen more clearly if the graphic output is saved as a pdf and then enlarged using

a pdf viewer.
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Table 5: The summary statistics from an iclust analysis shows three large clusters and smaller

cluster.
> summary(ic) #show the results

ICLUST (Item Cluster Analysis)Call: iclust(r.mat = bfi[1:25])

ICLUST

Purified Alpha:

C20 C16 C15 C21

0.80 0.81 0.73 0.61

Guttman Lambda6*
C20 C16 C15 C21

0.82 0.81 0.72 0.61

Original Beta:

C20 C16 C15 C21

0.63 0.76 0.67 0.27

Cluster size:

C20 C16 C15 C21

10 5 5 5

Purified scale intercorrelations

reliabilities on diagonal

correlations corrected for attenuation above diagonal:

C20 C16 C15 C21

C20 0.80 -0.291 -0.40 -0.33

C16 -0.24 0.815 0.29 0.11

C15 -0.30 0.221 0.73 0.30

C21 -0.23 0.074 0.20 0.61

Table 6: The polychoric and the tetrachoric functions can take a long time to finish and

report their progress by a series of dots as they work. The dots are suppressed when creating a

Sweave document.
> data(bfi)

> r.poly <- polychoric(bfi[1:25]) #the ... indicate the progress of the function
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> ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations")

> iclust.diagram(ic.poly)
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Figure 9: ICLUST of the BFI data set using polychoric correlations. Compare this solution to the

previous one (Figure 8) which was done using Pearson correlations.
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> ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5")

> iclust.diagram(ic.poly)

ICLUST using polychoric correlations for nclusters=5
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Figure 10: ICLUST of the BFI data set using polychoric correlations with the solution set to 5

clusters. Compare this solution to the previous one (Figure 9) which was done without specifying

the number of clusters and to the next one (Figure 11) which was done by changing the beta

criterion.
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> ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3")

ICLUST beta.size=3
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Figure 11: ICLUST of the BFI data set using polychoric correlations with the beta criterion set to

3. Compare this solution to the previous three (Figure 8, 9, 10).
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Table 7: The output from iclustincludes the loadings of each item on each cluster. These

are equivalent to factor structure loadings. By specifying the value of cut, small loadings are

suppressed. The default is for cut=0.su
> print(ic,cut=.3)

ICLUST (Item Cluster Analysis)

Call: iclust(r.mat = bfi[1:25])

Purified Alpha:

C20 C16 C15 C21

0.80 0.81 0.73 0.61

G6* reliability:

C20 C16 C15 C21

0.83 1.00 0.50 0.38

Original Beta:

C20 C16 C15 C21

0.63 0.76 0.67 0.27

Cluster size:

C20 C16 C15 C21

10 5 5 5

Item by Cluster Structure matrix:

O P C20 C16 C15 C21

A1 C20 C20

A2 C20 C20 0.59

A3 C20 C20 0.65

A4 C20 C20 0.43

A5 C20 C20 0.65

C1 C15 C15 -0.54

C2 C15 C15 -0.62

C3 C15 C15 -0.54

C4 C15 C15 0.31 0.66

C5 C15 C15 -0.30 0.36 0.59

E1 C20 C20 -0.50

E2 C20 C20 -0.61 0.34

E3 C20 C20 0.59 -0.39

E4 C20 C20 0.66

E5 C20 C20 0.50 -0.40 -0.32

N1 C16 C16 0.76

N2 C16 C16 0.75

N3 C16 C16 0.74

N4 C16 C16 -0.34 0.62

N5 C16 C16 0.55

O1 C20 C21 -0.53

O2 C21 C21 0.44

O3 C20 C21 0.39 -0.62

O4 C21 C21 -0.33

O5 C21 C21 0.53

With eigenvalues of:

C20 C16 C15 C21

3.2 2.6 1.9 1.5

Purified scale intercorrelations

reliabilities on diagonal

correlations corrected for attenuation above diagonal:

C20 C16 C15 C21

C20 0.80 -0.29 -0.40 -0.33

C16 -0.24 0.81 0.29 0.11

C15 -0.30 0.22 0.73 0.30

C21 -0.23 0.07 0.20 0.61

Cluster fit = 0.68 Pattern fit = 0.96 RMSR = 0.05

NULL
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may be seen more clearly when examining the clusters rather than a simple factor solution.

5.2 Confidence intervals using bootstrapping techniques

Exploratory factoring techniques are sometimes criticized because of the lack of statistical infor-

mation on the solutions. Overall estimates of goodness of fit including χ2 and RMSEA are found

in the fa and omega functions. Confidence intervals for the factor loadings may be found by

doing multiple bootstrapped iterations of the original analysis. This is done by setting the n.iter pa-

rameter to the desired number of iterations. This can be done for factoring of Pearson correlation

matrices as well as polychoric/tetrachoric matrices (See Table 8). Although the example value for

the number of iterations is set to 20, more conventional analyses might use 1000 bootstraps. This

will take much longer.

5.3 Comparing factor/component/cluster solutions

Cluster analysis, factor analysis, and principal components analysis all produce structure matrices

(matrices of correlations between the dimensions and the variables) that can in turn be compared

in terms of the congruence coefficient which is just the cosine of the angle between the dimen-

sions

c fi f j
=

∑
n
k=1 fik f jk

∑ f 2
ik ∑ f 2

jk

.

Consider the case of a four factor solution and four cluster solution to the Big Five problem.

> f4 <- fa(bfi[1:25],4,fm="pa")

> factor.congruence(f4,ic)

C20 C16 C15 C21

PA1 0.92 -0.32 -0.44 -0.40

PA2 -0.26 0.95 0.33 0.12

PA3 0.35 -0.24 -0.88 -0.37

PA4 0.29 -0.12 -0.27 -0.90

A more complete comparison of oblique factor solutions (both minres and principal axis), bifactor

and component solutions to the Thurstone data set is done using the factor.congruence

function. (See table 9).

5.3.1 Factor correlations

Factor congruences may be found between any two sets of factor loadings. If given the same data

set/correlation matrix, factor correlations may be found using faCor which finds the correlations

between the factors. This procedure is also used in the bassAckward function which compares

multiple solutions with a different number of factors.

Consider the correlation of three versus five factors of the bfi data set.
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Table 8: An example of bootstrapped confidence intervals on 10 items from the Big 5 inventory.

The number of bootstrapped samples was set to 20. More conventional bootstrapping would use

100 or 1000 replications.
> fa(bfi[1:10],2,n.iter=20)

Factor Analysis with confidence intervals using method = fa(r = bfi[1:10], nfactors = 2, n.iter = 20)

Factor Analysis using method = minres

Call: fa(r = bfi[1:10], nfactors = 2, n.iter = 20)

Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 h2 u2 com

A1 0.08 -0.41 0.15 0.85 1.1

A2 0.01 0.68 0.46 0.54 1.0

A3 -0.03 0.76 0.56 0.44 1.0

A4 0.14 0.44 0.25 0.75 1.2

A5 0.03 0.60 0.37 0.63 1.0

C1 0.57 -0.06 0.31 0.69 1.0

C2 0.64 -0.01 0.40 0.60 1.0

C3 0.54 0.03 0.31 0.69 1.0

C4 -0.65 0.00 0.42 0.58 1.0

C5 -0.56 -0.06 0.34 0.66 1.0

MR1 MR2

SS loadings 1.80 1.78

Proportion Var 0.18 0.18

Cumulative Var 0.18 0.36

Proportion Explained 0.50 0.50

Cumulative Proportion 0.50 1.00

With factor correlations of

MR1 MR2

MR1 1.00 0.32

MR2 0.32 1.00

Mean item complexity = 1

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 45 and the objective function was 2.03 with Chi Square of 5664.89

The degrees of freedom for the model are 26 and the objective function was 0.17

The root mean square of the residuals (RMSR) is 0.04

The df corrected root mean square of the residuals is 0.05

The harmonic number of observations is 2762 with the empirical chi square 397.07 with prob < 5e-68

The total number of observations was 2800 with Likelihood Chi Square = 468.37 with prob < 1.2e-82

Tucker Lewis Index of factoring reliability = 0.864

RMSEA index = 0.078 and the 90 % confidence intervals are 0.072 0.084

BIC = 261.99

Fit based upon off diagonal values = 0.98

Measures of factor score adequacy

MR1 MR2

Correlation of (regression) scores with factors 0.86 0.88

Multiple R square of scores with factors 0.74 0.77

Minimum correlation of possible factor scores 0.49 0.54

Coefficients and bootstrapped confidence intervals

low MR1 upper low MR2 upper

A1 0.03 0.08 0.13 -0.45 -0.41 -0.37

A2 -0.03 0.01 0.04 0.64 0.68 0.72

A3 -0.06 -0.03 0.01 0.73 0.76 0.79

A4 0.11 0.14 0.17 0.41 0.44 0.48

A5 -0.02 0.03 0.07 0.56 0.60 0.65

C1 0.53 0.57 0.61 -0.10 -0.06 -0.02

C2 0.59 0.64 0.69 -0.04 -0.01 0.02

C3 0.50 0.54 0.60 -0.01 0.03 0.06

C4 -0.69 -0.65 -0.60 -0.04 0.00 0.03

C5 -0.60 -0.56 -0.53 -0.10 -0.06 -0.03

Interfactor correlations and bootstrapped confidence intervals

lower estimate upper

MR1-MR2 0.25 0.32 0.37

>
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Table 9: Congruence coefficients for oblique factor, bifactor and component solutions for the Thur-

stone problem.
> factor.congruence(list(f3t,f3o,om,p3p))

MR1 MR2 MR3 PA1 PA2 PA3 g F1* F2* F3* h2 RC1 RC2 RC3

MR1 1.00 0.06 0.09 1.00 0.06 0.13 0.72 1.00 0.06 0.09 0.73 1.00 0.08 0.04

MR2 0.06 1.00 0.08 0.03 1.00 0.07 0.60 0.06 1.00 0.08 0.57 0.04 0.99 0.12

MR3 0.09 0.08 1.00 0.01 0.01 1.00 0.52 0.09 0.08 1.00 0.51 0.06 0.02 0.99

PA1 1.00 0.03 0.01 1.00 0.04 0.05 0.67 1.00 0.03 0.01 0.68 1.00 0.06 -0.04

PA2 0.06 1.00 0.01 0.04 1.00 0.00 0.57 0.06 1.00 0.01 0.54 0.04 0.99 0.05

PA3 0.13 0.07 1.00 0.05 0.00 1.00 0.54 0.13 0.07 1.00 0.54 0.10 0.01 0.99

g 0.72 0.60 0.52 0.67 0.57 0.54 1.00 0.72 0.60 0.52 0.99 0.69 0.58 0.50

F1* 1.00 0.06 0.09 1.00 0.06 0.13 0.72 1.00 0.06 0.09 0.73 1.00 0.08 0.04

F2* 0.06 1.00 0.08 0.03 1.00 0.07 0.60 0.06 1.00 0.08 0.57 0.04 0.99 0.12

F3* 0.09 0.08 1.00 0.01 0.01 1.00 0.52 0.09 0.08 1.00 0.51 0.06 0.02 0.99

h2 0.73 0.57 0.51 0.68 0.54 0.54 0.99 0.73 0.57 0.51 1.00 0.71 0.56 0.50

RC1 1.00 0.04 0.06 1.00 0.04 0.10 0.69 1.00 0.04 0.06 0.71 1.00 0.06 0.00

RC2 0.08 0.99 0.02 0.06 0.99 0.01 0.58 0.08 0.99 0.02 0.56 0.06 1.00 0.05

RC3 0.04 0.12 0.99 -0.04 0.05 0.99 0.50 0.04 0.12 0.99 0.50 0.00 0.05 1.00

Table 10: Factor correlations and factor congruences between “minres" factor analysis and “pca"

principal components using “oblimin" rotation for both.
> faCor(Thurstone,c(3,3),fm=c("minres","pca"), rotate=c("oblimin","oblimin"))

Call: faCor(r = Thurstone, nfactors = c(3, 3), fm = c("minres", "pca"),

rotate = c("oblimin", "oblimin"))

Factor correlations between the two solutions

TC1 TC2 TC3

MR1 0.99 0.53 0.45

MR2 0.55 0.98 0.48

MR3 0.51 0.44 0.98

Factor congruence between the two solutions

TC1 TC2 TC3

MR1 1.00 0.09 0.08

MR2 0.05 0.99 0.13

MR3 0.13 0.04 0.99

>
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5.4 Determining the number of dimensions to extract.

