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0.1 Jump starting the psych package–a guide for the impatient

You have installed psych (section 2) and you want to use it without reading much more.
What should you do?

1. Activate the psych package:

library(psych)

library(psychTools)

2. Input your data (see the Introduction to Psych vignette section 3.1). There are two
ways to do this:

• Find and read standard files using read.file. This will open a search window
for your operating system which you can use to find the file. If the file has a
suffix of .text, .txt, .csv, .data, .sav, .r, .R, .rds, .Rds, .rda, .Rda, .rdata, or
.RData, then the file will be opened and the data will be read in.

myData <- read.file() # find the appropriate file using your normal operating system

• Alternatively, go to your friendly text editor or data manipulation program
(e.g., Excel) and copy the data to the clipboard. Include a first line that has the
variable labels. Paste it into psych using the read.clipboard.tab command:

myData <- read.clipboard.tab() # if on the clipboard

Note that there are number of options for read.clipboard for reading in Excel
based files, lower triangular files, etc.

3. Make sure that what you just read is right. Describe it (see the Introduction to Psych
vignette section 3.3) on how to describe data) and perhaps look at the first and last
few lines. If you have multiple groups, try describeBy.

dim(myData) #What are the dimensions of the data?

describe(myData) # or

descrbeBy(myData,groups="mygroups") #for descriptive statistics by groups

headTail(myData) #show the first and last n lines of a file

4. Look at the patterns in the data. If you have fewer than about 12 variables, look
at the SPLOM (Scatter Plot Matrix) of the data using pairs.panels ( (see the
Introduction to Psych vignette section 3.4 for a discussion of graphics)) . Then, use
the outlier function to detect outliers.

pairs.panels(myData)

outlier(myData)

5. Note that you might have some weird subjects, probably due to data entry errors.
Either edit the data by hand (use the edit command) or just scrub the data).

cleaned <- scrub(myData, max=9) #e.g., change anything great than 9 to NA

6. Graph the data with error bars for each variable ( (see the Introduction to Psych
vignette section 3.1)).
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error.bars(myData)

7. Find the correlations of all of your data. lowerCor will by default find the pairwise
correlations, round them to 2 decimals, and display the lower off diagonal matrix.

• Descriptively (just the values) (section ??)

r <- lowerCor(myData) #The correlation matrix, rounded to 2 decimals

• Graphically (section ??). Another way is to show a heat map of the correlations
with the correlation values included.

corPlot(r) #examine the many options for this function.

• Inferentially (the values, the ns, and the p values) (section ??)

corr.test(myData)

8. Apply various regression models.

Several functions are meant to do multiple regressions, either from the raw data or
from a variance/covariance matrix, or a correlation matrix.

• setCor will take raw data or a correlation matrix and find (and graph the path
diagram) for multiple y variables depending upon multiple x variables.

myData <- sat.act

colnames(myData) <- c("mod1","med1","x1","x2","y1","y2")

setCor(y1 + y2 ~ x1 + x2 , data = myData)

• mediate will take raw data or a correlation matrix and find (and graph the path
diagram) for multiple y variables depending upon multiple x variables mediated
through a mediation variable. It then tests the mediation effect using a boot
strap.

mediate(y1 + y2 ~ x1 + x2 + (med1) , data = myData)

• mediate will take raw data and find (and graph the path diagram) a moderated
multiple regression model for multiple y variables depending upon multiple x
variables mediated through a mediation variable. It then tests the mediation
effect using a boot strap.

mediate(y1 + y2 ~ x1 + x2* mod1 +(med1), data = myData)

0.2 Psychometric functions are summarized in this vignette

Many additional functions, particularly designed for basic and advanced psychomet-
rics are discussed more fully in this Vignette. A brief review of the functions available
is included here. For basic data entry and descriptive statistics, see the Vignette In-
tro to Psych https://personality-project.org/r. In addition, there are helpful
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tutorials for Finding omega, How to score scales and find reliability, and for Using
psych for factor analysis at https://personality-project.org/r.

• Test for the number of factors in your data using parallel analysis (fa.parallel,
section 4.5.2) or Very Simple Structure (vss, 4.5.1) .

fa.parallel(myData)

vss(myData)

• Factor analyze (see section 4.1) the data with a specified number of factors
(the default is 1), the default method is minimum residual, the default rotation
for more than one factor is oblimin. There are many more possibilities (see
sections 4.1.1-4.1.4). Compare the solution to a hierarchical cluster analysis
using the ICLUST algorithm (Revelle, 1979) (see section 4.1.7). Also consider
a hierarchical factor solution to find coefficient ω (see 4.1.6).

fa(myData)

iclust(myData)

omega(myData)

If you prefer to do a principal components analysis you may use the principal
function. The default is one component.

principal(myData)

• Some people like to find coefficient α as an estimate of reliability. This may be
done for a single scale using the alpha function (see 5.1). Perhaps more useful
is the ability to create several scales as unweighted averages of specified items
using the scoreItems function (see 5.4) and to find various estimates of internal
consistency for these scales, find their intercorrelations, and find scores for all
the subjects.

alpha(myData) #score all of the items as part of one scale.

myKeys <- make.keys(nvar=20,list(first = c(1,-3,5,-7,8:10),second=c(2,4,-6,11:15,-16)))

my.scores <- scoreItems(myKeys,myData) #form several scales

my.scores #show the highlights of the results

At this point you have had a chance to see the highlights of the psych package and to do
some basic (and advanced) data analysis. You might find reading this entire vignette as
well as the Overview Vignette to be helpful to get a broader understanding of what can be
done in R using the psych. Remember that the help command (?) is available for every
function. Try running the examples for each help page.
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1 Overview of this and related documents

The psych package (Revelle, 2018) has been developed at Northwestern University since
2005 to include functions most useful for personality, psychometric, and psychological re-
search. The package is also meant to supplement a text on psychometric theory (Revelle,
prep), a draft of which is available at https://personality-project.org/r/book/.

Some of the functions (e.g., read.file, read.clipboard, describe, pairs.panels, scat-
ter.hist, error.bars, multi.hist, bi.bars) are useful for basic data entry and descrip-
tive analyses.

Psychometric applications emphasize techniques for dimension reduction including factor
analysis, cluster analysis, and principal components analysis. The fa function includes
five methods of factor analysis (minimum residual , principal axis, weighted least squares,
generalized least squares and maximum likelihood factor analysis). Principal Components
Analysis (PCA) is also available through the use of the principal or pca functions. De-
termining the number of factors or components to extract may be done by using the Very
Simple Structure (Revelle and Rocklin, 1979) (vss), Minimum Average Partial correlation
(Velicer, 1976) (MAP) or parallel analysis (fa.parallel) criteria. These and several other
criteria are included in the nfactors function. Two parameter Item Response Theory
(IRT) models for dichotomous or polytomous items may be found by factoring tetra-

choric or polychoric correlation matrices and expressing the resulting parameters in
terms of location and discrimination using irt.fa.

Bifactor and hierarchical factor structures may be estimated by using Schmid Leiman
transformations (Schmid and Leiman, 1957) (schmid) to transform a hierarchical factor
structure into a bifactor solution (Holzinger and Swineford, 1937). Higher order models
can also be found using fa.multi.

Scale construction can be done using the Item Cluster Analysis (Revelle, 1979) (iclust)
function to determine the structure and to calculate reliability coefficients α (Cronbach,
1951)(alpha, scoreItems, score.multiple.choice), β (Revelle, 1979; Revelle and Zin-
barg, 2009) (iclust) and McDonald’s ωh and ωt (McDonald, 1999) (omega). Guttman’s six
estimates of internal consistency reliability (Guttman (1945), as well as additional estimates
(Revelle and Zinbarg, 2009) are in the guttman function. The six measures of Intraclass
correlation coefficients (ICC) discussed by Shrout and Fleiss (1979) are also available.

For data with a a multilevel structure (e.g., items within subjects across time, or items
within subjects across groups), the describeBy, statsBy functions will give basic descrip-
tives by group. StatsBy also will find within group (or subject) correlations as well as the
between group correlation.

multilevel.reliability mlr will find various generalizability statistics for subjects over
time and items. mlPlot will graph items over for each subject, mlArrange converts wide
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data frames to long data frames suitable for multilevel modeling.

Graphical displays include Scatter Plot Matrix (SPLOM) plots using pairs.panels, cor-
relation “heat maps” (corPlot) factor, cluster, and structural diagrams using fa.diagram,
iclust.diagram, structure.diagram and het.diagram, as well as item response charac-
teristics and item and test information characteristic curves plot.irt and plot.poly.

This vignette is meant to give an overview of the psych package. That is, it is meant
to give a summary of the main functions in the psych package with examples of how
they are used for data description, dimension reduction, and scale construction. The ex-
tended user manual at psych_manual.pdf includes examples of graphic output and more
extensive demonstrations than are found in the help menus. (Also available at https:

//personality-project.org/r/psych_manual.pdf). The vignette, psych for sem, at
psych_for_sem.pdf, discusses how to use psych as a front end to the sem package of John
Fox (Fox et al., 2013). (The vignette is also available at https://personality-project.
org/r/book/psych_for_sem.pdf).

In addition, there are a growing number of “HowTo”s at the personality project. Currently
these include:

1. An introduction (vignette) of the psych package

2. An overview (vignette) of the psych package

3. Installing R and some useful packages

4. Using R and the psych package to find omegah and ωt .

5. Using R and the psych for factor analysis and principal components analysis.

6. Using the scoreItems function to find scale scores and scale statistics.

7. Using mediate and setCor to do mediation, moderation and regression analysis.

For a step by step tutorial in the use of the psych package and the base functions in
R for basic personality research, see the guide for using R for personality research at
https://personalitytheory.org/r/r.short.html. For an introduction to psychometric
theory with applications in R, see the draft chapters at https://personality-project.

org/r/book).

2 Getting started

Some of the functions described in this overview require other packages. Particularly
useful for rotating the results of factor analyses (from e.g., fa, factor.minres, factor.pa,
factor.wls, or principal) or hierarchical factor models using omega or schmid, is the
GPArotation package. These and other useful packages may be installed by first installing
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and then using the task views (ctv) package to install the “Psychometrics” task view, but
doing it this way is not necessary.

install.packages("ctv")

library(ctv)

task.views("Psychometrics")

The “Psychometrics” task view will install a large number of useful packages. To install
the bare minimum for the examples in this vignette, it is necessary to install just 3 pack-
ages:

install.packages(list(c("GPArotation","mnormt","psychTools")

Because of the difficulty of installing the package Rgraphviz , alternative graphics have been
developed and are available as diagram functions. If Rgraphviz is available, some functions
will take advantage of it. An alternative is to use“dot”output of commands for any external
graphics package that uses the dot language.

3 Basic data analysis

A number of psych functions facilitate the entry of data and finding basic descriptive statis-
tics. These are described in more detail in the companion vignette: An introduction to
the psych package: Part I which is also available from the personality-project site. https:
//personality-project.org/r/psych/vignettes/intro.pdf. Please consult that vi-
gnette first for information on how to read data (particularly using the read.file and
read.clipboard commands), Also, the describe and describeBy functions are described
in more detail in the introductory vignette. For even though you probably want to jump
immediately to factor analyze your data, this is a mistake. It is very important to first
describe them and look for weird responses. It is also useful to scrub your data when
removing outliers, to graphically display them using pairs.panesl and corPlot. Basic
multiple regression and moderated or mediated regressions may be done from either the
raw data or from correlation matrices using setCor, or mediation.

Remember, to run any of the psych functions, it is necessary to make the package active
by using the library command:

library(psych)

The other packages, once installed, will be called automatically by psych.

It is possible to automatically load psych and other functions by creating and then saving
a “.First” function: e.g.,

.First <- function(x) {library(psych)}
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4 Item and scale analysis

The main functions in the psych package are for analyzing the structure of items and of
scales and for finding various estimates of scale reliability. These may be considered as
problems of dimension reduction (e.g., factor analysis, cluster analysis, principal compo-
nents analysis) and of forming and estimating the reliability of the resulting composite
scales.

4.1 Dimension reduction through factor analysis and cluster analysis

Parsimony of description has been a goal of science since at least the famous dictum
commonly attributed to William of Ockham to not multiply entities beyond necessity1. The
goal for parsimony is seen in psychometrics as an attempt either to describe (components)
or to explain (factors) the relationships between many observed variables in terms of a
more limited set of components or latent factors.

The typical data matrix represents multiple items or scales usually thought to reflect fewer
underlying constructs2. At the most simple, a set of items can be be thought to represent
a random sample from one underlying domain or perhaps a small set of domains. The
question for the psychometrician is how many domains are represented and how well does
each item represent the domains. Solutions to this problem are examples of factor analysis
(FA), principal components analysis (PCA), and cluster analysis (CA). All of these pro-
cedures aim to reduce the complexity of the observed data. In the case of FA, the goal is
to identify fewer underlying constructs to explain the observed data. In the case of PCA,
the goal can be mere data reduction, but the interpretation of components is frequently
done in terms similar to those used when describing the latent variables estimated by FA.
Cluster analytic techniques, although usually used to partition the subject space rather
than the variable space, can also be used to group variables to reduce the complexity of
the data by forming fewer and more homogeneous sets of tests or items.

At the data level the data reduction problem may be solved as a Singular Value Decom-
position of the original matrix, although the more typical solution is to find either the
principal components or factors of the covariance or correlation matrices. Given the pat-
tern of regression weights from the variables to the components or from the factors to the
variables, it is then possible to find (for components) individual component or cluster scores
or estimate (for factors) factor scores.

Several of the functions in psych address the problem of data reduction.

1Although probably neither original with Ockham nor directly stated by him (Thorburn, 1918), Ock-
ham’s razor remains a fundamental principal of science.

2Cattell (1978) as well as MacCallum et al. (2007) argue that the data are the result of many more
factors than observed variables, but are willing to estimate the major underlying factors.
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fa incorporates six alternative algorithms: minres factor analysis, principal axis factor
analysis, alpha factor analysis, weighted least squares factor analysis, generalized
least squares factor analysis and maximum likelihood factor analysis. That is, it
includes the functionality of three other functions that are deprecated and will be
eventually phased out.

fa.poly (deprecated) is useful when finding the factor structure of categorical items. fa.poly first finds the tetrachoric or polychoric
correlations between the categorical variables and then proceeds to do a normal factor analysis. By setting the n.iter option
to be greater than 1, it will also find confidence intervals for the factor solution. Warning. Finding polychoric correlations is
very slow, so think carefully before doing so. These options are now part of the fa function and can be controlled by setting
the cor parameter to ‘tet’ or ‘poly’.

factor.minres (deprecated) Minimum residual factor analysis is a least squares, iterative solution to the factor problem. minres
attempts to minimize the residual (off-diagonal) correlation matrix. It produces solutions similar to maximum likelihood
solutions, but will work even if the matrix is singular.

factor.pa (deprecated) Principal Axis factor analysis is a least squares, iterative solution to the factor problem. PA will work
for cases where maximum likelihood techniques (factanal) will not work. The original communality estimates are either the
squared multiple correlations (smc) for each item or 1.

factor.wls (deprecated) Weighted least squares factor analysis is a least squares, iterative solution to the factor problem. It minimizes
the (weighted) squared residual matrix. The weights are based upon the independent contribution of each variable.

principal Principal Components Analysis reports the largest n eigen vectors rescaled by
the square root of their eigen values. Note that PCA is not the same as factor analysis
and the two should not be confused.

factor.congruence The congruence between two factors is the cosine of the angle between
them. This is just the cross products of the loadings divided by the sum of the squared
loadings. This differs from the correlation coefficient in that the mean loading is not
subtracted before taking the products. factor.congruence will find the cosines
between two (or more) sets of factor loadings.

vss Very Simple Structure Revelle and Rocklin (1979) applies a goodness of fit test to
determine the optimal number of factors to extract. It can be thought of as a quasi-
confirmatory model, in that it fits the very simple structure (all except the biggest c
loadings per item are set to zero where c is the level of complexity of the item) of a
factor pattern matrix to the original correlation matrix. For items where the model is
usually of complexity one, this is equivalent to making all except the largest loading
for each item 0. This is typically the solution that the user wants to interpret. The
analysis includes the MAP criterion of Velicer (1976) and a χ2 estimate.

nfactors combines VSS, MAP, and a number of other fit statistics. The depressing reality
is that frequently these conventional fit estimates of the number of factors do not
agree.

fa.parallel The parallel factors technique compares the observed eigen values of a cor-
relation matrix with those from random data.

fa.plot will plot the loadings from a factor, principal components, or cluster analysis
(just a call to plot will suffice). If there are more than two factors, then a SPLOM
of the loadings is generated.
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fa.diagram replaces fa.graph and will draw a path diagram representing the factor struc-
ture. It does not require Rgraphviz and thus is probably preferred.

fa.graph requires Rgraphviz and will draw a graphic representation of the factor struc-
ture. If factors are correlated, this will be represented as well.

iclust is meant to do item cluster analysis using a hierarchical clustering algorithm
specifically asking questions about the reliability of the clusters (Revelle, 1979). Clus-
ters are formed until either coefficient α Cronbach (1951) or β Revelle (1979) fail to
increase.

4.1.1 Minimum Residual Factor Analysis

The factor model is an approximation of a correlation matrix by a matrix of lower rank.
That is, can the correlation matrix, ~nRn be approximated by the product of a factor matrix,
~nFk and its transpose plus a diagonal matrix of uniqueness.

R = FF ′+U2 (1)

The maximum likelihood solution to this equation is found by factanal in the stats pack-
age as well as the fa function in psych. Seven alternatives are provided in psych, all of
them are included in the fa function and are called by specifying the factor method (e.g.,
fm=“minres”, fm=“pa”, fm=“alpha” fm=‘wls”, fm=“gls”, fm = “min.rank”, and fm=“ml”).
In the discussion of the other algorithms, the calls shown are to the fa function specifying
the appropriate method.

factor.minres attempts to minimize the off diagonal residual correlation matrix by ad-
justing the eigen values of the original correlation matrix. This is similar to what is done
in factanal, but uses an ordinary least squares instead of a maximum likelihood fit func-
tion. The solutions tend to be more similar to the MLE solutions than are the factor.pa

solutions. min.res is the default for the fa function.

