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Introduction

1. Ockham’s razor and data reduction

2. Factor analysis – several examples
• Data from a correlation matrix

• Simulated 2 factor data
• Real data – Ability tests

• Raw data
• Simulated 2 factor data
• Real data – 5 Personality dimensions

3. Principal Components analysis
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Models of data

1. (MacCallum, 2004)“A factor analysis model is not an exact
representation of real-world phenomena.

2. Always wrong to some degree, even in population.

3. At best, model is an approximation of real world.”

4. Box (1979): “Models, of course, are never true, but
fortunately it is only necessary that they be useful. For this it
is usually needful only that they not be grossly wrong.”

5. Tukey (1961): “In a single sentence, the moral is: Admit that
complexity always increases, first from the model you fit to the
data, thence to the model you use to think and plan about the
experiment and its analysis, and thence to the true situation.”

(From MacCallum, 2004); http://www.fa100.info/maccallum2.pdf
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Latent Variables
ξ η
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Theory: A regression model of latent variables
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A measurement model for X
δ X ξ
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A measurement model for Y
η Y ϵ
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A complete structural model
δ X ξ η Y ϵ
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Various measurement models

1. Observed variables models
• Singular Value Decompostion
• Eigen Value – Eigen Vector decomposition
• Principal Components
• First k principal components as an approximation

2. Latent variable models
• Exploratory Factor analysis
• Confirmatory Factor analysis

• Growth Curve Models
• Latent Class Models

• Item Response Theory models

3. Interpretation of models
• Choosing the appropriate number of components/factors
• Transforming/rotating towards interpretable structures
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Singular Value Decomposition of the data matrix

Consider the matrix X of n deviation scores for N subjects, where
each element, xij , represents the responses of the i th individual to
the j th item or test. For simplicity, let the xij scores in each column
be deviations from the mean for that column (i.e., they are column
centered, perhaps by using scale). Let the number of variables be
n. Then the svd function will find the Singular Value
Decomposition of X which allows us to express X as the product of
three orthogonal matrices:

NXn = NUnnDnnV
′
n

where D is a diagonal matrix of the singular values and the U and
V matrices are matrices of the singular vectors. Although
descriptive of the data, what is meaning of these vectors?
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Decomposition (models) of Correlation and Covariance matrices

With X defined as before, the covariance matrix, Cov, is

Cov = N−1XX′

and the standard deviations are

sd =
√

diag(Cov).

Let the matrix Isd be a diagonal matrix with elements = 1
sdi

, then
the correlation matrix R is

R = IsdCovIsd.

The problem is how to approximate the matrix, R of rank n, with a
matrix of lower rank? The solution to this problem may be seen if
we think about how to create a model matrix to approximate R.
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Factor Analysis/Components Analysis/Cluster Analysis

1. Data simplification and Ockham’s Razor: ”do not multiple
entities beyond necessity”

2. Can we describe a data set with a simpler representation of
the data.

3. Is it possible to combine subjects and or variables that are
redundant?

4. Or almost redundant (without losing very much information)

5. This is a problem in projective geometry. Can we project from
a high dimensional space into a lower order space.
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An example correlation matrix

Consider the following correlation matrix

V1 V2 V3 V4 V5 V6
V1 1 .00 0 .72 0 .63 0 .54 0 .45 0 .36
V2 0 .72 1 .00 0 .56 0 .48 0 .40 0 .32
V3 0 .63 0 .56 1 .00 0 .42 0 .35 0 .28
V4 0 .54 0 .48 0 .42 1 .00 0 .30 0 .24
V5 0 .45 0 .40 0 .35 0 .30 1 .00 0 .20
V6 0 .36 0 .32 0 .28 0 .24 0 .20 1 .00

Is it possible to model these 36 correlations and variances with
fewer terms? Yes, of course. The diagonal elements are all 1 and
the off diagonal elements are symmetric. Thus, we have n ∗ (n− 1)
correlations we want to model.
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Eigen vector decomposition

Given a nxn matrix R, each eigenvector, xi, solves the equation

xiR = λixi

and the set of n eigenvectors are solutions to the equation

XR = λX

where X is a matrix of orthogonal eigenvectors and λ is a diagonal
matrix of the the eigenvalues, λi . Then

xiR− λiXI = 0 <=> xi(R− λi I) = 0

Finding the eigenvectors and eigenvalues is computationally
tedious, but may be done using the eigen function. That the
vectors making up X are orthogonal means that

XX′ = I

and because they form the basis space for R that

R = XλX′.

That is, it is possible to recreate the correlation matrix R in terms
of an orthogonal set of vectors (the eigenvectors) scaled by their
associated eigenvalues. Both the eigenvectors and eigenvalues are
found by using the eigen function.
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Consider the eigen value solution for the example correlation matrix.

> e <− e igen (R)
> p r i n t ( e , d i g i t s =2)

$ v a l u e s
[ 1 ] 3 .16 0 .82 0 .72 0 .59 0 .44 0 .26

$ v e c t o r s
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]

[ 1 , ] −0.50 −0.061 0 .092 0 .14 0 .238 0 .816
[ 2 , ] −0.47 −0.074 0 .121 0 .21 0 .657 −0.533
[ 3 , ] −0.43 −0.096 0 .182 0 .53 −0.675 −0.184
[ 4 , ] −0.39 −0.142 0 .414 −0.78 −0.201 −0.104
[ 5 , ] −0.34 −0.299 −0.860 −0.20 −0.108 −0.067
[ 6 , ] −0.28 0 .934 −0.178 −0.10 −0.067 −0.045

> round ( e$ v e c t o r s %∗% t ( e$ v e c t o r s ) , 2 ) #the e i g en v e c t o r s a r e o r t hogona l
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]

[ 1 , ] 1 0 0 0 0 0
[ 2 , ] 0 1 0 0 0 0
[ 3 , ] 0 0 1 0 0 0
[ 4 , ] 0 0 0 1 0 0
[ 5 , ] 0 0 0 0 1 0
[ 6 , ] 0 0 0 0 0 1
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Eigen Value decomposition and recreation of the original matrix
Find the eigen values (λ) and
eigen vectors (Vi).

> e <− e igen (R)
> p r i n t ( e , d i g i t s =2)

$ v a l u e s
[ 1 ] 3 .16 0 .82 0 .72 0 .59 0 .44 0 .26

$ v e c t o r s
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

[ , 6 ]
[ 1 , ] −0.50 −0.061 0 .092 0 .14 0 .238
0 .816
[ 2 , ] −0.47 −0.074 0 .121 0 .21
0 .657 −0.533
[ 3 , ] −0.43 −0.096 0 .182
0 .53 −0.675 −0.184
[ 4 , ] −0.39 −0.142
0 .414 −0.78 −0.201 −0.104
[ 5 , ] −0.34 −0.299 −0.860 −0.20 −0.108 −0.067
[ 6 , ] −0.28
0 .934 −0.178 −0.10 −0.067 −0.045

#the e i g en v e c t o r s a r e o r t hogona l

> round ( e$ v e c t o r s %∗% t ( e$ v e c t o r s ) , 2 )
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]

[ 1 , ] 1 0 0 0 0 0
[ 2 , ] 0 1 0 0 0 0
[ 3 , ] 0 0 1 0 0 0
[ 4 , ] 0 0 0 1 0 0
[ 5 , ] 0 0 0 0 1 0
[ 6 , ] 0 0 0 0 0 1

The eigen vectors and values recreate
the observed correlations.

R = VλV′.

> round ( e$ v e c t o r s %∗% diag ( e$ v a l u e s ) %∗% t ( e$ v e c t o r s ) , 2 )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]
[ 1 , ] 1 .00 0 .72 0 .63 0 .54 0 .45 0 .36
[ 2 , ] 0 .72 1 .00 0 .56 0 .48 0 .40 0 .32
[ 3 , ] 0 .63 0 .56 1 .00 0 .42 0 .35 0 .28
[ 4 , ] 0 .54 0 .48 0 .42 1 .00 0 .30 0 .24
[ 5 , ] 0 .45 0 .40 0 .35 0 .30 1 .00 0 .20
[ 6 , ] 0 .36 0 .32 0 .28 0 .24 0 .20 1 .00
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The eigen values reflect the scale, the vectors the structure

Consider the original data and
solution
> R
> e <− e igen (R)
> p r i n t ( e , d i g i t s =2)

V1 V2 V3 V4 V5 V6
V1 1 .00 0 .72 0 .63 0 .54 0 .45 0 .36
V2 0 .72 1 .00 0 .56 0 .48 0 .40 0 .32
V3 0 .63 0 .56 1 .00 0 .42 0 .35 0 .28
V4 0 .54 0 .48 0 .42 1 .00 0 .30 0 .24
V5 0 .45 0 .40 0 .35 0 .30 1 .00 0 .20
V6 0 .36 0 .32 0 .28 0 .24 0 .20 1 .00

$ v a l u e s
[ 1 ] 3 .16 0 .82 0 .72 0 .59 0 .44 0 .26

$ v e c t o r s
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

[ , 6 ]
[ 1 , ] −0.50 −0.061 0 .092 0 .14 0 .238
0 .816
[ 2 , ] −0.47 −0.074 0 .121 0 .21
0 .657 −0.533
[ 3 , ] −0.43 −0.096 0 .182
0 .53 −0.675 −0.184
[ 4 , ] −0.39 −0.142
0 .414 −0.78 −0.201 −0.104
[ 5 , ] −0.34 −0.299 −0.860 −0.20 −0.108 −0.067
[ 6 , ] −0.28
0 .934 −0.178 −0.10 −0.067 −0.045

Consider if all the correlations are
divided by 2.

> R . 5 <− as . matr ix (R/2)
> d iag (R . 5 ) <− 1
> R . 5
> e . 5 <− e igen (R . 5 )
> p r i n t ( e . 5 , 2 )

V1 V2 V3 V4 V5 V6
V1 1.000 0 .36 0 .315 0 .27 0 .225 0 .18
V2 0 .360 1 .00 0 .280 0 .24 0 .200 0 .16
V3 0 .315 0 .28 1 .000 0 .21 0 .175 0 .14
V4 0 .270 0 .24 0 .210 1 .00 0 .150 0 .12
V5 0 .225 0 .20 0 .175 0 .15 1 .000 0 .10
V6 0 .180 0 .16 0 .140 0 .12 0 .100 1 .00

$ v a l u e s
[ 1 ] 2 .08 0 .91 0 .86 0 .80 0 .72 0 .63

$ v e c t o r s
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

[ , 6 ]
[ 1 , ] 0 .50 −0.061 0 .092 0 .14 0 .238
0 .816
[ 2 , ] 0 .47 −0.074 0 .121 0 .21
0 .657 −0.533
[ 3 , ] 0 .43 −0.096 0 .182
0 .53 −0.675 −0.184
[ 4 , ] 0 .39 −0.142
0 .414 −0.78 −0.201 −0.104
[ 5 , ] 0 .34 −0.299 −0.860 −0.20 −0.108 −0.067
[ 6 , ] 0 .28
0 .934 −0.178 −0.10 −0.067 −0.045

Note that the signs are arbitrary.
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Eigen vectors of a 2 x 2 correlation matrix
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Although the length
(eigen values) of
the axes differ, their
orientation (eigen
vectors) are the
same.
> r2 <− matr ix ( c ( 1 , . 6 , . 6 , 1 ) , 2 , 2 )
> p r i n t ( e igen ( r2 ) , 2 )

$ v a l u e s
[ 1 ] 1 . 6 0 . 4

$ v e c t o r s
[ , 1 ] [ , 2 ]

[ 1 , ] 0 .71 −0.71
[ 2 , ] 0 .71 0 .71
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From eigen vectors to Principal Components

1. For n variables, there are n eigen vectors
• There is no parsimony in thinking of the eigen vectors
• Except that the vectors provide the orthogonal basis for the

variables

2. Principal components are formed from the eigen vectors and
eigen values

• R = VλV′ = CC′

• C = V
√
λ

3. But there will still be as many Principal Components as
variables, so what is the point?

4. Take just the first k Principal Components and see how well
this reduced model fits the data.
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The first principal component.