How many dimensions to use to represent a correlation matrix is an unsolved problem in psycho-

metrics. There are many solutions to this problem, none of which is uniformly the best. Henry

Kaiser once said that “a solution to the number-of factors problem in factor analysis is easy, that he

used to make up one every morning before breakfast. But the problem, of course is to find the so-

lution, or at least a solution that others will regard quite highly not as the best" Horn and Engstrom

(1979).

Techniques most commonly used include

1) Extracting factors until the chi square of the residual matrix is not significant.

2) Extracting factors until the change in chi square from factor n to factor n+1 is not signifi-

cant.

3) Extracting factors until the eigen values of the real data are less than the corresponding eigen val-

ues of a random data set of the same size (parallel analysis) fa.parallel (Horn, 1965).

4) Plotting the magnitude of the successive eigen values and applying the scree test (a sudden drop

in eigen values analogous to the change in slope seen when scrambling up the talus slope of a

mountain and approaching the rock face (Cattell, 1966).

5) Extracting factors as long as they are interpretable.

6) Using the Very Structure Criterion (vss) (Revelle and Rocklin, 1979).

7) Using Wayne Velicer’s Minimum Average Partial (MAP) criterion (Velicer, 1976).

8) Extracting principal components until the eigen value < 1.

Each of the procedures has its advantages and disadvantages. Using either the chi square test or the

change in square test is, of course, sensitive to the number of subjects and leads to the nonsensical

condition that if one wants to find many factors, one simply runs more subjects. Parallel analysis is

partially sensitive to sample size in that for large samples the eigen values of random factors will

be very small. The scree test is quite appealing but can lead to differences of interpretation as to

when the scree“breaks". Extracting interpretable factors means that the number of factors reflects

the investigators creativity more than the data. vss, while very simple to understand, will not work

very well if the data are very factorially complex. (Simulations suggests it will work fine if the

complexities of some of the items are no more than 2). The eigen value of 1 rule, although the

default for many programs, seems to be a rough way of dividing the number of variables by 3 and

is probably the worst of all criteria.

An additional problem in determining the number of factors is what is considered a factor. Many

treatments of factor analysis assume that the residual correlation matrix after the factors of interest

are extracted is composed of just random error. An alternative concept is that the matrix is formed

from major factors of interest but that there are also numerous minor factors of no substantive
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interest but that account for some of the shared covariance between variables. The presence of

such minor factors can lead one to extract too many factors and to reject solutions on statistical

grounds of misfit that are actually very good fits to the data. This problem is partially addressed

later in the discussion of simulating complex structures using sim.structure and of small

extraneous factors using the sim.minor function.

5.4.1 Very Simple Structure

The vss function compares the fit of a number of factor analyses with the loading matrix “simpli-

fied" by deleting all except the c greatest loadings per item, where c is a measure of factor com-

plexity Revelle and Rocklin (1979). Included in vss is the MAP criterion (Minimum Absolute

Partial correlation) of Velicer (1976).

Using the Very Simple Structure criterion for the bfi data suggests that 4 factors are optimal (Fig-

ure 12). However, the MAP criterion suggests that 5 is optimal.

> vss

Very Simple Structure of Very Simple Structure of a Big 5 inventory

Call: vss(x = bfi[1:25], title = "Very Simple Structure of a Big 5 inventory")

VSS complexity 1 achieves a maximimum of 0.58 with 4 factors

VSS complexity 2 achieves a maximimum of 0.74 with 5 factors

The Velicer MAP achieves a minimum of 0.01 with 5 factors

BIC achieves a minimum of -513.09 with 8 factors

Sample Size adjusted BIC achieves a minimum of -106.39 with 8 factors

Statistics by number of factors

vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex eChisq SRMR eCRMS eBIC

1 0.49 0.00 0.024 275 11863 0.0e+00 25.9 0.49 0.123 9680 10554 1.0 23725 0.119 0.124 21542

2 0.54 0.63 0.018 251 7362 0.0e+00 18.6 0.63 0.101 5370 6168 1.2 12173 0.085 0.093 10180

3 0.56 0.70 0.017 228 5096 0.0e+00 14.6 0.71 0.087 3286 4010 1.3 7019 0.065 0.074 5209

4 0.58 0.74 0.015 206 3422 0.0e+00 11.5 0.77 0.075 1787 2441 1.4 3606 0.046 0.056 1971

5 0.54 0.74 0.015 185 1809 4.3e-264 9.4 0.81 0.056 341 928 1.5 1412 0.029 0.037 -57

6 0.54 0.71 0.016 165 1032 1.8e-125 8.3 0.84 0.043 -277 247 1.8 649 0.020 0.027 -661

7 0.51 0.70 0.019 146 708 1.2e-74 7.9 0.85 0.037 -451 13 1.9 435 0.016 0.023 -724

8 0.51 0.66 0.022 128 503 7.1e-46 7.4 0.85 0.032 -513 -106 2.0 278 0.013 0.020 -738

5.4.2 Parallel Analysis

An alternative way to determine the number of factors is to compare the solution to random data

with the same properties as the real data set. If the input is a data matrix, the comparison includes

random samples from the real data, as well as normally distributed random data with the same

number of subjects and variables. For the BFI data, parallel analysis suggests that 6 factors might

be most appropriate (Figure 13). It is interesting to compare fa.parallel with the paran

from the paran package. This latter uses smcs to estimate communalities. Simulations of known

structures with a particular number of major factors but with the presence of trivial, minor (but not

zero) factors, show that using smcs will tend to lead to too many factors.
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> vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory")
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Figure 12: The Very Simple Structure criterion for the number of factors compares solutions for

various levels of item complexity and various numbers of factors. For the Big 5 Inventory, the

complexity 1 and 2 solutions both achieve their maxima at four factors. This is in contrast to

parallel analysis which suggests 6 and the MAP criterion which suggests 5.
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> fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory")

Parallel analysis suggests that the number of factors = 6 and the number of components = 6
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Figure 13: Parallel analysis compares factor and principal components solutions to the real data as

well as resampled data. Although vss suggests 4 factors, MAP 5, parallel analysis suggests 6. One

more demonstration of Kaiser’s dictum.
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A more tedious problem in terms of computation is to do parallel analysis of polychoric correlation

matrices. This is done by fa.parallel.poly or fa.parallel with the cor option="poly".

By default the number of replications is 20. This is appropriate when choosing the number of

factors from dicthotomous or polytomous data matrices.

5.5 Factor extension

Sometimes we are interested in the relationship of the factors in one space with the variables in a

different space. One solution is to find factors in both spaces separately and then find the structural

relationships between them. This is the technique of structural equation modeling in packages such

as sem or lavaan. An alternative is to use the concept of factor extension developed by (Dwyer,

1937). Consider the case of 16 variables created to represent one two dimensional space. If factors

are found from eight of these variables, they may then be extended to the additional eight variables

(See Figure 14).

Factor extension may also be used to see the validity of a certain factor solution compared to a set

of criterion variables. Consider the case of 5 factors from the 25 items of the bfi data set and how

they predict gender, age, and education (See Figure ??).

Another way to examine the overlap between two sets is the use of set correlation found by

setCor (discussed later).

5.6 Comparing multiple solutions

A procedure dubbed “bass Ackward" by Lew Goldberg (Goldberg, 2006) compares solutions at

multiple levels of complexity. Here we show a 2, 3, 4 and 5 dimensional solution to the bfi data

set. (Figure 16). This is done by finding the factor correlations between solutions (see faCor)

and then organizing them sequentially. The factor correlations for two solutions from the same

correlation matrix, R , F1 and F2 are found by using the two weights matrices, W1 and W2 (for finding

factor scores for the first and second model) and then finding the factor covariances, C = W ′
1RW2

which may then be converted to factor correlations by dividing by the square root of the diagonal

of C. By default bassAckward uses the correlation preserving weights discussed by ten Berge

et al. (1999), although other options (e.g. regression weights) may also be used.

And we show the items associated with this solution by using fa.lookup (Table 11)

Table 11: bfi items sorted in the order of the five factors from bassAckward
> # fa.lookup(baf$bass.ack[[5]],dictionary=bfi.dictionary[2])

>
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> v16 <- sim.item(16)

> s <- c(1,3,5,7,9,11,13,15)

> f2 <- fa(v16[,s],2)

> fe <- fa.extension(cor(v16)[s,-s],f2)

> fa.diagram(f2,fe=fe)
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Figure 14: Factor extension applies factors from one set (those on the left) to another set of variables

(those on the right). fa.extension is particularly useful when one wants to define the factors

with one set of variables and then apply those factors to another set. fa.diagram is used to show

the structure.
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> fe <- fa.extend(bfi,5,ov=1:25,ev=26:28)

> extension.diagram(fe)
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Figure 15: Factor extension applies factors from one set (those on the left) to another set of variables

(those on the right). fa.extend is particularly useful when one wants to define the factors with

one set of variables and then apply those factors to another set. diagram is used to show the

structure.
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> ba5 <- bassAckward(bfi[1:25], nfactors =c(2,3,4,5),plot=FALSE)

> baf <- bassAckward.diagram(ba5)

BassAckward
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Figure 16: bassAckward compares solutions at multiple levels by successive factoring and the

finding the factor correlations across levels. Compare the three factor solution to the five factor

solution. The dimensions of social approach, withdrawal, and constraint seen at the three factor

level become the more traditional CANOE factors at the five factor level.
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6 Classical Test Theory and Reliability

Surprisingly, 107 years after Spearman (1904) introduced the concept of reliability to psycholo-

gists, there are still multiple approaches for measuring it. Although very popular, Cronbach’s α

(Cronbach, 1951) underestimates the reliability of a test and over estimates the first factor saturation

(Revelle and Zinbarg, 2009).

α (Cronbach, 1951) is the same as Guttman’s λ3 (Guttman, 1945) and may be found by

λ3 =
n

n−1

(

1− tr(V )x

Vx

)

=
n

n−1

Vx − tr(V x)

Vx

= α

Perhaps because it is so easy to calculate and is available in most commercial programs, alpha is

without doubt the most frequently reported measure of internal consistency reliability. Alpha is

the mean of all possible spit half reliabilities (corrected for test length). For a unifactorial test, it

is a reasonable estimate of the first factor saturation, although if the test has any microstructure

(i.e., if it is “lumpy") coefficients β (Revelle, 1979) (see iclust) and ωh (see omega) are more

appropriate estimates of the general factor saturation. ωt is a better estimate of the reliability of the

total test.

Guttman’s λ6 (G6) considers the amount of variance in each item that can be accounted for the lin-

ear regression of all of the other items (the squared multiple correlation or smc), or more precisely,

the variance of the errors, e2
j , and is

λ6 = 1− ∑e2
j

Vx

= 1− ∑(1− r2
smc)

Vx

.

The squared multiple correlation is a lower bound for the item communality and as the number of

items increases, becomes a better estimate.

G6 is also sensitive to lumpiness in the test and should not be taken as a measure of unifactorial

structure. For lumpy tests, it will be greater than alpha. For tests with equal item loadings, alpha

> G6, but if the loadings are unequal or if there is a general factor, G6 > alpha. G6 estimates item

reliability by the squared multiple correlation of the other items in a scale. A modification of G6,

G6*, takes as an estimate of an item reliability the smc with all the items in an inventory, including

those not keyed for a particular scale. This will lead to a better estimate of the reliable variance of

a particular item.

