
Appendix E

Appendix: A Review of Matrices

Although first used by the Babylonians to solve simultaneous equations, and discussed in the
Nine Chapters on Mathematical Art in China ca. 300-200 BCE, matrices were not introduced
into psychological research until Thurstone first used the word matrix in 1933 (Bock, 2007).
Until then, data and even correlations were organized into “tables”. Vectors, matrices and
arrays are merely convenient ways to organize objects (usually numbers) and with the intro-
duction of matrix notation, the power of matrix algebra was unleashed for psychometrics.
Much of psychometrics in particular, and psychological data analysis in general consists of
operations on vectors and matrices. In many commercial software applications, some of the
functionality of matrices is seen in the use of “spreadsheets”. Many commercial statistical
packages do the analysis in terms of matrices but shield the user from this fact. This is
unfortunate, because it is (with some practice) easier to understand the similarity of many
algorithms when they are expressed in matrix form.

This appendix o↵ers a quick review of matrix algebra with a particular emphasis upon
how to do matrix operations in R. The later part of the appendix shows how some fairly
complex psychometrics concepts are done easily in terms of matrices.

E.1 Vectors

A vector is a one dimensional array of n elements where the most frequently used elements
are integers, reals (numeric), characters, or logical. Basic operations on a vector are addition,
subtraction and multiplication. Although addition and subtraction are straightforward, mul-
tiplication is somewhat more complicated, for the order in which two vectors are multiplied
changes the result. That is ab 6= ba. (In an attempt at consistent notation, vectors will be
bold faced lower case letters.)

Consider v1 = the first 6 integers, and v2 = the next 6 integers:

> v1 <- seq(1, 6)
> v2 <- seq(7, 12)

> v1
[1] 1 2 3 4 5 6
> v2
[1] 7 8 9 10 11 12

459

460 E Appendix: A Review of Matrices

We can add a constant to each element in a vector, add each element of the first vector
to the corresponding element of the second vector, multiply each element by a scaler , or
multiply each element in the first by the corresponding element in the second:

> v3 <- v1 + 20
> v4 <- v1 + v2
> v5 <- v1 * 3
> v6 <- v1 * v2

> v3
[1] 21 22 23 24 25 26
> v4
[1] 8 10 12 14 16 18
> v5
[1] 3 6 9 12 15 18
> v6
[1] 7 16 27 40 55 72

E.1.1 Vector multiplication

Strangely enough, a vector in R is dimensionless, but it has a length. There are three types of
multiplication of vectors in R. Simple multiplication (each term in one vector is multiplied by
its corresponding term in the other vector (e.g., v6 <- v1⇤v2), as well as the inner and outer
products of two vectors. The inner product is a very powerful operation for it combines both
multiplication and addition. That is, for two vectors of the same length, the inner product
of v1 and v2 is found by the matrix multiply operator %*%

�
1 2 3 4 5 6

�
%⇤%

0

BBBBBB@

7

8

9

10

11

12

1

CCCCCCA
=

n

Â
i=1

v1iv2i =
n

Â
i=1

v6 = 217 (E.1)

In the previous example, because of the way R handles vectors, and because v1 and
v2 were of the same length, it was not necessary to worry about rows and columns and
v2%⇤%v1 = v1%⇤%v2. In general, however, the multiplication of two vectors will yield dif-
ferent results depending upon the order. A row vector times a column vector of the same
length produces a single element which is equal to the sum of the products of the respective
elements. But a column vector of length c times a row vector of length r times results in
the c x r outer product matrix of products. To see this, consider the vector v7 = seq(1,4)
and the results of v1%⇤%v7 versus v7%⇤%v1. Unless otherwise specfied, all vectors may be
thought of as column vectors. To force v7 to be a row vector, use the transpose function t.
To transpose a vector changes a column vector into a row vector and a row vector into a
column vector. It is shown with the superscript T or sometimes with the superscript ’.

Then v1
(6x1)

%⇤% v70
(1x4)

= V8
(6x4)

and v7
(4x1)

%⇤% v10
(1x6)

= V9
(4x6)

. To clarify this notation, note that the

first subscript of each vector refers to the number of rows and the second to the number of

E.1 Vectors 461

columns in a matrix. Matrices are written in bold face upper case letters. For a vector, of
course, either the number of columns or rows is 1. Note also that for the multiplication to
be done, the inner subscripts (e.g., 1 and 1 in this case) must correspond, but that the outer
subscripts (e.g., 6 and 4) do not.

v1
(6x1)

%⇤% v70
(1x4)

=

0

BBBBB@

1

2

3

4

5

6

1

CCCCCA
%⇤%

�
1 2 3 4

�
=

0

BBBBB@

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

5 10 15 20

6 12 18 24

1

CCCCCA
= V8

(6x4)
(E.2)

but

v7
(4x1)

%⇤% v10
(1x6)

=

0

BB@

1

2

3

4

1

CCA%⇤%

�
1 2 3 4 5 6

�
=

0

BB@

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

1

CCA= V9
(4x6)

(E.3)

That is, in R

> v7 <- seq(1,4)
> V8 <- v1 %*% t(v7)
> V9 <- v7 %*% t(v1)

v1 %*% t(v7)
[,1] [,2] [,3] [,4]

[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16
[5,] 5 10 15 20
[6,] 6 12 18 24

v7 %*% t(v1)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 4 5 6
[2,] 2 4 6 8 10 12
[3,] 3 6 9 12 15 18
[4,] 4 8 12 16 20 24

and v7
(4x1)

%⇤% v1
(1x6)

= V9
(4x6)

6= V8
(6x4)

.

E.1.2 Simple statistics using vectors

Although there are built in functions in R to do most of our statistics, it is useful to understand
how these operations can be done using vector and matrix operations. Here we consider how
to find the mean of a vector, remove it from all the numbers, and then find the average
squared deviation from the mean (the variance).

462 E Appendix: A Review of Matrices

Consider the mean of all numbers in a vector. To find this we just need to add up the
numbers (the inner product of the vector with a vector of 1’s) and then divide by n (multiply
by the scaler 1/n). First we create a vector, v and then a second vector one of 1s by using
the repeat operation.

> v <- seq(1, 7)
> one <- rep(1,length(v))
> sum.v <- t(one) %*% v
> sum.v

[,1]
[1,] 28

> mean.v <- sum.v * (1/length(v))

[,1]
[1,] 4

> mean.v <- t(one) %*% v * (1/length(v))

> v
[1] 1 2 3 4 5 6 7
> one
[1] 1 1 1 1 1 1 1
> sum.v

[,1]
[1,] 28

The mean may be calculated in three di↵erent ways, all of which are equivalent.