> pc1 <− p r i n c i p a l (R , 1 )
> pc1

Un iquene s s e s :
V1 V2 V3 V4

V5 V6
0.220 0 .307 0 .408 0 .519 0 .635 0 .748
Load ings :

PC1
V1 0 .88
V2 0 .83
V3 0 .77
V4 0 .69
V5 0 .60
V6 0 .50

PC1
SS l o a d i n g s 3 .142
P ropo r t i o n Var 0 .524

#show the model
> round ( pc1$ l o a d i n g s %∗% t ( pc1$ l o a d i n g s ) , 2 )

V1 V2 V3 V4 V5 V6
V1 0 .77 0 .73 0 .68 0 .61 0 .53 0 .44
V2 0 .73 0 .69 0 .64 0 .57 0 .50 0 .42
V3 0 .68 0 .64 0 .59 0 .53 0 .46 0 .38
V4 0 .61 0 .57 0 .53 0 .48 0 .41 0 .34
V5 0 .53 0 .50 0 .46 0 .41 0 .36 0 .30
V6 0 .44 0 .42 0 .38 0 .34 0 .30 0 .25

#find the residuals
> Rr e s i d <−
R − pc1$ l o a d i n g s %∗% t ( pc1$ l o a d i n g s )
> round ( Rre s i d , 2 )

V1 V2 V3 V4 V5 V6
V1 0 .23 −0.01 −0.05 −0.07 −0.08 −0.08
V2 −0.01 0 .31 −0.08 −0.09 −0.10 −0.09
V3 −0.05 −0.08 0 .41 −0.11 −0.11 −0.10
V4 −0.07 −0.09 −0.11 0 .52 −0.11 −0.10
V5 −0.08 −0.10 −0.11 −0.11 0 .64 −0.10
V6 −0.08 −0.09 −0.10 −0.10 −0.10 0 .75

The model fits pretty well, except that the diagonal is
underestimated and the other correlations are over estimated.
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Try 2 and 3 principal components

> p2 <− p r i n c i p a l (R , 2 , r o t a t e=”none ”)
> p2
> r e s i d ( p2 )

P r i n c i p a l Components A n a l y s i s
Ca l l : p r i n c i p a l ( r = R , n f a c t o r s = 2 , r o t a t e = ”none ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

PC1 PC2 h2 u2
V1 0 .88 −0.06 0 .78 0 .217
V2 0 .83 −0.07 0 .70 0 .302
V3 0 .77 −0.09 0 .60 0 .400
V4 0 .69 −0.13 0 .50 0 .502
V5 0 .60 −0.27 0 .44 0 .561
V6 0 .50 0 .85 0 .97 0 .031

PC1 PC2
SS l o a d i n g s 3 .16 0 .82
P ropo r t i o n Var 0 .53 0 .14
Cumulat i ve Var 0 .53 0 .66

F i t based upon o f f d i a g on a l v a l u e s = 0 .95

V1 V2 V3 V4 V5 V6
V1 0 .22
V2 −0.02 0 .30
V3 −0.05 −0.09 0 .40
V4 −0.08 −0.11 −0.13 0 .50
V5 −0.10 −0.12 −0.14 −0.15 0 .56
V6 −0.04 −0.04 −0.03 0 .00 0 .13 0 .03

> p3 <− p r i n c i p a l (R , 3 , r o t a t e=”none ”)
> r e s i d ( p3 )

P r i n c i p a l Components A n a l y s i s
Ca l l : p r i n c i p a l ( r = R , n f a c t o r s = 3 , r o t a t e = ”none ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

PC1 PC2 PC3 h2 u2
V1 0 .88 −0.06 −0.08 0 .79 0 .2108
V2 0 .83 −0.07 −0.10 0 .71 0 .2917
V3 0 .77 −0.09 −0.15 0 .62 0 .3761
V4 0 .69 −0.13 −0.35 0 .62 0 .3789
V5 0 .60 −0.27 0 .73 0 .97 0 .0292
V6 0 .50 0 .85 0 .15 0 .99 0 .0084

PC1 PC2 PC3
SS l o a d i n g s 3 .16 0 .82 0 .72
P ropo r t i o n Var 0 .53 0 .14 0 .12
Cumulat i ve Var 0 .53 0 .66 0 .78

F i t based upon o f f d i a g on a l v a l u e s = 0 .97

V1 V2 V3 V4 V5 V6
V1 0 .21
V2 −0.03 0 .29
V3 −0.07 −0.10 0 .38
V4 −0.11 −0.14 −0.18 0 .38
V5 −0.04 −0.05 −0.03 0 .10 0 .03
V6 −0.02 −0.03 −0.01 0 .05 0 .02 0 .01
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Consider the following matrix

Correlations between 6 variables
Variable V1 V2 V3 V4 V5 V6
V1 1.00 0.72 0.63 0.54 0.45 0.36
V2 0.72 1.00 0.56 0.48 0.40 0.32
V3 0.63 0.56 1.00 0.42 0.35 0.28
V4 0.54 0.48 0.42 1.00 0.30 0.24
V5 0.45 0.40 0.35 0.30 1.00 0.20
V6 0.36 0.32 0.28 0.24 0.20 1.00

Can we represent this in a simpler way?

R = FF ′ + U2

or
R = CC ′
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Representing a correlation matrix with factors or components

Correlations between 6 variables
Variable V1 V2 V3 V4 V5 V6
V1 1.00 0.72 0.63 0.54 0.45 0.36
V2 0.72 1.00 0.56 0.48 0.40 0.32
V3 0.63 0.56 1.00 0.42 0.35 0.28
V4 0.54 0.48 0.42 1.00 0.30 0.24
V5 0.45 0.40 0.35 0.30 1.00 0.20
V6 0.36 0.32 0.28 0.24 0.20 1.00

Table: R = FF ′ + U2

Variable loading
V1 0.9
V2 0.8
V3 0.7
V4 0.6
V5 0.5
V6 0.4

Table: R = CC ′

Variable
V1 0.88
V2 0.83
V3 0.77
V4 0.69
V5 0.60
V6 0.50
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Factors vs. components

Originally developed by Spearman (1904) for the case of one
common factor, and then later generalized by Thurstone (1947)
and others to the case of multiple factors, factor analysis is
probably the most frequently used and sometimes the most
controversial psychometric procedure. The factor model, although
seemingly very similar to the components model, is in fact very
different. For rather than having components as linear sums of
variables, in the factor model the variables are themselves linear
sums of the unknown factors. That is, while components can be
solved for by doing an eigenvalue or singular value decomposition,
factors are estimated as best fitting solutions (Eckart and Young,
1936; Householder and Young, 1938), normally through iterative
methods (Jöreskog, 1978; Lawley and Maxwell, 1963). Cattell
(1965) referred to components analysis as a closed model and
factor analysis as an open model, in that by explaining just the
common variance, there was still more variance to explain.
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Iterative principal axes factor analysis

Principal components represents a n ∗ n matrix in terms of the first
k components. It attempts to reproduce all of the R matrix.
Factor analysis on the other hand, attempts to model just the
common part of the matrix, which means all of the off-diagonal
elements and the common part of the diagonal (the
communalities). The non-common part, the uniquenesses, are
simply that which is left over. An easy to understand procedure is
principal axes factor analysis. This is similar to principal
components, except that it is done with a reduced matrix where
the diagonals are the communalities. The communalities can either
be specified a priori, estimated by such procedures as multiple
linear regression, or found by iteratively doing an eigenvalue
decomposition and repeatedly replacing the original 1s on the
diagonal with the the value of 1 - u2 where

U2 = diag(R − FF′).
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Principal axes as eigen values of a reduced matrix

That is, starting with the original correlation or covariance matrix,
R, find the k largest principal components, reproduce the matrix
using those principal components. Find the resulting residual
matrix, R∗ and uniqueness matrix, U2 by

R∗ = R− FF′ (1)

U2 = diag(R∗)

and then, for iteration i, find Ri by replacing the diagonal of the
original R matrix with 1 - diag(U2) found on the previous step.
Repeat this process until the change from one iteration to the next
is arbitrarily small.
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Comparing 1 with 5 iterations

> f 1 <− f a (R , 1 , fm=' pa ' ,max . i t e r =1)
> f 1
> r e s i d ( f 1 )

Fac to r A n a l y s i s u s i n g method = pa
Ca l l : f a ( r = R , n f a c t o r s = 1 , max . i t e r = 1 , fm = ”pa ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

PA1 h2 u2
V1 0 .86 0 .74 0 .26
V2 0 .79 0 .62 0 .38
V3 0 .70 0 .48 0 .52
V4 0 .60 0 .36 0 .64
V5 0 .50 0 .25 0 .75
V6 0 .40 0 .16 0 .84

PA1
SS l o a d i n g s 2 .62
P ropo r t i o n Var 0 .44

V1 V2 V3 V4 V5 V6
V1 0 .26
V2 0 .04 0 .38
V3 0 .03 0 .01 0 .52
V4 0 .02 0 .01 0 .00 0 .64
V5 0 .02 0 .00 0 .00 0 .00 0 .75
V6 0 .01 0 .00 0 .00 0 .00 0 .00 0 .84

> f 1 <− f a (R , 1 , fm=' pa ' ,max . i t e r =5)
> f 1
> r e s i d ( f 1 )

Fac to r A n a l y s i s u s i n g method = pa
Ca l l : f a ( r = R , n f a c t o r s = 1 , max . i t e r = 5 , fm = ”pa ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

PA1 h2 u2
V1 0 .9 0 .81 0 .19
V2 0 .8 0 .64 0 .36
V3 0 .7 0 .49 0 .51
V4 0 .6 0 .36 0 .64
V5 0 .5 0 .25 0 .75
V6 0 .4 0 .16 0 .84

PA1
SS l o a d i n g s 2 .71
P ropo r t i o n Var 0 .45

V1 V2 V3 V4 V5 V6
V1 0 .19
V2 0 .00 0 .36
V3 0 .00 0 .00 0 .51
V4 0 .00 0 .00 0 .00 0 .64
V5 0 .00 0 .00 0 .00 0 .00 0 .75
V6 0 .00 0 .00 0 .00 0 .00 0 .00 0 .84
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SMCs as initial communality estimates

Rather than starting with initial communality estimates of 1, the
process can be started with other estimates of the communality. A
conventional starting point is the lower bound estimate of the
communalities, the squared multiple correlation or SMC (Roff,
1936).
The concept here is that a variable’s communality must be at least
as great as the amount of its variance that can be predicted by all
of the other variables. The squared multiple correlations of each
variable with the remaining variables are the diagonal elements of

I− (diag(R−1)−1

and thus a starting estimate for R0 would be R− (diag(R−1)−1.
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Goodness of fit–simple estimates

At least three indices of goodness of fit of the principal factors
model can be considered: One compares the sum of squared
residuals to the sum of the squares of the original values:

GFtotal = 1− 1R∗21′

1R21′

The second does the same, but does not consider the diagonal of R

GFoffdiagonal = 1−
∑

i ̸=j r
∗2
ij∑

i ̸=j r
∗2
ij

= 1− 1R∗21′ − tr(1R∗21′

1R21′ − tr(1R21′)

Finally, a χ2 test of the size of the residuals simply sums all the
squared residuals and multiplies by the number of observations:

χ2 =
∑
i<j

r ∗2ij (N − 1)

with p * (p-1)/2 degrees of freedom.
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OLS

The fundamental factor equation (Equation 1) may be viewed as
set of simultaneous equations which may be solved several different
ways: ordinary least squares, generalized least squares, and
maximum likelihood. Ordinary least squares (OLS) or unweighted
least squares (ULS) minimizes the sum of the squared residuals
when modeling the sample correlation or covariance matrix, S,
with Σ = FF′ + U2

E =
1

2
tr(S− Σ)2 (2)

where the trace, tr, of a matrix is the sum of the diagonal
elements and the division by two reflects the symmetry of the S
matrix.
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MLE

Equation 2 can be generalized to weight the residuals (S− Σ) by
the inverse of the sample matrix, S, and thus to minimize

E =
1

2
tr((S− Σ)S−1)2 =

1

2
tr(I− ΣS−1)2. (3)

This is known as generalized least squares (GLS) or weighted least
squares (WLS). Similarly, if the residuals are weighted by the
inverse of the model, Σ, minimizing

E =
1

2
tr((S− Σ)Σ−1)2 =

1

2
tr(SΣ−1 − I )2 (4)

will result in a model that maximizes the likelihood of the data.
This procedure, maximum likelihood estimation (MLE) is also seen
as finding the minimum of

E =
1

2

(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(5)

where p is the number of variables (Jöreskog, 1978). Perhaps a
helpful intuitive explanation of Equation 8 is that if the model is
correct, then Σ = S and thus Σ−1S = I. The trace of an identity
matrix of rank p is p, and the logarithm of |I| is 0. Thus, the value
of E if the model has perfect fit is 0. With the assumption of
multivariate normality of the residuals, and for large samples, a χ2

statistic can be estimated for a model with p variables and f factors
(Bartlett, 1951; Jöreskog, 1978; Lawley and Maxwell, 1962):

χ2 =
(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(N − 1− (2p + 5)/6− (2f )/3) .