A classic data set, collected by Thurstone and Thurstone (1941) and then reanalyzed by
Bechtoldt (1961) and discussed by McDonald (1999), is a set of 9 cognitive variables with
a clear bi-factor structure (Holzinger and Swineford, 1937). The minimum residual solu-
tion was transformed into an oblique solution using the default option on rotate which
uses an oblimin transformation (Table 1). Alternative rotations and transformations in-
clude “none”, “varimax”, “quartimax”, “bentlerT”, “varimin” and “geominT” (all of which
are orthogonal rotations). as well as “promax”, “oblimin”, “simplimax”, “bentlerQ, and
“geominQ” and “cluster” which are possible oblique transformations of the solution. The
default is to do a oblimin transformation. The measures of factor adequacy reflect the
multiple correlations of the factors with the best fitting linear regression estimates of the
factor scores (Grice, 2001).
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Note that if extracting more than one factor, and doing any oblique rotation, it is necessary
to have the GPArotation installed. This is checked for in the appropriate functions.

4.1.2 Principal Axis Factor Analysis

An alternative, least squares algorithm (included in fa with the fm=pa option or as a
standalone function (factor.pa), does a Principal Axis factor analysis by iteratively doing
an eigen value decomposition of the correlation matrix with the diagonal replaced by the
values estimated by the factors of the previous iteration. This OLS solution is not as
sensitive to improper matrices as is the maximum likelihood method, and will sometimes
produce more interpretable results. It seems as if the SAS example for PA uses only one
iteration. Setting the max.iter parameter to 1 produces the SAS solution.

The solutions from the fa, the factor.minres and factor.pa as well as the principal

functions can be rotated or transformed with a number of options. Some of these call
the GPArotation package. Orthogonal rotations include varimax, quartimax, varimin,
bifactor . Oblique transformations include oblimin, quartimin, biquartimin and then
two targeted rotation functions Promax and target.rot. The latter of these will transform
a loadings matrix towards an arbitrary target matrix. The default is to transform towards
an independent cluster solution.

Using the Thurstone data set, three factors were requested and then transformed into an
independent clusters solution using target.rot (Table 2).

4.1.3 Alpha Factor Analysis

Introduced by Kaiser and Caffrey (1965) and discussed by Loehlin and Beaujean (2017),
alpha factor analysis factors the correlation matrix of correlations or covariances corrected
for their communalities. This has the effect of making all correlations corrected for reliabiity
to reflect their true, latent correlations. alpha factor analysis was added in August, 2017
to increase the range of EFA options available. This is added more completeness rather
than an endorsement of the procedure. It is worth comparing solutions from minres, alpha,
and MLE, for they are not the same.

4.1.4 Weighted Least Squares Factor Analysis

Similar to the minres approach of minimizing the squared residuals, factor method “wls”
weights the squared residuals by their uniquenesses. This tends to produce slightly smaller
overall residuals. In the example of weighted least squares, the output is shown by using the
print function with the cut option set to 0. That is, all loadings are shown (Table 3).

subsectionDisplaying factor solutions The unweighted least squares solution may be shown
graphically using the fa.plot function which is called by the generic plot function (Fig-
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Table 1: Three correlated factors from the Thurstone 9 variable problem. By default, the
solution is transformed obliquely using oblimin. The extraction method is (by default)
minimum residual.
> if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else {

+ library(psych)

+ library(psychTools)

+ f3t <- fa(Thurstone,3,n.obs=213)

+ f3t }

Factor Analysis using method = minres

Call: fa(r = Thurstone, nfactors = 3, n.obs = 213)

Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 MR3 h2 u2 com

Sentences 0.90 -0.03 0.04 0.82 0.18 1.0

Vocabulary 0.89 0.06 -0.03 0.84 0.16 1.0

Sent.Completion 0.84 0.03 0.00 0.74 0.26 1.0

First.Letters 0.00 0.85 0.00 0.73 0.27 1.0

Four.Letter.Words -0.02 0.75 0.10 0.63 0.37 1.0

Suffixes 0.18 0.63 -0.08 0.50 0.50 1.2

Letter.Series 0.03 -0.01 0.84 0.73 0.27 1.0

Pedigrees 0.38 -0.05 0.46 0.51 0.49 2.0

Letter.Group -0.06 0.21 0.63 0.52 0.48 1.2

MR1 MR2 MR3

SS loadings 2.65 1.87 1.49

Proportion Var 0.29 0.21 0.17

Cumulative Var 0.29 0.50 0.67

Proportion Explained 0.44 0.31 0.25

Cumulative Proportion 0.44 0.75 1.00

With factor correlations of

MR1 MR2 MR3

MR1 1.00 0.59 0.53

MR2 0.59 1.00 0.52

MR3 0.53 0.52 1.00

Mean item complexity = 1.2

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.2 with Chi Square of 1081.97

The degrees of freedom for the model are 12 and the objective function was 0.01

The root mean square of the residuals (RMSR) is 0.01

The df corrected root mean square of the residuals is 0.01

The harmonic number of observations is 213 with the empirical chi square 0.52 with prob < 1

The total number of observations was 213 with Likelihood Chi Square = 2.98 with prob < 1

Tucker Lewis Index of factoring reliability = 1.026

RMSEA index = 0 and the 90 % confidence intervals are 0 0

BIC = -61.36

Fit based upon off diagonal values = 1

Measures of factor score adequacy

MR1 MR2 MR3

Correlation of (regression) scores with factors 0.96 0.92 0.90

Multiple R square of scores with factors 0.93 0.85 0.82

Minimum correlation of possible factor scores 0.86 0.71 0.63
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Table 2: The 9 variable problem from Thurstone is a classic example of factoring where
there is a higher order factor, g, that accounts for the correlation between the factors. The
extraction method was principal axis. The transformation was a targeted transformation
to a simple cluster solution.
> if(!require('GPArotation')) {stop('GPArotation must be installed to do rotations')} else {

+ f3 <- fa(Thurstone,3,n.obs = 213,fm="pa")

+ f3o <- target.rot(f3)

+ f3o}

Call: NULL

Standardized loadings (pattern matrix) based upon correlation matrix

PA1 PA2 PA3 h2 u2

Sentences 0.89 -0.03 0.07 0.81 0.19

Vocabulary 0.89 0.07 0.00 0.80 0.20

Sent.Completion 0.83 0.04 0.03 0.70 0.30

First.Letters -0.02 0.85 -0.01 0.73 0.27

Four.Letter.Words -0.05 0.74 0.09 0.57 0.43

Suffixes 0.17 0.63 -0.09 0.43 0.57

Letter.Series -0.06 -0.08 0.84 0.69 0.31

Pedigrees 0.33 -0.09 0.48 0.37 0.63

Letter.Group -0.14 0.16 0.64 0.45 0.55

PA1 PA2 PA3

SS loadings 2.45 1.72 1.37

Proportion Var 0.27 0.19 0.15

Cumulative Var 0.27 0.46 0.62

Proportion Explained 0.44 0.31 0.25

Cumulative Proportion 0.44 0.75 1.00

PA1 PA2 PA3

PA1 1.00 0.02 0.08

PA2 0.02 1.00 0.09

PA3 0.08 0.09 1.00
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Table 3: The 9 variable problem from Thurstone is a classic example of factoring where
there is a higher order factor, g, that accounts for the correlation between the factors. The
factors were extracted using a weighted least squares algorithm. All loadings are shown by
using the cut=0 option in the print.psych function.
> f3w <- fa(Thurstone,3,n.obs = 213,fm="wls")

> print(f3w,cut=0,digits=3)

Factor Analysis using method = wls

Call: fa(r = Thurstone, nfactors = 3, n.obs = 213, fm = "wls")

Standardized loadings (pattern matrix) based upon correlation matrix

WLS1 WLS2 WLS3 h2 u2 com

Sentences 0.905 -0.034 0.040 0.822 0.178 1.01

Vocabulary 0.890 0.066 -0.031 0.835 0.165 1.01

Sent.Completion 0.833 0.034 0.007 0.735 0.265 1.00

First.Letters -0.002 0.855 0.003 0.731 0.269 1.00

Four.Letter.Words -0.016 0.743 0.106 0.629 0.371 1.04

Suffixes 0.180 0.626 -0.082 0.496 0.504 1.20

Letter.Series 0.033 -0.015 0.838 0.719 0.281 1.00

Pedigrees 0.381 -0.051 0.464 0.505 0.495 1.95

Letter.Group -0.062 0.209 0.632 0.527 0.473 1.24

WLS1 WLS2 WLS3

SS loadings 2.647 1.864 1.489

Proportion Var 0.294 0.207 0.165

Cumulative Var 0.294 0.501 0.667

Proportion Explained 0.441 0.311 0.248

Cumulative Proportion 0.441 0.752 1.000

With factor correlations of

WLS1 WLS2 WLS3

WLS1 1.000 0.591 0.535

WLS2 0.591 1.000 0.516

WLS3 0.535 0.516 1.000

Mean item complexity = 1.2

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.198 with Chi Square of 1081.968

The degrees of freedom for the model are 12 and the objective function was 0.014

The root mean square of the residuals (RMSR) is 0.006

The df corrected root mean square of the residuals is 0.01

The harmonic number of observations is 213 with the empirical chi square 0.531 with prob < 1

The total number of observations was 213 with Likelihood Chi Square = 2.885 with prob < 0.996

Tucker Lewis Index of factoring reliability = 1.0264

RMSEA index = 0 and the 90 % confidence intervals are 0 0

BIC = -61.45

Fit based upon off diagonal values = 1

Measures of factor score adequacy

WLS1 WLS2 WLS3

Correlation of (regression) scores with factors 0.964 0.923 0.902

Multiple R square of scores with factors 0.929 0.853 0.814

Minimum correlation of possible factor scores 0.858 0.706 0.627
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ure 1). Factors were transformed obliquely using a oblimin. These solutions may be shown
as item by factor plots (Figure 1) or by a structure diagram (Figure 2).

> plot(f3t)
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Factor Analysis

Figure 1: A graphic representation of the 3 oblique factors from the Thurstone data using
plot. Factors were transformed to an oblique solution using the oblimin function from the
GPArotation package.

A comparison of these three approaches suggests that the minres solution is more similar
to a maximum likelihood solution and fits slightly better than the pa or wls solutions.
Comparisons with SPSS suggest that the pa solution matches the SPSS OLS solution, but
that the minres solution is slightly better. At least in one test data set, the weighted least
squares solutions, although fitting equally well, had slightly different structure loadings.
Note that the rotations used by SPSS will sometimes use the “Kaiser Normalization”. By
default, the rotations used in psych do not normalize, but this can be specified as an option
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> fa.diagram(f3t)

Factor Analysis
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Figure 2: A graphic representation of the 3 oblique factors from the Thurstone data using
fa.diagram. Factors were transformed to an oblique solution using oblimin.
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in fa.

4.1.5 Principal Components analysis (PCA)

An alternative to factor analysis, which is unfortunately frequently confused with factor
analysis, is principal components analysis. Although the goals of PCA and FA are similar,
PCA is a descriptive model of the data, while FA is a structural model. Some psychologists
use PCA in a manner similar to factor analysis and thus the principal function produces
output that is perhaps more understandable than that produced by princomp in the stats
package. Table 4 shows a PCA of the Thurstone 9 variable problem rotated using the
Promax function. Note how the loadings from the factor model are similar but smaller than
the principal component loadings. This is because the PCA model attempts to account
for the entire variance of the correlation matrix, while FA accounts for just the common
variance. This distinction becomes most important for small correlation matrices. Also
note how the goodness of fit statistics, based upon the residual off diagonal elements, is
much worse than the fa solution.

4.1.6 Hierarchical and bi-factor solutions

For a long time structural analysis of the ability domain have considered the problem of
factors that are themselves correlated. These correlations may themselves be factored to
produce a higher order, general factor. An alternative (Holzinger and Swineford, 1937;
Jensen and Weng, 1994) is to consider the general factor affecting each item, and then
to have group factors account for the residual variance. Exploratory factor solutions to
produce a hierarchical or a bifactor solution are found using the omega function. This
technique has more recently been applied to the personality domain to consider such things
as the structure of neuroticism (treated as a general factor, with lower order factors of
anxiety, depression, and aggression).

Consider the 9 Thurstone variables analyzed in the prior factor analyses. The correlations
between the factors (as shown in Figure 2 can themselves be factored. This results in a
higher order factor model (Figure 3). An an alternative solution is to take this higher
order model and then solve for the general factor loadings as well as the loadings on the
residualized lower order factors using the Schmid-Leiman procedure. (Figure 4). Yet
another solution is to use structural equation modeling to directly solve for the general and
group factors.

Yet another approach to the bifactor structure is do use the bifactor rotation function in
either psych or in GPArotation. This does the rotation discussed in Jennrich and Bentler
(2011).
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Table 4: The Thurstone problem can also be analyzed using Principal Components Anal-
ysis. Compare this to Table 2. The loadings are higher for the PCA because the model
accounts for the unique as well as the common variance.The fit of the off diagonal elements,
however, is much worse than the fa results.
> p3p <-principal(Thurstone,3,n.obs = 213,rotate="Promax")

> p3p

Principal Components Analysis

Call: principal(r = Thurstone, nfactors = 3, rotate = "Promax", n.obs = 213)

Standardized loadings (pattern matrix) based upon correlation matrix

RC1 RC2 RC3 h2 u2 com

Sentences 0.92 0.01 0.01 0.86 0.14 1.0

Vocabulary 0.90 0.10 -0.05 0.86 0.14 1.0

Sent.Completion 0.91 0.04 -0.04 0.83 0.17 1.0

First.Letters 0.01 0.84 0.07 0.78 0.22 1.0

Four.Letter.Words -0.05 0.81 0.17 0.75 0.25 1.1

Suffixes 0.18 0.79 -0.15 0.70 0.30 1.2

Letter.Series 0.03 -0.03 0.88 0.78 0.22 1.0

Pedigrees 0.45 -0.16 0.57 0.67 0.33 2.1

Letter.Group -0.19 0.19 0.86 0.75 0.25 1.2

RC1 RC2 RC3

SS loadings 2.83 2.19 1.96

Proportion Var 0.31 0.24 0.22

Cumulative Var 0.31 0.56 0.78

Proportion Explained 0.41 0.31 0.28

Cumulative Proportion 0.41 0.72 1.00

With component correlations of

RC1 RC2 RC3

RC1 1.00 0.51 0.53

RC2 0.51 1.00 0.44

RC3 0.53 0.44 1.00

Mean item complexity = 1.2

Test of the hypothesis that 3 components are sufficient.

The root mean square of the residuals (RMSR) is 0.06

with the empirical chi square 56.17 with prob < 1.1e-07

Fit based upon off diagonal values = 0.98
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> om.h <- omega(Thurstone,n.obs=213,sl=FALSE)

> op <- par(mfrow=c(1,1))
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Figure 3: A higher order factor solution to the Thurstone 9 variable problem
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> om <- omega(Thurstone,n.obs=213)
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Figure 4: A bifactor factor solution to the Thurstone 9 variable problem
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4.1.7 Item Cluster Analysis: iclust

An alternative to factor or components analysis is cluster analysis. The goal of cluster
analysis is the same as factor or components analysis (reduce the complexity of the data
and attempt to identify homogeneous subgroupings). Mainly used for clustering people
or objects (e.g., projectile points if an anthropologist, DNA if a biologist, galaxies if an
astronomer), clustering may be used for clustering items or tests as well. Introduced to
psychologists by Tryon (1939) in the 1930’s, the cluster analytic literature exploded in
the 1970s and 1980s (Blashfield, 1980; Blashfield and Aldenderfer, 1988; Everitt, 1974;
Hartigan, 1975). Much of the research is in taxonmetric applications in biology (Sneath
and Sokal, 1973; Sokal and Sneath, 1963) and marketing (Cooksey and Soutar, 2006) where
clustering remains very popular. It is also used for taxonomic work in forming clusters of
people in family (Henry et al., 2005) and clinical psychology (Martinent and Ferrand, 2007;
Mun et al., 2008). Interestingly enough it has has had limited applications to psychometrics.
This is unfortunate, for as has been pointed out by e.g. (Tryon, 1935; Loevinger et al., 1953),
the theory of factors, while mathematically compelling, offers little that the geneticist or
behaviorist or perhaps even non-specialist finds compelling. Cooksey and Soutar (2006)
reviews why the iclust algorithm is particularly appropriate for scale construction in
marketing.

Hierarchical cluster analysis forms clusters that are nested within clusters. The resulting
tree diagram (also known somewhat pretentiously as a rooted dendritic structure) shows the
nesting structure. Although there are many hierarchical clustering algorithms in R (e.g.,
agnes, hclust, and iclust), the one most applicable to the problems of scale construction
is iclust (Revelle, 1979).

1. Find the proximity (e.g. correlation) matrix,

2. Identify the most similar pair of items

3. Combine this most similar pair of items to form a new variable (cluster),

4. Find the similarity of this cluster to all other items and clusters,

5. Repeat steps 2 and 3 until some criterion is reached (e.g., typicallly, if only one cluster
remains or in iclust if there is a failure to increase reliability coefficients α or β ).

6. Purify the solution by reassigning items to the most similar cluster center.

iclust forms clusters of items using a hierarchical clustering algorithm until one of two
measures of internal consistency fails to increase (Revelle, 1979). The number of clusters
may be specified a priori, or found empirically. The resulting statistics include the average
split half reliability, α (Cronbach, 1951), as well as the worst split half reliability, β (Revelle,
1979), which is an estimate of the general factor saturation of the resulting scale (Figure 5).
Cluster loadings (corresponding to the structure matrix of factor analysis) are reported
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when printing (Table 7). The pattern matrix is available as an object in the results.

> data(bfi)

> ic <- iclust(bfi[1:25])
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Figure 5: Using the iclust function to find the cluster structure of 25 personality items
(the three demographic variables were excluded from this analysis). When analyzing many
variables, the tree structure may be seen more clearly if the graphic output is saved as a
pdf and then enlarged using a pdf viewer.