> mean.v <- t(one) %*% v/length(v)

> sum.v * (1/length(v))
[,1]

[1,] 4
> t(one) %*% v * (1/length(v))

[,1]
[1,] 4
> t(one) %*% v/length(v)

[,1]
[1,] 4

As vectors, this was

n

Â
1

vi/n = 1T v⇤ 1

n
=
�

1 1 1 1 1 1 1

�

0

BBBBBBBB@

1

2

3

4

5

6

7

1

CCCCCCCCA

⇤ 1

7

= 4 (E.4)

E.1 Vectors 463

The variance is the average squared deviation from the mean. To find the variance, we first
find deviation scores by subtracting the mean from each value of the vector. Then, to find
the sum of the squared deviations take the inner product of the result with itself. This Sum
of Squares becomes a variance if we divide by the degrees of freedom (n-1) to get an unbiased
estimate of the population variance. First we find the mean centered vector:

> v - mean.v

[1] -3 -2 -1 0 1 2 3

And then we find the variance as the mean square by taking the inner product:

> Var.v <- t(v - mean.v) %*% (v - mean.v) * (1/(length(v) - 1))

Var.v
[,1]

[1,] 4.666667

Compare these results with the more typical scale, mean and var operations:

> scale(v, scale = FALSE)

[,1]
[1,] -3
[2,] -2
[3,] -1
[4,] 0
[5,] 1
[6,] 2
[7,] 3
attr(,"scaled:center")
[1] 4

> mean(v)
[1] 4
> var(v)
[1] 4.666667

E.1.3 Combining vectors with cbind and rbind

To combine two or more vectors with the result being a vector, use the c function.

> x <- c(v1, v2,v3)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 21 22 23 24 25 26

We can form more complex data structures than vectors by combining the vectors, either
by columns (cbind) or by rows (rbind). The resulting data structure is a matrix with the
number of rows and columns depending upon the number of vectors combined, and the
number of elements in each vector.

> Xc <- cbind(v1, v2, v3)

464 E Appendix: A Review of Matrices

V1 V2 V3
[1,] 1 7 21
[2,] 2 8 22
[3,] 3 9 23
[4,] 4 10 24
[5,] 5 11 25
[6,] 6 12 26

> Xr <- rbind(v1, v2, v3)

[,1] [,2] [,3] [,4] [,5] [,6]
V1 1 2 3 4 5 6
V2 7 8 9 10 11 12
V3 21 22 23 24 25 26

> dim(Xc)

[1] 6 3

> dim(Xr)

[1] 3 6

E.2 Matrices

A matrix is just a two dimensional (rectangular) organization of numbers. It is a vector of
vectors. For data analysis, the typical data matrix is organized with rows containing the
responses of a particular subject and the columns representing di↵erent variables. Thus, a
6 x 4 data matrix (6 rows, 4 columns) would contain the data of 6 subjects on 4 di↵erent
variables. In the example below the matrix operation has taken the numbers 1 through 24
and organized them column wise. That is, a matrix is just a way (and a very convenient one
at that) of organizing a data vector in a way that highlights the correspondence of multiple
observations for the same individual.

R provides numeric row and column names (e.g., [1,] is the first row, [,4] is the fourth
column, but it is useful to label the rows and columns to make the rows (subjects) and
columns (variables) distinction more obvious. We do this using the rownames and colnames
functions, combined with the paste and seq functions.

> Xij <- matrix(seq(1:24), ncol = 4)
> rownames(Xij) <- paste("S", seq(1, dim(Xij)[1]), sep = "")
> colnames(Xij) <- paste("V", seq(1, dim(Xij)[2]), sep = "")
> Xij

V1 V2 V3 V4
S1 1 7 13 19
S2 2 8 14 20
S3 3 9 15 21
S4 4 10 16 22
S5 5 11 17 23
S6 6 12 18 24

E.2 Matrices 465

Just as the transpose of a vector makes a column vector into a row vector, so does the
transpose of a matrix swap the rows for the columns. Applying the t function to the matrix
Xij produces Xij0. Note that now the subjects are columns and the variables are the rows.

> t(Xij)

S1 S2 S3 S4 S5 S6
V1 1 2 3 4 5 6
V2 7 8 9 10 11 12
V3 13 14 15 16 17 18
V4 19 20 21 22 23 24

E.2.1 Adding or multiplying a vector and a Matrix

Just as we could with vectors, we can add, subtract, multiply or divide the matrix by a scalar
(a number without a dimension).

> Xij + 4

V1 V2 V3 V4
S1 5 11 17 23
S2 6 12 18 24
S3 7 13 19 25
S4 8 14 20 26
S5 9 15 21 27
S6 10 16 22 28

> round((Xij + 4)/3, 2)

V1 V2 V3 V4
S1 1.67 3.67 5.67 7.67
S2 2.00 4.00 6.00 8.00
S3 2.33 4.33 6.33 8.33
S4 2.67 4.67 6.67 8.67
S5 3.00 5.00 7.00 9.00
S6 3.33 5.33 7.33 9.33

We can also add or multiply each row (or column, depending upon order) by a vector.
This is more complicated that it would appear, for R does the operations columnwise. This
is best seen in an example:

> v <- 1:4

[1] 1 2 3 4

> Xij + v

V1 V2 V3 V4
S1 2 10 14 22
S2 4 12 16 24

466 E Appendix: A Review of Matrices

S3 6 10 18 22
S4 8 12 20 24
S5 6 14 18 26
S6 8 16 20 28

> Xij * v

V1 V2 V3 V4
S1 1 21 13 57
S2 4 32 28 80
S3 9 9 45 21
S4 16 20 64 44
S5 5 33 17 69
S6 12 48 36 96

These are not the expected results if the intent was to add or multiply a di↵erent number to
each column! R operates on the columns and wraps around to the next column to complete
the operation. To add the n elements of v to the n columns of Xij, use the t function to
transpose Xij and then transpose the result back to the original order:

> t(t(Xij) + v)

V1 V2 V3 V4
S1 2 9 16 23
S2 3 10 17 24
S3 4 11 18 25
S4 5 12 19 26
S5 6 13 20 27
S6 7 14 21 28

> V10 <- t(t(Xij) * v)
> V10

V1 V2 V3 V4
S1 1 14 39 76
S2 2 16 42 80
S3 3 18 45 84
S4 4 20 48 88
S5 5 22 51 92
S6 6 24 54 96

To find a matrix of deviation scores, just subtract the means vector from each cell. The
scale function does this with the option scale=FALSE. The default for scale is to convert
a matrix to standard scores.