(6)
This χ2 has degrees of freedom:

df = p ∗ (p − 1)/2− p ∗ f + f ∗ (f − 1)/2. (7)

That is, the number of lower off-diagonal correlations - the number
of unconstrained loadings (Lawley and Maxwell, 1962).
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Maximum Likelihood Estimation

(MLE) is also seen as finding the minimum of

E =
1

2

(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(8)

where p is the number of variables (Jöreskog, 1978). Perhaps a
helpful intuitive explanation of Equation 8 is that if the model is
correct, then Σ = S and thus Σ−1S = I. The trace of an identity
matrix of rank p is p, and the logarithm of |I| is 0. Thus, the value
of E if the model has perfect fit is 0. With the assumption of
multivariate normality of the residuals, and for large samples, a χ2

statistic can be estimated for a model with p variables and f
factors:

χ2 =
(
tr(Σ−1S)− ln

∣∣Σ−1S
∣∣− p

)
(N − 1− (2p + 5)/6− (2f )/3) .

(9)
This χ2 has degrees of freedom:

df = p ∗ (p − 1)/2− p ∗ f + f ∗ (f − 1)/2. (10)

That is, the number of lower off-diagonal correlations - the number
of unconstrained loadings (Lawley and Maxwell, 1962).
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Minimum Residual Factor Analysis

The previous factor analysis procedures attempt to optimize the fit
of the model matrix (Σ) to the correlation or covariance matrix
(S). The diagonal of the matrix is treated as mixture of common
variance and unique variance and the problem becomes one of
estimating the common variance (the communality of each
variable). An alternative is to ignore the diagonal and to find that
model which minimizes the squared residuals of the off diagonal
elements. This is done in the fa function using the“minres”option
by finding the solution that minimizes

1

2
1 ((S − I)− (Σ− tr(Σ))2 1′. (11)

The advantage of the minres solution is that it does not require
finding the inverse of either the original correlation matrix (as do
GLS and WLS) nor of the model matrix (as does MLE, and thus
can be performed on non-positive definite matrices or matrices that
are not invertible.
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Solutions with more than 1 factor or component

Nothing in the previous algebra restricted the dimensionality of the
F matrix or C matrix to be one column. That is, why limit
ourselves to a one dimensional solution? Consider the following
correlation matrix (constructed by creating a factor matrix and
then finding its inner product).

>F <− matr ix ( c ( . 9 , . 8 , . 7 , rep ( 0 , 6 ) , . 8 , . 7 , . 6 ) , nco l=2) #the model
> rownames (F) <− paste ( ”V” , seq ( 1 : 6 ) , sep=””) #add labels
> colnames (F) <− c ( ”F1 ” , ”F2 ”)
> R <− F %∗% t (F) #create the correlation matrix
> d iag (R) <− 1 #adjust the diagonal of the matrix
> R

V1 V2 V3 V4 V5 V6
V1 1 .00 0 .72 0 .63 0 .00 0 .00 0 .00
V2 0 .72 1 .00 0 .56 0 .00 0 .00 0 .00
V3 0 .63 0 .56 1 .00 0 .00 0 .00 0 .00
V4 0 .00 0 .00 0 .00 1 .00 0 .56 0 .48
V5 0 .00 0 .00 0 .00 0 .56 1 .00 0 .42
V6 0 .00 0 .00 0 .00 0 .48 0 .42 1 .00
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Try one principal component to this model.

> pc1 <− p r i n c i p a l (R)
> pc1

P r i n c i p a l Components A n a l y s i s
Ca l l : p r i n c i p a l ( r = R)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix ) based upon c o r r e l a t i o n matr ix

PC1 h2 u2
V1 0 .90 0 .82 0 .18
V2 0 .88 0 .77 0 .23
V3 0 .83 0 .69 0 .31
V4 0 .00 0 .00 1 .00
V5 0 .00 0 .00 1 .00
V6 0 .00 0 .00 1 .00

PC1
SS l o a d i n g s 2 .28
P ropo r t i o n Var 0 .38

Test o f the h y p o t h e s i s t ha t 1 component i s s u f f i c i e n t .

The deg r e e s o f f reedom f o r the n u l l model a r e
15 and the o b j e c t i v e f u n c t i o n was 1 .96
The deg r e e s o f f reedom f o r the model a r e 9
and the o b j e c t i v e f u n c t i o n was 0 .87

F i t based upon o f f d i a g on a l v a l u e s = 0 .61

The residuals are large for
the second set of variables.

> r e s i d ( pc1 )

V1 V2 V3 V4
V5 V6
V1 0 .18
V2 −0.07 0 .23
V3 −0.12 −0.17 0 .31
V4 0 .00 0 .00 0 .00 1 .00
V5 0 .00 0 .00 0 .00 0 .56 1 .00
V6 0 .00 0 .00 0 .00 0 .48
0 .42 1 .00
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Two Principal Components

> pc2 <− p r i n c i p a l (R , 2 )
> pc2

Un iquene s s e s :
V1 V2 V3 V4 V5 V6

0.182 0 .234 0 .309 0 .282 0 .332 0 .409
Load ings :

PC1 PC2
V1 0 .90
V2 0 .88
V3 0 .83
V4 0 .85
V5 0 .82
V6 0 .77

PC1 PC2
SS l o a d i n g s 2 .273 1 .988
P ropo r t i o n Var 0 .379 0 .331
Cumulat i ve Var 0 .379 0 .710

> round ( pc2$ l o a d i n g s %∗% t ( pc2$ l o a d i n g s ) , 2 )

V1 V2 V3 V4 V5 V6
V1 0 .81 0 .79 0 .75 0 .00 0 .00 0 .00
V2 0 .79 0 .77 0 .73 0 .00 0 .00 0 .00
V3 0 .75 0 .73 0 .69 0 .00 0 .00 0 .00
V4 0 .00 0 .00 0 .00 0 .72 0 .70 0 .65
V5 0 .00 0 .00 0 .00 0 .70 0 .67 0 .63
V6 0 .00 0 .00 0 .00 0 .65 0 .63 0 .59

> Rr e s i d <− R − pc2$ l o a d i n g s %∗% t ( pc2$ l o a d i n g s )
> round ( Rre s i d , 2 )

V1 V2 V3 V4 V5 V6
V1 0 .19 −0.07 −0.12 0 .00 0 .00 0 .00
V2 −0.07 0 .23 −0.17 0 .00 0 .00 0 .00
V3 −0.12 −0.17 0 .31 0 .00 0 .00 0 .00
V4 0 .00 0 .00 0 .00 0 .28 −0.14 −0.17
V5 0 .00 0 .00 0 .00 −0.14 0 .33 −0.21
V6 0 .00 0 .00 0 .00 −0.17 −0.21 0 .41

> r e s i d ( pc2 )

V1 V2 V3 V4 V5 V6
V1 0 .18
V2 −0.07 0 .23
V3 −0.12 −0.17 0 .31
V4 0 .00 0 .00 0 .00 0 .28
V5 0 .00 0 .00 0 .00 −0.13 0 .33
V6 0 .00 0 .00 0 .00 −0.17 −0.21 0 .41
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Try two factors

> f 2 <− f a (R , 2 , r o t a t e=”none ”)
> f 2

Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = R , n f a c t o r s = 2 , r o t a t e = ”none ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix ) based upon c o r r e l a t i o n matr ix

MR1 MR2 h2 u2
V1 0 .9 0 .0 0 .81 0 .19
V2 0 .8 0 .0 0 .64 0 .36
V3 0 .7 0 .0 0 .49 0 .51
V4 0 .0 0 .8 0 .64 0 .36
V5 0 .0 0 .7 0 .49 0 .51
V6 0 .0 0 .6 0 .36 0 .64

MR1 MR2
SS l o a d i n g s 1 .94 1 .49
P ropo r t i o n Var 0 .32 0 .25
Cumulat i ve Var 0 .32 0 .57

Test o f the h y p o t h e s i s t ha t 2 f a c t o r s a r e s u f f i c i e n t .

The deg r e e s o f f reedom f o r the n u l l model a r e
15 and the o b j e c t i v e f u n c t i o n was 1 .96
The deg r e e s o f f reedom f o r the model a r e 4
and the o b j e c t i v e f u n c t i o n was 0

The r oo t mean squa r e o f the r e s i d u a l s (RMSR) i s
0
The df c o r r e c t e d r oo t mean squa r e o f the r e s i d u a l s i s
0

F i t based upon o f f d i a g on a l v a l u e s = 1

> r e s i d ( f 2 )

V1 V2 V3 V4 V5 V6
V1 0 .19
V2 0 .00 0 .36
V3 0 .00 0 .00 0 .51
V4 0 .00 0 .00 0 .00 0 .36
V5 0 .00 0 .00 0 .00 0 .00 0 .51
V6 0 .00 0 .00 0 .00 0 .00 0 .00 0 .64
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Add two more variables (with a factor model)

#the model
> f <− matr ix ( c ( . 9 , . 8 , . 7 , rep ( 0 , 3 ) , . 7 , rep ( 0 , 4 ) , . 8 , . 7 , . 6 , 0 , . 5 ) , nco l=2)
> rownames ( f ) <− paste ( ”V” , seq ( 1 : 8 ) , sep=””) #add labels
> colnames ( f ) <− c ( ”F1 ” , ”F2 ”)
> R <− f %∗% t ( f ) #create the correlation matrix
> d iag (R) <− 1 #adjust the diagonal of the matrix
> R

V1 V2 V3 V4 V5 V6 V7 V8
V1 1 .00 0 .72 0 .63 0 .00 0 .00 0 .00 0 .63 0 .00
V2 0 .72 1 .00 0 .56 0 .00 0 .00 0 .00 0 .56 0 .00
V3 0 .63 0 .56 1 .00 0 .00 0 .00 0 .00 0 .49 0 .00
V4 0 .00 0 .00 0 .00 1 .00 0 .56 0 .48 0 .00 0 .40
V5 0 .00 0 .00 0 .00 0 .56 1 .00 0 .42 0 .00 0 .35
V6 0 .00 0 .00 0 .00 0 .48 0 .42 1 .00 0 .00 0 .30
V7 0 .63 0 .56 0 .49 0 .00 0 .00 0 .00 1 .00 0 .00
V8 0 .00 0 .00 0 .00 0 .40 0 .35 0 .30 0 .00 1 .00
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Factors loadings do not change, component loadings do

> R

V1 V2 V3 V4 V5 V6 V7
V8
V1 1 .00 0 .72 0 .63 0 .00 0 .00 0 .00 0 .63 0 .00
V2 0 .72 1 .00 0 .56 0 .00 0 .00 0 .00 0 .56 0 .00
V3 0 .63 0 .56 1 .00 0 .00 0 .00 0 .00 0 .49 0 .00
V4 0 .00 0 .00 0 .00 1 .00 0 .56 0 .48 0 .00 0 .40
V5 0 .00 0 .00 0 .00 0 .56 1 .00 0 .42 0 .00 0 .35
V6 0 .00 0 .00 0 .00 0 .48 0 .42 1 .00 0 .00 0 .30
V7 0 .63 0 .56 0 .49 0 .00 0 .00 0 .00 1 .00 0 .00
V8 0 .00 0 .00 0 .00 0 .40 0 .35 0 .30 0 .00 1 .00

> f 2 <− f a c t a n a l ( covmat=R , f a c t o r s =2)
> f 2

Ca l l :
f a c t a n a l ( f a c t o r s = 2 , covmat = R)
Un iquene s s e s :