The previous analysis (Figure 5) was done using the Pearson correlation. A somewhat
cleaner structure is obtained when using the polychoric function to find polychoric corre-
lations (Figure 6). Note that the first time finding the polychoric correlations some time,
but the next three analyses were done using that correlation matrix (r.poly$rho). When
using the console for input, polychoric will report on its progress while working using
progressBar.
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Table 5: The summary statistics from an iclust analysis shows three large clusters and
smaller cluster.
> summary(ic) #show the results

ICLUST (Item Cluster Analysis)Call: iclust(r.mat = bfi[1:25])

ICLUST

Purified Alpha:

C20 C16 C15 C21

0.80 0.81 0.73 0.61

Guttman Lambda6*

C20 C16 C15 C21

0.82 0.81 0.72 0.61

Original Beta:

C20 C16 C15 C21

0.63 0.76 0.67 0.27

Cluster size:

C20 C16 C15 C21

10 5 5 5

Purified scale intercorrelations

reliabilities on diagonal

correlations corrected for attenuation above diagonal:

C20 C16 C15 C21

C20 0.80 -0.291 0.40 -0.33

C16 -0.24 0.815 -0.29 0.11

C15 0.30 -0.221 0.73 -0.30

C21 -0.23 0.074 -0.20 0.61

Table 6: The polychoric and the tetrachoric functions can take a long time to finish
and report their progress by a series of dots as they work. The dots are suppressed when
creating a Sweave document.
> data(bfi)

> r.poly <- polychoric(bfi[1:25],correct=0) #the ... indicate the progress of the function

1.7.1
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> ic.poly <- iclust(r.poly$rho,title="ICLUST using polychoric correlations")

> iclust.diagram(ic.poly)
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Figure 6: ICLUST of the BFI data set using polychoric correlations. Compare this solution
to the previous one (Figure 5) which was done using Pearson correlations.
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> ic.poly <- iclust(r.poly$rho,5,title="ICLUST using polychoric correlations for nclusters=5")

> iclust.diagram(ic.poly)

ICLUST using polychoric correlations for nclusters=5
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Figure 7: ICLUST of the BFI data set using polychoric correlations with the solution
set to 5 clusters. Compare this solution to the previous one (Figure 6) which was done
without specifying the number of clusters and to the next one (Figure 8) which was done
by changing the beta criterion.
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> ic.poly <- iclust(r.poly$rho,beta.size=3,title="ICLUST beta.size=3")

ICLUST beta.size=3
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Figure 8: ICLUST of the BFI data set using polychoric correlations with the beta criterion
set to 3. Compare this solution to the previous three (Figure 5, 6, 7).
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Table 7: The output from iclust includes the loadings of each item on each cluster. These
are equivalent to factor structure loadings. By specifying the value of cut, small loadings
are suppressed. The default is for cut=0.su
> print(ic,cut=.3)

ICLUST (Item Cluster Analysis)

Call: iclust(r.mat = bfi[1:25])

Purified Alpha:

C20 C16 C15 C21

0.80 0.81 0.73 0.61

G6* reliability:

C20 C16 C15 C21

0.83 1.00 0.67 0.38

Original Beta:

C20 C16 C15 C21

0.63 0.76 0.67 0.27

Cluster size:

C20 C16 C15 C21

10 5 5 5

Item by Cluster Structure matrix:

O P C20 C16 C15 C21

A1 C20 C20

A2 C20 C20 0.59

A3 C20 C20 0.65

A4 C20 C20 0.43

A5 C20 C20 0.65

C1 C15 C15 0.54

C2 C15 C15 0.62

C3 C15 C15 0.54

C4 C15 C15 0.31 -0.66

C5 C15 C15 -0.30 0.36 -0.59

E1 C20 C20 -0.50

E2 C20 C20 -0.61 0.34

E3 C20 C20 0.59 -0.39

E4 C20 C20 0.66

E5 C20 C20 0.50 0.40 -0.32

N1 C16 C16 0.76

N2 C16 C16 0.75

N3 C16 C16 0.74

N4 C16 C16 -0.34 0.62

N5 C16 C16 0.55

O1 C20 C21 -0.53

O2 C21 C21 0.44

O3 C20 C21 0.39 -0.62

O4 C21 C21 -0.33

O5 C21 C21 0.53

With eigenvalues of:

C20 C16 C15 C21

3.2 2.6 1.9 1.5

Purified scale intercorrelations

reliabilities on diagonal

correlations corrected for attenuation above diagonal:

C20 C16 C15 C21

C20 0.80 -0.29 0.40 -0.33

C16 -0.24 0.81 -0.29 0.11

C15 0.30 -0.22 0.73 -0.30

C21 -0.23 0.07 -0.20 0.61

Cluster fit = 0.68 Pattern fit = 0.96 RMSR = 0.05

NULL

29



A comparison of these four cluster solutions suggests both a problem and an advantage of
clustering techniques. The problem is that the solutions differ. The advantage is that the
structure of the items may be seen more clearly when examining the clusters rather than
a simple factor solution.

4.2 Estimates of fit

Exploratory factoring techniques are sometimes criticized because of the lack of statisti-
cal information on the solutions. There are perhaps as many fit statistics as there are
psychometricians. When using Maximum Likelihood extraction, many of these various fit
statistics are based upon the χ2 which is minimized using ML. If not using ML, these same
statistics can be found, but they are no longer maximum likelihood estimates. They are,
however, still useful. Overall estimates of goodness of fit including χ2 and RMSEA are
found in the fa and omega functions.

4.3 Confidence intervals using bootstrapping techniques

Confidence intervals for the factor loadings may be found by doing multiple bootstrapped
iterations of the original analysis. This is done by setting the n.iter parameter to the desired
number of iterations. This can be done for factoring of Pearson correlation matrices as
well as polychoric/tetrachoric matrices (See Table 8). Although the example value for the
number of iterations is set to 20, more conventional analyses might use 1000 bootstraps.
This will take much longer.

Bootstrapped confidence intervals can also be found for the loadings of a factoring of a poly-
choric matrix. fa.poly will find the polychoric correlation matrix and if the n.iter option
is greater than 1, will then randomly resample the data (case wise) to give bootstrapped
samples. This will take a long time for large number of items or interations.

4.4 Comparing factor/component/cluster solutions

Cluster analysis, factor analysis, and principal components analysis all produce structure
matrices (matrices of correlations between the dimensions and the variables) that can
in turn be compared in terms of Burt’s congruence coefficient (also known as Tucker’s
coefficient) which is just the cosine of the angle between the dimensions

c fi f j =
∑

n
k=1 fik f jk

∑ f 2
ik ∑ f 2

jk
.

Consider the case of a four factor solution and four cluster solution to the Big Five prob-
lem.

> f4 <- fa(bfi[1:25],4,fm="pa")

> factor.congruence(f4,ic)
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Table 8: An example of bootstrapped confidence intervals on 10 items from the Big 5 inven-
tory. The number of bootstrapped samples was set to 20. More conventional bootstrapping
would use 100 or 1000 replications.
> fa(bfi[1:10],2,n.iter=20)

Factor Analysis with confidence intervals using method = fa(r = bfi[1:10], nfactors = 2, n.iter = 20)

Factor Analysis using method = minres

Call: fa(r = bfi[1:10], nfactors = 2, n.iter = 20)

Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 h2 u2 com

A1 0.08 -0.41 0.15 0.85 1.1

A2 0.01 0.68 0.46 0.54 1.0

A3 -0.03 0.76 0.56 0.44 1.0

A4 0.14 0.44 0.25 0.75 1.2

A5 0.03 0.60 0.37 0.63 1.0

C1 0.57 -0.06 0.31 0.69 1.0

C2 0.64 -0.01 0.40 0.60 1.0

C3 0.54 0.03 0.31 0.69 1.0

C4 -0.65 0.00 0.42 0.58 1.0

C5 -0.56 -0.06 0.34 0.66 1.0

MR1 MR2

SS loadings 1.80 1.78

Proportion Var 0.18 0.18

Cumulative Var 0.18 0.36

Proportion Explained 0.50 0.50

Cumulative Proportion 0.50 1.00

With factor correlations of

MR1 MR2

MR1 1.00 0.32

MR2 0.32 1.00

Mean item complexity = 1

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 45 and the objective function was 2.03 with Chi Square of 5664.89

The degrees of freedom for the model are 26 and the objective function was 0.17

The root mean square of the residuals (RMSR) is 0.04

The df corrected root mean square of the residuals is 0.05

The harmonic number of observations is 2762 with the empirical chi square 397.07 with prob < 5e-68

The total number of observations was 2800 with Likelihood Chi Square = 468.37 with prob < 1.2e-82

Tucker Lewis Index of factoring reliability = 0.864

RMSEA index = 0.078 and the 90 % confidence intervals are 0.072 0.084

BIC = 261.99

Fit based upon off diagonal values = 0.98

Measures of factor score adequacy

MR1 MR2

Correlation of (regression) scores with factors 0.86 0.88

Multiple R square of scores with factors 0.74 0.77

Minimum correlation of possible factor scores 0.49 0.54

Coefficients and bootstrapped confidence intervals

low MR1 upper low MR2 upper

A1 0.05 0.08 0.11 -0.44 -0.41 -0.36

A2 -0.02 0.01 0.05 0.64 0.68 0.72

A3 -0.07 -0.03 0.02 0.73 0.76 0.79

A4 0.10 0.14 0.19 0.40 0.44 0.48

A5 0.00 0.03 0.05 0.57 0.60 0.64

C1 0.53 0.57 0.64 -0.11 -0.06 -0.02

C2 0.60 0.64 0.70 -0.05 -0.01 0.02

C3 0.50 0.54 0.58 0.00 0.03 0.06

C4 -0.70 -0.65 -0.60 -0.04 0.00 0.02

C5 -0.60 -0.56 -0.50 -0.11 -0.06 -0.02

Interfactor correlations and bootstrapped confidence intervals

lower estimate upper

MR1-MR2 0.27 0.32 0.37

>
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C20 C16 C15 C21

PA1 0.92 -0.32 0.44 -0.40

PA2 -0.26 0.95 -0.33 0.12

PA3 0.35 -0.24 0.88 -0.37

PA4 0.29 -0.12 0.27 -0.90

A more complete comparison of oblique factor solutions (both minres and principal axis), bi-
factor and component solutions to the Thurstone data set is done using the factor.congruence
function. (See table 9).

Table 9: Congruence coefficients for oblique factor, bifactor and component solutions for
the Thurstone problem.
> factor.congruence(list(f3t,f3o,om,p3p))

MR1 MR2 MR3 PA1 PA2 PA3 g F1* F2* F3* h2 RC1 RC2 RC3

MR1 1.00 0.06 0.09 1.00 0.06 0.13 0.72 1.00 0.06 0.09 0.73 1.00 0.08 0.04

MR2 0.06 1.00 0.08 0.03 1.00 0.07 0.60 0.06 1.00 0.08 0.57 0.04 0.99 0.12

MR3 0.09 0.08 1.00 0.01 0.01 1.00 0.52 0.09 0.08 1.00 0.51 0.06 0.02 0.99

PA1 1.00 0.03 0.01 1.00 0.04 0.05 0.67 1.00 0.03 0.01 0.68 1.00 0.06 -0.04

PA2 0.06 1.00 0.01 0.04 1.00 0.00 0.57 0.06 1.00 0.01 0.54 0.04 0.99 0.05

PA3 0.13 0.07 1.00 0.05 0.00 1.00 0.54 0.13 0.07 1.00 0.54 0.10 0.01 0.99

g 0.72 0.60 0.52 0.67 0.57 0.54 1.00 0.72 0.60 0.52 0.99 0.69 0.58 0.50

F1* 1.00 0.06 0.09 1.00 0.06 0.13 0.72 1.00 0.06 0.09 0.73 1.00 0.08 0.04

F2* 0.06 1.00 0.08 0.03 1.00 0.07 0.60 0.06 1.00 0.08 0.57 0.04 0.99 0.12

F3* 0.09 0.08 1.00 0.01 0.01 1.00 0.52 0.09 0.08 1.00 0.51 0.06 0.02 0.99

h2 0.73 0.57 0.51 0.68 0.54 0.54 0.99 0.73 0.57 0.51 1.00 0.71 0.56 0.50

RC1 1.00 0.04 0.06 1.00 0.04 0.10 0.69 1.00 0.04 0.06 0.71 1.00 0.06 0.00

RC2 0.08 0.99 0.02 0.06 0.99 0.01 0.58 0.08 0.99 0.02 0.56 0.06 1.00 0.05

RC3 0.04 0.12 0.99 -0.04 0.05 0.99 0.50 0.04 0.12 0.99 0.50 0.00 0.05 1.00

4.5 Determining the number of dimensions to extract.

How many dimensions to use to represent a correlation matrix is an unsolved problem in
psychometrics. There are many solutions to this problem, none of which is uniformly the
best. Henry Kaiser once said that “a solution to the number-of factors problem in factor
analysis is easy, that he used to make up one every morning before breakfast. But the
problem, of course is to find the solution, or at least a solution that others will regard quite
highly not as the best” Horn and Engstrom (1979).

Techniques most commonly used include

1) Extracting factors until the chi square of the residual matrix is not significant.

2) Extracting factors until the change in chi square from factor n to factor n+1 is not
significant.

3) Extracting factors until the eigen values of the real data are less than the corresponding
eigen values of a random data set of the same size (parallel analysis) fa.parallel (Horn,
1965).
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4) Plotting the magnitude of the successive eigen values and applying the scree test (a
sudden drop in eigen values analogous to the change in slope seen when scrambling up the
talus slope of a mountain and approaching the rock face (Cattell, 1966).

5) Extracting factors as long as they are interpretable.

6) Using the Very Structure Criterion (vss) (Revelle and Rocklin, 1979).

7) Using Wayne Velicer’s Minimum Average Partial (MAP) criterion (Velicer, 1976).

8) Extracting principal components until the eigen value < 1.

Each of the procedures has its advantages and disadvantages. Using either the chi square
test or the change in square test is, of course, sensitive to the number of subjects and leads
to the nonsensical condition that if one wants to find many factors, one simply runs more
subjects. Parallel analysis is partially sensitive to sample size in that for large samples the
eigen values of random factors will all tend towards 1. The scree test is quite appealing
but can lead to differences of interpretation as to when the scree “breaks”. Extracting
interpretable factors means that the number of factors reflects the investigators creativity
more than the data. vss, while very simple to understand, will not work very well if the
data are very factorially complex. (Simulations suggests it will work fine if the complexities
of some of the items are no more than 2). The eigen value of 1 rule, although the default
for many programs, seems to be a rough way of dividing the number of variables by 3 and
is probably the worst of all criteria.

An additional problem in determining the number of factors is what is considered a factor.
Many treatments of factor analysis assume that the residual correlation matrix after the
factors of interest are extracted is composed of just random error. An alternative con-
cept is that the matrix is formed from major factors of interest but that there are also
numerous minor factors of no substantive interest but that account for some of the shared
covariance between variables. The presence of such minor factors can lead one to extract
too many factors and to reject solutions on statistical grounds of misfit that are actually
very good fits to the data. This problem is partially addressed later in the discussion of
simulating complex structures using sim.structure and of small extraneous factors using
the sim.minor function.

4.5.1 Very Simple Structure

The vss function compares the fit of a number of factor analyses with the loading matrix
“simplified” by deleting all except the c greatest loadings per item, where c is a measure
of factor complexity Revelle and Rocklin (1979). Included in vss is the MAP criterion
(Minimum Absolute Partial correlation) of Velicer (1976).

Using the Very Simple Structure criterion for the bfi data suggests that 4 factors are optimal
(Figure 9). However, the MAP criterion suggests that 5 is optimal.
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> vss <- vss(bfi[1:25],title="Very Simple Structure of a Big 5 inventory")
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Figure 9: The Very Simple Structure criterion for the number of factors compares solutions
for various levels of item complexity and various numbers of factors. For the Big 5 Inventory,
the complexity 1 and 2 solutions both achieve their maxima at four factors. This is in
contrast to parallel analysis which suggests 6 and the MAP criterion which suggests 5.
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> vss

Very Simple Structure of Very Simple Structure of a Big 5 inventory

Call: vss(x = bfi[1:25], title = "Very Simple Structure of a Big 5 inventory")

VSS complexity 1 achieves a maximimum of 0.58 with 4 factors

VSS complexity 2 achieves a maximimum of 0.74 with 5 factors

The Velicer MAP achieves a minimum of 0.01 with 5 factors

BIC achieves a minimum of -513.09 with 8 factors

Sample Size adjusted BIC achieves a minimum of -106.39 with 8 factors

Statistics by number of factors

vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex eChisq SRMR eCRMS eBIC

1 0.49 0.00 0.024 275 11863 0.0e+00 25.9 0.49 0.123 9680 10554 1.0 23725 0.119 0.124 21542

2 0.54 0.63 0.018 251 7362 0.0e+00 18.6 0.63 0.101 5370 6168 1.2 12173 0.085 0.093 10180

3 0.56 0.70 0.017 228 5096 0.0e+00 14.6 0.71 0.087 3286 4010 1.3 7019 0.065 0.074 5209

4 0.58 0.74 0.015 206 3422 0.0e+00 11.5 0.77 0.075 1787 2441 1.4 3606 0.046 0.056 1971

5 0.54 0.74 0.015 185 1809 4.3e-264 9.4 0.81 0.056 341 928 1.5 1412 0.029 0.037 -57

6 0.54 0.71 0.016 165 1032 1.8e-125 8.3 0.84 0.043 -277 247 1.8 649 0.020 0.027 -661

7 0.51 0.70 0.019 146 708 1.2e-74 7.9 0.85 0.037 -451 13 1.9 435 0.016 0.023 -724

8 0.51 0.66 0.022 128 503 7.1e-46 7.4 0.85 0.032 -513 -106 2.0 278 0.013 0.020 -738

4.5.2 Parallel Analysis

An alternative way to determine the number of factors is to compare the solution to random
data with the same properties as the real data set. If the input is a data matrix, the
comparison includes random samples from the real data, as well as normally distributed
random data with the same number of subjects and variables. For the BFI data, parallel
analysis suggests that 6 factors might be most appropriate (Figure 10). It is interesting
to compare fa.parallel with the paran from the paran package. This latter uses smcs
to estimate communalities. Simulations of known structures with a particular number of
major factors but with the presence of trivial, minor (but not zero) factors, show that using
smcs will tend to lead to too many factors.