> scale(V10,scale=FALSE)

> scale(V10,scale=FALSE)
V1 V2 V3 V4

S1 -2.5 -5 -7.5 -10
S2 -1.5 -3 -4.5 -6
S3 -0.5 -1 -1.5 -2

E.2 Matrices 467

S4 0.5 1 1.5 2
S5 1.5 3 4.5 6
S6 2.5 5 7.5 10
attr(,"scaled:center")
V1 V2 V3 V4
3.5 19.0 46.5 86.0

E.2.2 Matrix multiplication

Matrix multiplication is a combination of multiplication and addition and is one of the most
used and useful matrix operations. For a matrix X

(rxp)
of dimensions r*p and Y

(pxc)
of dimension

p * c, the product, X
(rxp)

Y
(pxc)

, is a r * c matrix where each element is the sum of the products

of the rows of the first and the columns of the second. That is, the matrix XY
(rxc)

has elements

xyi j where each

xyi j =
n

Â
k=1

xik ⇤ yk j

The resulting xi j cells of the product matrix are sums of the products of the column elements
of the first matrix times the row elements of the second. There will be as many cell as there
are rows of the first matrix and columns of the second matrix.

XY
(rx x p)(pxcy)

=

x

11

x
12

x
13

x
14

x
21

x
22

x
23

x
24

!

�������������!
|
#

0

BB@

y
11

y
12

y
21

y
22

y
31

y
32

y
41

y
42

1

CCA=

0

BBB@

p

Â
i

x
1iyi1

p

Â
i

x
1iyi2

p

Â
i

x
2iyi1

p

Â
i

x
2iyi2

1

CCCA

It should be obvious that matrix multiplication is a very powerful operation, for it repre-
sents in one product the r * c summations taken over p observations.

E.2.2.1 Using matrix multiplication to find means and deviation scores

Matrix multiplication can be used with vectors as well as matrices. Consider the product of a
vector of ones, 1, and the matrix Xij

(rxc)
with 6 rows of 4 columns. Call an individual element in

this matrix xi j. Then the sum for each column of the matrix is found multiplying the matrix
by the “one” vector with Xij. Dividing each of these resulting sums by the number of rows
(cases) yields the mean for each column. That is, find

10Xij =
n

Â
i=1

Xi j

for the c columns, and then divide by the number (n) of rows. Note that the same result is
found by the colMeans(Xij) function.

468 E Appendix: A Review of Matrices

10 Xij
1

n
=

⇣
1 1 1 1 1 1

⌘

����������!
|
#

0

BBBBBB@

1 7 13 19

2 8 14 20

3 9 15 21

4 10 16 22

5 11 17 23

6 12 18 24

1

CCCCCCA

1

6

=
�

21 57 93 129

�
1

6

=
�

3.5 9.5 15.5 21.5
�

We can use the dim function to find out how many cases (the number of rows) or the
number of variables (number of columns). dim has two elements: dim(Xij)[1] = number of
rows, dim(Xij)[2] is the number of columns.

> dim(Xij)

[1] 6 4

> one <- rep(1,dim(Xij)[1]) #a vector of 1s
> t(one) %*% Xij #find the column sum

V1 V2 V3 V4
[1,] 21 57 93 129

> X.means <- t(one) %*% Xij /dim(Xij)[1] #find the column average

V1 V2 V3 V4
3.5 9.5 15.5 21.5

A built in function to find the means of the columns is colMeans. (See rowMeans for the
equivalent for rows.)

> colMeans(Xij)

V1 V2 V3 V4
3.5 9.5 15.5 21.5

To form a matrix of deviation scores, where the elements of each column are deviations
from that column mean, it is necessary to either do the operation on the transpose of the
Xij matrix, or to create a matrix of means by premultiplying the means vector by a vector
of ones and subtracting this from the data matrix.

> X.diff <- Xij - one %*% X.means

> X.diff
V1 V2 V3 V4

S1 -2.5 -2.5 -2.5 -2.5
S2 -1.5 -1.5 -1.5 -1.5
S3 -0.5 -0.5 -0.5 -0.5
S4 0.5 0.5 0.5 0.5
S5 1.5 1.5 1.5 1.5
S6 2.5 2.5 2.5 2.5

This can also be done by using the scale function which will mean center each column and
(by default) standardize by dividing by the standard deviation of each column.

E.2 Matrices 469

E.2.2.2 Using matrix multiplication to find variances and covariances

Variances and covariances are measures of dispersion around the mean. We find these by first
subtracting the means from all the observations. This means centered matrix is the original
matrix minus a vector of means. To make a more interesting data set, randomly order (in
this case, sample without replacement) from the items in Xij and then find the X.means and
X.diff matrices.

> set.seed(42) #set random seed for a repeatable example
> Xij <- matrix(sample(Xij),ncol=4) #random sample from Xij
> rownames(Xij) <- paste("S", seq(1, dim(Xij)[1]), sep = "")
> colnames(Xij) <- paste("V", seq(1, dim(Xij)[2]), sep = "")
> Xij

V1 V2 V3 V4
S1 22 14 12 15
S2 24 3 17 6
S3 7 11 5 4
S4 18 16 9 21
S5 13 23 8 2
S6 10 19 1 20

> X.means <- t(one) %*% Xij /dim(Xij)[1] #find the column average
> X.diff <- Xij -one %*% X.means
> X.diff

V1 V2 V3 V4
S1 6.333333 -0.3333333 3.3333333 3.666667
S2 8.333333 -11.3333333 8.3333333 -5.333333
S3 -8.666667 -3.3333333 -3.6666667 -7.333333
S4 2.333333 1.6666667 0.3333333 9.666667
S5 -2.666667 8.6666667 -0.6666667 -9.333333
S6 -5.666667 4.6666667 -7.6666667 8.666667

Compare this result to just using the scale function to mean center the data:

X.cen <- scale(Xij,scale=FALSE).

To find the variance/covariance matrix, find the the matrix product of the means centered
matrix X.diff with itself and divide by n-1. Compare this result to the result of the cov
function (the normal way to find covariances). The di↵erences between these two results is
the rounding to whole numbers for the first, and to two decimals in the second.

> X.cov <- t(X.diff) %*% X.diff /(dim(X.diff)[1]-1)
> round(X.cov)

V1 V2 V3 V4
V1 46 -23 34 8
V2 -23 48 -25 12
V3 34 -25 31 -12
V4 8 12 -12 70

470 E Appendix: A Review of Matrices

> round(cov(Xij),2)

V1 V2 V3 V4
V1 45.87 -22.67 33.67 8.13
V2 -22.67 47.87 -24.87 11.87
V3 33.67 -24.87 30.67 -12.47
V4 8.13 11.87 -12.47 70.27

E.2.3 Finding and using the diagonal

Some operations need to find just the diagonal of the matrix. For instance, the diagonal of the
matrix X.cov (found above) contains the variances of the items. To extract just the diagonal,
or create a matrix with a particular diagonal we use the diag command. We can convert
the covariance matrix X.cov to a correlation matrix X.cor by pre and post multiplying the
covariance matrix with a diagonal matrix containing the reciprocal of the standard deviations
(square roots of the variances). Remember (Chapter 4 that the correlation, rxy, is the ratio
of the covariance to the squareroot of the product of the variances:

Cxyp
VxVy

.