V1 V2 V3 V4 V5 V6 V7 V8
0 .19 0 .36 0 .51 0 .36 0 .51 0 .64 0 .51 0 .75
Load ings :

Fac to r1 Fac to r2
V1 0 .9
V2 0 .8
V3 0 .7
V4 0 .8
V5 0 .7
V6 0 .6
V7 0 .7
V8 0 .5

Fac to r1 Fac to r2
SS l o a d i n g s 2 .430 1 .740
P ropo r t i o n Var 0 .304 0 .218
Cumulat i ve Var 0 .304 0 .521
The deg r e e s o f f reedom f o r the model i s 13 and the f i t was 0

pc2 <− p r i n c i p a l (R , 2 )
pc2

Un iquene s s e s :
V1 V2 V3 V4 V5 V6

V7 V8
0.194 0 .271 0 .367 0 .311 0 .379 0 .468 0 .367 0 .575
Load ings :

PC1 PC2
V1 0 .90
V2 0 .85
V3 0 .80
V4 0 .83
V5 0 .79
V6 0 .73
V7 0 .80
V8 0 .65

PC1 PC2
SS l o a d i n g s 2 .812 2 .268
P ropo r t i o n Var 0 .352 0 .284
Cumulat i ve Var 0 .352 0 .635
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Simple Structure

The original solution of a principal components or principal axes factor analysis is a set

of vectors that best account for the observed covariance or correlation matrix, and

where the components or factors account for progressively less and less variance. But

such a solution, although maximally efficient in describing the data, is rarely easy to

interpret. But what makes a structure easy to interpret? Thurstone’s answer, simple

structure, consists of five rules (Thurstone, 1947, p 335):

(1) Each row of the oblique factor matrix V should have at least one zero.
(2) For each column p of the factor matrix V there should be a distinct set
of r linearly independent tests whose factor loadings vip are zero.
(3) For every pair of columns of V there should be several tests whose
entries vip vanish in one column but not in the other.
(4) For every pair of columns of V, a large proportion of the tests should
have zero entries in both columns. This applies to factor problems with
four or five or more common factors.
(5) For every pair of columns there should preferably be only a small number
of tests with non-vanishing entries in both columns.

Thurstone proposed to rotate the original solution to achieve simple structure.
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Simple structure

A matrix is said to be rotated if it is multiplied by a matrix of
orthogonal vectors that preserves the communalities of each
variable. Just as the original matrix was orthogonal, so is the
rotated solution. For two factors, the rotation matrix T will rotate
the two factors θ radians in a counterclockwise direction.

T =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(12)

Generalizing equation 12 to larger matrices is straight forward:

T =



1 ... 0 ... 0 ... 0
0 ... cos(θ) ... sin(θ) ... 0
... ... 0 1 0 ... 0
0 ... −sin(θ) ... cos(θ) ... 0
... ... 0 ... 0 ... ...
0 ... 0 ... 0 ... 1

 . (13)
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Rotating to simple structure

When F is post-multiplied by T, T will rotate the i th and j th

columns of F by θ radians in a counterclockwise direction.

Fr = FT (14)

The factor.rotate function from the psych package will do this
rotation for arbitrary angles (in degrees) for any pairs of factors.
This is useful if there is a particular rotation that is desired.
An entire package devoted to rotations is the GPArotation by
Robert Jennrich (Jennrich, 2004).
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Analytic Simple Structure

As pointed out by Carroll (1953) when discussing Thurstone’s
(1947) simple structure as a rotational criterion“it is obvious that
there could hardly be any single mathematical expression which
could embody all these characteristics.” (p 24). Carroll’s solution
to this was to minimize the sum of the inner products of the
squared (rotated) loading matrix. An alternative, discussed by
Ferguson (1954) is to consider the parsimony of a group of n tests
with r factors to be defined as the average parsimony of the
individual tests (Ij) where

Ij =
r∑
m

a4jm (15)

(the squared communality) and thus the average parsimony is

I. = n−1
n∑
j

r∑
m

a4jm

and to choose a rotation that maximizes parsimony. 45 / 122
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Rotation to parsimony

Parsimony as defined in equation 15 is a function of the variance
as well as the mean of the squared loadings of a particular test on
all the factors. For fixed communality h2, it will be maximized if all
but one loading is zero; a variable’s parsimony will be maximal if
one loading is 1.0 and the rest are zero. In path notation,
parsimony is maximized if one and only one arrow is associated
with a variable. This criterion, as well as the criterion of maximum
variance taken over factors has been operationalized as the
quartimax criterion by Neuhaus and Wrigley (1954). As pointed
out by Kaiser (1958), the criterion can rotate towards a solution
with one general factor, ignoring other, smaller factors.
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Varimax and alternatives

If a general factor is not desired, an alternative measure of the
parsimony of a factor, similar to equation 15 is to maximize the
variance of the squared loadings taken over items instead of over
factors. This, the varimax criterion was developed by Kaiser (1958)
to avoid the tendency to yield a general factor. Both of these
standard rotations as well as many others are available in the
GPArotation package of rotations and transformations which uses
the Gradient Projection Algorithms developed by Jennrich (2001,
2002, 2004).
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Harmon 8 physical measures

> data (Harman23 . cor )
> l ower .mat (Harman23 . cor $cov )

heght arm . s fo r rm lw r . l weght b t r . d ch s t . g ch s t .w
h e i g h t 1 .00
arm . span 0 .85 1 .00
fo rea rm 0 .80 0 .88 1 .00
l ower . l e g 0 .86 0 .83 0 .80 1 .00
we ight 0 .47 0 .38 0 .38 0 .44 1 .00
b i t r o . d i amete r 0 .40 0 .33 0 .32 0 .33 0 .76 1 .00
ch e s t . g i r t h 0 .30 0 .28 0 .24 0 .33 0 .73 0 .58 1 .00
ch e s t . w idth 0 .38 0 .42 0 .34 0 .36 0 .63 0 .58 0 .54 1 .00
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Two solutions – loadings change, goodness of fits do not

> f 2 <− f a (Harman23 . cor $cov , 2 , r o t a t e=”none ”)
> f 2

Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Harman23 . cor $cov , n f a c t o r s = 2 ,

r o t a t e = ”none ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

MR1 MR2 h2 u2
h e i g h t 0 .89 −0.19 0 .83 0 .17
arm . span 0 .89 −0.31 0 .89 0 .11
fo rea rm 0 .86 −0.30 0 .83 0 .17
l ower . l e g 0 .87 −0.22 0 .80 0 .20
we ight 0 .67 0 .67 0 .89 0 .11
b i t r o . d i amete r 0 .56 0 .58 0 .65 0 .35
ch e s t . g i r t h 0 .50 0 .59 0 .59 0 .41
ch e s t . w idth 0 .56 0 .40 0 .47 0 .53

MR1 MR2
SS l o a d i n g s 4 .40 1 .56
P ropo r t i o n Var 0 .55 0 .19
Cumulat i ve Var 0 .55 0 .74
Test o f the h y p o t h e s i s t ha t 2 f a c t o r s a r e s u f f i c i e n t .
The r oo t mean squa r e o f the r e s i d u a l s (RMSR) i s
0 .02
The df c o r r e c t e d r oo t mean squa r e o f the r e s i d u a l s

i s 0 .03
F i t based upon o f f d i a g on a l v a l u e s = 1

> f 2 <− f a (Harman23 . cor $cov , 2 , r o t a t e=”var imax ”)
> f 2

Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Harman23 . cor $cov , n f a c t o r s = 2 ,

r o t a t e = ”var imax ”)
S t anda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

MR1 MR2 h2 u2
h e i g h t 0 .86 0 .30 0 .83 0 .17
arm . span 0 .92 0 .20 0 .89 0 .11
fo rea rm 0 .89 0 .19 0 .83 0 .17
l ower . l e g 0 .86 0 .26 0 .80 0 .20
we ight 0 .22 0 .92 0 .89 0 .11
b i t r o . d i amete r 0 .18 0 .78 0 .65 0 .35
ch e s t . g i r t h 0 .12 0 .76 0 .59 0 .41
ch e s t . w idth 0 .27 0 .63 0 .47 0 .53

MR1 MR2
SS l o a d i n g s 3 .30 2 .66
P ropo r t i o n Var 0 .41 0 .33
Cumulat i ve Var 0 .41 0 .74

The r oo t mean squa r e o f the r e s i d u a l s (RMSR)
i s 0 .02

The df c o r r e c t e d r oo t mean squa r e o f the r e s i d u a l s
i s 0 .03
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Alternative rotations
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Oblique transformations

Many of those who use factor analysis use it to identify
theoretically meaningful constructs which they have no reason to
believe are orthogonal. This has lead to the use of oblique
transformations which allow the factors to be correlated. Although
the term rotation is sometimes used for both orthogonal and
oblique solutions, in the oblique case the factor matrix is not
rotated so much as transformed.
Oblique transformations lead to the distinction between the factor
pattern and factor structure matrices. The factor pattern matrix is
the set of regression weights (loadings) from the latent factors to
the observed variables. The factor structure matrix is the matrix of
correlations between the factors and the observed variables. If the
factors are uncorrelated, structure and pattern are identical. But, if
the factors are correlated, the structure matrix (S) is the pattern
matrix (F) times the factor intercorrelations ϕ
S = Fϕ <=> F = Sϕ−1:
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An oblique transformation of the Harman 8 physical variables

> f 2 t <− f a (Harman23 . cor $cov , 2 , r o t a t e=”ob l im i n ” , n . obs=305)
> p r i n t ( f 2 t )

Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Harman23 . cor $cov , n f a c t o r s = 2 , r o t a t e = ”ob l im i n ” , n . obs = 305)

i tem MR1 MR2 h2 u2
h e i g h t 1 0 .87 0 .08 0 .84 0 .16
arm . span 2 0 .96 −0.05 0 .89 0 .11
fo rea rm 3 0 .93 −0.04 0 .83 0 .17
l ower . l e g 4 0 .88 0 .04 0 .81 0 .19
we ight 5 0 .01 0 .94 0 .89 0 .11
b i t r o . d i amete r 6 0 .00 0 .80 0 .64 0 .36
ch e s t . g i r t h 7 −0.06 0 .79 0 .59 0 .41
ch e s t . w idth 8 0 .13 0 .62 0 .47 0 .53

MR1 MR2
SS l o a d i n g s 3 .37 2 .58
P ropo r t i o n Var 0 .42 0 .32
Cumulat i ve Var 0 .42 0 .74

With f a c t o r c o r r e l a t i o n s o f
MR1 MR2

MR1 1 .00 0 .46
MR2 0 .46 1 .00 52 / 122
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Oblique Transformations
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Another way to show simple structureR code

simp24 <- sim.item(24,circum=FALSE)
cor.plot(cor(simp24),main="A simple structure")

A simple structure
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A circumplex is one alternative to simple structure
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Another way of showing a circumplex – cor.plot

> c i r c 2 4 <− (24 , c i rcum=TRUE)
> cor . p l o t ( cor ( c i r c 2 4 ) , main=”A c i r c ump l e x s t r u c t u r e ”)

A circumplex structure
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The Thurstone 9 variable problem

> l ower .mat ( Thurstone )

Sntnc Vcb l r Snt .C Frs . L 4 . L .W S f f x s L t t . S Pdgrs L t t .G
Sentence s 1 .00
Vocabu la ry 0 .83 1 .00
Sent . Complet ion 0 .78 0 .78 1 .00
F i r s t . L e t t e r s 0 .44 0 .49 0 .46 1 .00
4 . L e t t e r . Words 0 .43 0 .46 0 .42 0 .67 1 .00
S u f f i x e s 0 .45 0 .49 0 .44 0 .59 0 .54 1 .00
L e t t e r . S e r i e s 0 .45 0 .43 0 .40 0 .38 0 .40 0 .29 1 .00
Ped i g r e e s 0 .54 0 .54 0 .53 0 .35 0 .37 0 .32 0 .56 1 .00
L e t t e r . Group 0 .38 0 .36 0 .36 0 .42 0 .45 0 .32 0 .60 0 .45
1 .00
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Three factors from Thurstone 9 variables

> f 3 <− f a ( Thurstone , 3 )
> f 3

Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Thurstone , n f a c t o r s = 3)
S tanda rd i z ed l o a d i n g s ( p a t t e r n matr ix ) based upon c o r r e l a t i o n matr ix

MR1 MR2 MR3 h2 u2
Sentence s 0 .91 −0.04 0 .04 0 .82 0 .18
Vocabu la ry 0 .89 0 .06 −0.03 0 .84 0 .16
Sent . Complet ion 0 .83 0 .04 0 .00 0 .73 0 .27
F i r s t . L e t t e r s 0 .00 0 .86 0 .00 0 .73 0 .27
4 . L e t t e r . Words −0.01 0 .74 0 .10 0 .63 0 .37
S u f f i x e s 0 .18 0 .63 −0.08 0 .50 0 .50
L e t t e r . S e r i e s 0 .03 −0.01 0 .84 0 .72 0 .28
Ped i g r e e s 0 .37 −0.05 0 .47 0 .50 0 .50
L e t t e r . Group −0.06 0 .21 0 .64 0 .53 0 .47

MR1 MR2 MR3
SS l o a d i n g s 2 .64 1 .86 1 .50
P ropo r t i o n Var 0 .29 0 .21 0 .17
Cumulat i ve Var 0 .29 0 .50 0 .67

With f a c t o r c o r r e l a t i o n s o f
MR1 MR2 MR3

MR1 1 .00 0 .59 0 .54
MR2 0 .59 1 .00 0 .52
MR3 0 .54 0 .52 1 .00
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A hierarchical/multilevel solution to the Thurstone 9 variables

Hierarchical (multilevel) Structure
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A bifactor solution using the Schmid Leiman transformation

Omega with Schmid Leiman Transformation
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How many factors – no right answer, one wrong answer

1. Statistical
• Extracting factors until the χ2 of the residual matrix is not

significant.
• Extracting factors until the change in χ2 from factor n to

factor n+1 is not significant.