Alpha, G6 and G6* are positive functions of the number of items in a test as well as the average

intercorrelation of the items in the test. When calculated from the item variances and total test

variance, as is done here, raw alpha is sensitive to differences in the item variances. Standardized

alpha is based upon the correlations rather than the covariances.

More complete reliability analyses of a single scale can be done using the omega function which

finds ωh and ωt based upon a hierarchical factor analysis.
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Alternative functions scoreItems and cluster.corwill also score multiple scales and report

more useful statistics. “Standardized" alpha is calculated from the inter-item correlations and will

differ from raw alpha.

Functions for examining the reliability of a single scale or a set of scales include:

alpha Internal consistency measures of reliability range from ωh to α to ωt . The alpha function

reports two estimates: Cronbach’s coefficient α and Guttman’s λ6. Also reported are item -

whole correlations, α if an item is omitted, and item means and standard deviations.

guttman Eight alternative estimates of test reliability include the six discussed by Guttman (1945),

four discussed by ten Berge and Zergers (1978) (µ0 . . .µ3) as well as β (the worst split half,

Revelle, 1979), the glb (greatest lowest bound) discussed by Bentler and Woodward (1980),

and ωh andωt ((McDonald, 1999; Zinbarg et al., 2005).

omega Calculate McDonald’s omega estimates of general and total factor saturation. (Revelle and

Zinbarg (2009) compare these coefficients with real and artificial data sets.)

cluster.cor Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n x n

correlation matrix, find the correlations of the composite clusters.

scoreItems Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix or data.frame

of items scores for m items and n people, find the sum scores or average scores for each per-

son and each scale. If the input is a square matrix, then it is assumed that correlations or

covariances were used, and the raw scores are not available. In addition, report Cronbach’s

alpha, coefficient G6*, the average r, the scale intercorrelations, and the item by scale cor-

relations (both raw and corrected for item overlap and scale reliability). Replace missing

values with the item median or mean if desired. Will adjust scores for reverse scored items.

score.multiple.choice Ability tests are typically multiple choice with one right answer. score.multiple.choice

takes a scoring key and a data matrix (or data.frame) and finds total or average number right

for each participant. Basic test statistics (alpha, average r, item means, item-whole correla-

tions) are also reported.

6.1 Reliability of a single scale

A conventional (but non-optimal) estimate of the internal consistency reliability of a test is coef-

ficient α (Cronbach, 1951). Alternative estimates are Guttman’s λ6, Revelle’s β , McDonald’s ωh

and ωt . Consider a simulated data set, representing 9 items with a hierarchical structure and the

following correlation matrix. Then using the alpha function, the α and λ6 estimates of reliability

may be found for all 9 items, as well as the if one item is dropped at a time.

> set.seed(17)

> r9 <- sim.hierarchical(n=500,raw=TRUE)$observed

> round(cor(r9),2)
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V1 V2 V3 V4 V5 V6 V7 V8 V9

V1 1.00 0.58 0.47 0.44 0.36 0.31 0.30 0.17 0.13

V2 0.58 1.00 0.36 0.39 0.26 0.26 0.30 0.24 0.15

V3 0.47 0.36 1.00 0.32 0.34 0.26 0.28 0.17 0.15

V4 0.44 0.39 0.32 1.00 0.45 0.41 0.31 0.17 0.16

V5 0.36 0.26 0.34 0.45 1.00 0.34 0.22 0.13 0.21

V6 0.31 0.26 0.26 0.41 0.34 1.00 0.17 0.10 0.12

V7 0.30 0.30 0.28 0.31 0.22 0.17 1.00 0.39 0.30

V8 0.17 0.24 0.17 0.17 0.13 0.10 0.39 1.00 0.22

V9 0.13 0.15 0.15 0.16 0.21 0.12 0.30 0.22 1.00

> alpha(r9)

Reliability analysis

Call: alpha(x = r9)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.77 0.77 0.78 0.28 3.4 0.015 -0.013 0.59 0.27

95% confidence boundaries

lower alpha upper

Feldt 0.74 0.77 0.8

Duhachek 0.75 0.77 0.8

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

V1 0.73 0.73 0.73 0.26 2.8 0.018 0.0094 0.26

V2 0.74 0.74 0.74 0.26 2.9 0.017 0.0121 0.27

V3 0.75 0.75 0.75 0.27 3.0 0.017 0.0142 0.26

V4 0.74 0.74 0.74 0.26 2.8 0.018 0.0124 0.26

V5 0.75 0.75 0.75 0.27 3.0 0.017 0.0143 0.27

V6 0.76 0.76 0.76 0.28 3.2 0.016 0.0137 0.29

V7 0.75 0.75 0.75 0.27 3.0 0.017 0.0160 0.26

V8 0.77 0.77 0.77 0.30 3.4 0.015 0.0128 0.30

V9 0.78 0.78 0.78 0.30 3.5 0.015 0.0127 0.30

Item statistics

n raw.r std.r r.cor r.drop mean sd

V1 500 0.70 0.70 0.68 0.58 0.0247 0.98

V2 500 0.66 0.66 0.62 0.53 -0.0022 0.98

V3 500 0.62 0.62 0.55 0.49 -0.1027 0.93

V4 500 0.69 0.68 0.64 0.56 -0.0661 1.05

V5 500 0.61 0.62 0.55 0.48 -0.0622 0.98

V6 500 0.55 0.55 0.46 0.40 -0.0163 0.99

V7 500 0.61 0.61 0.54 0.47 0.0706 1.01

V8 500 0.49 0.48 0.37 0.32 0.0134 1.02

V9 500 0.45 0.45 0.33 0.29 0.0247 0.96

Some scales have items that need to be reversed before being scored. Rather than reversing the

items in the raw data, it is more convenient to just specify which items need to be reversed scored.

This may be done in alpha by specifying a keys vector of 1s and -1s. (This concept of keys

vector is more useful when scoring multiple scale inventories, see below.) As an example, consider

scoring the 7 attitude items in the attitude data set. Assume a conceptual mistake in that item 2 is

to be scored (incorrectly) negatively.

> keys <- c(1,-1,1,1,1,1,1)
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> alpha(attitude,keys)

Reliability analysis

Call: alpha(x = attitude, keys = keys)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.43 0.52 0.75 0.14 1.1 0.13 58 5.5 0.28

95% confidence boundaries

lower alpha upper

Feldt 0.06 0.43 0.70

Duhachek 0.18 0.43 0.68

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

rating 0.32 0.44 0.67 0.114 0.77 0.170 0.203 0.28

complaints- 0.80 0.80 0.82 0.394 3.89 0.057 0.035 0.43

privileges 0.27 0.41 0.72 0.103 0.69 0.176 0.247 0.16

learning 0.14 0.31 0.64 0.069 0.44 0.207 0.209 0.16

raises 0.14 0.27 0.61 0.059 0.38 0.205 0.197 0.16

critical 0.36 0.47 0.76 0.130 0.90 0.139 0.294 0.43

advance 0.21 0.34 0.66 0.079 0.51 0.171 0.265 0.16

Item statistics

n raw.r std.r r.cor r.drop mean sd

rating 30 0.60 0.60 0.60 0.33 65 12.2

complaints- 30 -0.57 -0.58 -0.74 -0.74 50 13.3

privileges 30 0.66 0.65 0.54 0.42 53 12.2

learning 30 0.80 0.79 0.78 0.64 56 11.7

raises 30 0.82 0.83 0.85 0.69 65 10.4

critical 30 0.50 0.53 0.35 0.27 75 9.9

advance 30 0.74 0.75 0.71 0.58 43 10.3

Note how the reliability of the 7 item scales with an incorrectly reversed item is very poor, but if

the item 2 is dropped then the reliability is improved substantially. This suggests that item 2 was

incorrectly scored. Doing the analysis again with item 2 positively scored produces much more

favorable results.

> keys <- c(1,1,1,1,1,1,1)

> alpha(attitude,keys)

Reliability analysis

Call: alpha(x = attitude, keys = keys)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.84 0.84 0.88 0.43 5.2 0.042 60 8.2 0.45

95% confidence boundaries

lower alpha upper

Feldt 0.74 0.84 0.92

Duhachek 0.76 0.84 0.93

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

rating 0.81 0.81 0.83 0.41 4.2 0.052 0.035 0.45

complaints 0.80 0.80 0.82 0.39 3.9 0.057 0.035 0.43

privileges 0.83 0.82 0.87 0.44 4.7 0.048 0.054 0.53
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learning 0.80 0.80 0.84 0.40 4.0 0.054 0.045 0.38

raises 0.80 0.78 0.83 0.38 3.6 0.056 0.048 0.34

critical 0.86 0.86 0.89 0.51 6.3 0.038 0.030 0.56

advance 0.84 0.83 0.86 0.46 5.0 0.043 0.048 0.49

Item statistics

n raw.r std.r r.cor r.drop mean sd

rating 30 0.78 0.76 0.75 0.67 65 12.2

complaints 30 0.84 0.81 0.82 0.74 67 13.3

privileges 30 0.70 0.68 0.60 0.56 53 12.2

learning 30 0.81 0.80 0.78 0.71 56 11.7

raises 30 0.85 0.86 0.85 0.79 65 10.4

critical 30 0.42 0.45 0.31 0.27 75 9.9

advance 30 0.60 0.62 0.56 0.46 43 10.3

It is useful when considering items for a potential scale to examine the item distribution. This is

done in scoreItems as well as in alpha.

> items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items

> alpha(items$observed) #item response analysis of congeneric measures

Reliability analysis

Call: alpha(x = items$observed)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.7 0.7 0.66 0.37 2.4 0.022 0.079 0.74 0.38

95% confidence boundaries

lower alpha upper

Feldt 0.66 0.7 0.74

Duhachek 0.66 0.7 0.75

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

V1 0.57 0.57 0.48 0.31 1.3 0.033 0.0067 0.30

V2 0.60 0.60 0.51 0.33 1.5 0.031 0.0075 0.36

V3 0.67 0.67 0.60 0.40 2.0 0.026 0.0167 0.36

V4 0.71 0.71 0.63 0.45 2.4 0.023 0.0077 0.40

Item statistics

n raw.r std.r r.cor r.drop mean sd

V1 500 0.79 0.79 0.71 0.59 0.066 1.02

V2 500 0.77 0.77 0.68 0.56 0.098 1.01

V3 500 0.69 0.70 0.52 0.44 0.022 0.98

V4 500 0.66 0.65 0.44 0.38 0.130 1.06

Non missing response frequency for each item

-2 -1 0 1 2 miss

V1 0.07 0.22 0.36 0.28 0.07 0

V2 0.06 0.21 0.39 0.27 0.08 0

V3 0.06 0.23 0.40 0.25 0.06 0

V4 0.07 0.21 0.33 0.29 0.09 0
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6.2 Using omega to find the reliability of a single scale

Two alternative estimates of reliability that take into account the hierarchical structure of the inven-

tory are McDonald’s ωh and ωt . These may be found using the omega function for an exploratory

analysis (See Figure 17) or omegaSem for a confirmatory analysis using the sem based upon the

exploratory solution from omega.

McDonald has proposed coefficient omega (hierarchical) (ωh) as an estimate of the general factor

saturation of a test. Zinbarg et al. (2005) http://personality-project.org/revelle/

publications/zinbarg.revelle.pmet.05.pdf compare McDonald’s ωh to Cronbach’s

α and Revelle’s β . They conclude that ωh is the best estimate. (See also Zinbarg et al. (2006) and

Revelle and Zinbarg (2009) http://personality-project.org/revelle/publications/

revelle.zinbarg.08.pdf ).