> X.var <- diag(X.cov)

V1 V2 V3 V4
45.86667 47.86667 30.66667 70.26667

> sdi <- diag(1/sqrt(diag(X.cov)))
> rownames(sdi) <- colnames(sdi) <- colnames(X.cov)
> round(sdi, 2)

V1 V2 V3 V4
V1 0.15 0.00 0.00 0.00
V2 0.00 0.14 0.00 0.00
V3 0.00 0.00 0.18 0.00
V4 0.00 0.00 0.00 0.12

> X.cor <- sdi %*% X.cov %*% sdi #pre and post multiply by 1/sd
> rownames(X.cor) <- colnames(X.cor) <- colnames(X.cov)
> round(X.cor, 2)

V1 V2 V3 V4
V1 1.00 -0.48 0.90 0.14
V2 -0.48 1.00 -0.65 0.20
V3 0.90 -0.65 1.00 -0.27
V4 0.14 0.20 -0.27 1.00

Compare this to the standard command for finding correlations cor.

> round(cor(Xij), 2)

E.2 Matrices 471

V1 V2 V3 V4
V1 1.00 -0.48 0.90 0.14
V2 -0.48 1.00 -0.65 0.20
V3 0.90 -0.65 1.00 -0.27
V4 0.14 0.20 -0.27 1.00

E.2.4 The Identity Matrix

The identity matrix is merely that matrix, which when multiplied by another matrix, yields
the other matrix. (The equivalent of 1 in normal arithmetic.) It is a diagonal matrix with 1
on the diagonal.

> I <- diag(1,nrow=dim(X.cov)[1])

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

E.2.5 Matrix Inversion

The inverse of a square matrix is the matrix equivalent of dividing by that matrix. That is,
either pre or post multiplying a matrix by its inverse yields the identity matrix. The inverse
is particularly important in multiple regression, for it allows us to solve for the beta weights.

Given the equation
ŷ = bX+ c

we can solve for b by multiplying both sides of the equation by X’ to form a square matrix
XX0 and then take the inverse of that square matrix:

yX0 = bXX0 <=> b = yX0(XX0)�1

We can find the inverse by using the solve function. To show that XX�1 = X�1X = I, we
do the multiplication.

> X.inv <- solve(X.cov)

V1 V2 V3 V4
V1 0.9872729 -0.14437764 -1.3336591 -0.32651075
V2 -0.1443776 0.05727259 0.2239567 0.04677367
V3 -1.3336591 0.22395665 1.8598554 0.44652285
V4 -0.3265108 0.04677367 0.4465228 0.12334760

> round(X.cov %*% X.inv, 2)

472 E Appendix: A Review of Matrices

V1 V2 V3 V4
V1 1 0 0 0
V2 0 1 0 0
V3 0 0 1 0
V4 0 0 0 1

> round(X.inv %*% X.cov, 2)

V1 V2 V3 V4
V1 1 0 0 0
V2 0 1 0 0
V3 0 0 1 0
V4 0 0 0 1

There are multiple ways of finding the matrix inverse, solve is just one of them. Ap-
pendix E.4.1 goes into more detail about how inverses are used in systems of simultaneous
equations. Chapter 5 considers the use of matrix operations in multiple regression.

E.2.6 Eigenvalues and Eigenvectors

The eigenvectors of a matrix are said to provide a basis space for the matrix. This is a set of
orthogonal vectors which when multiplied by the appropriate scaling vector of eigenvalues
will reproduce the matrix.

Given a n⇤n matrix R, each eigenvector solves the equation

xiR = lixi

and the set of n eigenvectors are solutions to the equation

XR = lX

where X is a matrix of orthogonal eigenvectors and l is a diagonal matrix of the the eigen-
values, li. Then

xiR�liXI = 0 <=> xi(R�liI) = 0.

Finding the eigenvectors and values is computationally tedious, but may be done using the
eigen function which uses a QR decomposition of the matrix. That the vectors making up
X are orthogonal means that

XX0 = I

and because they form the basis space for R that

R = XlX0.

That is, it is possible to recreate the correlation matrix R in terms of an orthogonal set of
vectors (the eigenvectors) scaled by their associated eigenvalues. (See 6.1.1 and Table 6.2 for
an example of an eigenvalue decomposition using the eigen function.

The sum of the eigenvalues for a correlation matrix is the rank of the correlation matrix.
The product of the eigenvalues is the determinant of the matrix.

E.3 Matrix operations for data manipulation 473

E.2.7 Determinants

The determinant of an n * n correlation matrix may be thought of as the proportion of
the possible n-space spanned by the variable space and is sometimes called the generalized
variance of the matrix. As such, it can also be considered as the volume of the variable space.
If the correlation matrix is thought of a representing vectors within a n dimensional space,
then the square roots of the eigenvalues are the lengths of the axes of that space. The product
of these, the determinant, is then the volume of the space. It will be a maximum when the
axes are all of unit length and be zero if at least one axis is zero. Think of a three dimensional
sphere (and then generalize to a n dimensional hypersphere.) If it is squashed in a way that
preserves the sum of the lengths of the axes, then volume of the oblate hyper sphere will be
reduced.

The determinant is an inverse measure of the redundancy of the matrix. The smaller the
determinant, the more variables in the matrix are measuring the same thing (are correlated).
The determinant of the identity matrix is 1, the determinant of a matrix with at least
two perfectly correlated (linearly dependent) rows or columns will be 0. If the matrix is
transformed into a lower diagonal matrix, the determinant is the product of the diagonals.
The determinant of a n * n square matrix, R is also the product of the n eigenvalues of that
matrix.

det(R) = kRk= P n
i=1

li (E.5)

and the characteristic equation for a square matrix, X, is

kX�l Ik= 0

where l is an eigenvalue of X.
The determinant may be found by the det function. The determinant may be used in

estimating the goodness of fit of a particular model to the data, for when the model fits
perfectly, then the inverse of the model times the data will be an identity matrix and the
determinant will be one (See Chapter 6 for much more detail.)

E.3 Matrix operations for data manipulation

Using the basic matrix operations of addition and multiplication allow for easy manipulation
of data. In particular, finding subsets of data, scoring multiple scales for one set of items, or
finding correlations and reliabilities of composite scales are all operations that are easy to do
with matrix operations.