2. Rules of Thumb
• Parallel Extracting factors until the eigenvalues of the real data

are less than the corresponding eigenvalues of a random data
set of the same size (parallel analysis)

• Plotting the magnitude of the successive eigenvalues and
applying the scree test.

3. Interpretability
• Extracting factors as long as they are interpretable.
• Using the Very Simple Structure Criterion (VSS)
• Using the Minimum Average Partial criterion (MAP).

4. Eigen Value of 1 rule
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The factor model versus the components model

Factor model

V1

V2

V3

V4

V5

V6

MR1

0.9
0.8
0.7
0.6
0.5
0.4

Components model

V1

V2

V3

V4

V5

V6

PC1

0.9
0.8
0.8
0.7
0.6
0.5

62 / 122



Preliminaries The basic concepts PCA FA Nf > 1 SS NF? Simulate Ability examples Data from an external file Problems Items Polytomous items Other points Summary References

Simulation as tool for creating structure

1. The problem of all real data sets is that we do not know the
“true” structure.

2. But by artificially creating simulated structures, we know
“truth”

3. Simulate two factors with simple structure

4. Simulate two factors with circumplex structure

5. In both cases, ask now many factors are in the data and what
is the best fit to the data
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Simulate 2 factor data

Using the sim.item function
R code

set.seed(42) #to generate a reproducible example
my.data <- sim.item(12)
my.cor <- lowerCor(my.data)

> set.seed(42) #to generate a reproducible example
> my.data <- sim.item(12)
> my.cor <- lowerCor(my.data)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
V1 1.00
V2 0.36 1.00
V3 0.38 0.37 1.00
V4 -0.01 -0.04 -0.01 1.00
V5 0.05 -0.02 0.01 0.34 1.00
V6 0.03 0.01 0.01 0.37 0.35 1.00
V7 -0.35 -0.37 -0.38 -0.09 -0.01 -0.05 1.00
V8 -0.40 -0.34 -0.39 0.00 0.08 0.11 0.34 1.00
V9 -0.41 -0.36 -0.32 0.00 0.02 -0.03 0.32 0.39 1.00
V10 0.06 0.07 0.01 -0.33 -0.32 -0.39 -0.04 -0.11 -0.06 1.00
V11 0.02 0.03 0.05 -0.37 -0.35 -0.32 0.02 -0.12 -0.01 0.41 1.00
V12 0.01 0.01 -0.11 -0.31 -0.30 -0.33 0.08 -0.02 0.00 0.36 0.39 1.00
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Multiple ways to determine how many factors are in the data

No one answer. Many are good, one should be avoided.

1. Statistical tests
• χ2 test of residuals (sensitive to sample size and non-normality

of data)
• χ2 test of change from nf=n to nf=n+1 (sensitive to sample

size)
• RMSEA, BIC, AIC, SABIC are not as sensitive to sample size,

but are to non-normality

2. Rules of Thumb
• Scree Test of eigen values (Cattell, 1966)
• Minimum Average Partial (MAP) (Velicer, 1976)
• Very Simple Structure (Revelle and Rocklin, 1979)
• Parallel Analysis of random data (Horn, 1965)
• As many as can be interpreted

3. One test to avoid: Eigen value of 1 (Many programs default
to this)
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How many factors in my.cor

> f a . p a r a l l e l (my . cor , n . obs=500)
P a r a l l e l a n a l y s i s s u g g e s t s t ha t the number o f f a c t o r s = 2

and the number o f components = 2
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Try Very Simple Structure as well as MAP

> v s s (my . cor , n . obs=500)

Very S imple S t r u c t u r e
Ca l l : VSS( x = x , n = n , r o t a t e = ro t a t e , d i a g on a l = d i agona l , fm = fm ,

n . obs = n . obs , p l o t = p lot , t i t l e = t i t l e )
VSS comp l e x i t y 1 a c h i e v e s a maximimum of 0 .74 wi th 3 f a c t o r s
VSS comp l e x i t y 2 a c h i e v e s a maximimum of 0 .8 w i th 8 f a c t o r s

The V e l i c e r MAP c r i t e r i o n a c h i e v e s a minimum of 0 .02 wi th 2
f a c t o r s

V e l i c e r MAP
[ 1 ] 0 .05 0 .02 0 .03 0 .05 0 .07 0 .10 0 .13 0 .19

Very S imple S t r u c t u r e Complex i t y 1
[ 1 ] 0 .39 0 .74 0 .74 0 .63 0 .70 0 .66 0 .58 0 .57

Very S imple S t r u c t u r e Complex i t y 2
[ 1 ] 0 .00 0 .75 0 .76 0 .78 0 .79 0 .79 0 .80 0 .80
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Even more VSS output

> my . v s s <− v s s (my . cor , n=12)
> my . v s s

n . obs was not s p e c i f i e d and was a r b i t r a r i l y s e t to 1000 . Th i s on l y a f f e c t s the c h i squa r e v a l u e s .
Very S imple S t r u c t u r e
Ca l l : v s s ( x = my . cor , n = 12)
VSS comp l e x i t y 1 a c h i e v e s a maximimum of 0 .74 wi th 3 f a c t o r s
VSS comp l e x i t y 2 a c h i e v e s a maximimum of 0 .81 wi th 10 f a c t o r s

The V e l i c e r MAP a c h i e v e s a minimum of NA with 2 f a c t o r s
BIC a c h i e v e s a minimum of NA with 2 f a c t o r s
Sample S i z e a d j u s t e d BIC a c h i e v e s a minimum of NA with 2 f a c t o r s

S t a t i s t i c s by number o f f a c t o r s
v s s 1 v s s2 map dof c h i s q prob s q r e s i d f i t RMSEA BIC SABIC complex

1 0 .39 0 .00 0 .055 54 1 .3 e+03 1 .5 e−229 12 .2 0 .39 0 .150 894 1065 .3 1 .0
2 0 .74 0 .75 0 .021 43 1 .1 e+02 9 .0 e−08 5 .0 0 .75 0 .040 −187 −50.6 1 .0
3 0 .74 0 .76 0 .033 33 7 .6 e+01 3 .1 e−05 4 .7 0 .76 0 .036 −152 −47.2 1 .1
4 0 .63 0 .78 0 .049 24 5 .3 e+01 6 .0 e−04 4 .2 0 .79 0 .035 −113 −36.7 1 .2
5 0 .70 0 .79 0 .069 16 3 .4 e+01 5 .6 e−03 3 .9 0 .80 0 .034 −77 −25.8 1 .3
6 0 .66 0 .79 0 .096 9 1 .1 e+01 2 .6 e−01 3 .5 0 .82 0 .016 −51 −22.3 1 .3
7 0 .58 0 .80 0 .130 3 1 .8 e+00 6 .2 e−01 3 .3 0 .83 0 .000 −19 −9.4 1 .5
8 0 .57 0 .80 0 .186 −2 8 .4 e−02 NA 2 .8 0 .86 NA NA NA 1 .5
9 0 .43 0 .74 0 .278 −6 8 .8 e−07 NA 2 .6 0 .87 NA NA NA 1 .9
10 0 .62 0 .81 0 .456 −9 1 .7 e−09 NA 3 .1 0 .85 NA NA NA 1 .8
11 0 .55 0 .81 1 .000 −11 0 .0 e+00 NA 3 .0 0 .85 NA NA NA 1 .8
12 0 .55 0 .81 NA −12 0 .0 e+00 NA 3 .0 0 .85 NA NA NA 1 .8
>
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Examine the output
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But if we had more subjects?

R code

set.seed(42) #to generate a reproducible example
my.data <- sim.item(12, nsub=10000)
my.cor <- lowerCor(my.data)
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Extract 2 factors –part 1

> f a (my . cor , 2 , n . obs=500)
Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = my . cor , n f a c t o r s = 2 , n . obs = 500)
S t anda rd i z ed l o a d i n g s based upon c o r r e l a t i o n matr ix

MR1 MR2 h2 u2
V1 0 .64 −0.02 0 .41 0 .59
V2 0 .59 0 .02 0 .35 0 .65
V3 0 .61 −0.04 0 .37 0 .63
V4 0 .03 −0.58 0 .34 0 .66
V5 0 .01 −0.55 0 .30 0 .70
V6 0 .03 −0.60 0 .36 0 .64
V7 −0.58 0 .08 0 .34 0 .66
V8 −0.62 −0.10 0 .40 0 .60
V9 −0.59 0 .00 0 .35 0 .65
V10 0 .07 0 .61 0 .39 0 .61
V11 0 .03 0 .63 0 .39 0 .61
V12 −0.06 0 .57 0 .33 0 .67

MR1 MR2
SS l o a d i n g s 2 .21 2 .12
P ropo r t i o n Var 0 .18 0 .18
Cumulat i ve Var 0 .18 0 .36
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2 artificial factors part 2

With f a c t o r c o r r e l a t i o n s o f
MR1 MR2

MR1 1 .00 0 .04
MR2 0 .04 1 .00

Test o f the h y p o t h e s i s t ha t 2 f a c t o r s a r e s u f f i c i e n t .

