
Chapter 3: Testing alternative models of data

William Revelle
Northwestern University

Prepared as part of course on latent variable analysis (Psychology 454)
and as a supplement to the Short Guide to R for psychologists

January 30, 2007

3.1 One factor — congeneric data model . 2
3.1.1 Generating the data . 2
3.1.2 Estimate a congeneric model . 5
3.1.3 Estimate a tau equivalent model with equal true score and unequal error

loadings . 6
3.1.4 Estimate a parallel test model with equal true score and equal error

loadings . 8
3.1.5 Estimate a parallel test model with fixed loadings 9
3.1.6 Comparison of models . 10

3.2 Two (perhaps correlated) factors . 10
3.2.1 Generating the data . 11
3.2.2 Exploratory Factor analysis of the data 12
3.2.3 Confirmatory analysis with a predicted structure 14
3.2.4 Confirmatory factor analysis with two independent factors with equal

loadings within factors . 16
3.2.5 Structure invariance, part I— unequal loadings within factors - matched

across factors . 18
3.2.6 Estimate two correlated factors . 19

3.3 Hierarchical models . 27
3.3.1 Two Correlated factors with a g factor 27
3.3.2 Generating the data for 3 correlated factors 30
3.3.3 Exploratory factor analysis with 3 factors 31
3.3.4 Three correlated factors with a g factor 34
3.3.5 Bifactor solutions . 36
3.3.6 Schmid Leiman transformations to orthogonalize the factors 38
3.3.7 Omega as an estimate of reliability . 40

In this chapter we consider how to test nested alternative models of some basic data types.
Using the simulation tools introduced in the previous chapter, we generate a data set from a
congeneric reliability model with unequal true score loadings and fit three alternative models
to the data. Then we simulate a two factor data structure and consider a set of alternative

1

http://personality-project.org/revelle.html
http://personality-project.org/revelle/syllabi/454/454.syllabus.pdf
http://personality-project.org/

models. Finally, we consider ways of representing (and modeling) hierarchical data struc-
tures.

For these examples, as well as the other ones, we need to load the psych and sem pack-
ages.

> library(sem)

> library(psych)

3.1 One factor — congeneric data model

The classic test theory structure of 4 observed variables V1 . . . V4 all loading on a single
factor, θ, (Figure 3.1 may be analyzed in multiple ways. The most restrictive model considers
all the loadings to be fixed values (perhaps .7). A more reasonable model is to consider the
four variables to be parallel, that is to say, that they have equal loadings on the latent variable
and equal error variances. A less restrictive models would be tau equivalence where the paths
are equal but the errors can be unequal, and then the least restrictive model is known as the
“congeneric” model where all paths are allowed to vary.

We can generate data under a congeneric model and then test it with progressively more
restricted models (i.e.,start with the most unrestricted model, the congeneric model, fix some
parameters for the tau equivalent model, add equality constraints for the parallel test model,
and then fit arbitrarily fixed parameters). To do this, we first create a function, sim.sem,
which we apply to make our data.

3.1.1 Generating the data

We create a function, sim.sem, to simulate data with a variety of possible structures. Al-
though the function defaults to four variables with specific loadings on one factor, we can vary
both the number of variables as well as the loadings and the number of factors. The function
returns the pattern matrix used to generate the data and the implied structure matrix, or
just the simulated raw data.

> sim.sem <- function(N = 1000, loads = c(0.8, 0.7, 0.6, 0.5), phi = NULL, obs = TRUE) {

+ if (!is.matrix(loads)) {

+ loading <- matrix(loads, ncol = 1)

+ }

+ else {

+ loading <- loads

+ }

+ nv <- dim(loading)[1]

+ nf <- dim(loading)[2]

+ error <- diag(1, nrow = nv)

+ diag(error) <- sqrt(1 - diag(loading %*% t(loading)))

+ if (is.null(phi))

+ phi <- diag(1, nrow = nf)

+ pattern <- cbind(loading, error)

2

X1 X2 X3 X4

X

a b c d

e1 e2 e3 e4

Figure 3.1: The basic congeneric model is one latent (true score) factor accounting for the
correlations of multiple observed scores. If there are at least 4 observed variables, the model
is identified. For fewer variables, assumptions need to be made (i.e., for two parallel tests,
the path coefficients are all equal.)