In the next example we consider 5 extraversion items for 200 subjects collected as part
of the Synthetic Aperture Personality Assessment project. The items are taken from the
International Personality Item Pool (ipip.ori.org) and are downloaded from a remote server.
A larger data set taken from the SAPA project is included as the bfi data set in psych. We
use this remote set to demonstrate the ability to read data from the web. Because the first
item is an identification number, we drop the first column

> datafilename = "http://personality-project.org/R/datasets/extraversion.items.txt"
> items = read.table(datafilename, header = TRUE)

474 E Appendix: A Review of Matrices

> items <- items[, -1]
> dim(items)

[1] 200 5

We first use functions from the psych package to describe these data both numerically
and graphically.

> library(psych)

[1] "psych" "stats" "graphics" "grDevices" "utils" "datasets" "methods" "base"

> describe(items)

var n mean sd median trimmed mad min max range skew kurtosis se
q_262 1 200 3.07 1.49 3 3.01 1.48 1 6 5 0.23 -0.90 0.11
q_1480 2 200 2.88 1.38 3 2.83 1.48 0 6 6 0.21 -0.85 0.10
q_819 3 200 4.57 1.23 5 4.71 1.48 0 6 6 -1.00 0.71 0.09
q_1180 4 200 3.29 1.49 4 3.30 1.48 0 6 6 -0.09 -0.90 0.11
q_1742 5 200 4.38 1.44 5 4.54 1.48 0 6 6 -0.72 -0.25 0.10

> pairs.panels(items)

We can form two composite scales, one made up of the first 3 items, the other made up of
the last 2 items. Note that the second (q1480) and fourth (q1180) are negatively correlated
with the remaining 3 items. This implies that we should reverse these items before scoring.

To form the composite scales, reverse the items, and find the covariances and then cor-
relations between the scales may all be done by matrix operations on either the items or
on the covariances between the items. In either case, we want to define a “keys” matrix de-
scribing which items to combine on which scale. The correlations are, of course, merely the
covariances divided by the square root of the variances.

E.3.1 Matrix operations on the raw data

> keys <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1), ncol = 2) #specify
> keys # and show the keys matrix
> X <- as.matrix(items) #matrix operations require matrices
> X.ij <- X %*% keys #this results in the scale scores
> n <- dim(X.ij)[1] # how many subjects?
> one <- rep(1, dim(X.ij)[1])
> X.means <- t(one) %*% X.ij/n
> X.cov <- t(X.ij - one %*% X.means) %*% (X.ij - one %*% X.means)/(n - 1)
> round(X.cov, 2)

> keys
[,1] [,2]

[1,] 1 0
[2,] -1 0
[3,] 1 0

E.3 Matrix operations for data manipulation 475

q_262
0 2 4 6

−0.26 0.41

0 2 4 6

−0.51

1
3

5

0.48
0

2
4

6

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●●

●

● ●●

●

●

●●

● ●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

● ●● ●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●●●

●

q_1480
−0.66 0.52 −0.47

● ●●

●

●

●●

●●

●

●●

● ●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

● ●

●

●●

●●

●

●

●●

● ●

●●

●●

●

●

●●●● ●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●●●● ● ●

●●
●

●●●

●

●

● ●

●●

●

●●

● ●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●●

●

● ●

●●

●

●

●●

●●

●●

●●

●

●

●●●● ●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●●● ●●

●●
● q_819

−0.41

0
2

4
6

0.65

0
2

4
6

●

●●

●

●

●

●

●●

●

●●●

●

●

●● ●●●

●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●●

●

●●●

●

●

●● ●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

● ●● ●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●●

●

●● ●

●

●

●●●● ●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

● ●● ●

●

●

●

●

●

●

●●

● ●

● ●

●● ●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

q_1180
−0.49

1 3 5

●

●●

●

●

●

●

●●

●

●●

●

●

●

●● ●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

● ●

●●●

●

●

●● ●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●● ●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ● ●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

● ●

●●●

●

●

●●●

0 2 4 6

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●●

●●●

●

●

●●●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ● ●

●

● ●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

● ●

●●●

●

●

●● ●

0 2 4 6

0
2

4
6q_1742

Fig. E.1 Scatter plot matrix (SPLOM) of 5 extraversion items for 200 subjects.

[4,] 0 -1
[5,] 0 1

[,1] [,2]
[1,] 10.45 6.09
[2,] 6.09 6.37

> X.sd <- diag(1/sqrt(diag(X.cov)))
> X.cor <- t(X.sd) %*% X.cov %*% (X.sd)
> round(X.cor, 2)

[,1] [,2]
[1,] 1.00 0.75
[2,] 0.75 1.00

476 E Appendix: A Review of Matrices

E.3.2 Matrix operations on the correlation matrix

The previous example found the correlations and covariances of the scales based upon the
raw data. We can also do these operations on the correlation matrix.

> keys <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1), ncol = 2)
> X.cor <- cor(X)
> round(X.cor, 2)

q_262 q_1480 q_819 q_1180 q_1742
q_262 1.00 -0.26 0.41 -0.51 0.48
q_1480 -0.26 1.00 -0.66 0.52 -0.47
q_819 0.41 -0.66 1.00 -0.41 0.65
q_1180 -0.51 0.52 -0.41 1.00 -0.49
q_1742 0.48 -0.47 0.65 -0.49 1.00

> X.cov <- t(keys) %*% X.cor %*% keys
> X.sd <- diag(1/sqrt(diag(X.cov)))
> X.cor <- t(X.sd) %*% X.cov %*% (X.sd)
> keys

[,1] [,2]
[1,] 1 0
[2,] -1 0
[3,] 1 0
[4,] 0 -1
[5,] 0 1

> round(X.cov, 2)

[,1] [,2]
[1,] 5.66 3.05
[2,] 3.05 2.97

> round(X.cor, 2)

[,1] [,2]
[1,] 1.00 0.74
[2,] 0.74 1.00

E.3.3 Using matrices to find test reliability

The reliability of a test may be thought of as the correlation of the test with a test just like
it. One conventional estimate of reliability, based upon the concepts from domain sampling
theory, is coe�cient alpha (al pha). For a test with just one factor, a is an estimate of the
amount of the test variance due to that factor. However, if there are multiple factors in the
test, a neither estimates how much the variance of the test is due to one, general factor, nor
does it estimate the correlation of the test with another test just like it. (See Zinbarg et al.
(2005) for a discussion of alternative estimates of reliabiity.)