The deg r e e s o f f reedom f o r the n u l l model a r e 66 and the o b j e c t i v e f u n c t i o n was
2 .52 wi th Chi Square o f 1246.71
The deg r e e s o f f reedom f o r the model a r e 43 and the o b j e c t i v e f u n c t i o n was
0 .11

The r oo t mean squa r e o f the r e s i d u a l s i s 0 .02
The df c o r r e c t e d r oo t mean squa r e o f the r e s i d u a l s i s 0 .03
The number o f o b s e r v a t i o n s was 500 wi th Chi Square = 54.56
wi th prob < 0 .11

Tucker Lewis I ndex o f f a c t o r i n g r e l i a b i l i t y = 0.985
RMSEA i ndex = 0.024 and the 90 % con f i d e n c e i n t e r v a l s a r e
0 .023 0 .026
BIC = −212.67
F i t based upon o f f d i a g on a l v a l u e s = 0 .99
Measures o f f a c t o r s c o r e adequacy

MR1 MR2
Co r r e l a t i o n o f s c o r e s w i th f a c t o r s 0 .88 0 .88
Mu l t i p l e R squa r e o f s c o r e s w i th f a c t o r s 0 .78 0 .77
Minimum c o r r e l a t i o n o f p o s s i b l e f a c t o r s c o r e s 0 .56 0 .53
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The factor diagram shows the structure
Factor Analysis
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The factor plot also shows the structure
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An alternative data structure is a circumplex

Seen in measures of emotion, interpersonal problems

> c i r c <− s im . c i r c (12)
> f 2 <− f a ( c i r c , 2 )
> f a . p l o t ( f2 , t i t l e=”A c i r c ump l e x s t r u c t u r e ”)
> f a . d iagram ( f2 , s imp l e=FALSE , main=”A c i r c ump l e x s t r u c t u r e ”)

Fac to r A n a l y s i s u s i n g method =
minre s
Ca l l : f a ( r = c i r c , n f a c t o r s = 2)
S tanda rd i z ed l o a d i n g s ( p a t t e r n matr ix )

MR1 MR2 h2 u2 com
1 0 .27 −0.48 0 .30 0 .70 1 .6
2 −0.07 −0.61 0 .38 0 .62 1 .0
3 −0.40 −0.39 0 .32 0 .68 2 .0
4 −0.54 −0.26 0 .36 0 .64 1 .4
5 −0.67 0 .10 0 .46 0 .54 1 .0
6 −0.44 0 .36 0 .32 0 .68 1 .9
7 −0.17 0 .54 0 .32 0 .68 1 .2
8 0 .04 0 .59 0 .35 0 .65 1 .0
9 0 .35 0 .46 0 .34 0 .66 1 .9
10 0 .60 0 .22 0 .41 0 .59 1 .3
11 0 .60 −0.05 0 .37 0 .63 1 .0
12 0 .53 −0.33 0 .38 0 .62 1 .7

MR1
MR2
SS l o a d i n g s
2 .33 1 .99
P ropo r t i o n Var
0 .19 0 .17
Cumulat i ve Var
0 .19 0 .36
P ropo r t i o n Exp l a i n ed
0 .54 0 .46
Cumulat i ve P ropo r t i o n 0 .54 1 .00

With f a c t o r c o r r e l a t i o n s o f
MR1 MR2

MR1 1 .00 0 .01
MR2 0 .01 1 .00

Mean i tem comp l e x i t y = 1 .4 75 / 122
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A circumplex structure
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9 cognitive tests from Thurstone

> lowerMat ( Thurstone )

Sntnc Vcb l r Snt .C Frs . L 4 . L .W S f f x s L t t . S Pdgrs L t t .G
Sentence s 1 .00
Vocabu la ry 0 .83 1 .00
Sent . Complet ion 0 .78 0 .78 1 .00
F i r s t . L e t t e r s 0 .44 0 .49 0 .46 1 .00
4 . L e t t e r . Words 0 .43 0 .46 0 .42 0 .67 1 .00
S u f f i x e s 0 .45 0 .49 0 .44 0 .59 0 .54 1 .00
L e t t e r . S e r i e s 0 .45 0 .43 0 .40 0 .38 0 .40 0 .29 1 .00
Ped i g r e e s 0 .54 0 .54 0 .53 0 .35 0 .37 0 .32 0 .56 1 .00
L e t t e r . Group 0 .38 0 .36 0 .36 0 .42 0 .45 0 .32 0 .60 0 .45
1 .00
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Choicies in dimension reduction

1. Factors or Components
• Components are maximally efficient to describe the data

(including the error)
• Factors model the shared common variance, but not the errors

2. How many factors to extract
3. Which factor extraction technique

• maximum likelihood is ”optimal”but not if model of mean
residual = 0 is false

• minres minimizes the residuals using Ordinary Least Squares –
fits are almost as good as mle

• principal axis is an iterative procedure used by SPSS
• minchi minimizes the sample size weighted residual if number

of pairwise observations differ
4. rotation (orthogonal) or transformation (oblique)

• Orthogonal rotations (e.g.,) varimax, quartimax, bifactor
• Oblique transformations (e.g.,) oblimin, oblimax, geomin,

biquaritimin,
• Higher order structures (e.g.,) schmid leiman, bifactor
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9 mental tests from Thurstone

data ( b i f a c t o r )
f a . p a r a l l e l ( Thurstone , n . obs=213)
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Exract 3 factors

> f a3 <− f a ( Thurstone , 3 , n . obs=213)
> f a3
Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Thurstone , n f a c t o r s = 3 , n . obs = 213)
S t anda rd i z ed l o a d i n g s based upon c o r r e l a t i o n matr ix

MR1 MR2 MR3 h2 u2
Sentence s 0 .91 −0.04 0 .04 0 .82 0 .18
Vocabu la ry 0 .89 0 .06 −0.03 0 .84 0 .16
Sent . Complet ion 0 .83 0 .04 0 .00 0 .73 0 .27
F i r s t . L e t t e r s 0 .00 0 .86 0 .00 0 .73 0 .27
4 . L e t t e r . Words −0.01 0 .74 0 .10 0 .63 0 .37
S u f f i x e s 0 .18 0 .63 −0.08 0 .50 0 .50
L e t t e r . S e r i e s 0 .03 −0.01 0 .84 0 .72 0 .28
Ped i g r e e s 0 .37 −0.05 0 .47 0 .50 0 .50
L e t t e r . Group −0.06 0 .21 0 .64 0 .53 0 .47

MR1 MR2 MR3
SS l o a d i n g s 2 .64 1 .86 1 .50
P ropo r t i o n Var 0 .29 0 .21 0 .17
Cumulat i ve Var 0 .29 0 .50 0 .67
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Thurstone 3 factors part 2

With f a c t o r c o r r e l a t i o n s o f
MR1 MR2 MR3

MR1 1 .00 0 .59 0 .54
MR2 0 .59 1 .00 0 .52
MR3 0 .54 0 .52 1 .00

Test o f the h y p o t h e s i s t ha t 3 f a c t o r s a r e s u f f i c i e n t .

The deg r e e s o f f reedom f o r the n u l l model a r e 36 and the o b j e c t i v e f u n c t i o n was
5 .2 w i th Chi Square o f 1081.97
The deg r e e s o f f reedom f o r the model a r e 12 and the o b j e c t i v e f u n c t i o n was
0 .01

The r oo t mean squa r e o f the r e s i d u a l s i s 0
The df c o r r e c t e d r oo t mean squa r e o f the r e s i d u a l s i s 0 .01
The number o f o b s e r v a t i o n s was 213 wi th Chi Square = 2.82
wi th prob < 1

Tucker Lewis I ndex o f f a c t o r i n g r e l i a b i l i t y = 1.027
RMSEA i ndex = 0 and the 90 % con f i d e n c e i n t e r v a l s a r e 0 0 .023
BIC = −61.51
F i t based upon o f f d i a g on a l v a l u e s = 1
Measures o f f a c t o r s c o r e adequacy

MR1 MR2 MR3
Co r r e l a t i o n o f s c o r e s w i th f a c t o r s 0 .96 0 .92 0 .90
Mu l t i p l e R squa r e o f s c o r e s w i th f a c t o r s 0 .93 0 .85 0 .81
Minimum c o r r e l a t i o n o f p o s s i b l e f a c t o r s c o r e s 0 .86 0 .71 0 .63
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A factor diagram

f a3 <− f a ( Thurstone , 3 , n . obs=213)

Factor Analysis
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Thurstone, 3 factors Varimax rotated

> v3 <− f a ( Thurstone , 3 , r o t a t e=”Varimax ” , n . obs=213)
> f a . d iagram ( v3 )
> v3
Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Thurstone , n f a c t o r s = 3 , n . obs = 213 , r o t a t e = ”Varimax ”)
S t anda rd i z ed l o a d i n g s based upon c o r r e l a t i o n matr ix

MR1 MR2 MR3 h2 u2
Sentence s 0 .86 0 .20 0 .22 0 .82 0 .18
Vocabu la ry 0 .85 0 .27 0 .18 0 .84 0 .16
Sent . Complet ion 0 .80 0 .24 0 .19 0 .73 0 .27
F i r s t . L e t t e r s 0 .29 0 .78 0 .20 0 .73 0 .27
4 . L e t t e r . Words 0 .27 0 .70 0 .26 0 .63 0 .37
S u f f i x e s 0 .36 0 .60 0 .10 0 .50 0 .50
L e t t e r . S e r i e s 0 .28 0 .18 0 .78 0 .72 0 .28
Ped i g r e e s 0 .48 0 .15 0 .50 0 .50 0 .50
L e t t e r . Group 0 .20 0 .32 0 .62 0 .53 0 .47

MR1 MR2 MR3
SS l o a d i n g s 2 .73 1 .78 1 .48
P ropo r t i o n Var 0 .30 0 .20 0 .16
Cumulat i ve Var 0 .30 0 .50 0 .67
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Compare the two solutions

> v3 <− f a ( Thurstone , 3 , r o t a t e=”Varimax ” , n . obs=213)
> f a . d iagram ( v3 )

Factor Analysis
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Factor Congruence is a measure of how much the factor loadings
agree

1. Developed by Burt (1948) but known as the ”Tucker

coefficient” it is just Σ(F1F2)√
ΣF1

2ΣF2
2

> f a c t o r . congruence ( l i s t ( v3 , f 3 ) )

MR1 MR2 MR3 MR1 MR2 MR3
MR1 1 .00 0 .64 0 .63 0 .95 0 .30 0 .28
MR2 0 .64 1 .00 0 .62 0 .41 0 .92 0 .28
MR3 0 .63 0 .62 1 .00 0 .41 0 .36 0 .90
MR1 0 .95 0 .41 0 .41 1 .00 0 .06 0 .09
MR2 0 .30 0 .92 0 .36 0 .06 1 .00 0 .08
MR3 0 .28 0 .28 0 .90 0 .09 0 .08 1 .00
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Principal Components of the Thurstone data set
> p3 <− p r i n c i p a l ( Thurstone , 3 )
> p3

P r i n c i p a l Components A n a l y s i s
Ca l l : p r i n c i p a l ( r = Thurstone , n f a c t o r s = 3)
S tanda rd i z ed l o a d i n g s ( p a t t e r n matr ix ) based upon c o r r e l a t i o n matr ix

RC1 RC2 RC3 h2 u2
Sentence s 0 .86 0 .24 0 .23 0 .86 0 .14
Vocabu la ry 0 .85 0 .31 0 .19 0 .86 0 .14
Sent . Complet ion 0 .85 0 .26 0 .19 0 .83 0 .17
F i r s t . L e t t e r s 0 .23 0 .82 0 .23 0 .78 0 .22
4 . L e t t e r . Words 0 .18 0 .79 0 .30 0 .75 0 .25
S u f f i x e s 0 .31 0 .77 0 .06 0 .70 0 .30
L e t t e r . S e r i e s 0 .25 0 .16 0 .83 0 .78 0 .22
Ped i g r e e s 0 .53 0 .08 0 .61 0 .67 0 .33
L e t t e r . Group 0 .10 0 .31 0 .80 0 .75 0 .25

RC1 RC2 RC3
SS l o a d i n g s 2 .73 2 .25 1 .99
P ropo r t i o n Var 0 .30 0 .25 0 .22
Cumulat i ve Var 0 .30 0 .55 0 .78
P ropo r t i o n Exp l a i n ed 0 .39 0 .32 0 .29
Cumulat i ve P ropo r t i o n 0 .39 0 .71 1 .00

Test o f the h y p o t h e s i s t ha t 3 components a r e s u f f i c i e n t .