Experience with problems of various sizes suggests that parallel analysis is useful for less
than about 1,000 subjects, and that using the number of components greater than a random
solution is more robust than using the number of factors greater than random factors.

A more tedious problem in terms of computation is to do parallel analysis of polychoric
correlation matrices. This is done by fa.parallel.poly. By default the number of repli-
cations is 20. This is appropriate when choosing the number of factors from dicthotomous
or polytomous data matrices.

4.6 Factor extension

Sometimes we are interested in the relationship of the factors in one space with the variables
in a different space. One solution is to find factors in both spaces separately and then find
the structural relationships between them. This is the technique of structural equation
modeling in packages such as sem or lavaan. An alternative is to use the concept of
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> fa.parallel(bfi[1:25],main="Parallel Analysis of a Big 5 inventory")

Parallel analysis suggests that the number of factors = 6 and the number of components = 6
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Figure 10: Parallel analysis compares factor and principal components solutions to the real
data as well as resampled data. Although vss suggests 4 factors, MAP 5, parallel analysis
suggests 6. One more demonstration of Kaiser’s dictum.
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factor extension developed by (Dwyer, 1937). Consider the case of 16 variables created
to represent one two dimensional space. If factors are found from eight of these variables,
they may then be extended to the additional eight variables (See Figure 11).

Another way to examine the overlap between two sets is the use of set correlation found
by setCor (discussed later).

4.7 Exploratory Structural Equation Modeling (ESEM)

Generaizing the procedures of factor extension, we can do Exploratory Structural Equation
Modeling (ESEM). Traditional Exploratory Factor Analysis (EFA) examines how latent
variables can account for the correlations within a data set. All loadings and cross loadings
are found and rotation is done to some approximation of simple structure. Traditional
Confirmatory Factor Analysis (CFA) tests such models by fitting just a limited number of
loadings and typically does not allow any (or many) cross loadings. Structural Equation
Modeling then applies two such measurement models, one to a set of X variables, another
to a set of Y variables, and then tries to estimate the correlation between these two sets of
latent variables. (Some SEM procedures estimate all the parameters from the same model,
thus making the loadings in set Y affect those in set X.) It is possible to do a similar,
exploratory modeling (ESEM) by conducting two Exploratory Factor Analyses, one in set
X, one in set Y, and then finding the correlations of the X factors with the Y factors, as
well as the correlations of the Y variables with the X factors and the X variables with the
Y factors.

Consider the simulated data set of three ability variables, two motivational variables, and
three outcome variables:

Call: sim.structural(fx = fx, Phi = Phi, fy = fy)

$model (Population correlation matrix)

V Q A nach Anx gpa Pre MA

V 1.00 0.72 0.54 0.00 0.00 0.38 0.32 0.25

Q 0.72 1.00 0.48 0.00 0.00 0.34 0.28 0.22

A 0.54 0.48 1.00 0.48 -0.42 0.50 0.42 0.34

nach 0.00 0.00 0.48 1.00 -0.56 0.34 0.28 0.22

Anx 0.00 0.00 -0.42 -0.56 1.00 -0.29 -0.24 -0.20

gpa 0.38 0.34 0.50 0.34 -0.29 1.00 0.30 0.24

Pre 0.32 0.28 0.42 0.28 -0.24 0.30 1.00 0.20

MA 0.25 0.22 0.34 0.22 -0.20 0.24 0.20 1.00

$reliability (population reliability)

V Q A nach Anx gpa Pre MA

0.81 0.64 0.72 0.64 0.49 0.36 0.25 0.16
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> v16 <- sim.item(16)

> s <- c(1,3,5,7,9,11,13,15)

> f2 <- fa(v16[,s],2)

> fe <- fa.extension(cor(v16)[s,-s],f2)

> fa.diagram(f2,fe=fe)

Factor analysis and extension
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Figure 11: Factor extension applies factors from one set (those on the left) to another set
of variables (those on the right). fa.extension is particularly useful when one wants to
define the factors with one set of variables and then apply those factors to another set.
fa.diagram is used to show the structure.
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We can fit this by using the esem function and then draw the solution (see Figure 12) using
the esem.diagram function (which is normally called automatically by esem.

Exploratory Structural Equation Modeling Analysis using method = minres

Call: esem(r = gre.gpa$model, varsX = 1:5, varsY = 6:8, nfX = 2, nfY = 1,

n.obs = 1000, plot = FALSE)

For the 'X' set:

X1 X2

V 0.91 -0.06

Q 0.81 -0.05

A 0.53 0.57

nach -0.10 0.81

Anx 0.08 -0.71

For the 'Y' set:

Y1

gpa 0.6

Pre 0.5

MA 0.4

Correlations between the X and Y sets.

X1 X2 Y1

X1 1.00 0.19 0.68

X2 0.19 1.00 0.67

Y1 0.68 0.67 1.00

The degrees of freedom for the null model are 56 and the empirical chi square function was 6930.29

The degrees of freedom for the model are 7 and the empirical chi square function was 21.83

with prob < 0.0027

The root mean square of the residuals (RMSR) is 0.02

The df corrected root mean square of the residuals is 0.04

with the empirical chi square 21.83 with prob < 0.0027

The total number of observations was 1000 with fitted Chi Square = 2175.06 with prob < 0

Empirical BIC = -26.53

ESABIC = -4.29

Fit based upon off diagonal values = 1

To see the item loadings for the X and Y sets combined, and the associated fa output, print with short=FALSE.
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Exploratory Structural Model
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Figure 12: An example of a Exploratory Structure Equation Model.
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5 Classical Test Theory and Reliability

Surprisingly, 113 years after Spearman (1904) introduced the concept of reliability to psy-
chologists, there are still multiple approaches for measuring it. Although very popular,
Cronbach’s α (Cronbach, 1951) underestimates the reliability of a test and over estimates
the first factor saturation (Revelle and Zinbarg, 2009).

α (Cronbach, 1951) is the same as Guttman’s λ3 (Guttman, 1945) and may be found
by

λ3 =
n

n−1

(
1− tr(~V )x

Vx

)
=

n
n−1

Vx− tr(~Vx)

Vx
= α

Perhaps because it is so easy to calculate and is available in most commercial programs,
alpha is without doubt the most frequently reported measure of internal consistency relia-
bility. Alpha is the mean of all possible spit half reliabilities (corrected for test length). For
a unifactorial test, it is a reasonable estimate of the first factor saturation, although if the
test has any microstructure (i.e., if it is “lumpy”) coefficients β (Revelle, 1979) (see iclust)
and ωh (see omega) are more appropriate estimates of the general factor saturation. ωt is a
better estimate of the reliability of the total test.

Guttman’s λ6 (G6) considers the amount of variance in each item that can be accounted
for the linear regression of all of the other items (the squared multiple correlation or smc),
or more precisely, the variance of the errors, e2

j , and is

λ6 = 1−
∑e2

j

Vx
= 1− ∑(1− r2

smc)

Vx
.

The squared multiple correlation is a lower bound for the item communality and as the
number of items increases, becomes a better estimate.

G6 is also sensitive to lumpiness in the test and should not be taken as a measure of
unifactorial structure. For lumpy tests, it will be greater than alpha. For tests with equal
item loadings, alpha > G6, but if the loadings are unequal or if there is a general factor,
G6 > alpha. G6 estimates item reliability by the squared multiple correlation of the other
items in a scale. A modification of G6, G6*, takes as an estimate of an item reliability
the smc with all the items in an inventory, including those not keyed for a particular scale.
This will lead to a better estimate of the reliable variance of a particular item.

Alpha, G6 and G6* are positive functions of the number of items in a test as well as the av-
erage intercorrelation of the items in the test. When calculated from the item variances and
total test variance, as is done here, raw alpha is sensitive to differences in the item variances.
Standardized alpha is based upon the correlations rather than the covariances.
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More complete reliability analyses of a single scale can be done using the omega function
which finds ωh and ωt based upon a hierarchical factor analysis.

Alternative functions scoreItems and cluster.cor will also score multiple scales and
report more useful statistics. “Standardized” alpha is calculated from the inter-item corre-
lations and will differ from raw alpha.

Functions for examining the reliability of a single scale or a set of scales include:

alpha Internal consistency measures of reliability range from ωh to α to ωt . The alpha

function reports two estimates: Cronbach’s coefficient α and Guttman’s λ6. Also
reported are item - whole correlations, α if an item is omitted, and item means and
standard deviations.

guttman Eight alternative estimates of test reliability include the six discussed by Guttman
(1945), four discussed by ten Berge and Zergers (1978) (µ0 . . .µ3) as well as β (the
worst split half, Revelle, 1979), the glb (greatest lowest bound) discussed by Bentler
and Woodward (1980), and ωh andωt ((McDonald, 1999; Zinbarg et al., 2005).

omega Calculate McDonald’s omega estimates of general and total factor saturation.
(Revelle and Zinbarg (2009) compare these coefficients with real and artificial data
sets.)

cluster.cor Given a n x c cluster definition matrix of -1s, 0s, and 1s (the keys) , and a n
x n correlation matrix, find the correlations of the composite clusters.

scoreItems Given a matrix or data.frame of k keys for m items (-1, 0, 1), and a matrix
or data.frame of items scores for m items and n people, find the sum scores or av-
erage scores for each person and each scale. If the input is a square matrix, then
it is assumed that correlations or covariances were used, and the raw scores are not
available. In addition, report Cronbach’s alpha, coefficient G6*, the average r, the
scale intercorrelations, and the item by scale correlations (both raw and corrected for
item overlap and scale reliability). Replace missing values with the item median or
mean if desired. Will adjust scores for reverse scored items.

score.multiple.choice Ability tests are typically multiple choice with one right answer.
score.multiple.choice takes a scoring key and a data matrix (or data.frame) and finds
total or average number right for each participant. Basic test statistics (alpha, average
r, item means, item-whole correlations) are also reported.

splitHalf Given a set of items, consider all (if n.items < 17) or 10,000 random splits of
the item into two sets. The correlation between these two split halfs is then adjusted
by the Spearman-Brown prophecy formula to show the range of split half reliablities.
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5.1 Reliability of a single scale

A conventional (but non-optimal) estimate of the internal consistency reliability of a test
is coefficient α (Cronbach, 1951). Alternative estimates are Guttman’s λ6, Revelle’s β ,
McDonald’s ωh and ωt . Consider a simulated data set, representing 9 items with a hierar-
chical structure and the following correlation matrix. Then using the alpha function, the
α and λ6 estimates of reliability may be found for all 9 items, as well as the if one item is
dropped at a time.

> set.seed(17)

> r9 <- sim.hierarchical(n=500,raw=TRUE)$observed

> round(cor(r9),2)

V1 V2 V3 V4 V5 V6 V7 V8 V9

V1 1.00 0.58 0.47 0.44 0.36 0.31 0.30 0.17 0.13

V2 0.58 1.00 0.36 0.39 0.26 0.26 0.30 0.24 0.15

V3 0.47 0.36 1.00 0.32 0.34 0.26 0.28 0.17 0.15

V4 0.44 0.39 0.32 1.00 0.45 0.41 0.31 0.17 0.16

V5 0.36 0.26 0.34 0.45 1.00 0.34 0.22 0.13 0.21

V6 0.31 0.26 0.26 0.41 0.34 1.00 0.17 0.10 0.12

V7 0.30 0.30 0.28 0.31 0.22 0.17 1.00 0.39 0.30

V8 0.17 0.24 0.17 0.17 0.13 0.10 0.39 1.00 0.22

V9 0.13 0.15 0.15 0.16 0.21 0.12 0.30 0.22 1.00

> alpha(r9)

Reliability analysis

Call: alpha(x = r9)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.77 0.77 0.78 0.28 3.4 0.015 -0.013 0.59 0.27

lower alpha upper 95% confidence boundaries

0.75 0.77 0.8

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

V1 0.73 0.73 0.73 0.26 2.8 0.018 0.0094 0.26

V2 0.74 0.74 0.74 0.26 2.9 0.017 0.0121 0.27

V3 0.75 0.75 0.75 0.27 3.0 0.017 0.0142 0.26

V4 0.74 0.74 0.74 0.26 2.8 0.018 0.0124 0.26

V5 0.75 0.75 0.75 0.27 3.0 0.017 0.0143 0.27

V6 0.76 0.76 0.76 0.28 3.2 0.016 0.0137 0.29

V7 0.75 0.75 0.75 0.27 3.0 0.017 0.0160 0.26

V8 0.77 0.77 0.77 0.30 3.4 0.015 0.0128 0.30

V9 0.78 0.78 0.78 0.30 3.5 0.015 0.0127 0.30

Item statistics

n raw.r std.r r.cor r.drop mean sd

V1 500 0.70 0.70 0.68 0.58 0.0247 0.98

V2 500 0.66 0.66 0.62 0.53 -0.0022 0.98

V3 500 0.62 0.62 0.55 0.49 -0.1027 0.93

V4 500 0.69 0.68 0.64 0.56 -0.0661 1.05

V5 500 0.61 0.62 0.55 0.48 -0.0622 0.98

V6 500 0.55 0.55 0.46 0.40 -0.0163 0.99

V7 500 0.61 0.61 0.54 0.47 0.0706 1.01

V8 500 0.49 0.48 0.37 0.32 0.0134 1.02
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V9 500 0.45 0.45 0.33 0.29 0.0247 0.96

Some scales have items that need to be reversed before being scored. Rather than reversing
the items in the raw data, it is more convenient to just specify which items need to be
reversed scored. This may be done in alpha by specifying a keys vector of 1s and -1s.
(This concept of keys vector is more useful when scoring multiple scale inventories, see
below.) As an example, consider scoring the 7 attitude items in the attitude data set.
Assume a conceptual mistake in that items 2 and 6 (complaints and critical) are to be
scored (incorrectly) negatively.

> alpha(attitude,keys=c("complaints","critical"))

Reliability analysis

Call: alpha(x = attitude, keys = c("complaints", "critical"))

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.18 0.27 0.66 0.05 0.37 0.19 53 4.7 0.16

lower alpha upper 95% confidence boundaries

-0.18 0.18 0.55

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

rating -0.023 0.090 0.52 0.0162 0.099 0.265 0.22 -0.12

complaints- 0.689 0.666 0.76 0.2496 1.995 0.078 0.13 0.43

privileges -0.133 0.021 0.58 0.0036 0.022 0.282 0.26 -0.12

learning -0.459 -0.251 0.41 -0.0346 -0.201 0.363 0.21 -0.15

raises -0.178 -0.062 0.47 -0.0098 -0.058 0.295 0.20 -0.12

critical- 0.364 0.473 0.76 0.1299 0.896 0.139 0.29 0.43

advance -0.137 -0.016 0.52 -0.0026 -0.016 0.258 0.27 -0.12

Item statistics

n raw.r std.r r.cor r.drop mean sd

rating 30 0.600 0.601 0.63 0.28 65 12.2

complaints- 30 -0.542 -0.559 -0.78 -0.75 50 13.3

privileges 30 0.679 0.663 0.57 0.39 53 12.2

learning 30 0.857 0.853 0.90 0.70 56 11.7

raises 30 0.719 0.730 0.77 0.50 65 10.4

critical- 30 0.015 0.036 -0.29 -0.27 42 9.9

advance 30 0.688 0.694 0.66 0.46 43 10.3

>

Note how the reliability of the 7 item scales with an incorrectly reversed item is very
poor, but if items 2 and 6 is dropped then the reliability is improved substantially. This
suggests that items 2 and 6 were incorrectly scored. Doing the analysis again with the
items positively scored produces much more favorable results.

> alpha(attitude)

Reliability analysis

Call: alpha(x = attitude)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.84 0.84 0.88 0.43 5.2 0.042 60 8.2 0.45
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lower alpha upper 95% confidence boundaries

0.76 0.84 0.93

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

rating 0.81 0.81 0.83 0.41 4.2 0.052 0.035 0.45

complaints 0.80 0.80 0.82 0.39 3.9 0.057 0.035 0.43

privileges 0.83 0.82 0.87 0.44 4.7 0.048 0.054 0.53

learning 0.80 0.80 0.84 0.40 4.0 0.054 0.045 0.38

raises 0.80 0.78 0.83 0.38 3.6 0.056 0.048 0.34

critical 0.86 0.86 0.89 0.51 6.3 0.038 0.030 0.56

advance 0.84 0.83 0.86 0.46 5.0 0.043 0.048 0.49

Item statistics

n raw.r std.r r.cor r.drop mean sd

rating 30 0.78 0.76 0.75 0.67 65 12.2

complaints 30 0.84 0.81 0.82 0.74 67 13.3

privileges 30 0.70 0.68 0.60 0.56 53 12.2

learning 30 0.81 0.80 0.78 0.71 56 11.7

raises 30 0.85 0.86 0.85 0.79 65 10.4

critical 30 0.42 0.45 0.31 0.27 75 9.9

advance 30 0.60 0.62 0.56 0.46 43 10.3

It is useful when considering items for a potential scale to examine the item distribution.
This is done in scoreItems as well as in alpha.

> items <- sim.congeneric(N=500,short=FALSE,low=-2,high=2,categorical=TRUE) #500 responses to 4 discrete items

> alpha(items$observed) #item response analysis of congeneric measures

Reliability analysis

Call: alpha(x = items$observed)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.7 0.7 0.66 0.37 2.4 0.022 0.079 0.74 0.38

lower alpha upper 95% confidence boundaries

0.66 0.7 0.75

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

V1 0.57 0.57 0.48 0.31 1.3 0.033 0.0067 0.30

V2 0.60 0.60 0.51 0.33 1.5 0.031 0.0075 0.36

V3 0.67 0.67 0.60 0.40 2.0 0.026 0.0167 0.36

V4 0.71 0.71 0.63 0.45 2.4 0.023 0.0077 0.40

Item statistics

n raw.r std.r r.cor r.drop mean sd

V1 500 0.79 0.79 0.71 0.59 0.066 1.02

V2 500 0.77 0.77 0.68 0.56 0.098 1.01

V3 500 0.69 0.70 0.52 0.44 0.022 0.98

V4 500 0.66 0.65 0.44 0.38 0.130 1.06

Non missing response frequency for each item

-2 -1 0 1 2 miss

V1 0.07 0.22 0.36 0.28 0.07 0

V2 0.06 0.21 0.39 0.27 0.08 0

V3 0.06 0.23 0.40 0.25 0.06 0
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V4 0.07 0.21 0.33 0.29 0.09 0

5.2 Using omega to find the reliability of a single scale

Two alternative estimates of reliability that take into account the hierarchical structure of
the inventory are McDonald’s ωh and ωt . These may be found using the omega function
for an exploratory analysis (See Figure 13) or omegaSem for a confirmatory analysis using
the lavaan package based upon the exploratory solution from omega.