3

+ colnames(pattern) <- c(paste("theta", seq(1:nf), sep = ""), paste("e", seq(1:nv),

+ sep = ""))

+ rownames(pattern) <- c(paste("V", seq(1:nv), sep = ""))

+ temp <- diag(1, nv + nf)

+ temp[1:nf, 1:nf] <- phi

+ phi <- temp

+ colnames(phi) <- c(paste("theta", seq(1:nf), sep = ""), paste("e", seq(1:nv),

+ sep = ""))

+ structure <- pattern %*% phi

+ latent <- matrix(rnorm(N * (nf + nv)), ncol = (nf + nv))

+ if (nf > 1) {

+ for (i in 1:nf) {

+ for (j in i + 1:nf) {

+ phi[i, j] <- 0

+ }

+ }

+ }

+ observed <- latent %*% t(pattern %*% phi)

+ if (obs) {

+ return(observed)

+ }

+ else {

+ ps <- list(pattern = pattern, structure = structure, phi)

+ return(ps)

+ }

+ }

Specifying a particular factor pattern, we can use the sim.sem function to show the extended
pattern matrix, the implied population correlation matrix, and then take a sample of 1000
from that population. Note that even with 1000 simulated subjects the sample correlation
matrix is not the same as the population matrix. As we develop our theory testing skills, it is
useful to remember that we are trying to make inferences about the population based upon
parameter estimates derived from the sample.

> N <- 1000

> sim <- sim.sem(obs = FALSE)

> round(sim$pattern, 2)

theta1 e1 e2 e3 e4
V1 0.8 0.6 0.00 0.0 0.00
V2 0.7 0.0 0.71 0.0 0.00
V3 0.6 0.0 0.00 0.8 0.00
V4 0.5 0.0 0.00 0.0 0.87

> population <- (sim$pattern %*% t(sim$pattern))

> population

V1 V2 V3 V4
V1 1.00 0.56 0.48 0.40

4

V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00

> set.seed(42)

> data.f1 <- sim.sem()

> round(cor(data.f1), 2)

V1 V2 V3 V4
V1 1.00 0.54 0.52 0.41
V2 0.54 1.00 0.41 0.32
V3 0.52 0.41 1.00 0.32
V4 0.41 0.32 0.32 1.00

3.1.2 Estimate a congeneric model

Using the simulated data generated above, we find the covariance matrix from the sample
data and apply sem to the data. (The sem package needs to be loaded first.) Examine the
statistics of fit as well as the residual matrix.

> S.congeneric <- cov(data.f1)

> model.congeneric <- matrix(c("theta -> V1", "a", NA, "theta -> V2", "b", NA,

+ "theta -> V3", "c", NA, "theta -> V4", "d", NA, "V1 <-> V1", "u", NA, "V2 <-> V2",

+ "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4", "x", NA, "theta <-> theta",

+ NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.congeneric) <- c("path", "label", "initial estimate")

> model.congeneric

path label initial estimate
[1,] "theta -> V1" "a" NA
[2,] "theta -> V2" "b" NA
[3,] "theta -> V3" "c" NA
[4,] "theta -> V4" "d" NA
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "v" NA
[7,] "V3 <-> V3" "w" NA
[8,] "V4 <-> V4" "x" NA
[9,] "theta <-> theta" NA "1"

> sem.congeneric = sem(model.congeneric, S.congeneric, N)

> summary(sem.congeneric, digits = 3)

Model Chisquare = 0.46 Df = 2 Pr(>Chisq) = 0.795
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 0.999
RMSEA index = 0 90% CI: (NA, 0.0398)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.01

5

Bentler CFI = 1
BIC = -13.4

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.177000 -0.032200 -0.000271 0.010600 0.017000 0.319000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.829 0.0320 25.90 0 V1 <--- theta
b 0.657 0.0325 20.23 0 V2 <--- theta
c 0.632 0.0325 19.43 0 V3 <--- theta
d 0.503 0.0340 14.80 0 V4 <--- theta
u 0.316 0.0346 9.12 0 V1 <--> V1
v 0.580 0.0334 17.35 0 V2 <--> V2
w 0.604 0.0337 17.94 0 V3 <--> V3
x 0.776 0.0382 20.31 0 V4 <--> V4

Iterations = 13

> round(residuals(sem.congeneric), 2)

V1 V2 V3 V4
V1 0 0.00 0.00 0.00
V2 0 0.00 -0.01 0.00
V3 0 -0.01 0.00 0.01
V4 0 0.00 0.01 0.00

3.1.3 Estimate a tau equivalent model with equal true score and unequal
error loadings

A more constrained model, “Tau equivalence”, assumes that the theta paths in Figure 3.1 are
equal but allows the error variances to be unequal.