The deg r e e s o f f reedom f o r the n u l l model a r e 36 and the o b j e c t i v e f u n c t i o n was
5 .2
The deg r e e s o f f reedom f o r the model a r e 12 and the o b j e c t i v e f u n c t i o n was 0 .62

F i t based upon o f f d i a g on a l v a l u e s = 0 .98 87 / 122
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R has many built in data sets

• data(bfi)
• 25 personality items from the Big 5

• Collected as part of the SAPA project

• Thought to represent 5 dimensions
• Agreeableness
• Extraversion
• Conscientiousness
• Openness
• Neuroticism
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Describe the Big 5
> data ( b f i )
> d e s c r i b e ( b f i )

var n mean sd median trimmed mad min max range skew k u r t o s i s
se
A1 1 2784 2 .41 1 .41 2 2 .23 1 .48 1 6 5 0 .83 −0.31 0 .03
A2 2 2773 4 .80 1 .17 5 4 .98 1 .48 1 6 5 −1.12 1 .05 0 .02
A3 3 2774 4 .60 1 .30 5 4 .79 1 .48 1 6 5 −1.00 0 .44 0 .02
A4 4 2781 4 .70 1 .48 5 4 .93 1 .48 1 6 5 −1.03 0 .04 0 .03
A5 5 2784 4 .56 1 .26 5 4 .71 1 .48 1 6 5 −0.85 0 .16 0 .02
C1 6 2779 4 .50 1 .24 5 4 .64 1 .48 1 6 5 −0.85 0 .30 0 .02
C2 7 2776 4 .37 1 .32 5 4 .50 1 .48 1 6 5 −0.74 −0.14 0 .03
C3 8 2780 4 .30 1 .29 5 4 .42 1 .48 1 6 5 −0.69 −0.13 0 .02
C4 9 2774 2 .55 1 .38 2 2 .41 1 .48 1 6 5 0 .60 −0.62 0 .03
C5 10 2784 3 .30 1 .63 3 3 .25 1 .48 1 6 5 0 .07 −1.22 0 .03
E1 11 2777 2 .97 1 .63 3 2 .86 1 .48 1 6 5 0 .37 −1.09 0 .03
E2 12 2784 3 .14 1 .61 3 3 .06 1 .48 1 6 5 0 .22 −1.15 0 .03
E3 13 2775 4 .00 1 .35 4 4 .07 1 .48 1 6 5 −0.47 −0.47 0 .03
E4 14 2791 4 .42 1 .46 5 4 .59 1 .48 1 6 5 −0.82 −0.30 0 .03
E5 15 2779 4 .42 1 .33 5 4 .56 1 .48 1 6 5 −0.78 −0.09 0 .03
N1 16 2778 2 .93 1 .57 3 2 .82 1 .48 1 6 5 0 .37 −1.01 0 .03
N2 17 2779 3 .51 1 .53 4 3 .51 1 .48 1 6 5 −0.08 −1.05 0 .03
N3 18 2789 3 .22 1 .60 3 3 .16 1 .48 1 6 5 0 .15 −1.18 0 .03
N4 19 2764 3 .19 1 .57 3 3 .12 1 .48 1 6 5 0 .20 −1.09 0 .03
N5 20 2771 2 .97 1 .62 3 2 .85 1 .48 1 6 5 0 .37 −1.06 0 .03
O1 21 2778 4 .82 1 .13 5 4 .96 1 .48 1 6 5 −0.90 0 .43 0 .02
O2 22 2800 2 .71 1 .57 2 2 .56 1 .48 1 6 5 0 .59 −0.81 0 .03
O3 23 2772 4 .44 1 .22 5 4 .56 1 .48 1 6 5 −0.77 0 .30 0 .02
O4 24 2786 4 .89 1 .22 5 5 .10 1 .48 1 6 5 −1.22 1 .08 0 .02
O5 25 2780 2 .49 1 .33 2 2 .34 1 .48 1 6 5 0 .74 −0.24 0 .03
gender 26 2800 1 .67 0 .47 2 1 .71 0 .00 1 2 1 −0.73 −1.47 0 .01
educa t i on 27 2577 3 .19 1 .11 3 3 .22 1 .48 1 5 4 −0.05 −0.32 0 .02
age 28 2800 28 .78 11 .13 26 27 .43 10 .38 3 86 83 1 .02 0 .56 0 .2189 / 122
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How many factors?

> f a . p a r a l l e l ( b f i [ 1 : 2 5 ] ) #j u s t the i t ems
P a r a l l e l a n a l y s i s s u g g e s t s t ha t the number o f f a c t o r s = 6 and the number o f components =
6
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How many factors part 2: VSS

> VSS( b f i [ 1 : 2 5 ] )

Very S imple S t r u c t u r e
Ca l l : VSS( x = b f i [ 1 : 2 5 ] )
VSS comp l e x i t y 1 a c h i e v e s a maximimum of 0 .58 wi th 4 f a c t o r s
VSS comp l e x i t y 2 a c h i e v e s a maximimum of 0 .74 wi th 4 f a c t o r s

The V e l i c e r MAP c r i t e r i o n a c h i e v e s a minimum of 0 .01 wi th 5
f a c t o r s

V e l i c e r MAP
[ 1 ] 0 .02 0 .02 0 .02 0 .02 0 .01 0 .02 0 .02 0 .02

Very S imple S t r u c t u r e Complex i t y 1
[ 1 ] 0 .49 0 .54 0 .57 0 .58 0 .53 0 .54 0 .52 0 .52

Very S imple S t r u c t u r e Complex i t y 2
[ 1 ] 0 .00 0 .63 0 .69 0 .74 0 .73 0 .72 0 .70 0 .69
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VSS plot
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Extract 5 factors from the BFI

> f 5 <− f a ( b f i [ 1 : 2 5 ] , 5 )
f a . d iagram ( f5 , main=”F i v e f a c t o r s o f p e r s o n a l i t y ? ”)

Five factors of personality?

N1
N2
N3
N5
C4
C2
C5
C3
C1
A3
A2
A5
A4
A1
E2
E1
E4
N4
E5
E3
O3
O1
O5
O2
O4

MR2

0.90.80.70.4

MR3

-0.60.6-0.60.60.5

MR5
0.70.60.60.5-0.4

MR1
0.70.6-0.50.4-0.4-0.3

MR40.60.5-0.5-0.40.4

-0.3
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Analyzing from an external file

• Data may reside on a local or a remote computer
• Option A: Using read.clipboard and its alternatives

• Open the other other file using a text editor or spreadsheet
program

• Select all and copy (to the clipboard)
• my.data <- read.clipboard() or my.data <- read.clipboard.csv()

or read.clipboard.tab()

• Read the information directly
• find the file and call it something fn <- file.choose()
• Read in the data my.data <- read.table(fn, header=TRUE)

• Read from an SPSS file using the foreign package
• library(foreign)
• find the file and call it something fn <- file.choose()
• my.data <- read.spss(fn,to.data.frame=TRUE)
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A simplex

• In developmental, or any time process, nearby items are more
correlated

• An underlying growth process
• localized errors

• grades in progressive quarters

• reaction times during a long session
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Simulate a simplex

> s e t . s eed (42) # f o r r e p r o d u c i b l e r e s u l t s
> s9 <− s im . s imp l e x (9 , n=1000)
> s t r ( s9 ) #show the s t r u c t u r e
L i s t o f 4
$ model : num [ 1 : 9 , 1 : 9 ] 1 0 .8 0 .64 0 .512 0 .41 . . .
. .− a t t r ( ∗ , ”dimnames ”)= L i s t o f 2
. . . . $ : ch r [ 1 : 9 ] ”V1 ” ”V2” ”V3” ”V4” . . .
. . . . $ : ch r [ 1 : 9 ] ”V1 ” ”V2” ”V3” ”V4” . . .

$ r : num [ 1 : 9 , 1 : 9 ] 1 0 .789 0 .625 0 .492 0 .42 . . .
. .− a t t r ( ∗ , ”dimnames ”)= L i s t o f 2
. . . . $ : ch r [ 1 : 9 ] ”V1 ” ”V2” ”V3” ”V4” . . .
. . . . $ : ch r [ 1 : 9 ] ”V1 ” ”V2” ”V3” ”V4” . . .

$ obse r v ed : num [ 1 : 1 000 , 1 : 9 ] −0.659 −0.858 0 .241 0 .714 1 .268 . . .
. .− a t t r ( ∗ , ”dimnames ”)= L i s t o f 2
. . . . $ : NULL
. . . . $ : ch r [ 1 : 9 ] ”V1 ” ”V2” ”V3” ”V4” . . .

$ Ca l l : l anguage sim . s imp l e x ( nvar = 9 , n = 1000)
− a t t r ( ∗ , ” c l a s s ”)= chr [ 1 : 2 ] ”psych ” ”sim ”
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A simplex correlation matrix

> round ( s9$model , 2 )
V1 V2 V3 V4 V5 V6 V7 V8 V9

V1 1 .00 0 .80 0 .64 0 .51 0 .41 0 .33 0 .26 0 .21 0 .17
V2 0 .80 1 .00 0 .80 0 .64 0 .51 0 .41 0 .33 0 .26 0 .21
V3 0 .64 0 .80 1 .00 0 .80 0 .64 0 .51 0 .41 0 .33 0 .26
V4 0 .51 0 .64 0 .80 1 .00 0 .80 0 .64 0 .51 0 .41 0 .33
V5 0 .41 0 .51 0 .64 0 .80 1 .00 0 .80 0 .64 0 .51 0 .41
V6 0 .33 0 .41 0 .51 0 .64 0 .80 1 .00 0 .80 0 .64 0 .51
V7 0 .26 0 .33 0 .41 0 .51 0 .64 0 .80 1 .00 0 .80 0 .64
V8 0 .21 0 .26 0 .33 0 .41 0 .51 0 .64 0 .80 1 .00 0 .80
V9 0 .17 0 .21 0 .26 0 .33 0 .41 0 .51 0 .64 0 .80 1 .00

97 / 122



Preliminaries The basic concepts PCA FA Nf > 1 SS NF? Simulate Ability examples Data from an external file Problems Items Polytomous items Other points Summary References

How many factors?

fa.parallel(s9$observed)

Correlation plot

V
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Factor a simplex

> f 2 <− f a ( s9$ obse rved , 2 )
> f 2
Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = s9$ obse rved , n f a c t o r s = 2)
S tanda rd i z ed l o a d i n g s based upon c o r r e l a t i o n matr ix

MR1 MR2 h2 u2
V1 −0.07 0 .76 0 .53 0 .47
V2 −0.06 0 .89 0 .75 0 .25
V3 −0.01 0 .92 0 .83 0 .17
V4 0 .21 0 .72 0 .71 0 .29
V5 0 .48 0 .49 0 .69 0 .31
V6 0 .72 0 .23 0 .74 0 .26
V7 0 .90 0 .04 0 .85 0 .15
V8 0 .91 −0.10 0 .76 0 .24
V9 0 .79 −0.09 0 .57 0 .43

MR1 MR2
SS l o a d i n g s 3 .22 3 .19
P ropo r t i o n Var 0 .36 0 .35
Cumulat i ve Var 0 .36 0 .71
With f a c t o r c o r r e l a t i o n s o f

MR1 MR2
MR1 1 .00 0 .47
MR2 0 .47 1 .00
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factor diagram

> fa.diagram(f2,simple=FALSE) #show large cross loadings

Factor Analysis

V8

V7

V9

V6

V3

V2

V1

V4

V5

MR1

0.9
0.9
0.8
0.7

0.5
MR2

0.9
0.9
0.8
0.7
0.5

0.5
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ICLUST of a simplex

> iclust(s9$observed) #cluster analyze the data

iclust

C8
α = 0.91
β = 0.7

C6
α = 0.9
β = 0.84

0.63

C4
α = 0.9
β = 0.9 0.82

V9
0.9

V8
0.9

C1
α = 0.89
β = 0.89

0.86V7
0.9

V6
0.9

C7
α = 0.9
β = 0.8

0.69
C2

α = 0.89
β = 0.89 0.76

V5
0.89

V4
0.89

C5
α = 0.89
β = 0.86

0.83
C3

α = 0.89
β = 0.890.87

V3
0.9

V2
0.9

V1
0.9
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Item difficulty leads to a simplex structure

• Dichotomous items (e.g., ability items) differ in difficulty
• Easy items have high endorsement rates
• Hard items have low endorsement rates

• Φ coefficient is sensitive to differences in response

• Items with similar difficulties will correlate more highly
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How many factors

> set . s eed (42)
> v9 <− s im . r a s ch (9 )
> round ( cor ( v9$ i t ems ) , 2 )