McDonald has proposed coefficient omega (hierarchical) (ωh) as an estimate of the gen-
eral factor saturation of a test. Zinbarg et al. (2005) https://personality-project.

org/revelle/publications/zinbarg.revelle.pmet.05.pdf compare McDonald’s ωh to
Cronbach’s α and Revelle’s β . They conclude that ωh is the best estimate. (See also Zin-
barg et al. (2006) and Revelle and Zinbarg (2009) https://personality-project.org/

revelle/publications/revelle.zinbarg.08.pdf ).

One way to find ωh is to do a factor analysis of the original data set, rotate the factors
obliquely, factor that correlation matrix, do a Schmid-Leiman (schmid) transformation to
find general factor loadings, and then find ωh.

ωh differs slightly as a function of how the factors are estimated. Four options are available,
the default will do a minimum residual factor analysis, fm=“pa”does a principal axes factor
analysis (factor.pa), fm=“mle” uses the factanal function, and fm=“pc” does a principal
components analysis (principal).

For ability items, it is typically the case that all items will have positive loadings on the
general factor. However, for non-cognitive items it is frequently the case that some items
are to be scored positively, and some negatively. Although probably better to specify
which directions the items are to be scored by specifying a key vector, if flip =TRUE
(the default), items will be reversed so that they have positive loadings on the general
factor. The keys are reported so that scores can be found using the scoreItems function.
Arbitrarily reversing items this way can overestimate the general factor. (See the example
with a simulated circumplex).

β , an alternative to ω, is defined as the worst split half reliability. It can be estimated by
using iclust (Item Cluster analysis: a hierarchical clustering algorithm). For a very com-
plimentary review of why the iclust algorithm is useful in scale construction, see Cooksey
and Soutar (2006).

The omega function uses exploratory factor analysis to estimate the ωh coefficient. It is
important to remember that “A recommendation that should be heeded, regardless of the
method chosen to estimate ωh, is to always examine the pattern of the estimated general
factor loadings prior to estimating ωh. Such an examination constitutes an informal test
of the assumption that there is a latent variable common to all of the scale’s indicators
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that can be conducted even in the context of EFA. If the loadings were salient for only a
relatively small subset of the indicators, this would suggest that there is no true general
factor underlying the covariance matrix. Just such an informal assumption test would have
afforded a great deal of protection against the possibility of misinterpreting the misleading
ωh estimates occasionally produced in the simulations reported here.” (Zinbarg et al., 2006,
p 137).

Although ωh is uniquely defined only for cases where 3 or more subfactors are extracted, it
is sometimes desired to have a two factor solution. By default this is done by forcing the
schmid extraction to treat the two subfactors as having equal loadings.

There are three possible options for this condition: setting the general factor loadings
between the two lower order factors to be “equal” which will be the

√
rab where rab is the

oblique correlation between the factors) or to “first” or “second” in which case the general
factor is equated with either the first or second group factor. A message is issued suggesting
that the model is not really well defined. This solution discussed in Zinbarg et al., 2007.
To do this in omega, add the option=“first” or option=“second” to the call.

Although obviously not meaningful for a 1 factor solution, it is of course possible to find
the sum of the loadings on the first (and only) factor, square them, and compare them to
the overall matrix variance. This is done, with appropriate complaints.

In addition to ωh, another of McDonald’s coefficients is ωt . This is an estimate of the total
reliability of a test.

McDonald’s ωt , which is similar to Guttman’s λ6, (see guttman) uses the estimates of
uniqueness u2 from factor analysis to find e2

j . This is based on a decomposition of the
variance of a test score, Vx into four parts: that due to a general factor, ~g, that due to
a set of group factors, ~f , (factors common to some but not all of the items), specific
factors, ~s unique to each item, and ~e, random error. (Because specific variance can not be
distinguished from random error unless the test is given at least twice, some combine these
both into error).

Letting ~x = ~cg + ~A f + ~Ds +~e then the communality of item j, based upon general as well as
group factors, h2

j = c2
j + ∑ f 2

i j and the unique variance for the item u2
j = σ2

j (1−h2
j) may be

used to estimate the test reliability. That is, if h2
j is the communality of item j, based upon

general as well as group factors, then for standardized items, e2
j = 1−h2

j and

ωt =
~1~cc′~1 +~1 ~AA′~1′

Vx
= 1−

∑(1−h2
j)

Vx
= 1− ∑u2

Vx

Because h2
j ≥ r2

smc, ωt ≥ λ6.

It is important to distinguish here between the two ω coefficients of McDonald, 1978 and
Equation 6.20a of McDonald, 1999, ωt and ωh. While the former is based upon the sum of
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squared loadings on all the factors, the latter is based upon the sum of the squared loadings
on the general factor.

ωh =
~1~cc′~1

Vx

Another estimate reported is the omega for an infinite length test with a structure similar
to the observed test. This is found by

ωinf =
~1~cc′~1

~1~cc′~1 +~1 ~AA′~1′

> om.9 <- omega(r9,title="9 simulated variables")

9 simulated variables
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g
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Figure 13: A bifactor solution for 9 simulated variables with a hierarchical structure.

In the case of these simulated 9 variables, the amount of variance attributable to a general
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factor (ωh) is quite large, and the reliability of the set of 9 items is somewhat greater than
that estimated by α or λ6.

> om.9

9 simulated variables

Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,

digits = digits, title = title, sl = sl, labels = labels,

plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,

covar = covar)

Alpha: 0.77

G.6: 0.78

Omega Hierarchical: 0.64

Omega H asymptotic: 0.78

Omega Total 0.82

Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* h2 u2 p2

V1 0.69 0.54 0.78 0.22 0.62

V2 0.56 0.37 0.46 0.54 0.68

V3 0.50 0.21 0.32 0.68 0.79

V4 0.60 0.36 0.50 0.50 0.73

V5 0.52 0.39 0.43 0.57 0.64

V6 0.45 0.32 0.31 0.69 0.65

V7 0.44 0.56 0.51 0.49 0.37

V8 0.28 0.48 0.31 0.69 0.26

V9 0.25 0.33 0.19 0.81 0.35

With eigenvalues of:

g F1* F2* F3*

2.21 0.49 0.42 0.68

general/max 3.26 max/min = 1.63

mean percent general = 0.57 with sd = 0.19 and cv of 0.33

Explained Common Variance of the general factor = 0.58

The degrees of freedom are 12 and the fit is 0.03

The number of observations was 500 with Chi Square = 16.31 with prob < 0.18

The root mean square of the residuals is 0.02

The df corrected root mean square of the residuals is 0.03

RMSEA index = 0.027 and the 10 % confidence intervals are 0 0.056

BIC = -58.26

Compare this with the adequacy of just a general factor and no group factors

The degrees of freedom for just the general factor are 27 and the fit is 0.37

The number of observations was 500 with Chi Square = 184.27 with prob < 2.3e-25

The root mean square of the residuals is 0.09

The df corrected root mean square of the residuals is 0.1

RMSEA index = 0.108 and the 10 % confidence intervals are 0.094 0.123

BIC = 16.48

Measures of factor score adequacy

g F1* F2* F3*

Correlation of scores with factors 0.83 0.64 0.55 0.70

Multiple R square of scores with factors 0.69 0.41 0.30 0.49

Minimum correlation of factor score estimates 0.38 -0.18 -0.40 -0.02
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Total, General and Subset omega for each subset

g F1* F2* F3*

Omega total for total scores and subscales 0.82 0.74 0.67 0.59

Omega general for total scores and subscales 0.64 0.53 0.46 0.20

Omega group for total scores and subscales 0.15 0.22 0.22 0.39

5.3 Estimating ωh using Confirmatory Factor Analysis

The omegaSem function will do an exploratory analysis and then take the highest loading
items on each factor and do a confirmatory factor analysis using the sem package. These
results can produce slightly different estimates of ωh, primarily because cross loadings are
modeled as part of the general factor.

> omegaSem(r9,n.obs=500,lavaan=TRUE)

Call: omegaSem(m = r9, n.obs = 500, lavaan = TRUE)

Omega

Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,

digits = digits, title = title, sl = sl, labels = labels,

plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,

covar = covar)

Alpha: 0.77

G.6: 0.78

Omega Hierarchical: 0.64

Omega H asymptotic: 0.78

Omega Total 0.82

Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* h2 u2 p2

V1 0.69 0.54 0.78 0.22 0.62

V2 0.56 0.37 0.46 0.54 0.68

V3 0.50 0.21 0.32 0.68 0.79

V4 0.60 0.36 0.50 0.50 0.73

V5 0.52 0.39 0.43 0.57 0.64

V6 0.45 0.32 0.31 0.69 0.65

V7 0.44 0.56 0.51 0.49 0.37

V8 0.28 0.48 0.31 0.69 0.26

V9 0.25 0.33 0.19 0.81 0.35

With eigenvalues of:

g F1* F2* F3*

2.21 0.49 0.42 0.68

general/max 3.26 max/min = 1.63

mean percent general = 0.57 with sd = 0.19 and cv of 0.33

Explained Common Variance of the general factor = 0.58

The degrees of freedom are 12 and the fit is 0.03

The number of observations was 500 with Chi Square = 16.31 with prob < 0.18

The root mean square of the residuals is 0.02

The df corrected root mean square of the residuals is 0.03

RMSEA index = 0.027 and the 10 % confidence intervals are 0 0.056

BIC = -58.26

Compare this with the adequacy of just a general factor and no group factors

The degrees of freedom for just the general factor are 27 and the fit is 0.37
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The number of observations was 500 with Chi Square = 184.27 with prob < 2.3e-25

The root mean square of the residuals is 0.09

The df corrected root mean square of the residuals is 0.1

RMSEA index = 0.108 and the 10 % confidence intervals are 0.094 0.123

BIC = 16.48

Measures of factor score adequacy

g F1* F2* F3*

Correlation of scores with factors 0.83 0.64 0.55 0.70

Multiple R square of scores with factors 0.69 0.41 0.30 0.49

Minimum correlation of factor score estimates 0.38 -0.18 -0.40 -0.02

Total, General and Subset omega for each subset

g F1* F2* F3*

Omega total for total scores and subscales 0.82 0.74 0.67 0.59

Omega general for total scores and subscales 0.64 0.53 0.46 0.20

Omega group for total scores and subscales 0.15 0.22 0.22 0.39

The following analyses were done using the lavaan package

Omega Hierarchical from a confirmatory model using sem = 0.68

Omega Total from a confirmatory model using sem = 0.86

With loadings of

g F1* F2* F3* h2 u2 p2

V1 0.68 1.23 1.98 -0.98 0.23

V2 0.61 0.39 0.61 0.95

V3 0.57 0.33 0.67 0.98

V4 0.62 0.40 0.55 0.45 0.70

V5 0.51 0.33 0.37 0.63 0.70

V6 0.43 0.35 0.31 0.69 0.60

V7 0.46 0.56 0.53 0.47 0.40

V8 0.29 0.45 0.29 0.71 0.29

V9 0.25 0.32 0.17 0.83 0.37

With sum of squared loadings of:

g F1* F2* F3*

2.37 1.53 0.40 0.63

The degrees of freedom of the confirmatory model are 18 and the fit is 25.42543 with p = 0.1136393

general/max 1.55 max/min = 3.86

mean percent general = 0.58 with sd = 0.28 and cv of 0.48

Explained Common Variance of the general factor = 0.48

Measures of factor score adequacy

g F1* F2* F3*

Correlation of scores with factors 0.86 1.59 0.57 0.70

Multiple R square of scores with factors 0.73 2.52 0.32 0.48

Minimum correlation of factor score estimates 0.46 4.04 -0.36 -0.03

Total, General and Subset omega for each subset

g F1* F2* F3*

Omega total for total scores and subscales 0.86 0.95 0.67 0.58

Omega general for total scores and subscales 0.68 0.60 0.45 0.21

Omega group for total scores and subscales 0.17 0.35 0.22 0.37

To get the standard sem fit statistics, ask for summary on the fitted object
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5.3.1 Other estimates of reliability

Other estimates of reliability are found by the splitHalf and guttman functions. These
are described in more detail in Revelle and Zinbarg (2009) and in Revelle and Condon
(2018). They include the 6 estimates from Guttman, four from TenBerge, and an estimate
of the greatest lower bound.

> splitHalf(r9)

Split half reliabilities

Call: splitHalf(r = r9)

Maximum split half reliability (lambda 4) = 0.82

Guttman lambda 6 = 0.78

Average split half reliability = 0.77

Guttman lambda 3 (alpha) = 0.77

Guttman lambda 2 = 0.78

Minimum split half reliability (beta) = 0.7

Average interitem r = 0.28 with median = 0.27

5.4 Reliability and correlations of multiple scales within an inventory

A typical research question in personality involves an inventory of multiple items pur-
porting to measure multiple constructs. For example, the data set bfi includes 25 items
thought to measure five dimensions of personality (Extraversion, Emotional Stability, Con-
scientiousness, Agreeableness, and Openness). The data may either be the raw data or a
correlation matrix (scoreItems) or just a correlation matrix of the items ( cluster.cor

and cluster.loadings). When finding reliabilities for multiple scales, item reliabilities
can be estimated using the squared multiple correlation of an item with all other items,
not just those that are keyed for a particular scale. This leads to an estimate of G6*.

5.4.1 Scoring from raw data

To score these five scales from the 25 items, use the scoreItems function and a list of
items to be scored on each scale (a keys.list). Items may be listed by location (convenient
but dangerous), or name (probably safer).

Make a keys.list by by specifying the items for each scale, preceding items to be negatively
keyed with a - sign:

> #the newer way is probably preferred

>

> keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),

+ conscientious=c("C1","C2","C2","-C4","-C5"),

+ extraversion=c("-E1","-E2","E3","E4","E5"),

+ neuroticism=c("N1","N2","N3","N4","N5"),

+ openness = c("O1","-O2","O3","O4","-O5"))

> #this can also be done by location--

> keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10),

+ Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20),

+ Openness = c(21,-22,23,24,-25))
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> #These two approaches can be mixed if desired

> keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),conscientious=c("C1","C2","C3","-C4","-C5"),

+ extraversion=c("-E1","-E2","E3","E4","E5"),

+ neuroticism=c(16:20),openness = c(21,-22,23,24,-25))

> keys.list

$agree

[1] "-A1" "A2" "A3" "A4" "A5"

$conscientious

[1] "C1" "C2" "C3" "-C4" "-C5"

$extraversion

[1] "-E1" "-E2" "E3" "E4" "E5"

$neuroticism

[1] 16 17 18 19 20

$openness

[1] 21 -22 23 24 -25

In the past (prior to version 1.6.9, the keys.list was then converted a keys matrix using the helper function make.keys. This is no longer
necessary. Logically, scales are merely the weighted composites of a set of items. The weights used are -1, 0, and 1. 0 implies do not
use that item in the scale, 1 implies a positive weight (add the item to the total score), -1 a negative weight (subtract the item from the
total score, i.e., reverse score the item). Reverse scoring an item is equivalent to subtracting the item from the maximum + minimum
possible value for that item. The minima and maxima can be estimated from all the items, or can be specified by the user.

There are two different ways that scale scores tend to be reported. Social psychologists and educational psychologists tend to report
the scale score as the average item score while many personality psychologists tend to report the total item score. The default option
for scoreItems is to report item averages (which thus allows interpretation in the same metric as the items) but totals can be found as
well. Personality researchers should be encouraged to report scores based upon item means and avoid using the total score although
some reviewers are adamant about the following the tradition of total scores.

The printed output includes coefficients α and G6*, the average correlation of the items within the scale (corrected for item ovelap and
scale relliability), as well as the correlations between the scales (below the diagonal, the correlations above the diagonal are corrected
for attenuation. As is the case for most of the psych functions, additional information is returned as part of the object.

First, create keys matrix using the make.keys function. (The keys matrix could also be prepared externally using a spreadsheet and then
copying it into R). Although not normally necessary, show the keys to understand what is happening. There are two ways to make up
the keys. You can specify the items by location (the old way) or by name (the newer and probably preferred way). To use the newer
way you must specify the file on which you will use the keys. The example below shows how to construct keys either way.

Note that the number of items to specify in the make.keys function is the total number of items in the inventory. This is done
automatically in the new way of forming keys, but if using the older way, the number must be specified. That is, if scoring just 5
items from a 25 item inventory, make.keys should be told that there are 25 items. make.keys just changes a list of items on each scale to
make up a scoring matrix. Because the bfi data set has 25 items as well as 3 demographic items, the number of variables is specified
as 28.

Then, use this keys list to score the items.