E.3 Matrix operations for data manipulation 477

Given either a covariance or correlation matrix of items, a may be found by simple matrix
operations:

1) V= the correlation or covariance matrix
2) Let Vt = the total variance = the sum of all the items in the correlation matrix for that

scale.
3) Let n = number of items in the scale
4)

a =
Vt �diag(V)

Vt
⇤ n

n�1

To demonstrate the use of matrices to find coe�cient a, consider the five items measuring
extraversion taken from the International Personality Item Pool. Two of the items need to
be weighted negatively (reverse scored).

Alpha may be found from either the correlation matrix (standardized alpha) or the co-
variance matrix (raw alpha). In the case of standardized alpha, the diag(V) is the same as
the number of items. Using a key matrix, we can find the reliability of 3 di↵erent scales, the
first is made up of the first 3 items, the second of the last 2, and the third is made up of all
the items.

> datafilename <- "http://personality-project.org/R/datasets/extraversion.items.txt"
> items = read.table(datafilename, header = TRUE)
> items <- items[, -1]
> key <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, 1), ncol = 3)
> colnames(key) <- c("V1-3", "V4-5", "V1-5")
> rownames(key) <- colnames(items)

> key

V1-3 V4-5 V1-5
q_262 1 0 1
q_1480 -1 0 -1
q_819 1 0 1
q_1180 0 -1 -1
q_1742 0 1 1

> raw.r <- cor(items) #find the correlations -- could have been done with matrix operations
> V <- t(key) %*% raw.r %*% key
> rownames(V) <- colnames(V) <- c("V1-3", "V4-5", "V1-5")
> round(V, 2)

V1-3 V4-5 V1-5
V1-3 5.66 3.05 8.72
V4-5 3.05 2.97 6.03
V1-5 8.72 6.03 14.75

> n <- diag(t(key) %*% key)
> alpha <- (diag(V) - n)/(diag(V)) * (n/(n - 1))
> round(alpha, 2)

V1-3 V4-5 V1-5
0.71 0.66 0.83

478 E Appendix: A Review of Matrices

As would be expected, there are multiple functions in R to score scales and find coe�cient
alpha this way. In psych the score.items function will work on raw data, and cluster.cor
function for correlations matrices.

E.4 Multiple correlation

Given a set of n predictors of a criterion variable, what is the optimal weighting of the n
predictors? This is, of course, the problem of multiple correlation or multiple regression.
Although we would normally use the linear model (lm) function to solve this problem, we
can also do it from the raw data or from a matrix of covariances or correlations by using
matrix operations and the solve function.

Consider the data set, X, created in section E.2.1. If we want to predict V4 as a function of
the first three variables, we can do so three di↵erent ways, using the raw data, using deviation
scores of the raw data, or with the correlation matrix of the data.

For simplicity, lets relable V
4

to be Y and V
1

... V
3

to be X
1

...X
3

and then define X as the
first three columns and Y as the last column:

X1 X2 X3
S1 9 4 9
S2 9 7 1
S3 2 9 9
S4 8 2 9
S5 6 4 0
S6 5 9 5
S7 7 9 3
S8 1 1 9
S9 6 4 4
S10 7 5 8

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
7 8 3 6 0 8 0 2 9 6

E.4.1 Data level analyses

At the data level, we can work with the raw data matrix X, or convert these to deviation
scores (X.dev) by subtracting the means from all elements of X. At the raw data level we
have

m ˆY
1

=m Xnnb
1

+m e
1

(E.6)

and we can solve for nb1 by pre-multiplying by nX0
m (thus making the matrix on the right

side of the equation into a square matrix so that we can multiply through by an inverse. See
section E.2.5)

nX 0
mm ˆY

1

=n X 0
mmXnnb

1

+m e
1

(E.7)

and then solving for beta by pre-multiplying both sides of the equation by (XX0)�1

E.4 Multiple correlation 479

b = (XX 0)�1X 0Y (E.8)

These beta weights will be the weights with no intercept. Compare this solution to the one
using the lm function with the intercept removed:

> beta <- solve(t(X) %*% X) %*% (t(X) %*% Y)
> round(beta, 2)

[,1]
X1 0.56
X2 0.03
X3 0.25

> lm(Y ~ -1 + X)

Call:
lm(formula = Y ~ -1 + X)

Coefficients:
XX1 XX2 XX3

0.56002 0.03248 0.24723

If we want to find the intercept as well, we can add a column of 1’s to the X matrix. This
matches the normal lm result.

> one <- rep(1, dim(X)[1])
> X <- cbind(one, X)
> print(X)

one X1 X2 X3
S1 1 9 4 9
S2 1 9 7 1
S3 1 2 9 9
S4 1 8 2 9
S5 1 6 4 0
S6 1 5 9 5
S7 1 7 9 3
S8 1 1 1 9
S9 1 6 4 4
S10 1 7 5 8

> beta <- solve(t(X) %*% X) %*% (t(X) %*% Y)
> round(beta, 2)

[,1]
one -0.94
X1 0.62
X2 0.08
X3 0.30

> lm(Y ~ X)

480 E Appendix: A Review of Matrices

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept) Xone XX1 XX2 XX3

-0.93843 NA 0.61978 0.08034 0.29577

We can do the same analysis with deviation scores. Let X.dev be a matrix of deviation
scores, then can write the equation

ˆY = Xb + e (E.9)

and solve for
b = (X .devX .dev0)�1X .dev0Y. (E.10)

(We don’t need to worry about the sample size here because n cancels out of the equation).
At the structure level, the covariance matrix = XX0/(n-1) and X0Y/(n-1) may be replaced

by correlation matrices by pre and post multiplying by a diagonal matrix of 1/sds) with rxy
and we then solve the equation

b = R�1rxy (E.11)

Consider the set of 3 variables with intercorrelations (R)

x1 x2 x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

and correlations of x with y (rxy)

x1 x2 x3
y 0.4 0.35 0.3

From the correlation matrix, we can use the solve function to find the optimal beta weights.

> R <- matrix(c(1, 0.56, 0.48, 0.56, 1, 0.42, 0.48, 0.42, 1), ncol = 3)
> rxy <- matrix(c(0.4, 0.35, 0.3), ncol = 1)
> colnames(R) <- rownames(R) <- c("x1", "x2", "x3")
> rownames(rxy) <- c("x1", "x2", "x3")
> colnames(rxy) <- "y"
> beta <- solve(R, rxy)
> round(beta, 2)

y
x1 0.26
x2 0.16
x3 0.11

Using the correlation matrix to do multiple R is particular useful when the correlation or
covariance matrix is from a published source, or if, for some reason, the original data are not
available. The mat.regress function in psych finds multiple R this way. Unfortunately, by
not having the raw data, many of the error diagnostics are not available.