> S.congeneric <- cov(data.f1)

> model.tau <- matrix(c("theta -> V1", "a", NA, "theta -> V2", "a", NA, "theta -> V3",

+ "a", NA, "theta -> V4", "a", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v",

+ NA, "V3 <-> V3", "w", NA, "V4 <-> V4", "x", NA, "theta <-> theta", NA, 1),

+ ncol = 3, byrow = TRUE)

> colnames(model.tau) <- c("path", "label", "initial estimate")

> model.tau

path label initial estimate
[1,] "theta -> V1" "a" NA
[2,] "theta -> V2" "a" NA
[3,] "theta -> V3" "a" NA
[4,] "theta -> V4" "a" NA
[5,] "V1 <-> V1" "u" NA

6

[6,] "V2 <-> V2" "v" NA
[7,] "V3 <-> V3" "w" NA
[8,] "V4 <-> V4" "x" NA
[9,] "theta <-> theta" NA "1"

> sem.tau = sem(model.tau, S.congeneric, N)

> summary(sem.tau, digits = 3)

Model Chisquare = 56.1 Df = 5 Pr(>Chisq) = 7.64e-11
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 0.974
Adjusted goodness-of-fit index = 0.947
RMSEA index = 0.101 90% CI: (0.0783, 0.126)
Bentler-Bonnett NFI = 0.938
Tucker-Lewis NNFI = 0.932
Bentler CFI = 0.943
BIC = 21.6

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.160 -2.890 -0.967 -0.418 2.290 3.000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.668 0.0202 33.2 0 V1 <--- theta
u 0.448 0.0270 16.6 0 V1 <--> V1
v 0.565 0.0315 18.0 0 V2 <--> V2
w 0.576 0.0319 18.1 0 V3 <--> V3
x 0.730 0.0386 18.9 0 V4 <--> V4

Iterations = 10

> round(residuals(sem.tau), 2)

V1 V2 V3 V4
V1 0.11 0.10 0.08 -0.03
V2 0.10 0.00 -0.04 -0.12
V3 0.08 -0.04 -0.02 -0.12
V4 -0.03 -0.12 -0.12 -0.15

Note that this model has a much worse fit (as it should), with a very large change in the χ2

that far exceeds the benefit of greater parsimony (the change in degrees of freedom from 2 to
5). However, note that some traditional measures of fit (e.g., the GFI) seem reasonable. The
RMSEA and NFI suggest a poor fit, as do the residuals.

7

3.1.4 Estimate a parallel test model with equal true score and equal error
loadings

An even more unrealistic model would a model of parallel tests where the true score variances
are the same for all tests, as are the error variances.

> model.parallel <- matrix(c("theta -> V1", "a", NA, "theta -> V2", "a", NA,

+ "theta -> V3", "a", NA, "theta -> V4", "a", NA, "V1 <-> V1", "u", NA, "V2 <-> V2",

+ "u", NA, "V3 <-> V3", "u", NA, "V4 <-> V4", "u", NA, "theta <-> theta",

+ NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.parallel) <- c("path", "label", "initial estimate")

> model.parallel

path label initial estimate
[1,] "theta -> V1" "a" NA
[2,] "theta -> V2" "a" NA
[3,] "theta -> V3" "a" NA
[4,] "theta -> V4" "a" NA
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "u" NA
[7,] "V3 <-> V3" "u" NA
[8,] "V4 <-> V4" "u" NA
[9,] "theta <-> theta" NA "1"

> sem.parallel = sem(model.parallel, S.congeneric, N)

> summary(sem.parallel, digits = 3)

Model Chisquare = 91.2 Df = 8 Pr(>Chisq) = 2.22e-16
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 0.959
Adjusted goodness-of-fit index = 0.949
RMSEA index = 0.102 90% CI: (0.0838, 0.121)
Bentler-Bonnett NFI = 0.9
Tucker-Lewis NNFI = 0.931
Bentler CFI = 0.908
BIC = 36.0

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.78e+00 -1.04e+00 -2.74e-01 7.11e-07 9.99e-01 3.51e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.652 0.0198 32.9 0 V1 <--- theta
u 0.586 0.0152 38.7 0 V1 <--> V1

Iterations = 11

> round(residuals(sem.parallel), 2)

8

V1 V2 V3 V4
V1 -0.01 0.12 0.10 -0.01
V2 0.12 0.00 -0.02 -0.09
V3 0.10 -0.02 -0.01 -0.10
V4 -0.01 -0.09 -0.10 0.02

3.1.5 Estimate a parallel test model with fixed loadings

The most restrictive model estimates the fewest parameters and considers the case where all
loadings are fixed at a particular value. (This is truely a stupid model). Notice how large the
residuals are.