> scores <- scoreItems(keys.list,bfi)

> scores

Call: scoreItems(keys = keys.list, items = bfi)

(Unstandardized) Alpha:

agree conscientious extraversion neuroticism openness

alpha 0.7 0.72 0.76 0.81 0.6

Standard errors of unstandardized Alpha:

agree conscientious extraversion neuroticism openness

ASE 0.014 0.014 0.013 0.011 0.017

Average item correlation:

agree conscientious extraversion neuroticism openness

average.r 0.32 0.34 0.39 0.46 0.23
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Median item correlation:

agree conscientious extraversion neuroticism openness

0.34 0.34 0.38 0.41 0.22

Guttman 6* reliability:

agree conscientious extraversion neuroticism openness

Lambda.6 0.7 0.72 0.76 0.81 0.6

Signal/Noise based upon av.r :

agree conscientious extraversion neuroticism openness

Signal/Noise 2.3 2.6 3.2 4.3 1.5

Scale intercorrelations corrected for attenuation

raw correlations below the diagonal, alpha on the diagonal

corrected correlations above the diagonal:

agree conscientious extraversion neuroticism openness

agree 0.70 0.36 0.63 -0.245 0.23

conscientious 0.26 0.72 0.35 -0.305 0.30

extraversion 0.46 0.26 0.76 -0.284 0.32

neuroticism -0.18 -0.23 -0.22 0.812 -0.12

openness 0.15 0.19 0.22 -0.086 0.60

In order to see the item by scale loadings and frequency counts of the data

print with the short option = FALSE

To see the additional information (the raw correlations, the individual scores, etc.), they
may be specified by name. Then, to visualize the correlations between the raw scores, use
the pairs.panels function on the scores values of scores. (See figure 14

5.4.2 Forming scales from a correlation matrix

There are some situations when the raw data are not available, but the correlation matrix
between the items is available. In this case, it is not possible to find individual scores, but
it is possible to find the reliability and intercorrelations of the scales. This may be done
using the cluster.cor function or the scoreItems function. The use of a keys matrix is
the same as in the raw data case.

Consider the same bfi data set, but first find the correlations, and then use scoreIt-

ems.

> r.bfi <- cor(bfi,use="pairwise")

> scales <- scoreItems(keys.list,r.bfi)

> summary(scales)

Call: scoreItems(keys = keys.list, items = r.bfi)

Scale intercorrelations corrected for attenuation

raw correlations below the diagonal, (standardized) alpha on the diagonal

corrected correlations above the diagonal:

agree conscientious extraversion neuroticism openness

agree 0.71 0.35 0.64 -0.242 0.25

conscientious 0.25 0.73 0.36 -0.287 0.30

extraversion 0.47 0.27 0.76 -0.278 0.35
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> png('scores.png')
> pairs.panels(scores$scores,pch='.',jiggle=TRUE)
> dev.off()

pdf

2

Figure 14: A graphic analysis of the Big Five scales found by using the scoreItems function.
The pair.wise plot allows us to see that some participants have reached the ceiling of the
scale for these 5 items scales. Using the pch=’.’ option in pairs.panels is recommended when
plotting many cases. The data points were “jittered” by setting jiggle=TRUE. Jiggling this
way shows the density more clearly. To save space, the figure was done as a png. For a
clearer figure, save as a pdf.

55



neuroticism -0.18 -0.22 -0.22 0.815 -0.11

openness 0.16 0.20 0.24 -0.074 0.61

To find the correlations of the items with each of the scales (the “structure” matrix) or
the correlations of the items controlling for the other scales (the “pattern” matrix), use the
cluster.loadings function. To do both at once (e.g., the correlations of the scales as well
as the item by scale correlations), it is also possible to just use scoreItems.

5.5 Scoring Multiple Choice Items

Some items (typically associated with ability tests) are not themselves mini-scales ranging
from low to high levels of expression of the item of interest, but are rather multiple choice
where one response is the correct response. Two analyses are useful for this kind of item:
examining the response patterns to all the alternatives (looking for good or bad distractors)
and scoring the items as correct or incorrect. Both of these operations may be done using
the score.multiple.choice function. Consider the 16 example items taken from an online
ability test at the Personality Project: https://www.sapa-project.org/. This is part of
the Synthetic Aperture Personality Assessment (SAPA) study discussed in Revelle et al.
(2011, 2010).

> data(iqitems)

> iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7)

> score.multiple.choice(iq.keys,iqitems)

Call: score.multiple.choice(key = iq.keys, data = iqitems)

(Unstandardized) Alpha:

[1] 0.84

Average item correlation:

[1] 0.25

item statistics

key 0 1 2 3 4 5 6 7 8 miss r n mean sd

reason.4 4 0.05 0.05 0.11 0.10 0.64 0.03 0.02 0.00 0.00 0 0.59 1523 0.64 0.48

reason.16 4 0.04 0.06 0.08 0.10 0.70 0.01 0.00 0.00 0.00 0 0.53 1524 0.70 0.46

reason.17 4 0.05 0.03 0.05 0.03 0.70 0.03 0.11 0.00 0.00 0 0.59 1523 0.70 0.46

reason.19 6 0.04 0.02 0.13 0.03 0.06 0.10 0.62 0.00 0.00 0 0.56 1523 0.62 0.49

letter.7 6 0.05 0.01 0.05 0.03 0.11 0.14 0.60 0.00 0.00 0 0.58 1524 0.60 0.49

letter.33 3 0.06 0.10 0.13 0.57 0.04 0.09 0.02 0.00 0.00 0 0.56 1523 0.57 0.50

letter.34 4 0.04 0.09 0.07 0.11 0.61 0.05 0.02 0.00 0.00 0 0.59 1523 0.61 0.49

letter.58 4 0.06 0.14 0.09 0.09 0.44 0.16 0.01 0.00 0.00 0 0.58 1525 0.44 0.50

matrix.45 5 0.04 0.01 0.06 0.14 0.18 0.53 0.04 0.00 0.00 0 0.51 1523 0.53 0.50

matrix.46 2 0.04 0.12 0.55 0.07 0.11 0.06 0.05 0.00 0.00 0 0.52 1524 0.55 0.50

matrix.47 2 0.04 0.05 0.61 0.07 0.11 0.06 0.06 0.00 0.00 0 0.55 1523 0.61 0.49

matrix.55 4 0.04 0.02 0.18 0.14 0.37 0.07 0.18 0.00 0.00 0 0.45 1524 0.37 0.48

rotate.3 3 0.04 0.03 0.04 0.19 0.22 0.15 0.05 0.12 0.15 0 0.51 1523 0.19 0.40

rotate.4 2 0.04 0.03 0.21 0.05 0.18 0.04 0.04 0.25 0.15 0 0.56 1523 0.21 0.41

rotate.6 6 0.04 0.22 0.02 0.05 0.14 0.05 0.30 0.04 0.14 0 0.55 1523 0.30 0.46

rotate.8 7 0.04 0.03 0.21 0.07 0.16 0.05 0.13 0.19 0.13 0 0.48 1524 0.19 0.39

> #just convert the items to true or false

> iq.tf <- score.multiple.choice(iq.keys,iqitems,score=FALSE)
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> describe(iq.tf) #compare to previous results

vars n mean sd median trimmed mad min max range skew kurtosis se

reason.4 1 1523 0.64 0.48 1 0.68 0 0 1 1 -0.58 -1.66 0.01

reason.16 2 1524 0.70 0.46 1 0.75 0 0 1 1 -0.86 -1.26 0.01

reason.17 3 1523 0.70 0.46 1 0.75 0 0 1 1 -0.86 -1.26 0.01

reason.19 4 1523 0.62 0.49 1 0.64 0 0 1 1 -0.47 -1.78 0.01

letter.7 5 1524 0.60 0.49 1 0.62 0 0 1 1 -0.41 -1.84 0.01

letter.33 6 1523 0.57 0.50 1 0.59 0 0 1 1 -0.29 -1.92 0.01

letter.34 7 1523 0.61 0.49 1 0.64 0 0 1 1 -0.46 -1.79 0.01

letter.58 8 1525 0.44 0.50 0 0.43 0 0 1 1 0.23 -1.95 0.01

matrix.45 9 1523 0.53 0.50 1 0.53 0 0 1 1 -0.10 -1.99 0.01

matrix.46 10 1524 0.55 0.50 1 0.56 0 0 1 1 -0.20 -1.96 0.01

matrix.47 11 1523 0.61 0.49 1 0.64 0 0 1 1 -0.47 -1.78 0.01

matrix.55 12 1524 0.37 0.48 0 0.34 0 0 1 1 0.52 -1.73 0.01

rotate.3 13 1523 0.19 0.40 0 0.12 0 0 1 1 1.55 0.40 0.01

rotate.4 14 1523 0.21 0.41 0 0.14 0 0 1 1 1.40 -0.03 0.01

rotate.6 15 1523 0.30 0.46 0 0.25 0 0 1 1 0.88 -1.24 0.01

rotate.8 16 1524 0.19 0.39 0 0.11 0 0 1 1 1.62 0.63 0.01

Once the items have been scored as true or false (assigned scores of 1 or 0), they made
then be scored into multiple scales using the normal scoreItems function.

5.6 Item analysis

Basic item analysis starts with describing the data (describe, finding the number of di-
mensions using factor analysis (fa) and cluster analysis iclust perhaps using the Very
Simple Structure criterion (vss), or perhaps parallel analysis fa.parallel. Item whole
correlations may then be found for scales scored on one dimension (alpha or many scales
simultaneously (scoreItems). Scales can be modified by changing the keys matrix (i.e.,
dropping particular items, changing the scale on which an item is to be scored). This
analysis can be done on the normal Pearson correlation matrix or by using polychoric cor-
relations. Validities of the scales can be found using multiple correlation of the raw data or
based upon correlation matrices using the setCor function. However, more powerful item
analysis tools are now available by using Item Response Theory approaches.

Although the response.frequencies output from score.multiple.choice is useful to
examine in terms of the probability of various alternatives being endorsed, it is even better
to examine the pattern of these responses as a function of the underlying latent trait or
just the total score. This may be done by using irt.responses (Figure 15).

5.6.1 Exploring the item structure of scales

The Big Five scales found above can be understood in terms of the item - whole correlations,
but it is also useful to think of the endorsement frequency of the items. The item.lookup

function will sort items by their factor loading/item-whole correlation, and then resort
those above a certain threshold in terms of the item means. Item content is shown by
using the dictionary developed for those items. This allows one to see the structure of each
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> data(iqitems)

> iq.keys <- c(4,4,4, 6,6,3,4,4, 5,2,2,4, 3,2,6,7)

> scores <- score.multiple.choice(iq.keys,iqitems,score=TRUE,short=FALSE)

> #note that for speed we can just do this on simple item counts rather than IRT based scores.

> op <- par(mfrow=c(2,2)) #set this to see the output for multiple items

> irt.responses(scores$scores,iqitems[1:4],breaks=11)
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Figure 15: The pattern of responses to multiple choice ability items can show that some
items have poor distractors. This may be done by using the the irt.responses function.
A good distractor is one that is negatively related to ability.
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scale in terms of its endorsement range. This is a simple way of thinking of items that is
also possible to do using the various IRT approaches discussed later.

> m <- colMeans(bfi,na.rm=TRUE)

> item.lookup(scales$item.corrected[,1:3],m,dictionary=bfi.dictionary[1:2])

agree conscientious extraversion means ItemLabel Item

A3 0.71 0.22 0.49 4.60 q_1206 Know how to comfort others.

A2 0.67 0.23 0.40 4.80 q_1162 Inquire about others' well-being.

A5 0.62 0.23 0.55 4.56 q_1419 Make people feel at ease.

A4 0.49 0.29 0.30 4.70 q_1364 Love children.

A1 -0.39 -0.05 -0.10 2.41 q_146 Am indifferent to the feelings of others.

N1 -0.22 -0.20 -0.11 2.93 q_952 Get angry easily.

N2 -0.21 -0.18 -0.12 3.51 q_974 Get irritated easily.

C4 -0.23 -0.66 -0.23 2.55 q_626 Do things in a half-way manner.

C2 0.21 0.62 0.18 4.37 q_530 Continue until everything is perfect.

C5 -0.26 -0.59 -0.29 3.30 q_1949 Waste my time.

C1 0.13 0.54 0.20 4.50 q_124 Am exacting in my work.

C3 0.21 0.54 0.15 4.30 q_619 Do things according to a plan.

N3 -0.13 -0.19 -0.14 3.22 q_1099 Have frequent mood swings.

O2 -0.01 -0.18 -0.07 2.71 q_316 Avoid difficult reading material.

O5 -0.10 -0.15 -0.11 2.49 q_1964 Will not probe deeply into a subject.

E2 -0.39 -0.24 -0.70 3.14 q_901 Find it difficult to approach others.

E4 0.52 0.22 0.68 4.42 q_1410 Make friends easily.

E3 0.45 0.20 0.61 4.00 q_1205 Know how to captivate people.

E1 -0.31 -0.06 -0.59 2.97 q_712 Don't talk a lot.

E5 0.35 0.40 0.55 4.42 q_1768 Take charge.

O3 0.26 0.20 0.43 4.44 q_492 Carry the conversation to a higher level.

N4 -0.22 -0.29 -0.39 3.19 q_1479 Often feel blue.

O1 0.17 0.20 0.33 4.82 q_128 Am full of ideas.

N5 -0.04 -0.13 -0.19 2.97 q_1505 Panic easily.

O4 0.06 0.00 -0.10 4.89 q_1738 Spend time reflecting on things.

5.6.2 Empirical scale construction

There are some situations where one wants to identify those items that most relate to a
particular criterion. Although this will capitalize on chance and the results should inter-
preted cautiously, it does give a feel for what is being measured. Consider the following
example from the bfi data set. The items that best predicted gender, education, and age
may be found using the bestScales function. This also shows the use of a dictionary that
has the item content.

> data(bfi)

> bestScales(bfi,criteria=c("gender","education","age"),cut=.1,dictionary=bfi.dictionary[,1:3])

Call = bestScales(x = bfi, criteria = c("gender", "education", "age"),

cut = 0.1, dictionary = bfi.dictionary[, 1:3])

The items most correlated with the criteria yield r's of

correlation n.items

gender 0.32 9

education 0.14 1

age 0.24 10

The best items, their correlations and content are

$gender

gender ItemLabel Item Giant3

N5 0.21 q_1505 Panic easily. Stability

A2 0.18 q_1162 Inquire about others' well-being. Cohesion

A1 -0.16 q_146 Am indifferent to the feelings of others. Cohesion

A3 0.14 q_1206 Know how to comfort others. Cohesion

A4 0.13 q_1364 Love children. Cohesion

E1 -0.13 q_712 Don't talk a lot. Plasticity

N3 0.12 q_1099 Have frequent mood swings. Stability
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O1 -0.10 q_128 Am full of ideas. Plasticity

A5 0.10 q_1419 Make people feel at ease. Cohesion

$education

education ItemLabel Item Giant3

A1 -0.14 q_146 Am indifferent to the feelings of others. Cohesion

$age

age ItemLabel Item Giant3

A1 -0.16 q_146 Am indifferent to the feelings of others. Cohesion

C4 -0.15 q_626 Do things in a half-way manner. Stability

A4 0.14 q_1364 Love children. Cohesion

A5 0.13 q_1419 Make people feel at ease. Cohesion

E5 0.11 q_1768 Take charge. Plasticity

A2 0.11 q_1162 Inquire about others' well-being. Cohesion

N3 -0.11 q_1099 Have frequent mood swings. Stability

E2 -0.11 q_901 Find it difficult to approach others. Plasticity

N5 -0.10 q_1505 Panic easily. Stability

N2 -0.10 q_974 Get irritated easily. Stability

6 Item Response Theory analysis

The use of Item Response Theory has become is said to be the “new psychometrics”. The
emphasis is upon item properties, particularly those of item difficulty or location and item
discrimination. These two parameters are easily found from classic techniques when using
factor analyses of correlation matrices formed by polychoric or tetrachoric correlations.
The irt.fa function does this and then graphically displays item discrimination and item
location as well as item and test information (see Figure 16).

6.1 Factor analysis and Item Response Theory

If the correlations of all of the items reflect one underlying latent variable, then factor
analysis of the matrix of tetrachoric correlations should allow for the identification of the
regression slopes (α) of the items on the latent variable. These regressions are, of course
just the factor loadings. Item difficulty, δ j and item discrimination, α j may be found from
factor analysis of the tetrachoric correlations where λ j is just the factor loading on the first
factor and τ j is the normal threshold reported by the tetrachoric function.

δ j =
Dτ√
1−λ 2

j

, α j =
λ j√

1−λ 2
j

(2)

where D is a scaling factor used when converting to the parameterization of logistic model
and is 1.702 in that case and 1 in the case of the normal ogive model. Thus, in the case of
the normal model, factor loadings (λ j) and item thresholds (τ) are just

λ j =
α j√

1 + α2
j

, τ j =
δ j√

1 + α2
j

.
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Consider 9 dichotomous items representing one factor but differing in their levels of diffi-
culty

> set.seed(17)

> d9 <- sim.irt(9,1000,-2.0,2.0,mod="normal") #dichotomous items

> test <- irt.fa(d9$items,correct=0)

> test

Item Response Analysis using Factor Analysis

Call: irt.fa(x = d9$items, correct = 0)

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

V1 1.02 1.17 0.15 0.01 0.00 0.00 0.00

V2 0.17 0.41 0.47 0.22 0.06 0.02 0.00

V3 0.09 0.36 0.65 0.37 0.10 0.02 0.00

V4 0.04 0.21 0.64 0.60 0.18 0.04 0.01

V5 0.01 0.08 0.43 0.94 0.40 0.07 0.01

V6 0.01 0.04 0.19 0.61 0.62 0.20 0.04

V7 0.00 0.01 0.08 0.37 0.78 0.41 0.09

V8 0.00 0.01 0.04 0.19 0.58 0.59 0.20

V9 0.00 0.00 0.00 0.02 0.21 1.15 0.82

Test Info 1.35 2.28 2.66 3.33 2.93 2.49 1.18

SEM 0.86 0.66 0.61 0.55 0.58 0.63 0.92

Reliability 0.26 0.56 0.62 0.70 0.66 0.60 0.15

Factor analysis with Call: fa(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,

fm = fm)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 27 and the objective function was 2.06

The number of observations was 1000 with Chi Square = 2043.73 with prob < 0

The root mean square of the residuals (RMSA) is 0.07

The df corrected root mean square of the residuals is 0.08

Tucker Lewis Index of factoring reliability = 0.59

RMSEA index = 0.273 and the 10 % confidence intervals are 0.263 0.284

BIC = 1857.22

Similar analyses can be done for polytomous items such as those of the bfi extraversion
scale:

> data(bfi)

> e.irt <- irt.fa(bfi[11:15])

> e.irt

Item Response Analysis using Factor Analysis

Call: irt.fa(x = bfi[11:15])

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1
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> op <- par(mfrow=c(3,1))

> plot(test,type="ICC")

> plot(test,type="IIC")

> plot(test,type="test")

> op <- par(mfrow=c(1,1))
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Figure 16: A graphic analysis of 9 dichotomous (simulated) items. The top panel shows
the probability of item endorsement as the value of the latent trait increases. Items differ
in their location (difficulty) and discrimination (slope). The middle panel shows the infor-
mation in each item as a function of latent trait level. An item is most informative when
the probability of endorsement is 50%. The lower panel shows the total test information.
These items form a test that is most informative (most accurate) at the middle range of
the latent trait.
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-3 -2 -1 0 1 2 3

E1 0.36 0.56 0.72 0.73 0.59 0.39 0.21

E2 0.47 0.87 1.16 1.22 0.98 0.58 0.25

E3 0.36 0.51 0.61 0.61 0.51 0.37 0.23

E4 0.61 0.95 1.09 0.94 0.66 0.37 0.16

E5 0.34 0.44 0.49 0.47 0.38 0.28 0.18

Test Info 2.14 3.34 4.07 3.96 3.12 1.98 1.03

SEM 0.68 0.55 0.50 0.50 0.57 0.71 0.99

Reliability 0.53 0.70 0.75 0.75 0.68 0.49 0.02

Factor analysis with Call: fa(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,

fm = fm)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 5 and the objective function was 0.05

The number of observations was 2800 with Chi Square = 138.2 with prob < 4.3e-28

The root mean square of the residuals (RMSA) is 0.04

The df corrected root mean square of the residuals is 0.06

Tucker Lewis Index of factoring reliability = 0.931

RMSEA index = 0.098 and the 10 % confidence intervals are 0.084 0.112

BIC = 98.51

The item information functions show that not all of items are equally good (Figure 17):

These procedures can be generalized to more than one factor by specifying the number of
factors in irt.fa. The plots can be limited to those items with discriminations greater
than some value of cut. An invisible object is returned when plotting the output from
irt.fa that includes the average information for each item that has loadings greater than
cut.