E.5 Multiple regression as a system of simultaneous equations 481

E.5 Multiple regression as a system of simultaneous equations

Many problems in data analysis require solving a system of simultaneous equations. For
instance, in multiple regression with two predictors and one criterion with a set of correlations
of:

8
<

:

rx1x1

rx1x2

rx1y
rx1x2

rx2x2

rx2y
rx1y rx2y ryy

9
=

; (E.12)

we want to find the find weights, bi, that when multiplied by x
1

and x
2

maximize the corre-
lations with y. That is, we want to solve the two simultaneous equations

⇢
rx1x1

b
1

+ rx1x2

b
2

= rx1y
rx1x2

b
1

+ rx2x2

b
2

= rx2y

�
. (E.13)

We can directly solve these two equations by adding and subtracting terms to the two
such that we end up with a solution to the first in terms of b

1

and to the second in terms of
b

2

:

⇢
b

1

+ rx1x2

b
2

/rx1x1

= rx1y/rx1x1

rx1x2

b
1

/rx2x2

+b
2

= rx2y/rx2x2

�

which becomes ⇢
b

1

= (rx1y � rx1x2

b
2

)/rx1x1

b
2

= (rx2y � rx1x2

b
1

)/rx2x2

�
(E.14)

Substituting the second row of (E.14) into the first row, and vice versa we find

⇢
b

1

= (rx1y � rx1x2

(rx2y � rx1x2

b
1

)/rx2x2

)/rx1x1

b
2

= (rx2y � rx1x2

(rx1y � rx1x2

b
2

)/rx1x1

)/rx2x2

�

Collecting terms, we find:

⇢
b

1

rx1x1

rx2x2

= (rx1yrx2x2

� rx1x2

(rx2y � rx1x2

b
1

))
b

2

rx2x2

rx1x1

= (rx2yrx1x1

� rx1x2

(rx1y � rx1x2

b
2

)

�

and rearranging once again:

⇢
b

1

rx1x1

rx2x2

� r2

x1x2

b
1

= (rx1yrx2x2

� rx1x2

rx2y
b

2

rx1x1

rx2x2

� r2

x1x2

b
2

= (rx2yrx1x1

� rx1x2

rx1y

�

Struggling on:

⇢
b

1

(rx1x1

rx2x2

� r2

x1x2

) = rx1yrx2x2

� rx1x2

rx2y
b

2

(rx1x1

rx2x2

� r2

x1x2

) = rx2yrx1x1

� rx1x2

rx1y

�

And finally: ⇢
b

1

= (rx1yrx2x2

� rx1x2

rx2y)/(rx1x1

rx2x2

� r2

x1x2

)
b

2

= (rx2yrx1x1

� rx1x2

rx1y)/(rx1x1

rx2x2

� r2

x1x2

)

�

482 E Appendix: A Review of Matrices

E.6 Matrix representation of simultaneous equation

Alternatively, these two equations (E.13) may be represented as the product of a vector of
unknowns (the b s) and a matrix of coe�cients of the predictors (the rxi’s) and a matrix of
coe�cients for the criterion (rxiy): 1

(b
1

b
2

)

✓
rx1x1

rx1x2

rx1x2

rx2x2

◆
= (rx1y rx2x2

) (E.15)

If we let b = (b
1

b
2

), R =

✓
rx1x1

rx1x2

rx1x2

rx2x2

◆
and rxy = (rx1y rx2x2

) then equation (E.15) becomes

bR = rxy (E.16)

and we can solve (E.16) for b by multiplying both sides by the inverse of R.

b = bRR�1 = rxyR�1

E.6.1 Finding the inverse of a 2 x 2 matrix

But, how do we find the inverse (R�1)? As an example we solve the inverse of a 2 x2 matrix,
but the technique may be applied to a matrix of any size. First, define the identity matrix,
I, as

I =
✓

1 0

0 1

◆

and then the equation
R = IR

may be represented as ✓
rx1x1

rx1x2

rx1x2

rx2x2

◆
=

✓
1 0

0 1

◆✓
rx1x1

rx1x2

rx1x2

rx2x2

◆

Dropping the x subscript (for notational simplicity) we have

✓
r

11

r
12

r
12

r
22

◆
=

✓
1 0

0 1

◆✓
r

11

r
12

r
12

r
22

◆
(E.17)

We may multiply both sides of equation (E.17) by a simple transformation matrix (T) without
changing the equality. If we do this repeatedly until the left hand side of equation (E.17) is
the identity matrix, then the first matrix on the right hand side will be the inverse of R. We
do this in several steps to show the process.

Let

1 See Appendix -1 for a detailed discussion of how this is done in practice with some “real” data using
the statistical program, R. In R, the inverse of a square matrix, X, is found by the solve function: X.inv
<- solve(X)

E.6 Matrix representation of simultaneous equation 483

T
1

=

1

r
11

0

0

1

r
22

!

then we multiply both sides of equation (E.17) by T
1

in order to make the diagonal elements
of the left hand equation = 1 and we have

T
1

R = T
1

IR (E.18)

1

r
12

r
11r

12

r
22

1

!
=

1

r
11

0

0

1

r
22

!✓
r

11

r
12

r
12

r
22

◆
(E.19)

Then, by letting

T
2

=

✓
1 0

� r
12

r
22

1

◆

and multiplying T
2

times both sides of equation (E.19) we can make the lower o↵ diagonal
element = 0. (Functionally, we are subtracting r

12

r
22

times the first row from the second row).

1

r
12

r
11

0 1� r2

12

r
11

r
22

!
=

1

r
12

r
11

0

r
11

r
22

�r2

12

r
11

r
22

!
=

1

r
11

0

� r
12

r
11

r
22

1

r
22

!✓
r

11

r
12

r
12

r
22

◆
(E.20)

Then, in order to make the diagonal elements all = 1 , we let

T
3

=

1 0

0

r
11

r
22

r
11

r
22

�r2

12

!

and multiplying T
3

times both sides of equation (E.20) we have

✓
1

r
12

r
11

0 1

◆
=

1

r
11

0

� r
12

r
11

r
22

�r2

12

r
11

r
11

r
22

�r2

12

!✓
r

11

r
12

r
12

r
22

◆
(E.21)

Then, to make the upper o↵ diagonal element = 0, we let

T
4

=

✓
1 � r

12

r
11

0 1

◆

and multiplying T
4

times both sides of equation (E.21) we have

✓
1 0

0 1

◆
=

 r
22

r
11

r
22

�r2

12

� r
12

r
11

r
22

�r2

12

� r
12

r
11

r
22

�r2

12

r
11

r
11

r
22

�r2

12

!✓
r

11

r
12

r
12

r
22

◆

That is, the inverse of our original matrix, R, is

R�1 =

 r
22

r
11

r
22

�r2

12

� r
12

r
11

r
22

�r2

12

� r
12

r
11

r
22

�r2

12

r
11

r
11

r
22

�r2

12

!
(E.22)

The previous example was drawn out to be easier to follow, and it would be possible
to combine several steps together. The important point is that by successively multiplying
equation E.17 by a series of transformation matrices, we have found the inverse of the original
matrix.