One way to find ωh is to do a factor analysis of the original data set, rotate the factors obliquely,

factor that correlation matrix, do a Schmid-Leiman (schmid) transformation to find general factor

loadings, and then find ωh.

ωh differs slightly as a function of how the factors are estimated. Four options are available, the

default will do a minimum residual factor analysis, fm=“pa" does a principal axes factor analysis

(factor.pa), fm=“mle" uses the factanal function, and fm=“pc" does a principal components

analysis (principal).

For ability items, it is typically the case that all items will have positive loadings on the general

factor. However, for non-cognitive items it is frequently the case that some items are to be scored

positively, and some negatively. Although probably better to specify which directions the items

are to be scored by specifying a key vector, if flip =TRUE (the default), items will be reversed so

that they have positive loadings on the general factor. The keys are reported so that scores can be

found using the scoreItems function. Arbitrarily reversing items this way can overestimate the

general factor. (See the example with a simulated circumplex).

β , an alternative to ω , is defined as the worst split half reliability. It can be estimated by us-

ing iclust (Item Cluster analysis: a hierarchical clustering algorithm). For a very complimen-

tary review of why the iclust algorithm is useful in scale construction, see Cooksey and Soutar

(2006).

The omega function uses exploratory factor analysis to estimate the ωh coefficient. It is important

to remember that “A recommendation that should be heeded, regardless of the method chosen to

estimate ωh, is to always examine the pattern of the estimated general factor loadings prior to esti-

mating ωh. Such an examination constitutes an informal test of the assumption that there is a latent

variable common to all of the scale’s indicators that can be conducted even in the context of EFA. If

the loadings were salient for only a relatively small subset of the indicators, this would suggest that

there is no true general factor underlying the covariance matrix. Just such an informal assumption

test would have afforded a great deal of protection against the possibility of misinterpreting the
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misleading ωh estimates occasionally produced in the simulations reported here." (Zinbarg et al.,

2006, p 137).

Although ωh is uniquely defined only for cases where 3 or more subfactors are extracted, it is

sometimes desired to have a two factor solution. By default this is done by forcing the schmid

extraction to treat the two subfactors as having equal loadings.

There are three possible options for this condition: setting the general factor loadings between the

two lower order factors to be “equal" which will be the
√

rab where rab is the oblique correlation

between the factors) or to “first" or “second" in which case the general factor is equated with either

the first or second group factor. A message is issued suggesting that the model is not really well

defined. This solution discussed in Zinbarg et al., 2007. To do this in omega, add the option=“first"

or option=“second" to the call.

Although obviously not meaningful for a 1 factor solution, it is of course possible to find the sum

of the loadings on the first (and only) factor, square them, and compare them to the overall matrix

variance. This is done, with appropriate complaints.

In addition to ωh, another of McDonald’s coefficients is ωt . This is an estimate of the total reliability

of a test.

McDonald’s ωt , which is similar to Guttman’s λ6, (see guttman) uses the estimates of uniqueness

u2 from factor analysis to find e2
j . This is based on a decomposition of the variance of a test score,

Vx into four parts: that due to a general factor, g, that due to a set of group factors, f , (factors

common to some but not all of the items), specific factors, s unique to each item, and e, random

error. (Because specific variance can not be distinguished from random error unless the test is given

at least twice, some combine these both into error).

Letting x = cg+A f +Ds+ e then the communality of item j, based upon general as well as group

factors, h2
j = c2

j +∑ f 2
i j and the unique variance for the item u2

j =σ2
j (1−h2

j) may be used to estimate

the test reliability. That is, if h2
j is the communality of item j, based upon general as well as group

factors, then for standardized items, e2
j = 1−h2

j and

ωt =
1cc′1+1AA′1′

Vx

= 1− ∑(1−h2
j)

Vx

= 1− ∑u2

Vx

Because h2
j ≥ r2

smc, ωt ≥ λ6.

It is important to distinguish here between the two ω coefficients of McDonald, 1978 and Equa-

tion 6.20a of McDonald, 1999, ωt and ωh. While the former is based upon the sum of squared

loadings on all the factors, the latter is based upon the sum of the squared loadings on the general

factor.

ωh =
1cc′1

Vx
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Another estimate reported is the omega for an infinite length test with a structure similar to the

observed test. This is found by

ωinf =
1cc′1

1cc′1+1AA′1′

> om.9 <- omega(r9,title="9 simulated variables")

9 simulated variables
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Figure 17: A bifactor solution for 9 simulated variables with a hierarchical structure.

In the case of these simulated 9 variables, the amount of variance attributable to a general factor

(ωh) is quite large, and the reliability of the set of 9 items is somewhat greater than that estimated

by α or λ6.

> om.9

9 simulated variables

Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,

digits = digits, title = title, sl = sl, labels = labels,

plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
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covar = covar)

Alpha: 0.77

G.6: 0.78

Omega Hierarchical: 0.64

Omega H asymptotic: 0.78

Omega Total 0.82

Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* h2 u2 p2

V1 0.69 0.54 0.78 0.22 0.62

V2 0.56 0.37 0.46 0.54 0.68

V3 0.50 0.21 0.32 0.68 0.79

V4 0.60 0.36 0.50 0.50 0.73

V5 0.52 0.39 0.43 0.57 0.64

V6 0.45 0.32 0.31 0.69 0.65

V7 0.44 0.56 0.51 0.49 0.37

V8 0.28 0.48 0.31 0.69 0.26

V9 0.25 0.33 0.19 0.81 0.35

With Sums of squares of:

g F1* F2* F3*
2.21 0.49 0.42 0.68

general/max 3.26 max/min = 1.63

mean percent general = 0.57 with sd = 0.19 and cv of 0.33

Explained Common Variance of the general factor = 0.58

The degrees of freedom are 12 and the fit is 0.03

The number of observations was 500 with Chi Square = 16.31 with prob < 0.18

The root mean square of the residuals is 0.02

The df corrected root mean square of the residuals is 0.03

RMSEA index = 0.027 and the 10 % confidence intervals are 0 0.056

BIC = -58.26

Compare this with the adequacy of just a general factor and no group factors

The degrees of freedom for just the general factor are 27 and the fit is 0.37

The number of observations was 500 with Chi Square = 184.27 with prob < 2.3e-25

The root mean square of the residuals is 0.09

The df corrected root mean square of the residuals is 0.1

RMSEA index = 0.108 and the 10 % confidence intervals are 0.094 0.123

BIC = 16.48

Measures of factor score adequacy

g F1* F2* F3*
Correlation of scores with factors 0.83 0.64 0.55 0.70

Multiple R square of scores with factors 0.69 0.41 0.30 0.49

Minimum correlation of factor score estimates 0.38 -0.18 -0.40 -0.02

Total, General and Subset omega for each subset

g F1* F2* F3*
Omega total for total scores and subscales 0.82 0.74 0.67 0.59

Omega general for total scores and subscales 0.64 0.53 0.46 0.20

Omega group for total scores and subscales 0.15 0.22 0.22 0.39
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6.3 Estimating ωh using Confirmatory Factor Analysis

The omegaSem function will do an exploratory analysis and then take the highest loading items

on each factor and do a confirmatory factor analysis using the sem package. These results can

produce slightly different estimates of ωh, primarily because cross loadings are modeled as part of

the general factor.

> omegaSem(r9,n.obs=500)

Call: omegaSem(m = r9, n.obs = 500)

Omega

Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,

digits = digits, title = title, sl = sl, labels = labels,

plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,

covar = covar)

Alpha: 0.77

G.6: 0.78

Omega Hierarchical: 0.64

Omega H asymptotic: 0.78

Omega Total 0.82

Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* h2 u2 p2

V1 0.69 0.54 0.78 0.22 0.62

V2 0.56 0.37 0.46 0.54 0.68

V3 0.50 0.21 0.32 0.68 0.79

V4 0.60 0.36 0.50 0.50 0.73

V5 0.52 0.39 0.43 0.57 0.64

V6 0.45 0.32 0.31 0.69 0.65

V7 0.44 0.56 0.51 0.49 0.37

V8 0.28 0.48 0.31 0.69 0.26

V9 0.25 0.33 0.19 0.81 0.35

With Sums of squares of:

g F1* F2* F3*
2.21 0.49 0.42 0.68

general/max 3.26 max/min = 1.63

mean percent general = 0.57 with sd = 0.19 and cv of 0.33

Explained Common Variance of the general factor = 0.58

The degrees of freedom are 12 and the fit is 0.03

The number of observations was 500 with Chi Square = 16.31 with prob < 0.18

The root mean square of the residuals is 0.02

The df corrected root mean square of the residuals is 0.03

RMSEA index = 0.027 and the 10 % confidence intervals are 0 0.056

BIC = -58.26

Compare this with the adequacy of just a general factor and no group factors

The degrees of freedom for just the general factor are 27 and the fit is 0.37

The number of observations was 500 with Chi Square = 184.27 with prob < 2.3e-25

The root mean square of the residuals is 0.09

The df corrected root mean square of the residuals is 0.1

RMSEA index = 0.108 and the 10 % confidence intervals are 0.094 0.123

BIC = 16.48

55



Measures of factor score adequacy

g F1* F2* F3*
Correlation of scores with factors 0.83 0.64 0.55 0.70

Multiple R square of scores with factors 0.69 0.41 0.30 0.49

Minimum correlation of factor score estimates 0.38 -0.18 -0.40 -0.02

Total, General and Subset omega for each subset

g F1* F2* F3*
Omega total for total scores and subscales 0.82 0.74 0.67 0.59

Omega general for total scores and subscales 0.64 0.53 0.46 0.20

Omega group for total scores and subscales 0.15 0.22 0.22 0.39

The following analyses were done using the lavaan package

Omega Hierarchical from a confirmatory model using sem = 0.68

Omega Total from a confirmatory model using sem = 0.86

With loadings of

g F1* F2* F3* h2 u2 p2

V1 0.68 1.23 1.98 -0.98 0.23

V2 0.61 0.39 0.61 0.95

V3 0.57 0.33 0.67 0.98

V4 0.62 0.40 0.55 0.45 0.70

V5 0.51 0.33 0.37 0.63 0.70

V6 0.43 0.35 0.31 0.69 0.60

V7 0.46 0.56 0.53 0.47 0.40

V8 0.29 0.45 0.29 0.71 0.29

V9 0.25 0.32 0.17 0.83 0.37

With sum of squared loadings of:

g F1* F2* F3*
2.37 1.53 0.40 0.63

The degrees of freedom of the confirmatory model are 18 and the fit is 25.42543 with p = 0.1136393

general/max 1.55 max/min = 3.86

mean percent general = 0.58 with sd = 0.28 and cv of 0.48

Explained Common Variance of the general factor = 0.48

Measures of factor score adequacy

g F1* F2* F3*
Correlation of scores with factors 0.86 1.59 0.57 0.70

Multiple R square of scores with factors 0.73 2.52 0.32 0.48

Minimum correlation of factor score estimates 0.46 4.04 -0.36 -0.03

Total, General and Subset omega for each subset

g F1* F2* F3*
Omega total for total scores and subscales 0.86 0.95 0.67 0.58

Omega general for total scores and subscales 0.68 0.60 0.45 0.21

Omega group for total scores and subscales 0.17 0.35 0.22 0.37

To get the standard sem fit statistics, ask for summary on the fitted object

6.3.1 Other estimates of reliability

Other estimates of reliability are found by the splitHalf function. These are described in more

detail in Revelle and Zinbarg (2009). They include the 6 estimates from Guttman, four from Ten-

Berge, and an estimate of the greatest lower bound.
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> splitHalf(r9)

Split half reliabilities

Call: splitHalf(r = r9)

Maximum split half reliability (lambda 4) = 0.82

Guttman lambda 6 = 0.78

Average split half reliability = 0.77

Guttman lambda 3 (alpha) = 0.77

Guttman lambda 2 = 0.78

Minimum split half reliability (beta) = 0.7

Average interitem r = 0.28 with median = 0.27

6.4 Reliability and correlations of multiple scales within an inventory

A typical research question in personality involves an inventory of multiple items purporting to

measure multiple constructs. For example, the data set bfi includes 25 items thought to measure

five dimensions of personality (Extraversion, Emotional Stability, Conscientiousness, Agreeable-

ness, and Openness). The data may either be the raw data or a correlation matrix (scoreItems)

or just a correlation matrix of the items ( cluster.cor and cluster.loadings). When

finding reliabilities for multiple scales, item reliabilities can be estimated using the squared multi-

ple correlation of an item with all other items, not just those that are keyed for a particular scale.