> print(e.info,sort=TRUE)

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

E2 0.47 0.87 1.16 1.22 0.98 0.58 0.25

E4 0.61 0.95 1.09 0.94 0.66 0.37 0.16

E1 0.36 0.56 0.72 0.73 0.59 0.39 0.21

E3 0.36 0.51 0.61 0.61 0.51 0.37 0.23

E5 0.34 0.44 0.49 0.47 0.38 0.28 0.18

Test Info 2.14 3.34 4.07 3.96 3.12 1.98 1.03

SEM 0.68 0.55 0.50 0.50 0.57 0.71 0.99

Reliability 0.53 0.70 0.75 0.75 0.68 0.49 0.02

More extensive IRT packages include the ltm and eRm and should be used for serious Item
Response Theory analysis.
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> e.info <- plot(e.irt,type="IIC")
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Figure 17: A graphic analysis of 5 extraversion items from the bfi. The curves represent
the amount of information in the item as a function of the latent score for an individual.
That is, each item is maximally discriminating at a different part of the latent continuum.
Print e.info to see the average information for each item.
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6.2 Speeding up analyses

Finding tetrachoric or polychoric correlations is very time consuming. Thus, to speed
up the process of analysis, the original correlation matrix is saved as part of the output
of both irt.fa and omega. Subsequent analyses may be done by using this correlation
matrix. This is done by doing the analysis not on the original data, but rather on the
output of the previous analysis.

In addition, recent releases of the psych take advantage of the parallels package and use
multi-cores. The default for Macs and Unix machines is to use two cores, but this can be
increased using the options command. The biggest step up in improvement is from 1 to
2 cores, but for large problems using polychoric correlations, the more cores available, the
better.

For example of taking the output from the 16 ability items from the SAPA project when
scored for True/False using score.multiple.choice we can first do a simple IRT analysis
of one factor (Figure 20) and then use that correlation matrix to do an omega analysis to
show the sub-structure of the ability items . We can also show the total test information
(merely the sum of the item information. This shows that even with just 16 items, the test
is very reliable for most of the range of ability. The fa.irt function saves the correlation
matrix and item statistics so that they can be redrawn with other options.

detectCores() #how many are available

options("mc.cores") #how many have been set to be used

options("mc.cores"=4) #set to use 4 cores

> iq.irt

Item Response Analysis using Factor Analysis

Call: irt.fa(x = ability)

Item Response Analysis using Factor Analysis

Summary information by factor and item

Factor = 1

-3 -2 -1 0 1 2 3

reason.4 0.05 0.24 0.66 0.54 0.16 0.03 0.01

reason.16 0.08 0.23 0.39 0.32 0.14 0.05 0.01

reason.17 0.08 0.34 0.73 0.43 0.10 0.02 0.00

reason.19 0.06 0.18 0.36 0.37 0.19 0.07 0.02

letter.7 0.05 0.18 0.45 0.47 0.20 0.06 0.01

letter.33 0.05 0.15 0.34 0.38 0.21 0.08 0.02

letter.34 0.05 0.19 0.49 0.50 0.20 0.05 0.01

letter.58 0.02 0.09 0.30 0.55 0.36 0.12 0.03

matrix.45 0.05 0.12 0.21 0.25 0.18 0.09 0.04

matrix.46 0.05 0.13 0.24 0.28 0.19 0.09 0.03

matrix.47 0.06 0.17 0.35 0.37 0.19 0.07 0.02

matrix.55 0.04 0.08 0.13 0.17 0.16 0.11 0.06

rotate.3 0.00 0.02 0.08 0.31 0.65 0.42 0.12

rotate.4 0.00 0.01 0.06 0.33 0.89 0.50 0.10

rotate.6 0.01 0.04 0.16 0.48 0.59 0.24 0.06

rotate.8 0.01 0.02 0.09 0.28 0.51 0.35 0.12
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> iq.irt <- irt.fa(ability)
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Figure 18: A graphic analysis of 16 ability items sampled from the SAPA project. The
curves represent the amount of information in the item as a function of the latent score
for an individual. That is, each item is maximally discriminating at a different part of
the latent continuum. Print iq.irt to see the average information for each item. Partly
because this is a power test (it is given on the web) and partly because the items have not
been carefully chosen, the items are not very discriminating at the high end of the ability
dimension.
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> plot(iq.irt,type='test')
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Figure 19: A graphic analysis of 16 ability items sampled from the SAPA project. The
total test information at all levels of difficulty may be shown by specifying the type=’test’
option in the plot function.
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Test Info 0.66 2.17 5.03 6.03 4.93 2.35 0.68

SEM 1.23 0.68 0.45 0.41 0.45 0.65 1.22

Reliability -0.52 0.54 0.80 0.83 0.80 0.57 -0.48

Factor analysis with Call: fa(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,

fm = fm)

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the model is 104 and the objective function was 1.92

The number of observations was 1525 with Chi Square = 2906.16 with prob < 0

The root mean square of the residuals (RMSA) is 0.08

The df corrected root mean square of the residuals is 0.09

Tucker Lewis Index of factoring reliability = 0.722

RMSEA index = 0.133 and the 10 % confidence intervals are 0.129 0.137

BIC = 2143.86

6.3 IRT based scoring

The primary advantage of IRT analyses is examining the item properties (both difficulty
and discrimination). With complete data, the scores based upon simple total scores and
based upon IRT are practically identical (this may be seen in the examples for scoreIrt).
However, when working with data such as those found in the Synthetic Aperture Personality
Assessment (SAPA) project, it is advantageous to use IRT based scoring. SAPA data
might have 2-3 items/person sampled from scales with 10-20 items. Simply finding the
average of the three (classical test theory) fails to consider that the items might differ
in either discrimination or in difficulty. The scoreIrt function applies basic IRT to this
problem.

Consider 1000 randomly generated subjects with scores on 9 true/false items differing in
difficulty. Selectively drop the hardest items for the 1/3 lowest subjects, and the 4 easiest
items for the 1/3 top subjects (this is a crude example of what tailored testing would do).
Then score these subjects:

> v9 <- sim.irt(9,1000,-2.,2.,mod="normal") #dichotomous items

> items <- v9$items

> test <- irt.fa(items)

> total <- rowSums(items)

> ord <- order(total)

> items <- items[ord,]

> #now delete some of the data - note that they are ordered by score

> items[1:333,5:9] <- NA

> items[334:666,3:7] <- NA

> items[667:1000,1:4] <- NA

> scores <- scoreIrt(test,items)

> unitweighted <- scoreIrt(items=items,keys=rep(1,9))

> scores.df <- data.frame(true=v9$theta[ord],scores,unitweighted)

> colnames(scores.df) <- c("True theta","irt theta","total","fit","rasch","total","fit")
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> om <- omega(iq.irt$rho,4)
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Figure 20: An Omega analysis of 16 ability items sampled from the SAPA project. The
items represent a general factor as well as four lower level factors. The analysis is done
using the tetrachoric correlations found in the previous irt.fa analysis. The four matrix
items have some serious problems, which may be seen later when examine the item response
functions.
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These results are seen in Figure 21.

Figure 21: IRT based scoring and total test scores for 1000 simulated subjects. True theta
values are reported and then the IRT and total scoring systems.
> pairs.panels(scores.df,pch='.',gap=0)
> title('Comparing true theta for IRT, Rasch and classically based scoring',line=3)
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Comparing true theta for IRT, Rasch and  classically based scoring

6.3.1 1 versus 2 parameter IRT scoring

In Item Response Theory, items can be assumed to be equally discriminating but to differ
in their difficulty (the Rasch model) or to vary in their discriminability. Two functions
(scoreIrt.1pl and scoreIrt.2pl) are meant to find multiple IRT based scales using the
Rasch model or the 2 parameter model. Both allow for negatively keyed as well as positively
keyed items. Consider the bfi data set with scoring keys key.list and items listed as an
item.list. (This is the same as the key.list, but with the negative signs removed.)
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> keys.list <- list(agree=c("-A1","A2","A3","A4","A5"),

+ conscientious=c("C1","C2","C3","-C4","-C5"),

+ extraversion=c("-E1","-E2","E3","E4","E5"),

+ neuroticism=c("N1","N2","N3","N4","N5"),

+ openness = c("O1","-O2","O3","O4","-O5"))

> item.list <- list(agree=c("A1","A2","A3","A4","A5"),

+ conscientious=c("C1","C2","C3","C4","C5"),

+ extraversion=c("E1","E2","E3","E4","E5"),

+ neuroticism=c("N1","N2","N3","N4","N5"),

+ openness = c("O1","O2","O3","O4","O5"))

> bfi.1pl <- scoreIrt.1pl(keys.list,bfi) #the one parameter solution

> bfi.2pl <- scoreIrt.2pl(item.list,bfi) #the two parameter solution

> bfi.ctt <- scoreFast(keys.list,bfi) # fast scoring function

>

We can compare these three ways of doing the analysis using the cor2 function which
correlates two separate data frames. All three models produce vey simillar results for the
case of almost complete data. It is when we have massively missing completely at random
data (MMCAR) that the results show the superiority of the irt scoring.

> #compare the solutions using the cor2 function

> cor2(bfi.1pl,bfi.ctt)

agree-A conscientious-A extraversion-A neuroticism-A openness-A

agree 0.93 0.27 0.44 -0.20 0.19

conscientious 0.25 0.97 0.25 -0.22 0.17

extraversion 0.43 0.25 0.94 -0.23 0.23

neuroticism -0.19 -0.23 -0.22 1.00 -0.09

openness 0.12 0.19 0.19 -0.07 0.95

> cor2(bfi.2pl,bfi.ctt)

agree-A conscientious-A extraversion-A neuroticism-A openness-A

agree 0.98 0.25 0.49 -0.16 0.15

conscientious 0.25 0.97 0.25 -0.23 0.18

extraversion 0.43 0.25 0.94 -0.24 0.21

neuroticism -0.19 -0.22 -0.19 0.99 -0.08

openness 0.17 0.21 0.27 -0.11 0.98

> cor2(bfi.2pl,bfi.1pl)

agree conscientious extraversion neuroticism openness

agree 0.89 0.25 0.44 -0.17 0.12

conscientious 0.26 1.00 0.23 -0.23 0.16

extraversion 0.43 0.23 0.99 -0.24 0.20

neuroticism -0.21 -0.22 -0.20 0.99 -0.06

openness 0.20 0.19 0.28 -0.11 0.92

7 Multilevel modeling

Correlations between individuals who belong to different natural groups (based upon e.g.,
ethnicity, age, gender, college major, or country) reflect an unknown mixture of the pooled
correlation within each group as well as the correlation of the means of these groups.
These two correlations are independent and do not allow inferences from one level (the
group) to the other level (the individual). When examining data at two levels (e.g., the
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individual and by some grouping variable), it is useful to find basic descriptive statistics
(means, sds, ns per group, within group correlations) as well as between group statistics
(over all descriptive statistics, and overall between group correlations). Of particular use
is the ability to decompose a matrix of correlations at the individual level into correlations
within group and correlations between groups.

7.1 Decomposing data into within and between level correlations using
statsBy

There are at least two very powerful packages (nlme and multilevel) which allow for complex
analysis of hierarchical (multilevel) data structures. statsBy is a much simpler function
to give some of the basic descriptive statistics for two level models.

This follows the decomposition of an observed correlation into the pooled correlation within
groups (rwg) and the weighted correlation of the means between groups which is discussed
by Pedhazur (1997) and by Bliese (2009) in the multilevel package.

rxy = ηxwg ∗ηywg ∗ rxywg + ηxbg ∗ηybg ∗ rxybg (3)

where rxy is the normal correlation which may be decomposed into a within group and
between group correlations rxywg and rxybg and η (eta) is the correlation of the data with
the within group values, or the group means.

7.2 Generating and displaying multilevel data

withinBetween is an example data set of the mixture of within and between group cor-
relations. The within group correlations between 9 variables are set to be 1, 0, and -1
while those between groups are also set to be 1, 0, -1. These two sets of correlations are
crossed such that V1, V4, and V7 have within group correlations of 1, as do V2, V5 and
V8, and V3, V6 and V9. V1 has a within group correlation of 0 with V2, V5, and V8,
and a -1 within group correlation with V3, V6 and V9. V1, V2, and V3 share a between
group correlation of 1, as do V4, V5 and V6, and V7, V8 and V9. The first group has a 0
between group correlation with the second and a -1 with the third group. See the help file
for withinBetween to display these data.

sim.multilevel will generate simulated data with a multilevel structure.

The statsBy.boot function will randomize the grouping variable ntrials times and find the
statsBy output. This can take a long time and will produce a great deal of output. This
output can then be summarized for relevant variables using the statsBy.boot.summary

function specifying the variable of interest.
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Consider the case of the relationship between various tests of ability when the data are
grouped by level of education (statsBy(sat.act)) or when affect data are analyzed within
and between an affect manipulation (statsBy(affect) ).

7.3 Factor analysis by groups

Confirmatory factor analysis comparing the structures in multiple groups can be done
in the lavaan package. However, for exploratory analyses of the structure within each of
multiple groups, the faBy function may be used in combination with the statsBy function.
First run pfunstatsBy with the correlation option set to TRUE, and then run faBy on the
resulting output.

sb <- statsBy(bfi[c(1:25,27)], group="education",cors=TRUE)

faBy(sb,nfactors=5) #find the 5 factor solution for each education level

7.4 Multilevel reliability

The mlr and multilevelReliablity functions follow the advice of Shrout and Lane (2012)
for estimating multievel reliablilty. A detailed discussion of this procedure is given in Rev-
elle and Wilt (2017) which is available at https://personality-project.org/revelle/
publications/rw.paid.17.final.pdf.

8 Set Correlation and Multiple Regression from the corre-
lation matrix

An important generalization of multiple regression and multiple correlation is set correla-
tion developed by Cohen (1982) and discussed by Cohen et al. (2003). Set correlation is
a multivariate generalization of multiple regression and estimates the amount of variance
shared between two sets of variables. Set correlation also allows for examining the relation-
ship between two sets when controlling for a third set. This is implemented in the setCor

function. Set correlation is

R2 = 1−
n

∏
i=1

(1−λi)

where λi is the ith eigen value of the eigen value decomposition of the matrix

R = R−1
xx RxyR−1

xx R−1
xy .

Unfortunately, there are several cases where set correlation will give results that are much
too high. This will happen if some variables from the first set are highly related to those
in the second set, even though most are not. In this case, although the set correlation
can be very high, the degree of relationship between the sets is not as high. In this
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case, an alternative statistic, based upon the average canonical correlation might be more
appropriate.

setCor has the additional feature that it will calculate multiple and partial correlations
from the correlation or covariance matrix rather than the original data.

Consider the correlations of the 6 variables in the sat.act data set. First do the normal
multiple regression, and then compare it with the results using setCor. Two things to
notice. setCor works on the correlation or covariance or raw data matrix, and thus if
using the correlation matrix, will report standardized or raw β̂ weights. Secondly, it is
possible to do several multiple regressions simultaneously. If the number of observations
is specified, or if the analysis is done on raw data, statistical tests of significance are
applied.

For this example, the analysis is done on the correlation matrix rather than the raw
data.

> C <- cov(sat.act,use="pairwise")

> model1 <- lm(ACT~ gender + education + age, data=sat.act)

> summary(model1)

Call:

lm(formula = ACT ~ gender + education + age, data = sat.act)

Residuals:

Min 1Q Median 3Q Max

-25.2458 -3.2133 0.7769 3.5921 9.2630

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.41706 0.82140 33.378 < 2e-16 ***

gender -0.48606 0.37984 -1.280 0.20110

education 0.47890 0.15235 3.143 0.00174 **

age 0.01623 0.02278 0.712 0.47650

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.768 on 696 degrees of freedom

Multiple R-squared: 0.0272, Adjusted R-squared: 0.02301

F-statistic: 6.487 on 3 and 696 DF, p-value: 0.0002476

Compare this with the output from setCor.