484 E Appendix: A Review of Matrices

T
4

T
3

T
2

T
1

R = T
4

T
3

T
2

T
1

IR

or, in other words
T

4

T
3

T
2

T
1

R = I = R�1R

T
4

T
3

T
2

T
1

I = R�1 (E.23)

E.7 A numerical example of finding the inverse

Consider the following Covariance matrix, C, and set of transform matrices, T1 ... T4, as
derived before.

C =

✓
3 2

2 4

◆

The first transformation is to change the diagonal elements to 1 by dividing all elements by
the reciprocal of the diagonal elements. (This is two operations, the first divides elements of
the first row by 3, the second divides elements of the second row by 4).

T
1

C =

✓
.33 .00

.00 .25

◆✓
3 2

2 4

◆
=

✓
1.0 .667

.5 1

◆

The next operation is to make the lower o↵ diagonal element 0 by subtracting .5 times
the first row from the second row.

T
2

T
1

C =

✓
1.0 0

�.5 1

◆✓
.33 .00

.00 .25

◆✓
3 2

2 4

◆
=

✓
1.0 .667

0 .667

◆

Then make the make the diagonals 1 again by multiplying elements of the second by 1.5 (this
could be combined with the next operation).

T
3

T
2

T
1

C =

✓
1.0 0

0 1.5

◆✓
1.0 0

�.5 1

◆✓
.33 .00

.00 .25

◆✓
3 2

2 4

◆
=

✓
1.0 .67

0 1.0

◆

Now multiply the second row by -.67 and add to the first row. The set of products has created
the identify matrix.

T
4

T
3

T
2

T
1

C =

✓
1 �.67

0 1

◆✓
1.0 0

0 1.5

◆✓
1.0 0

�.5 1

◆✓
.33 .00

.00 .25

◆✓
3 2

2 4

◆
=

✓
1 0

0 1

◆

As shown in equation E.23, if apply this same set of transformations to the identity matrix,
I, we find the inverse of R

T
4

T
3

T
2

T
1

I =
✓

1 �.67

0 1

◆✓
1.0 0

0 1.5

◆✓
1.0 0

�.5 1

◆✓
.33 .00

.00 .25

◆✓
3 2

2 4

◆
=

✓
.5 �.250

�.25 .375

◆

That is,

E.8 Examples of inverse matrices 485

C�1 =

✓
.5 �.250

�.25 .375

◆

We confirm this by multiplying

CC�1 =

✓
3 2

2 4

◆✓
.5 �.250

�.25 .375

◆
=

✓
1 0

0 1

◆

Of course, a much simpler technique is to simply enter the original matrix into R and use
the solve function:

>C <- matrix(c(3,2,2,4),byrow=TRUE,nrow=2)
> C

[,1] [,2]
[1,] 3 2
[2,] 2 4
> solve(C)

[,1] [,2]
[1,] 0.50 -0.250
[2,] -0.25 0.375

E.8 Examples of inverse matrices

E.8.1 Inverse of an identity matrix

The inverse of the identity matrix is just the identity matrix:

I
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
> solve (I)

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

E.8.2 The e↵ect of correlation size on the inverse

As the correlations in the matrix become larger, the elements of the inverse become dispro-
portionally larger. This is shown on the next page for matrices of size 2 and 3 with correlations
ranging from 0 to .99.

486 E Appendix: A Review of Matrices

The e↵ect of multicollinearity is not particularly surprising when we examine equation
(E.22) and notice that in the two by two case, the elements are divided by r

11

r
22

� r2

12

. As
r2

12

approaches r
11

r
22

, this ratio will tend towards •.
Because the inverse is used in estimation of the linear regression weights, as the correlations

between the predictors increases, the elements of the inverse grow very large and small
variations in the pattern of predictors will lead to large variations in the beta weights.

E.8 Examples of inverse matrices 487

Original matrix
> a

[,1] [,2]
[1,] 1.0 0.5
[2,] 0.5 1.0
> b

[,1] [,2]
[1,] 1.0 0.8
[2,] 0.8 1.0
> c

[,1] [,2]
[1,] 1.0 0.9
[2,] 0.9 1.0

> A
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
> B

[,1] [,2] [,3]
[1,] 1.0 0.0 0.5
[2,] 0.0 1.0 0.3
[3,] 0.5 0.3 1.0
>C

[,1] [,2] [,3]
[1,] 1.0 0.8 0.5
[2,] 0.8 1.0 0.3
[3,] 0.5 0.3 1.0
> D

[,1] [,2] [,3]
[1,] 1.0 0.9 0.5
[2,] 0.9 1.0 0.3
[3,] 0.5 0.3 1.0
> E

[,1] [,2] [,3]
[1,] 1.00 0.95 0.5
[2,] 0.95 1.00 0.3
[3,] 0.50 0.30 1.0
> F

[,1] [,2] [,3]
[1,] 1.00 0.99 0.5
[2,] 0.99 1.00 0.3
[3,] 0.50 0.30 1.0

Inverse of Matrix
> round(solve(a),2)

[,1] [,2]
[1,] 1.33 -0.67
[2,] -0.67 1.33
> round(solve(b),2)

[,1] [,2]
[1,] 2.78 -2.22
[2,] -2.22 2.78
> round(solve(c),2)

[,1] [,2]
[1,] 5.26 -4.74
[2,] -4.74 5.26

> round(solve(A),2)
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
> round(solve(B),2)

[,1] [,2] [,3]
[1,] 1.38 0.23 -0.76
[2,] 0.23 1.14 -0.45
[3,] -0.76 -0.45 1.52
> round(solve(C),2)

[,1] [,2] [,3]
[1,] 3.5 -2.50 -1.00
[2,] -2.5 2.88 0.38
[3,] -1.0 0.38 1.38
> round(solve(D),2)

[,1] [,2] [,3]
[1,] 7.58 -6.25 -1.92
[2,] -6.25 6.25 1.25
[3,] -1.92 1.25 1.58
> round(solve(E),2)

[,1] [,2] [,3]
[1,] 21.41 -18.82 -5.06
[2,] -18.82 17.65 4.12
[3,] -5.06 4.12 2.29
> round(solve(F),2)

[,1] [,2] [,3]
[1,] -39.39 36.36 8.79
[2,] 36.36 -32.47 -8.44
[3,] 8.79 -8.44 -0.86