This leads to an estimate of G6*.

6.4.1 Scoring from raw data

To score these five scales from the 25 items, use the scoreItems function with the helper func-

tion make.keys. Logically, scales are merely the weighted composites of a set of items. The

weights used are -1, 0, and 1. 0 implies do not use that item in the scale, 1 implies a positive weight

(add the item to the total score), -1 a negative weight (subtract the item from the total score, i.e.,

reverse score the item). Reverse scoring an item is equivalent to subtracting the item from the max-

imum + minimum possible value for that item. The minima and maxima can be estimated from all

the items, or can be specified by the user.

There are two different ways that scale scores tend to be reported. Social psychologists and educa-

tional psychologists tend to report the scale score as the average item score while many personality

psychologists tend to report the total item score. The default option for scoreItems is to re-

port item averages (which thus allows interpretation in the same metric as the items) but totals can

be found as well. Personality researchers should be encouraged to report scores based upon item

means and avoid using the total score although some reviewers are adamant about the following

the tradition of total scores.

The printed output includes coefficients α and G6*, the average correlation of the items within

the scale (corrected for item overlap and scale relliability), as well as the correlations between

the scales (below the diagonal, the correlations above the diagonal are corrected for attenuation.
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As is the case for most of the psych functions, additional information is returned as part of the

object.

First, create keys matrix using the make.keys function. (The keys matrix could also be prepared

externally using a spreadsheet and then copying it into R). Although not normally necessary, show

the keys to understand what is happening.

Note that the number of items to specify in the make.keys function is the total number of items

in the inventory. That is, if scoring just 5 items from a 25 item inventory, make.keys should be

told that there are 25 items. make.keys just changes a list of items on each scale to make up a

scoring matrix. Because the bfi data set has 25 items as well as 3 demographic items, the number

of variables is specified as 28.

> keys <- make.keys(nvars=28,list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10),

+ Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20),

+ Openness = c(21,-22,23,24,-25)),

+ item.labels=colnames(bfi))

> keys

Agree Conscientious Extraversion Neuroticism Openness

A1 -1 0 0 0 0

A2 1 0 0 0 0

A3 1 0 0 0 0

A4 1 0 0 0 0

A5 1 0 0 0 0

C1 0 1 0 0 0

C2 0 1 0 0 0

C3 0 1 0 0 0

C4 0 -1 0 0 0

C5 0 -1 0 0 0

E1 0 0 -1 0 0

E2 0 0 -1 0 0

E3 0 0 1 0 0

E4 0 0 1 0 0

E5 0 0 1 0 0

N1 0 0 0 1 0

N2 0 0 0 1 0

N3 0 0 0 1 0

N4 0 0 0 1 0

N5 0 0 0 1 0

O1 0 0 0 0 1

O2 0 0 0 0 -1

O3 0 0 0 0 1

O4 0 0 0 0 1

O5 0 0 0 0 -1

gender 0 0 0 0 0

education 0 0 0 0 0

age 0 0 0 0 0

The use of multiple key matrices for different inventories is facilitated by using the superMatrix

function to combine two or more matrices. This allows convenient scoring of large data sets com-

bining multiple inventories with keys based upon each individual inventory. Pretend for the moment

that the big 5 items were made up of two inventories, one consisting of the first 10 items, the second
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the last 18 items. (15 personality items + 3 demographic items.) Then the following code would

work:

> keys.1<- make.keys(10,list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10)))

> keys.2 <- make.keys(15,list(Extraversion=c(-1,-2,3:5),Neuroticism=c(6:10),

+ Openness = c(11,-12,13,14,-15)))

> keys.25 <- superMatrix(list(keys.1,keys.2))

The resulting keys matrix is identical to that found above except that it does not include the extra

3 demographic items. This is useful when scoring the raw items because the response frequencies

for each category are reported, and for the demographic data,

This use of making multiple key matrices and then combining them into one super matrix of keys

is particularly useful when combining demographic information with items to be scores. A set of

demographic keys can be made and then these can be combined with the keys for the particular

scales.

Now use these keys in combination with the raw data to score the items, calculate basic reliability

and intercorrelations, and find the item-by scale correlations for each item and each scale. By

default, missing data are replaced by the median for that variable.

> scores <- scoreItems(keys,bfi)

> scores

Call: scoreItems(keys = keys, items = bfi)

(Unstandardized) Alpha:

Agree Conscientious Extraversion Neuroticism Openness

alpha 0.7 0.72 0.76 0.81 0.6

Standard errors of unstandardized Alpha:

Agree Conscientious Extraversion Neuroticism Openness

ASE 0.014 0.014 0.013 0.011 0.017

Average item correlation:

Agree Conscientious Extraversion Neuroticism Openness

average.r 0.32 0.34 0.39 0.46 0.23

Median item correlation:

Agree Conscientious Extraversion Neuroticism Openness

0.34 0.34 0.38 0.41 0.22

Guttman 6* reliability:

Agree Conscientious Extraversion Neuroticism Openness

Lambda.6 0.7 0.72 0.76 0.81 0.6

Signal/Noise based upon av.r :

Agree Conscientious Extraversion Neuroticism Openness

Signal/Noise 2.3 2.6 3.2 4.3 1.5

Scale intercorrelations corrected for attenuation

raw correlations below the diagonal, alpha on the diagonal

corrected correlations above the diagonal:

Agree Conscientious Extraversion Neuroticism Openness

Agree 0.70 0.36 0.63 -0.245 0.23
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Conscientious 0.26 0.72 0.35 -0.305 0.30

Extraversion 0.46 0.26 0.76 -0.284 0.32

Neuroticism -0.18 -0.23 -0.22 0.812 -0.12

Openness 0.15 0.19 0.22 -0.086 0.60

In order to see the item by scale loadings and frequency counts of the data

print with the short option = FALSE

To see the additional information (the raw correlations, the individual scores, etc.), they may be

specified by name. Then, to visualize the correlations between the raw scores, use the pairs.panels

function on the scores values of scores. (See figure 18

6.4.2 Forming scales from a correlation matrix

There are some situations when the raw data are not available, but the correlation matrix between

the items is available. In this case, it is not possible to find individual scores, but it is possible to

find the reliability and intercorrelations of the scales. This may be done using the cluster.cor

function or the scoreItems function. The use of a keys matrix is the same as in the raw data

case.

Consider the same bfi data set, but first find the correlations, and then use cluster.cor.

> r.bfi <- cor(bfi,use="pairwise")

> scales <- cluster.cor(keys,r.bfi)

> summary(scales)

Call: cluster.cor(keys = keys, r.mat = r.bfi)

Scale intercorrelations corrected for attenuation

raw correlations below the diagonal, (standardized) alpha on the diagonal

corrected correlations above the diagonal:

Agree Conscientious Extraversion Neuroticism Openness

Agree 0.71 0.35 0.64 -0.242 0.25

Conscientious 0.25 0.73 0.36 -0.287 0.30

Extraversion 0.47 0.27 0.76 -0.278 0.35

Neuroticism -0.18 -0.22 -0.22 0.815 -0.11

Openness 0.16 0.20 0.24 -0.074 0.61

To find the correlations of the items with each of the scales (the “structure" matrix) or the correla-

tions of the items controlling for the other scales (the “pattern" matrix), use the cluster.loadings

function. To do both at once (e.g., the correlations of the scales as well as the item by scale corre-

lations), it is also possible to just use scoreItems.

6.5 Scoring Multiple Choice Items

Some items (typically associated with ability tests) are not themselves mini-scales ranging from low

to high levels of expression of the item of interest, but are rather multiple choice where one response

is the correct response. Two analyses are useful for this kind of item: examining the response pat-

terns to all the alternatives (looking for good or bad distractors) and scoring the items as correct
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> png('scores.png')

> pairs.panels(scores$scores,pch='.',jiggle=TRUE)

> dev.off()

pdf

2

Figure 18: A graphic analysis of the Big Five scales found by using the scoreItems function. The

pair.wise plot allows us to see that some participants have reached the ceiling of the scale for these

5 items scales. Using the pch=’.’ option in pairs.panels is recommended when plotting many cases.

The data points were “jittered” by setting jiggle=TRUE. Jiggling this way shows the density more

clearly. To save space, the figure was done as a png. For a clearer figure, save as a pdf.
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or incorrect. Both of these operations may be done using the score.multiple.choice func-

tion. Consider the 16 example items taken from an online ability test at the Personality Project:

http://test.personality-project.org. This is part of the Synthetic Aperture Per-

sonality Assessment (SAPA) study discussed in Revelle et al. (2011, 2010).

> data(iqitems)

> iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7)

> score.multiple.choice(iq.keys,iqitems)

Call: score.multiple.choice(key = iq.keys, data = iqitems)

(Unstandardized) Alpha:

[1] 0.84

Average item correlation:

[1] 0.25

item statistics

key 0 1 2 3 4 5 6 7 8 miss r n mean sd

reason.4 4 0.05 0.05 0.11 0.10 0.64 0.03 0.02 0.00 0.00 0 0.59 1523 0.64 0.48

reason.16 4 0.04 0.06 0.08 0.10 0.70 0.01 0.00 0.00 0.00 0 0.53 1524 0.70 0.46

reason.17 4 0.05 0.03 0.05 0.03 0.70 0.03 0.11 0.00 0.00 0 0.59 1523 0.70 0.46

reason.19 6 0.04 0.02 0.13 0.03 0.06 0.10 0.62 0.00 0.00 0 0.56 1523 0.62 0.49

letter.7 6 0.05 0.01 0.05 0.03 0.11 0.14 0.60 0.00 0.00 0 0.58 1524 0.60 0.49

letter.33 3 0.06 0.10 0.13 0.57 0.04 0.09 0.02 0.00 0.00 0 0.56 1523 0.57 0.50

letter.34 4 0.04 0.09 0.07 0.11 0.61 0.05 0.02 0.00 0.00 0 0.59 1523 0.61 0.49

letter.58 4 0.06 0.14 0.09 0.09 0.44 0.16 0.01 0.00 0.00 0 0.58 1525 0.44 0.50

matrix.45 5 0.04 0.01 0.06 0.14 0.18 0.53 0.04 0.00 0.00 0 0.51 1523 0.53 0.50

matrix.46 2 0.04 0.12 0.55 0.07 0.11 0.06 0.05 0.00 0.00 0 0.52 1524 0.55 0.50

matrix.47 2 0.04 0.05 0.61 0.07 0.11 0.06 0.06 0.00 0.00 0 0.55 1523 0.61 0.49

matrix.55 4 0.04 0.02 0.18 0.14 0.37 0.07 0.18 0.00 0.00 0 0.45 1524 0.37 0.48

rotate.3 3 0.04 0.03 0.04 0.19 0.22 0.15 0.05 0.12 0.15 0 0.51 1523 0.19 0.40

rotate.4 2 0.04 0.03 0.21 0.05 0.18 0.04 0.04 0.25 0.15 0 0.56 1523 0.21 0.41

rotate.6 6 0.04 0.22 0.02 0.05 0.14 0.05 0.30 0.04 0.14 0 0.55 1523 0.30 0.46

rotate.8 7 0.04 0.03 0.21 0.07 0.16 0.05 0.13 0.19 0.13 0 0.48 1524 0.19 0.39

> #just convert the items to true or false

> iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE)