> #compare with setCor

> setCor(gender + education + age ~ ACT + SATV + SATQ, data = C, n.obs=700)

Call: setCor(y = gender + education + age ~ ACT + SATV + SATQ, data = C,

n.obs = 700)

Multiple Regression from raw data

DV = gender

slope se t p lower.ci upper.ci VIF

(Intercept) 0.00 0.02 0.00 1.000 -0.08 0.08 1.00

ACT -0.29 0.60 -0.48 0.680 -2.88 2.30 1029.17
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SATV 1.10 0.28 3.98 0.058 -0.09 2.29 217.77

SATQ -1.55 0.35 -4.45 0.047 -3.06 -0.05 347.59

Residual Standard Error = 0.04 with 2 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

gender 1 1 0.73 0.54 1 0 947.92 3 2 0.00105

DV = education

slope se t p lower.ci upper.ci VIF

(Intercept) 0.00 0.55 0.00 1.00 -2.35 2.35 1.00

ACT 2.30 17.52 0.13 0.91 -73.07 77.68 1029.17

SATV -0.39 8.06 -0.05 0.97 -35.06 34.28 217.77

SATQ -1.36 10.18 -0.13 0.91 -45.17 42.44 347.59

Residual Standard Error = 1.22 with 2 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

education 0.64 0.4 0.6 0.37 -0.49 0.09 0.45 3 2 0.744

DV = age

slope se t p lower.ci upper.ci VIF

(Intercept) 0.00 0.48 0.00 1.00 -2.07 2.07 1.00

ACT 3.01 15.43 0.20 0.86 -63.39 69.42 1029.17

SATV -1.87 7.10 -0.26 0.82 -32.42 28.67 217.77

SATQ -1.99 8.97 -0.22 0.85 -40.58 36.60 347.59

Residual Standard Error = 1.08 with 2 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p

age 0.73 0.54 0.72 0.52 -0.16 0.08 0.77 3 2 0.606

Various estimates of between set correlations

Squared Canonical Correlations

[1] 1.000 0.988 0.013

Chisq of canonical correlations

[1] 32.226 4.433 0.013

Average squared canonical correlation = 0.67

Cohen's Set Correlation R2 = 1

Shrunken Set Correlation R2 = 1

F and df of Cohen's Set Correlation -Inf 12 -12.94

Unweighted correlation between the two sets = 0.46

Note that the setCor analysis also reports the amount of shared variance between the
predictor set and the criterion (dependent) set. This set correlation is symmetric. That is,
the R2 is the same independent of the direction of the relationship.
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9 Simulation functions

It is particularly helpful, when trying to understand psychometric concepts, to be able
to generate sample data sets that meet certain specifications. By knowing “truth” it is
possible to see how well various algorithms can capture it. Several of the sim functions
create artificial data sets with known structures.

A number of functions in the psych package will generate simulated data. These functions
include sim for a factor simplex, and sim.simplex for a data simplex, sim.circ for a cir-
cumplex structure, sim.congeneric for a one factor factor congeneric model, sim.dichot
to simulate dichotomous items, sim.hierarchical to create a hierarchical factor model,
sim.item is a more general item simulation, sim.minor to simulate major and minor fac-
tors, sim.omega to test various examples of omega, sim.parallel to compare the efficiency
of various ways of determining the number of factors, sim.rasch to create simulated rasch
data, sim.irt to create general 1 to 4 parameter IRT data by calling sim.npl 1 to 4
parameter logistic IRT or sim.npn 1 to 4 paramater normal IRT, sim.structural a gen-
eral simulation of structural models, and sim.anova for ANOVA and lm simulations, and
sim.vss. Some of these functions are separately documented and are listed here for ease
of the help function. See each function for more detailed help.

sim The default version is to generate a four factor simplex structure over three occasions,
although more general models are possible.

sim.simple Create major and minor factors. The default is for 12 variables with 3 major
factors and 6 minor factors.

sim.structure To combine a measurement and structural model into one data matrix.
Useful for understanding structural equation models.

sim.hierarchical To create data with a hierarchical (bifactor) structure.

sim.congeneric To create congeneric items/tests for demonstrating classical test theory.
This is just a special case of sim.structure.

sim.circ To create data with a circumplex structure.

sim.item To create items that either have a simple structure or a circumplex structure.

sim.dichot Create dichotomous item data with a simple or circumplex structure.

sim.rasch Simulate a 1 parameter logistic (Rasch) model.

sim.irt Simulate a 2 parameter logistic (2PL) or 2 parameter Normal model. Will also
do 3 and 4 PL and PN models.

sim.multilevel Simulate data with different within group and between group correla-
tional structures.
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Some of these functions are described in more detail in the companion vignette: psych for
sem.

The default values for sim.structure is to generate a 4 factor, 12 variable data set with
a simplex structure between the factors.

Two data structures that are particular challenges to exploratory factor analysis are the
simplex structure and the presence of minor factors. Simplex structures sim.simplex will
typically occur in developmental or learning contexts and have a correlation structure of r
between adjacent variables and rn for variables n apart. Although just one latent variable
(r) needs to be estimated, the structure will have nvar-1 factors.

Many simulations of factor structures assume that except for the major factors, all residuals
are normally distributed around 0. An alternative, and perhaps more realistic situation, is
that the there are a few major (big) factors and many minor (small) factors. The challenge
is thus to identify the major factors. sim.minor generates such structures. The structures
generated can be thought of as having a a major factor structure with some small correlated
residuals.

Although coefficient ωh is a very useful indicator of the general factor saturation of a
unifactorial test (one with perhaps several sub factors), it has problems with the case of
multiple, independent factors. In this situation, one of the factors is labelled as “general”
and the omega estimate is too large. This situation may be explored using the sim.omega

function.

The four irt simulations, sim.rasch, sim.irt, sim.npl and sim.npn, simulate dichoto-
mous items following the Item Response model. sim.irt just calls either sim.npl (for
logistic models) or sim.npn (for normal models) depending upon the specification of the
model.

The logistic model is

P(x|θi,δ j,γ j,ζ j) = γ j +
ζ j− γ j

1 + eα j(δ j−θi
. (4)

where γ is the lower asymptote or guessing parameter, ζ is the upper asymptote (nor-
mally 1), α j is item discrimination and δ j is item difficulty. For the 1 Paramater Logistic
(Rasch) model, gamma=0, zeta=1, alpha=1 and item difficulty is the only free parameter
to specify.

(Graphics of these may be seen in the demonstrations for the logistic function.)

The normal model (irt.npn calculates the probability using pnorm instead of the logistic
function used in irt.npl, but the meaning of the parameters are otherwise the same.
With the a = α parameter = 1.702 in the logiistic model the two models are practically
identical.
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10 Graphical Displays

Many of the functions in the psych package include graphic output and examples have
been shown in the previous figures. After running fa, iclust, omega, irt.fa, plotting the
resulting object is done by the plot.psych function as well as specific diagram functions.
e.g., (but not shown)

f3 <- fa(Thurstone,3)

plot(f3)

fa.diagram(f3)

c <- iclust(Thurstone)

plot(c) #a pretty boring plot

iclust.diagram(c) #a better diagram

c3 <- iclust(Thurstone,3)

plot(c3) #a more interesting plot

data(bfi)

e.irt <- irt.fa(bfi[11:15])

plot(e.irt)

ot <- omega(Thurstone)

plot(ot)

omega.diagram(ot)

The ability to show path diagrams to represent factor analytic and structural models is dis-
cussed in somewhat more detail in the accompanying vignette, psych for sem. Basic routines
to draw path diagrams are included in the dia.rect and accompanying functions. These
are used by the fa.diagram, structure.diagram and iclust.diagram functions.

11 Converting output to APA style tables using LATEX

Although for most purposes, using the Sweave or KnitR packages produces clean output,
some prefer output pre formatted for APA style tables. This can be done using the xtable
package for almost anything, but there are a few simple functions in psych for the most
common tables. fa2latex will convert a factor analysis or components analysis output to
a LATEXtable, cor2latex will take a correlation matrix and show the lower (or upper diag-
onal), irt2latex converts the item statistics from the irt.fa function to more convenient
LATEXoutput, and finally, df2latex converts a generic data frame to LATEX.

An example of converting the output from fa to LATEXappears in Table 10.
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> xlim=c(0,10)

> ylim=c(0,10)

> plot(NA,xlim=xlim,ylim=ylim,main="Demonstration of dia functions",axes=FALSE,xlab="",ylab="")

> ul <- dia.rect(1,9,labels="upper left",xlim=xlim,ylim=ylim)

> ll <- dia.rect(1,3,labels="lower left",xlim=xlim,ylim=ylim)

> lr <- dia.ellipse(9,3,"lower right",xlim=xlim,ylim=ylim,e.size=.09)

> ur <- dia.ellipse(7,9,"upper right",xlim=xlim,ylim=ylim,e.size=.1)

> ml <- dia.ellipse(3,6,"middle left",xlim=xlim,ylim=ylim,e.size=.1)

> mr <- dia.ellipse(7,6,"middle right",xlim=xlim,ylim=ylim,e.size=.08)

> bl <- dia.ellipse(1,1,"bottom left",xlim=xlim,ylim=ylim,e.size=.08)

> br <- dia.rect(9,1,"bottom right",xlim=xlim,ylim=ylim)

> dia.arrow(from=lr,to=ul,labels="right to left")

> dia.arrow(from=ul,to=ur,labels="left to right")

> dia.curved.arrow(from=lr,to=ll$right,labels ="right to left")

NULL

> dia.curved.arrow(to=ur,from=ul$right,labels ="left to right")

NULL

> dia.curve(ll$top,ul$bottom,"double",-1) #for rectangles, specify where to point

> dia.curved.arrow(mr,ur,"up") #but for ellipses, just point to it.

NULL

> dia.curve(ml,mr,"across")

> dia.curved.arrow(ur,lr,"top down")

NULL

> dia.curved.arrow(br$top,lr$bottom,"up")

NULL

> dia.curved.arrow(bl,br,"left to right")

NULL

> dia.arrow(bl$top,ll$bottom)

> dia.curved.arrow(ml,ll$top,scale=-1)

NULL

> dia.curved.arrow(mr,lr$top)

NULL

Demonstration of dia functions

upper left

lower left lower right

upper right

middle left middle right

bottom left bottom right

right to left

left to right

right to left

left to right

double

up

across

top down

upleft to right

Figure 22: The basic graphic capabilities of the dia functions are shown in this figure.
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Table 10: fa2latex
A factor analysis table from the psych package in R

Variable MR1 MR2 MR3 h2 u2 com

Sentences 0.91 -0.04 0.04 0.82 0.18 1.01
Vocabulary 0.89 0.06 -0.03 0.84 0.16 1.01
Sent.Completion 0.83 0.04 0.00 0.73 0.27 1.00
First.Letters 0.00 0.86 0.00 0.73 0.27 1.00
4.Letter.Words -0.01 0.74 0.10 0.63 0.37 1.04
Suffixes 0.18 0.63 -0.08 0.50 0.50 1.20
Letter.Series 0.03 -0.01 0.84 0.72 0.28 1.00
Pedigrees 0.37 -0.05 0.47 0.50 0.50 1.93
Letter.Group -0.06 0.21 0.64 0.53 0.47 1.23

SS loadings 2.64 1.86 1.5

MR1 1.00 0.59 0.54
MR2 0.59 1.00 0.52
MR3 0.54 0.52 1.00

12 Miscellaneous functions

A number of functions have been developed for some very specific problems that don’t fit
into any other category. The following is an incomplete list. Look at the Index for psych
for a list of all of the functions.

block.random Creates a block randomized structure for n independent variables. Useful
for teaching block randomization for experimental design.

df2latex is useful for taking tabular output (such as a correlation matrix or that of de-

scribe and converting it to a LATEX table. May be used when Sweave is not conve-
nient.

cor2latex Will format a correlation matrix in APA style in a LATEX table. See also
fa2latex and irt2latex.

cosinor One of several functions for doing circular statistics. This is important when
studying mood effects over the day which show a diurnal pattern. See also circa-

dian.mean, circadian.cor and circadian.linear.cor for finding circular means,
circular correlations, and correlations of circular with linear data.

fisherz Convert a correlation to the corresponding Fisher z score.
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geometric.mean also harmonic.mean find the appropriate mean for working with different
kinds of data.

ICC and cohen.kappa are typically used to find the reliability for raters.

headtail combines the head and tail functions to show the first and last lines of a data
set or output.

topBottom Same as headtail. Combines the head and tail functions to show the first and
last lines of a data set or output, but does not add ellipsis between.

mardia calculates univariate or multivariate (Mardia’s test) skew and kurtosis for a vector,
matrix, or data.frame

p.rep finds the probability of replication for an F, t, or r and estimate effect size.

partial.r partials a y set of variables out of an x set and finds the resulting partial
correlations. (See also setCor.)

rangeCorrection will correct correlations for restriction of range.

reverse.code will reverse code specified items. Done more conveniently in most psych
functions, but supplied here as a helper function when using other packages.

superMatrix Takes two or more matrices, e.g., A and B, and combines them into a “Super
matrix” with A on the top left, B on the lower right, and 0s for the other two
quadrants. A useful trick when forming complex keys, or when forming example
problems.

13 Data sets

A number of data sets for demonstrating psychometric techniques are included in the
psych package. These include six data sets showing a hierarchical factor structure (five
cognitive examples, Thurstone, Thurstone.33, Holzinger, Bechtoldt.1, Bechtoldt.2,
and one from health psychology Reise). One of these (Thurstone) is used as an example
in the sem package as well as McDonald (1999). The original data are from Thurstone and
Thurstone (1941) and reanalyzed by Bechtoldt (1961). Personality item data representing
five personality factors on 25 items (bfi) or 13 personality inventory scores (epi.bfi), and
14 multiple choice iq items (iqitems). The vegetables example has paired comparison
preferences for 9 vegetables. This is an example of Thurstonian scaling used by Guilford
(1954) and Nunnally (1967). Other data sets include cubits, peas, and heights from
Galton.

Thurstone Holzinger-Swineford (1937) introduced the bifactor model of a general factor
and uncorrelated group factors. The Holzinger correlation matrix is a 14 * 14 matrix
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from their paper. The Thurstone correlation matrix is a 9 * 9 matrix of correlations
of ability items. The Reise data set is 16 * 16 correlation matrix of mental health
items. The Bechtholdt data sets are both 17 x 17 correlation matrices of ability tests.

bfi 25 personality self report items taken from the International Personality Item Pool
(ipip.ori.org) were included as part of the Synthetic Aperture Personality Assessment
(SAPA) web based personality assessment project. The data from 2800 subjects are
included here as a demonstration set for scale construction, factor analysis and Item
Response Theory analyses.

sat.act Self reported scores on the SAT Verbal, SAT Quantitative and ACT were col-
lected as part of the Synthetic Aperture Personality Assessment (SAPA) web based
personality assessment project. Age, gender, and education are also reported. The
data from 700 subjects are included here as a demonstration set for correlation and
analysis.

epi.bfi A small data set of 5 scales from the Eysenck Personality Inventory, 5 from a Big 5
inventory, a Beck Depression Inventory, and State and Trait Anxiety measures. Used
for demonstrations of correlations, regressions, graphic displays.

epiR The EPI was given twice to 474 participants. This is a useful data set for exploring
test-retest reliability,

sai, msqR 20 anxiety items and 75 mood items were given at least twice to 3032 partici-
pants. These are useful for understanding reliability structures.

iq 14 multiple choice ability items were included as part of the Synthetic Aperture Person-
ality Assessment (SAPA) web based personality assessment project. The data from
1000 subjects are included here as a demonstration set for scoring multiple choice
inventories and doing basic item statistics.

galton Two of the earliest examples of the correlation coefficient were Francis Galton’s
data sets on the relationship between mid parent and child height and the similarity of
parent generation peas with child peas. galton is the data set for the Galton height.
peas is the data set Francis Galton used to ntroduce the correlation coefficient with
an analysis of the similarities of the parent and child generation of 700 sweet peas.

Dwyer Dwyer (1937) introduced a method for factor extension (see fa.extension that
finds loadings on factors from an original data set for additional (extended) variables.
This data set includes his example.

miscellaneous cities is a matrix of airline distances between 11 US cities and may
be used for demonstrating multiple dimensional scaling. vegetables is a classic
data set for demonstrating Thurstonian scaling and is the preference matrix of 9
vegetables from Guilford (1954). Used by Guilford (1954); Nunnally (1967); Nunnally
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and Bernstein (1994), this data set allows for examples of basic scaling techniques.

14 Development version and a users guide

The most recent development version is available as a source file at the repository main-
tained at https://personality-project.org/r. That version will have removed the
most recently discovered bugs (but perhaps introduced other, yet to be discovered ones).
To download that version, go to the repository https://personality-project.org/r/

src/contrib/ and wander around. For a Mac and PC this version can be installed directly
using the “other repository” option in the package installer.

> install.packages("psych", repos="https://personality-project.org/r", type="source")

Although the individual help pages for the psych package are available as part of R and
may be accessed directly (e.g. ?psych) , the full manual for the psych package is also
available as a pdf at https://personality-project.org/r/psych_manual.pdf

News and a history of changes are available in the NEWS and CHANGES files in the source
files. To view the most recent news,

> news(Version > "1.8.4", package="psych")

15 Psychometric Theory

The psych package has been developed to help psychologists do basic research. Many of the
functions were developed to supplement a book (https://personality-project.org/r/
book An introduction to Psychometric Theory with Applications in R (Revelle, prep) More
information about the use of some of the functions may be found in the book .

For more extensive discussion of the use of psych in particular and R in general, consult
https://personality-project.org/r/r.guide.html A short guide to R.

16 SessionInfo

This document was prepared using the following settings.

> sessionInfo()

R version 4.0.5 (2021-03-31)

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Big Sur 10.16

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:

[1] C

attached base packages:

83

 href="https://personality-project.org/r"
https://personality-project.org/r
https://personality-project.org/r/src/contrib/
https://personality-project.org/r/src/contrib/
https://personality-project.org/r/psych_manual.pdf
https://personality-project.org/r/book
https://personality-project.org/r/book
https://personality-project.org/r/r.guide.html


[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] GPArotation_2014.11-1 psychTools_2.1.5 psych_2.1.4

loaded via a namespace (and not attached):

[1] compiler_4.0.5 parallel_4.0.5 tools_4.0.5 foreign_0.8-81 lavaan_0.6-7 tmvnsim_1.0-2 nlme_3.1-152 mnormt_2.0.1 grid_4.0.5

[10] pbivnorm_0.6.0 knitr_1.29 xfun_0.16 stats4_4.0.5 lattice_0.20-41
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