V1 V2 V3 V4 V5 V6 V7 V8 V9
V1 1 .00 0 .11 0 .01 0 .12 0 .06 0 .09 0 .11 0 .03 0 .06
V2 0 .11 1 .00 0 .16 0 .23 0 .09 0 .08 0 .09 0 .10 0 .09
V3 0 .01 0 .16 1 .00 0 .14 0 .07 0 .17 0 .10 0 .08 0 .07
V4 0 .12 0 .23 0 .14 1 .00 0 .23 0 .23 0 .13 0 .12 0 .12
V5 0 .06 0 .09 0 .07 0 .23 1 .00 0 .21 0 .07 0 .11 0 .06
V6 0 .09 0 .08 0 .17 0 .23 0 .21 1 .00 0 .21 0 .05 0 .16
V7 0 .11 0 .09 0 .10 0 .13 0 .07 0 .21 1 .00 0 .12 0 .09
V8 0 .03 0 .10 0 .08 0 .12 0 .11 0 .05 0 .12 1 .00 0 .02
V9 0 .06 0 .09 0 .07 0 .12 0 .06 0 .16 0 .09 0 .02 1 .00
> f a . p a r a l l e l ( v9$ i t ems )
P a r a l l e l a n a l y s i s s u g g e s t s t ha t the number o f f a c t o r s =
5

and the number o f components = 1 103 / 122
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Parallel analysis of dichotomous items
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Find the tetrachoric correlations

> draw.tetra(.4,1,0) #rho, cut 1, cut 2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Y rho =  0.4

X > τ
Y > Τ

X < τ
Y > Τ

X > τ
Y < Τ

X < τ
Y < Τ

x

dn
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m
(x
)

X > τ

τ

x1

Y > Τ

Τ
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The tetrachoric correlation matrix

> r t e t <− t e t r a c h o r i c ( v9$ i t ems )
Load ing r e q u i r e d package : mvtnorm
> r t e t
Ca l l : t e t r a c h o r i c ( x = v9$ i t ems )
t e t r a c h o r i c c o r r e l a t i o n

V1 V2 V3 V4 V5 V6 V7 V8 V9
V1 1.000 0 .27 0 .024 0 .27 0 .15 0 .24 0 .33 0 .115 0 .253
V2 0 .268 1 .00 0 .299 0 .41 0 .18 0 .15 0 .21 0 .281 0 .322
V3 0 .024 0 .30 1 .000 0 .24 0 .11 0 .32 0 .20 0 .195 0 .182
V4 0 .273 0 .41 0 .242 1 .00 0 .36 0 .38 0 .23 0 .253 0 .288
V5 0 .147 0 .18 0 .114 0 .36 1 .00 0 .33 0 .12 0 .221 0 .130
V6 0 .239 0 .15 0 .316 0 .38 0 .33 1 .00 0 .35 0 .111 0 .335
V7 0 .330 0 .21 0 .195 0 .23 0 .12 0 .35 1 .00 0 .247 0 .212
V8 0 .115 0 .28 0 .195 0 .25 0 .22 0 .11 0 .25 1 .000 0 .048
V9 0 .253 0 .32 0 .182 0 .29 0 .13 0 .34 0 .21 0 .048 1 .000

wi th tau o f
V1 V2 V3 V4 V5 V6 V7 V8 V9

−1.46 −1.00 −0.72 −0.32 0 .00 0 .39 0 .69 1 .16 1 .38
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Factor analyze the items using tetrachorics

> f . i r t <− i r t . f a ( v9$ i t ems )
> f . i r t
I tem Response An a l y s i s u s i n g Fac to r A n a l y s i s =
Ca l l : i r t . f a ( x = v9$ i t ems )

Loca t i on D i s c r im i n a t i o n tau Load ing
V1 −1.62 0 .48 −1.46 0 .43
V2 −1.19 0 .65 −1.00 0 .54
V3 −0.79 0 .45 −0.72 0 .41
V4 −0.42 0 .89 −0.32 0 .66
V5 0 .00 0 .48 0 .00 0 .43
V6 0 .47 0 .71 0 .39 0 .58
V7 0 .78 0 .53 0 .69 0 .47
V8 1 .24 0 .39 1 .16 0 .36
V9 1 .56 0 .54 1 .38 0 .47

107 / 122



Preliminaries The basic concepts PCA FA Nf > 1 SS NF? Simulate Ability examples Data from an external file Problems Items Polytomous items Other points Summary References

Show the items

> plot(f.irt,type=”ICC”)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item parameters from factor analysis

Latent Trait (normal scale)

P
ro

ba
bi

lit
y 

of
 R

es
po

ns
e

1 2 3 4 5 6 7 8 9

108 / 122



Preliminaries The basic concepts PCA FA Nf > 1 SS NF? Simulate Ability examples Data from an external file Problems Items Polytomous items Other points Summary References

Show the item information functions

> plot(f.irt)
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Show the Test information function

> plot(f.irt,type=”test”)
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Polytomous items

• Most personality items have 3-6 alternatives
• The fewer the alternatives, the more the correlation is

restricted
• For 6 choice items this is not too serious, but for 4, it probably

is

• Find the polychoric correlation (What would be the Pearson if
the data were bivariate normal?

• polychoric function in R
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Find polychoric correlations for Big 5 items

data ( b f i )
r b f i <−p o l y c h o r i c ( b f i [ 1 : 2 5 ] ) #t h i s t a k e s awh i l e
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Hierarchical Clustering (e.g., iclust)

1. Find the proximity (e.g. correlation) matrix,

2. Identify the most similar pair of items

3. Combine this most similar pair of items to form a new variable
(cluster),

4. Find the similarity of this cluster to all other items and
clusters,

5. Repeat steps 2 and 3 until some criterion is reached (e.g.,
typically, if only one cluster remains or in ICLUST if there is a
failure to increase reliability coefficients α or β).

6. Purify the solution by reassigning items to the most similar
cluster center.
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Factor score estimates are estimates, not precise

That factor scores are indeterminate has been taken by some (e.g.,
Schonemann, 1996) to represent psychopathology on the part of
psychometricians, for the problem of indeterminacy has been
known (and either ignored or suppressed) since Wilson (1928). To
others, factor indeterminacy is a problem at the data level but not
the structural level, and at the data level it is adequate to report
the degree of indeterminacy. This degree of indeterminacy is
indeed striking (Schonemann and Wang, 1972; Velicer and
Jackson, 1990), and should be reported routinely. It is reported for
each factor in the fa and omega functions.
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Factor score estimates

1. The problem is, factors model items, loadings are β of factor
onto item

2. We need to predict factor from the items.

3. Most naive model: unit weight the variables that have salient
loadings

4. Regression weights based upon R and loadings.
• w = R−1F

5. Ten Berge weights
• L = Fϕ1/2

• C = R−1/2L(L′R−)L)−1/2

• W = R−1/2Cϕ1/2

6. Bartlett
• W = U−2F (F ′U−2F )−1
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Factor analysis and factor score estimates

> f 3 <− f a ( Thurstone , 3 )
> f 3

l o a d i n g r e q u i r e d package : GPArotat ion

Fac to r A n a l y s i s u s i n g method = minre s
Ca l l : f a ( r = Thurstone , n f a c t o r s = 3)
. . .

The r oo t mean squa r e o f the r e s i d u a l s (RMSR) i s 0 .01
The df c o r r e c t e d r oo t mean squa r e o f the r e s i d u a l s i s 0 .01

F i t based upon o f f d i a g on a l v a l u e s = 1
Measures o f f a c t o r s c o r e adequacy

MR1 MR2 MR3
Co r r e l a t i o n o f s c o r e s w i th f a c t o r s 0 .96 0 .92 0 .90
Mu l t i p l e R squa r e o f s c o r e s w i th f a c t o r s 0 .93 0 .85 0 .81
Minimum c o r r e l a t i o n o f p o s s i b l e f a c t o r s c o r e s 0 .86 0 .71 0 .63
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The weights are smaller than the loadings but highly similar

> round ( f 3 $weights , 2 )

[ , 1 ] [ , 2 ] [ , 3 ]
Sen tence s 0 .37 −0.01 0 .05
Vocabu la ry 0 .38 0 .08 −0.02
Sent . Complet ion 0 .22 0 .03 0 .01
F i r s t . L e t t e r s 0 .01 0 .47 0 .02
4 . L e t t e r . Words 0 .01 0 .29 0 .06
S u f f i x e s 0 .03 0 .18 −0.02
L e t t e r . S e r i e s 0 .01 0 .01 0 .55
Ped i g r e e s 0 .05 −0.01 0 .18
L e t t e r . Group −0.01 0 .07 0 .25

> f a c t o r . congruence ( f 3 $weights , f 3 $ l o a d i n g s )
MR1 MR2 MR3

[ 1 , ] 0 .97 0 .06 0 .06
[ 2 , ] 0 .11 0 .97 0 .09
[ 3 , ] 0 .10 0 .10 0 .97

117 / 122



Preliminaries The basic concepts PCA FA Nf > 1 SS NF? Simulate Ability examples Data from an external file Problems Items Polytomous items Other points Summary References

Factor extension

1. Originally developed for the problem of more variables being
added after a tedious factor analysis was carried out.

2. Dwyer (1937) introduced a method for finding factor loadings
for variables not included in the original analysis. This is
basically finding the unattenuated correlation of the extension
variables with the factor scores. An alternative, which does
not correct for factor reliability was proposed by Gorsuch
(1997). Both options are an application of exploratory factor
analysis with extensions to new variables.
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Factor Extension

Table: Create 12 variables with a clear two factor structure. Remove
variables 3, 6, 9, and 12 from the matrix and factor the other variables.
Then extend this solutio to the deleted variables. Compare this solution
to the solution with all variables included (not shown). A graphic
representation is in Figure 1.

s e t . s eed (42)
f x <− matr ix ( c ( . 9 , . 8 , . 7 , . 8 5 , . 7 5 , . 6 5 , rep ( 0 , 1 2 ) , . 9 , . 8 , . 7 , . 8 5 , . 7 5 , . 6 5 ) , nco l=2)
Phi <− matr ix ( c ( 1 , . 6 , . 6 , 1 ) , 2 )
s im . data <− s im . s t r u c t u r e ( fx , Phi , n=1000 , raw=TRUE)
R <− cor ( s im . data$ obse r v ed )
Ro <− R [ c ( 1 , 2 , 4 , 5 , 7 , 8 , 10 , 11 ) , c ( 1 , 2 , 4 , 5 , 7 , 8 , 1 0 , 1 1 ) ]
Roe <− R [ c ( 1 , 2 , 4 , 5 , 7 , 8 , 10 , 11 ) , c ( 3 , 6 , 9 , 1 2 ) ]
f o <− f a (Ro , 2 )
f e <− f a . e x t e n s i o n (Roe , f o )
f a . d iagram ( fo , f e=f e )

Ca l l : f a . e x t e n s i o n (Roe = Roe , f o = fo )
S t anda rd i z ed l o a d i n g s based upon c o r r e l a t i o n matr ix

MR1 MR2 h2 u2
V3 0 .69 0 .01 0 .49 0 .51
V6 0 .66 −0.02 0 .42 0 .58
V9 0 .01 0 .66 0 .44 0 .56
V12 −0.06 0 .70 0 .44 0 .56

MR1 MR2
SS l o a d i n g s 0 .89 0 .89
P ropo r t i o n Var 0 .22 0 .22
Cumulat i ve Var 0 .22 0 .45

With f a c t o r c o r r e l a t i o n s o f
MR1 MR2

MR1 1 .00 0 .62
MR2 0 .62 1 .00
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Factor analysis and extension
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Figure: Factor extension projects new variables into a factor solution from
an original set of variables. In this simulated data set (see Table 3, 12
variables were generated to reflect two correlated factors. Variables 3, 6,
9, and 12 were removed and the remaining variables were factored using
fa. The loadings of the removed variables on these original factors were
then calculated using fa.extension. Compare these extended loadings
to the loadings had all the variables been factored toegether.
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Factor analysis/Components analysis/MDS/cluster analysis as
models of data

1. Factor analysis R = FF′ +U2 Models the common variance

2. Components R = CC′ Models all the variance

3. Cluster analysis – can be a blend of factor idea and
component idea

4. MDS Similar results to factor, but with the general factor
removed

5. All are models, they should be compared!

6. Confirmatory factor models to be discussed later

A useful tutorial: https:
//personality-project.org/r/psych/HowTo/factor.pdf
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Steps toward data reduction/theory clarification

1. Verify the quality of the data

2. Choose a method for extraction – components vs. factors

3. Choose the number of factors to extract (statistically,
pragmatically, rules of thumb)

4. Rotate/transform the results to a solution that is interpretable
and useful

5. Estimate the factor scores for analysis with criteria or just find
the factor correlations using structural equation techniques

6. Compare the model to alternative models

7. Don’t panic!
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