> describe(iq.tf) #compare to previous results

vars n mean sd median trimmed mad min max range skew kurtosis se

reason.4 1 1523 0.64 0.48 1 0.68 0 0 1 1 -0.58 -1.66 0.01

reason.16 2 1524 0.70 0.46 1 0.75 0 0 1 1 -0.86 -1.26 0.01

reason.17 3 1523 0.70 0.46 1 0.75 0 0 1 1 -0.86 -1.26 0.01

reason.19 4 1523 0.62 0.49 1 0.64 0 0 1 1 -0.47 -1.78 0.01

letter.7 5 1524 0.60 0.49 1 0.62 0 0 1 1 -0.41 -1.84 0.01

letter.33 6 1523 0.57 0.50 1 0.59 0 0 1 1 -0.29 -1.92 0.01

letter.34 7 1523 0.61 0.49 1 0.64 0 0 1 1 -0.46 -1.79 0.01

letter.58 8 1525 0.44 0.50 0 0.43 0 0 1 1 0.23 -1.95 0.01

matrix.45 9 1523 0.53 0.50 1 0.53 0 0 1 1 -0.10 -1.99 0.01

matrix.46 10 1524 0.55 0.50 1 0.56 0 0 1 1 -0.20 -1.96 0.01

matrix.47 11 1523 0.61 0.49 1 0.64 0 0 1 1 -0.47 -1.78 0.01

matrix.55 12 1524 0.37 0.48 0 0.34 0 0 1 1 0.52 -1.73 0.01

rotate.3 13 1523 0.19 0.40 0 0.12 0 0 1 1 1.55 0.40 0.01

rotate.4 14 1523 0.21 0.41 0 0.14 0 0 1 1 1.40 -0.03 0.01

rotate.6 15 1523 0.30 0.46 0 0.25 0 0 1 1 0.88 -1.24 0.01

rotate.8 16 1524 0.19 0.39 0 0.11 0 0 1 1 1.62 0.63 0.01
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Once the items have been scored as true or false (assigned scores of 1 or 0), they made then be

scored into multiple scales using the normal scoreItems function.

6.6 Item analysis

Basic item analysis starts with describing the data (describe, finding the number of dimensions

using factor analysis (fa) and cluster analysis iclust perhaps using the Very Simple Structure

criterion (vss), or perhaps parallel analysis fa.parallel. Item whole correlations may then be

found for scales scored on one dimension (alpha or many scales simultaneously (scoreItems).

Scales can be modified by changing the keys matrix (i.e., dropping particular items, changing

the scale on which an item is to be scored). This analysis can be done on the normal Pearson

correlation matrix or by using polychoric correlations. Validities of the scales can be found using

multiple correlation of the raw data or based upon correlation matrices using the setCor function.

However, more powerful item analysis tools are now available by using Item Response Theory

approaches.

Although the response.frequencies output from score.multiple.choice is useful

to examine in terms of the probability of various alternatives being endorsed, it is even better to

examine the pattern of these responses as a function of the underlying latent trait or just the total

score. This may be done by using irt.responses (Figure 19).

7 Item Response Theory analysis

The use of Item Response Theory has become is said to be the “new psychometrics". The empha-

sis is upon item properties, particularly those of item difficulty or location and item discrimination.

These two parameters are easily found from classic techniques when using factor analyses of corre-

lation matrices formed by polychoric or tetrachoric correlations. The irt.fa function

does this and then graphically displays item discrimination and item location as well as item and

test information (see Figure 20).

7.1 Factor analysis and Item Response Theory

If the correlations of all of the items reflect one underlying latent variable, then factor analysis of

the matrix of tetrachoric correlations should allow for the identification of the regression slopes

(α) of the items on the latent variable. These regressions are, of course just the factor loadings.

Item difficulty, δ j and item discrimination, α j may be found from factor analysis of the tetrachoric

correlations where λ j is just the factor loading on the first factor and τ j is the normal threshold

reported by the tetrachoric function.

δ j =
Dτ

√

1−λ 2
j

, α j =
λ j

√

1−λ 2
j

(2)
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> data(iqitems)

> iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7)

> scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE)

> #note that for speed we can just do this on simple item counts rather than IRT based scores.

> op <- par(mfrow=c(2,2)) #set this to see the output for multiple items

> irt.responses(scores$scores,iqitems[1:4],breaks=11)
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Figure 19: The pattern of responses to multiple choice ability items can show that some items

have poor distractors. This may be done by using the the irt.responses function. A good

distractor is one that is negatively related to ability.
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where D is a scaling factor used when converting to the parameterization of logistic model and is

1.702 in that case and 1 in the case of the normal ogive model. Thus, in the case of the normal

model, factor loadings (λ j) and item thresholds (τ) are just

λ j =
α j

√

1+α2
j

, τ j =
δ j

√

1+α2
j

.

Consider 9 dichotomous items representing one factor but differing in their levels of difficulty

> set.seed(17)

> d9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items

> test <- irt.fa(d9$items)

> test

Item Response Analysis using Factor Analysis

Call: irt.fa(x = d9$items)

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

V1 0.39 0.81 0.40 0.08 0.01 0.00 0.00

V2 0.17 0.44 0.49 0.22 0.06 0.01 0.00

V3 0.09 0.38 0.71 0.37 0.09 0.02 0.00

V4 0.04 0.21 0.70 0.64 0.17 0.03 0.01

V5 0.01 0.07 0.44 1.04 0.41 0.06 0.01

V6 0.01 0.03 0.18 0.66 0.69 0.20 0.04

V7 0.00 0.01 0.07 0.37 0.84 0.44 0.09

V8 0.00 0.01 0.03 0.18 0.61 0.66 0.21

V9 0.00 0.00 0.02 0.10 0.39 0.71 0.36

Test Info 0.71 1.97 3.05 3.66 3.28 2.14 0.72

SEM 1.18 0.71 0.57 0.52 0.55 0.68 1.18

Reliability -0.40 0.49 0.67 0.73 0.70 0.53 -0.40

Factor analysis with Call: fa(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,

fm = fm)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 27 and the objective function was 0.37

The number of observations was 1000 with Chi Square = 365.11 with prob < 6e-61

The root mean square of the residuals (RMSA) is 0.05

The df corrected root mean square of the residuals is 0.05

Tucker Lewis Index of factoring reliability = 0.9

RMSEA index = 0.112 and the 10 % confidence intervals are 0.102 0.122

BIC = 178.61

Similar analyses can be done for polytomous items such as those of the bfi extraversion scale:
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> op <- par(mfrow=c(3,1))

> plot(test,type="ICC")

> plot(test,type="IIC")

> plot(test,type="test")

> op <- par(mfrow=c(1,1))
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Figure 20: A graphic analysis of 9 dichotomous (simulated) items. The top panel shows the prob-

ability of item endorsement as the value of the latent trait increases. Items differ in their location

(difficulty) and discrimination (slope). The middle panel shows the information in each item as

a function of latent trait level. An item is most informative when the probability of endorsement

is 50%. The lower panel shows the total test information. These items form a test that is most

informative (most accurate) at the middle range of the latent trait.
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> data(bfi)

> e.irt <- irt.fa(bfi[11:15])

> e.irt

Item Response Analysis using Factor Analysis

Call: irt.fa(x = bfi[11:15])

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

E1 0.36 0.56 0.72 0.73 0.59 0.39 0.21

E2 0.47 0.87 1.16 1.22 0.98 0.58 0.25

E3 0.36 0.51 0.61 0.61 0.51 0.37 0.23

E4 0.61 0.95 1.09 0.94 0.66 0.37 0.16

E5 0.34 0.44 0.49 0.47 0.38 0.28 0.18

Test Info 2.14 3.34 4.07 3.96 3.12 1.98 1.03

SEM 0.68 0.55 0.50 0.50 0.57 0.71 0.99

Reliability 0.53 0.70 0.75 0.75 0.68 0.49 0.02

Factor analysis with Call: fa(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,

fm = fm)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 5 and the objective function was 0.05

The number of observations was 2800 with Chi Square = 138.2 with prob < 4.3e-28

The root mean square of the residuals (RMSA) is 0.04

The df corrected root mean square of the residuals is 0.06

Tucker Lewis Index of factoring reliability = 0.931

RMSEA index = 0.098 and the 10 % confidence intervals are 0.084 0.112

BIC = 98.51

The item information functions show that not all of items are equally good (Figure 21):

These procedures can be generalized to more than one factor by specifying the number of factors

in irt.fa. The plots can be limited to those items with discriminations greater than some value

of cut. An invisible object is returned when plotting the output from irt.fa that includes the

average information for each item that has loadings greater than cut.

> print(e.info,sort=TRUE)

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

E2 0.47 0.87 1.16 1.22 0.98 0.58 0.25

E4 0.61 0.95 1.09 0.94 0.66 0.37 0.16

E1 0.36 0.56 0.72 0.73 0.59 0.39 0.21

E3 0.36 0.51 0.61 0.61 0.51 0.37 0.23

E5 0.34 0.44 0.49 0.47 0.38 0.28 0.18

Test Info 2.14 3.34 4.07 3.96 3.12 1.98 1.03

SEM 0.68 0.55 0.50 0.50 0.57 0.71 0.99

Reliability 0.53 0.70 0.75 0.75 0.68 0.49 0.02
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> e.info <- plot(e.irt,type="IIC")
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Figure 21: A graphic analysis of 5 extraversion items from the bfi. The curves represent the amount

of information in the item as a function of the latent score for an individual. That is, each item is

maximally discriminating at a different part of the latent continuum. Print e.info to see the average

information for each item.

68



More extensive IRT packages include the ltm and eRm and should be used for serious Item Re-

sponse Theory analysis.

7.2 Speeding up analyses

Finding tetrachoric or polychoric correlations is very time consuming. Thus, to speed up the pro-

cess of analysis, the original correlation matrix is saved as part of the output of both irt.fa and

omega. Subsequent analyses may be done by using this correlation matrix. This is done by doing

the analysis not on the original data, but rather on the output of the previous analysis.

For example, taking the output from the 16 ability items from the SAPA project when scored for

True/False using score.multiple.choicewe can first do a simple IRT analysis of one factor

(Figure 23) and then use that correlation matrix to do an omega analysis to show the sub-structure

of the ability items .

> iq.irt

Item Response Analysis using Factor Analysis

Call: irt.fa(x = iq.tf)

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

reason.4 0.04 0.20 0.59 0.59 0.19 0.04 0.01

reason.16 0.07 0.23 0.46 0.39 0.16 0.04 0.01

reason.17 0.06 0.27 0.71 0.51 0.13 0.03 0.00

reason.19 0.05 0.17 0.42 0.47 0.22 0.06 0.02

letter.7 0.04 0.16 0.45 0.54 0.24 0.06 0.01

letter.33 0.04 0.14 0.35 0.44 0.24 0.08 0.02

letter.34 0.04 0.17 0.50 0.57 0.22 0.05 0.01

letter.58 0.02 0.08 0.28 0.55 0.40 0.13 0.03

matrix.45 0.04 0.12 0.24 0.30 0.22 0.10 0.04

matrix.46 0.05 0.13 0.26 0.32 0.22 0.09 0.03

matrix.47 0.05 0.16 0.38 0.43 0.21 0.07 0.02

matrix.55 0.03 0.08 0.15 0.21 0.20 0.13 0.06

rotate.3 0.00 0.02 0.08 0.29 0.60 0.41 0.13

rotate.4 0.00 0.01 0.06 0.31 0.85 0.52 0.11

rotate.6 0.01 0.03 0.14 0.47 0.62 0.26 0.06

rotate.8 0.01 0.02 0.09 0.27 0.49 0.36 0.13

Test Info 0.55 1.97 5.15 6.67 5.22 2.45 0.70

SEM 1.35 0.71 0.44 0.39 0.44 0.64 1.19

Reliability -0.83 0.49 0.81 0.85 0.81 0.59 -0.42

Factor analysis with Call: fa(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,

fm = fm)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 104 and the objective function was 1.85

The number of observations was 1525 with Chi Square = 2806.3 with prob < 0

The root mean square of the residuals (RMSA) is 0.08

The df corrected root mean square of the residuals is 0.09
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> iq.irt <- irt.fa(iq.tf)
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Figure 22: A graphic analysis of 16 ability items sampled from the SAPA project. The curves

represent the amount of information in the item as a function of the latent score for an individual.

That is, each item is maximally discriminating at a different part of the latent continuum. Print

iq.irt to see the average information for each item. Partly because this is a power test (it is given

on the web) and partly because the items have not been carefully chosen, the items are not very

discriminating at the high end of the ability dimension.
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Tucker Lewis Index of factoring reliability = 0.742

RMSEA index = 0.131 and the 10 % confidence intervals are 0.126 0.135

BIC = 2044.01

> om <- omega(iq.irt$rho,4)
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Figure 23: An Omega analysis of 16 ability items sampled from the SAPA project. The items rep-

resent a general factor as well as four lower level factors. The analysis is done using the tetrachoric

correlations found in the previous irt.fa analysis. The four matrix items have some serious

problems, which may be seen later when examine the item response functions.

7.3 IRT based scoring

The primary advantage of IRT analyses is examining the item properties (both difficulty and dis-

crimination). With complete data, the scores based upon simple total scores and based upon IRT

are practically identical (this may be seen in the examples for scoreIrt). However, when work-
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ing with data such as those found in the Synthetic Aperture Personality Assessment (SAPA) project,

it is advantageous to use IRT based scoring. SAPA data might have 2-3 items/person sampled from

scales with 10-20 items. Simply finding the average of the three (classical test theory) fails to con-

sider that the items might differ in either discrimination or in difficulty. The scoreIrt function

applies basic IRT to this problem.

Consider 1000 randomly generated subjects with scores on 9 true/false items differing in diffi-

culty. Selectively drop the hardest items for the 1/3 lowest subjects, and the 4 easiest items for

the 1/3 top subjects (this is a crude example of what tailored testing would do). Then score these

subjects:

> v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items

> items <- v9$items

> test <- irt.fa(items)

> total <- rowSums(items)

> ord <- order(total)

> items <- items[ord,]

> #now delete some of the data - note that they are ordered by score

> items[1:333,5:9] <- NA

> items[334:666,3:7] <- NA

> items[667:1000,1:4] <- NA

> scores <- scoreIrt(test,items)

> unitweighted <- scoreIrt(items=items,keys=rep(1,9))

> scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted)

> colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit")

These results are seen in Figure 24.

8 Multilevel modeling

Correlations between individuals who belong to different natural groups (based upon e.g., ethnic-

ity, age, gender, college major, or country) reflect an unknown mixture of the pooled correlation

within each group as well as the correlation of the means of these groups. These two correlations

are independent and do not allow inferences from one level (the group) to the other level (the indi-

vidual). When examining data at two levels (e.g., the individual and by some grouping variable), it

is useful to find basic descriptive statistics (means, sds, ns per group, within group correlations) as

well as between group statistics (over all descriptive statistics, and overall between group correla-

tions). Of particular use is the ability to decompose a matrix of correlations at the individual level

into correlations within group and correlations between groups.

8.1 Decomposing data into within and between level correlations using statsBy

There are at least two very powerful packages (nlme and multilevel) which allow for complex

analysis of hierarchical (multilevel) data structures. statsBy is a much simpler function to give

some of the basic descriptive statistics for two level models.
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Figure 24: IRT based scoring and total test scores for 1000 simulated subjects. True theta values

are reported and then the IRT and total scoring systems.

> pairs.panels(scores.df,pch='.',gap=0)

> title('Comparing true theta for IRT, Rasch and classically based scoring',line=3)
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This follows the decomposition of an observed correlation into the pooled correlation within groups

(rwg) and the weighted correlation of the means between groups which is discussed by Pedhazur

(1997) and by Bliese (2009) in the multilevel package.

rxy = ηxwg
∗ηywg

∗ rxywg
+ηxbg

∗ηybg
∗ rxybg

(3)

where rxy is the normal correlation which may be decomposed into a within group and between

group correlations rxywg
and rxybg

and η (eta) is the correlation of the data with the within group

values, or the group means.

8.2 Generating and displaying multilevel data

withinBetween is an example data set of the mixture of within and between group correlations.

The within group correlations between 9 variables are set to be 1, 0, and -1 while those between

groups are also set to be 1, 0, -1. These two sets of correlations are crossed such that V1, V4, and

V7 have within group correlations of 1, as do V2, V5 and V8, and V3, V6 and V9. V1 has a within

group correlation of 0 with V2, V5, and V8, and a -1 within group correlation with V3, V6 and V9.

V1, V2, and V3 share a between group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9.

The first group has a 0 between group correlation with the second and a -1 with the third group.

See the help file for withinBetween to display these data.

sim.multilevel will generate simulated data with a multilevel structure.

The statsBy.boot function will randomize the grouping variable ntrials times and find the

statsBy output. This can take a long time and will produce a great deal of output. This output

can then be summarized for relevant variables using the statsBy.boot.summary function

specifying the variable of interest.

Consider the case of the relationship between various tests of ability when the data are grouped by

level of education (statsBy(sat.act)) or when affect data are analyzed within and between an affect

manipulation (statsBy(affect) ).

9 Set Correlation and Multiple Regression from the correlation ma-

trix

An important generalization of multiple regression and multiple correlation is set correlation de-

veloped by Cohen (1982) and discussed by Cohen et al. (2003). Set correlation is a multivariate

generalization of multiple regression and estimates the amount of variance shared between two

sets of variables. Set correlation also allows for examining the relationship between two sets when
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controlling for a third set. This is implemented in the setCor function. Set correlation is

R2 = 1−
n

∏
i=1

(1−λi)

where λi is the ith eigen value of the eigen value decomposition of the matrix

R = R−1
xx RxyR−1

xx R−1
xy .

Unfortunately, there are several cases where set correlation will give results that are much too high.

This will happen if some variables from the first set are highly related to those in the second set,

even though most are not. In this case, although the set correlation can be very high, the degree

of relationship between the sets is not as high. In this case, an alternative statistic, based upon the

average canonical correlation might be more appropriate.

setCor has the additional feature that it will calculate multiple and partial correlations from the

correlation or covariance matrix rather than the original data.

Consider the correlations of the 6 variables in the sat.act data set. First do the normal multiple

regression, and then compare it with the results using setCor. Two things to notice. setCor

works on the correlation or covariance or raw data matrix, and thus if using the correlation matrix,

will report standardized β̂ weights. Secondly, it is possible to do several multiple regressions

simultaneously. If the number of observations is specified, or if the analysis is done on raw data,

statistical tests of significance are applied.

For this example, the analysis is done on the correlation matrix rather than the raw data.

> C <- cov(sat.act,use="pairwise")

> model1 <- lm(ACT~ gender + education + age, data=sat.act)

> summary(model1)

Call:

lm(formula = ACT ~ gender + education + age, data = sat.act)

Residuals:

Min 1Q Median 3Q Max

-25.2458 -3.2133 0.7769 3.5921 9.2630

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.41706 0.82140 33.378 < 2e-16 ***
gender -0.48606 0.37984 -1.280 0.20110

education 0.47890 0.15235 3.143 0.00174 **
age 0.01623 0.02278 0.712 0.47650

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.768 on 696 degrees of freedom

Multiple R-squared: 0.0272, Adjusted R-squared: 0.02301

F-statistic: 6.487 on 3 and 696 DF, p-value: 0.0002476

Compare this with the output from setCor.
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> #compare with mat.regress

> setCor(c(4:6),c(1:3),C, n.obs=700)

Call: setCor(y = c(4:6), x = c(1:3), data = C, n.obs = 700)

Multiple Regression from raw data

DV = ACT

slope se t p lower.ci upper.ci VIF Vy.x

(Intercept) 0.00 0.07 0.00 1.000 -0.28 0.28 1.00 0.00

gender -0.26 0.08 -3.17 0.087 -0.61 0.09 1.55 0.19

education 0.56 0.07 7.72 0.016 0.25 0.87 1.22 0.34

age -0.64 0.08 -8.28 0.014 -0.97 -0.31 1.38 0.46

Residual Standard Error = 0.15 with 2 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

ACT 1 0.99 0.98 0.96 0.98 0 76.34 3 2 0.013

DV = SATV

slope se t p lower.ci upper.ci VIF Vy.x

(Intercept) 0.00 0.07 0.00 1.000 -0.31 0.31 1.00 0.00

gender 0.10 0.09 1.11 0.380 -0.28 0.48 1.55 -0.05

education 0.72 0.08 9.21 0.012 0.39 1.06 1.22 0.46

age -0.82 0.08 -9.76 0.010 -1.18 -0.46 1.38 0.58

Residual Standard Error = 0.16 with 2 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

SATV 0.99 0.99 0.89 0.79 0.97 0 65.18 3 2 0.0151

DV = SATQ

slope se t p lower.ci upper.ci VIF Vy.x

(Intercept) 0.00 0.04 0.00 1.000 -0.19 0.19 1.00 0.00

gender -0.52 0.05 -9.73 0.010 -0.76 -0.29 1.55 0.46

education 0.40 0.05 8.32 0.014 0.19 0.60 1.22 0.22

age -0.47 0.05 -9.24 0.012 -0.69 -0.25 1.38 0.32

Residual Standard Error = 0.1 with 2 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

SATQ 1 1 1 0.99 0.99 0 177.11 3 2 0.00562

Various estimates of between set correlations

Squared Canonical Correlations

[1] 1.000 0.988 0.013

Chisq of canonical correlations

[1] 31.203 4.433 0.013

Average squared canonical correlation = 0.67

Cohen's Set Correlation R2 = 1

Shrunken Set Correlation R2 = 1

F and df of Cohen's Set Correlation -Inf 12 -12.94

Unweighted correlation between the two sets = 0.98
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Note that the setCor analysis also reports the amount of shared variance between the predictor

set and the criterion (dependent) set. This set correlation is symmetric. That is, the R2 is the same

independent of the direction of the relationship.

For a much more detailed discussion of setCor see the mediation, moderation and regression

analysis tutorial.

10 Simulation functions

It is particularly helpful, when trying to understand psychometric concepts, to be able to generate

sample data sets that meet certain specifications. By knowing “truth" it is possible to see how

well various algorithms can capture it. Several of the sim functions create artificial data sets with

known structures.

A number of functions in the psych package will generate simulated data. These functions include

sim for a factor simplex, and sim.simplex for a data simplex, sim.circ for a circumplex

structure, sim.congeneric for a one factor factor congeneric model, sim.dichot to simu-

late dichotomous items, sim.hierarchical to create a hierarchical factor model, sim.item

is a more general item simulation, sim.minor to simulate major and minor factors, sim.omega

to test various examples of omega, sim.parallel to compare the efficiency of various ways of

determining the number of factors, sim.rasch to create simulated rasch data, sim.irt to create

general 1 to 4 parameter IRT data by calling sim.npl 1 to 4 parameter logistic IRT or sim.npn

1 to 4 paramater normal IRT, sim.structural a general simulation of structural models, and

sim.anova for ANOVA and lm simulations, and sim.vss. Some of these functions are sep-

arately documented and are listed here for ease of the help function. See each function for more

detailed help.

sim The default version is to generate a four factor simplex structure over three occasions, al-

though more general models are possible.

sim.simple Create major and minor factors. The default is for 12 variables with 3 major factors

and 6 minor factors.

sim.structure To combine a measurement and structural model into one data matrix. Useful

for understanding structural equation models.

sim.hierarchical To create data with a hierarchical (bifactor) structure.

sim.congeneric To create congeneric items/tests for demonstrating classical test theory. This

is just a special case of sim.structure.

sim.circ To create data with a circumplex structure.

sim.item To create items that either have a simple structure or a circumplex structure.
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sim.dichot Create dichotomous item data with a simple or circumplex structure.

sim.rasch Simulate a 1 parameter logistic (Rasch) model.

sim.irt Simulate a 2 parameter logistic (2PL) or 2 parameter Normal model. Will also do 3 and

4 PL and PN models.

sim.multilevel Simulate data with different within group and between group correlational

structures.

Some of these functions are described in more detail in the companion vignette: psych for sem.

The default values for sim.structure is to generate a 4 factor, 12 variable data set with a

simplex structure between the factors.

Two data structures that are particular challenges to exploratory factor analysis are the simplex

structure and the presence of minor factors. Simplex structures sim.simplex will typically

occur in developmental or learning contexts and have a correlation structure of r between adjacent

variables and rn for variables n apart. Although just one latent variable (r) needs to be estimated,

the structure will have nvar-1 factors.

Many simulations of factor structures assume that except for the major factors, all residuals are

normally distributed around 0. An alternative, and perhaps more realistic situation, is that the there

are a few major (big) factors and many minor (small) factors. The challenge is thus to identify the

major factors. sim.minor generates such structures. The structures generated can be thought of

as having a a major factor structure with some small correlated residuals.

Although coefficient ωh is a very useful indicator of the general factor saturation of a unifactorial

test (one with perhaps several sub factors), it has problems with the case of multiple, independent

factors. In this situation, one of the factors is labelled as “general” and the omega estimate is too

large. This situation may be explored using the sim.omega function.

The four irt simulations, sim.rasch, sim.irt, sim.npl and sim.npn, simulate dichoto-

mous items following the Item Response model. sim.irt just calls either sim.npl (for logistic

models) or sim.npn (for normal models) depending upon the specification of the model.

The logistic model is

P(x|θi,δ j,γ j,ζ j) = γ j +
ζ j − γ j

1+ eα j(δ j−θi
. (4)

where γ is the lower asymptote or guessing parameter, ζ is the upper asymptote (normally 1),

α j is item discrimination and δ j is item difficulty. For the 1 Paramater Logistic (Rasch) model,

gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter to specify.

(Graphics of these may be seen in the demonstrations for the logistic function.)
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The normal model (irt.npn calculates the probability using pnorm instead of the logistic func-

tion used in irt.npl, but the meaning of the parameters are otherwise the same. With the a = α

parameter = 1.702 in the logiistic model the two models are practically identical.

11 Graphical Displays

Many of the functions in the psych package include graphic output and examples have been shown

in the previous figures. After running fa, iclust, omega, irt.fa, plotting the resulting ob-

ject is done by the plot.psych function as well as specific diagram functions. e.g., (but not

shown)

f3 <- fa(Thurstone,3)

plot(f3)

fa.diagram(f3)

c <- iclust(Thurstone)

plot(c) #a pretty boring plot

iclust.diagram(c) #a better diagram

c3 <- iclust(Thurstone,3)

plot(c3) #a more interesting plot

data(bfi)

e.irt <- irt.fa(bfi[11:15])

plot(e.irt)

ot <- omega(Thurstone)

plot(ot)

omega.diagram(ot)

The ability to show path diagrams to represent factor analytic and structural models is discussed

in somewhat more detail in the accompanying vignette, psych for sem. Basic routines to draw

path diagrams are included in the dia.rect and accompanying functions. These are used by the

fa.diagram, structure.diagram and iclust.diagram functions.

12 Miscellaneous functions

A number of functions have been developed for some very specific problems that don’t fit into any

other category. The following is an incomplete list. Look at the Index for psych for a list of all of

the functions.

block.random Creates a block randomized structure for n independent variables. Useful for

teaching block randomization for experimental design.

df2latex is useful for taking tabular output (such as a correlation matrix or that of describe

and converting it to a LATEX table. May be used when Sweave is not convenient.

cor2latex Will format a correlation matrix in APA style in a LATEX table. See also fa2latex

and irt2latex.
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> xlim=c(0,10)

> ylim=c(0,10)

> plot(NA,xlim=xlim,ylim=ylim,main="Demontration of dia functions",axes=FALSE,xlab="",ylab="")

> ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim)

> ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim)

> lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim)

> ur <- dia.ellipse(9,9,"upper right",xlim=xlim,ylim=ylim)

> ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim)

> mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim)

> bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim)

> br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim)

> dia.arrow(from=lr,to=ul,labels="right to left")

> dia.arrow(from=ul,to=ur,labels="left to right")

> dia.curved.arrow(from=lr,to=ll$right,labels ="right to left")

NULL

> dia.curved.arrow(to=ur,from=ul$right,labels ="left to right")

NULL

> dia.curve(ll$top,ul$bottom,"double") #for rectangles, specify where to point

> dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it.

NULL

> dia.curve(ml,mr,"across")

> dia.arrow(ur,lr,"top down")

> dia.curved.arrow(br$top,lr$bottom,"up")

NULL

> dia.curved.arrow(bl,br,"left to right")

NULL

> dia.arrow(bl,ll$bottom)

> dia.curved.arrow(ml,ll$right)

NULL

> dia.curved.arrow(mr,lr$top)

NULL

Demontration of dia functions

upper left

lower left lower right

upper right

middle left middle right

bottom left bottom right

right to left

left to right

right to left

left to right

double

up

across

top down

up
left to right

Figure 25: The basic graphic capabilities of the dia functions are shown in this figure.
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cosinor One of several functions for doing circular statistics. This is important when studying

mood effects over the day which show a diurnal pattern. See also circadian.mean,

circadian.cor and circadian.linear.cor for finding circular means, circular

correlations, and correlations of circular with linear data.

fisherz Convert a correlation to the corresponding Fisher z score.

geometric.mean also harmonic.mean find the appropriate mean for working with different

kinds of data.

ICC and cohen.kappa are typically used to find the reliability for raters.

headtail combines the head and tail functions to show the first and last lines of a data set

or output.

topBottom Same as headtail. Combines the head and tail functions to show the first and last

lines of a data set or output, but does not add ellipsis between.

mardia calculates univariate or multivariate (Mardia’s test) skew and kurtosis for a vector, ma-

trix, or data.frame

p.rep finds the probability of replication for an F, t, or r and estimate effect size.

partial.r partials a y set of variables out of an x set and finds the resulting partial correlations.

(See also setCor.)

rangeCorrection will correct correlations for restriction of range.

reverse.code will reverse code specified items. Done more conveniently in most psych func-

tions, but supplied here as a helper function when using other packages.

superMatrix Takes two or more matrices, e.g., A and B, and combines them into a “Super

matrix” with A on the top left, B on the lower right, and 0s for the other two quadrants. A

useful trick when forming complex keys, or when forming example problems.

13 Data sets

A number of data sets for demonstrating psychometric techniques are included in the psych pack-

age. These include six data sets showing a hierarchical factor structure (five cognitive examples,

Thurstone, Thurstone.33, Holzinger, Bechtoldt.1, Bechtoldt.2, and one from

health psychology Reise). One of these (Thurstone) is used as an example in the sem package

as well as McDonald (1999). The original data are from Thurstone and Thurstone (1941) and rean-

alyzed by Bechtoldt (1961). Personality item data representing five personality factors on 25 items

(bfi) or 13 personality inventory scores (epi.bfi), and 14 multiple choice iq items (iqitems).

The vegetables example has paired comparison preferences for 9 vegetables. This is an exam-
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ple of Thurstonian scaling used by Guilford (1954) and Nunnally (1967). Other data sets include

cubits, peas, and heights from Galton.

Thurstone Holzinger-Swineford (1937) introduced the bifactor model of a general factor and un-

correlated group factors. The Holzinger correlation matrix is a 14 * 14 matrix from their

paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations of ability items.

The Reise data set is 16 * 16 correlation matrix of mental health items. The Bechtholdt data

sets are both 17 x 17 correlation matrices of ability tests.

bfi 25 personality self report items taken from the International Personality Item Pool (ipip.ori.org)

were included as part of the Synthetic Aperture Personality Assessment (SAPA) web based

personality assessment project. The data from 2800 subjects are included here as a demon-

stration set for scale construction, factor analysis and Item Response Theory analyses.

sat.act Self reported scores on the SAT Verbal, SAT Quantitative and ACT were collected as part

of the Synthetic Aperture Personality Assessment (SAPA) web based personality assessment

project. Age, gender, and education are also reported. The data from 700 subjects are in-

cluded here as a demonstration set for correlation and analysis.

epi.bfi A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5 inven-

tory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used for demon-

strations of correlations, regressions, graphic displays.

iq 14 multiple choice ability items were included as part of the Synthetic Aperture Personality

Assessment (SAPA) web based personality assessment project. The data from 1000 subjects

are included here as a demonstration set for scoring multiple choice inventories and doing

basic item statistics.

galton Two of the earliest examples of the correlation coefficient were Francis Galton’s data sets

on the relationship between mid parent and child height and the similarity of parent genera-

tion peas with child peas. galton is the data set for the Galton height. peas is the data set

Francis Galton used to ntroduce the correlation coefficient with an analysis of the similarities

of the parent and child generation of 700 sweet peas.

Dwyer Dwyer (1937) introduced a method for factor extension (see fa.extension that finds

loadings on factors from an original data set for additional (extended) variables. This data

set includes his example.

miscellaneous cities is a matrix of airline distances between 11 US cities and may be used

for demonstrating multiple dimensional scaling. vegetables is a classic data set for

demonstrating Thurstonian scaling and is the preference matrix of 9 vegetables from Guil-

ford (1954). Used by Guilford (1954); Nunnally (1967); ?, this data set allows for examples

of basic scaling techniques.
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14 Development version and a users guide

The most recent development version is available as a source file at the repository maintained at

http://personality-project.org/r. That version will have removed the most recently

discovered bugs (but perhaps introduced other, yet to be discovered ones). To download and install

that version for either Macs or PCs:
R code

install.packages("psych",repos="http://personality-project.org/r", type="source")

Although the individual help pages for the psych package are available as part of R and may be

accessed directly (e.g. ?psych) , the full manual for the psych package is also available as a pdf

at http://personality-project.org/r/psych_manual.pdf

News and a history of changes are available in the NEWS and CHANGES files in the source files.

To view the most recent news,
R code

news(Version > "1.2.8",package="psych")

15 Psychometric Theory

The psych package has been developed to help psychologists do basic research. Many of the

functions were developed to supplement a book (http://personality-project.org/

r/book An introduction to Psychometric Theory with Applications in R (Revelle, prep) More

information about the use of some of the functions may be found in the book .

For more extensive discussion of the use of psych in particular and R in general, consult http:

//personality-project.org/r/r.guide.html A short guide to R.

16 SessionInfo

This document was prepared using the following settings.

> sessionInfo()

R version 4.2.0 (2022-04-22)

Platform: aarch64-apple-darwin20 (64-bit)

Running under: macOS Monterey 12.5.1

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:

[1] C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] psychTools_2.2.8 psych_2.2.8

loaded via a namespace (and not attached):

[1] compiler_4.2.0 parallel_4.2.0 tools_4.2.0 foreign_0.8-82 lavaan_0.6-9 tmvnsim_1.0-2 nlme_3.1-157
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[8] mnormt_2.0.2 grid_4.2.0 pbivnorm_0.6.0 knitr_1.39 xfun_0.30 GPArotation_2014.11-1 stats4_4.2.0

[15] lattice_0.20-45
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