> model.fixed <- matrix(c("theta -> V1", NA, 0.6, "theta -> V2", NA, 0.6, "theta -> V3",

+ NA, 0.6, "theta -> V4", NA, 0.6, "V1 <-> V1", "u", NA, "V2 <-> V2", "u",

+ NA, "V3 <-> V3", "u", NA, "V4 <-> V4", "u", NA, "theta <-> theta", NA, 1),

+ ncol = 3, byrow = TRUE)

> colnames(model.fixed) <- c("path", "label", "initial estimate")

> model.fixed

path label initial estimate
[1,] "theta -> V1" NA "0.6"
[2,] "theta -> V2" NA "0.6"
[3,] "theta -> V3" NA "0.6"
[4,] "theta -> V4" NA "0.6"
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "u" NA
[7,] "V3 <-> V3" "u" NA
[8,] "V4 <-> V4" "u" NA
[9,] "theta <-> theta" NA "1"

> sem.fixed = sem(model.fixed, S.congeneric, N)

> summary(sem.fixed, digits = 3)

Model Chisquare = 98.6 Df = 9 Pr(>Chisq) = 0
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 0.957
Adjusted goodness-of-fit index = 0.952
RMSEA index = 0.0998 90% CI: (0.0826, 0.118)
Bentler-Bonnett NFI = 0.892
Tucker-Lewis NNFI = 0.934
Bentler CFI = 0.9
BIC = 36.4

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.980 0.633 1.510 1.850 2.590 5.790

Parameter Estimates

9

Estimate Std Error z value Pr(>|z|)
u 0.594 0.0153 38.9 0 V1 <--> V1

Iterations = 8

> round(residuals(sem.fixed), 2)

V1 V2 V3 V4
V1 0.05 0.19 0.16 0.05
V2 0.19 0.06 0.05 -0.03
V3 0.16 0.05 0.05 -0.03
V4 0.05 -0.03 -0.03 0.08

3.1.6 Comparison of models

We can examine the degrees of freedom in each of previous analyses and compare them to the
goodness of fit. The difference in χ2 of a nested model is itself a χ2 with degrees of freedom =
the difference of the two different degrees of freedom. We form a list of the different analyses,
and then show the summary statistics.

> summary.list <- list()

> summary.list[[1]] <- summary(sem.congeneric)[1:2]

> summary.list[[2]] <- summary(sem.tau)[1:2]

> summary.list[[3]] <- summary(sem.parallel)[1:2]

> summary.list[[4]] <- summary(sem.fixed)[1:2]

> summary.data <- matrix(unlist(summary.list), nrow = 4, byrow = TRUE)

> rownames(summary.data) <- c("congeneric", "tau", "parallel", "fixed")

> colnames(summary.data) <- c("chisq", "df")

> summary.data

chisq df
congeneric 0.4597646 2
tau 56.1290414 5
parallel 91.2250565 8
fixed 98.5734749 9

A simple conclusion is that although the congeneric model has estimated the most parame-
ters, the χ2 difference between congeneric and tau equivalence models justifies rejecting tau
equivalence in favor of the less restrictive congeneric model.

3.2 Two (perhaps correlated) factors

We now consider more interesting problems. The case of two correlated factors sometimes
appears as a classic prediction problem (multiple measures of X, multiple measures of Y,
what is the correlation between the two latent constructs) and sometimes as a measurement
problem (multiple subfactors of X). The generation structure is similar.

10

X1 X2 X3 Y1 Y2 Y3

X

a b c

Y

g

d e f

e1 e2 e3 e4 e5 e6

Figure 3.2: Six variables with two factors. This notation shows the error of measurement in
the observed and latent variables. If g >0, then the two factors are correlated.

3.2.1 Generating the data

We use the sim.sem function from before, and specify a two factor, uncorrelated structure.
Figure 3.2 shows the general case where the two factors could be correlated. By specifying
the path between the two latent variables to be 0, we make them uncorrelated.

> set.seed(42)

> N <- 1000

> pattern <- matrix(c(0.9, 0, 0.8, 0, 0.7, 0, 0, 0.8, 0, 0.7, 0, 0.6), ncol = 2,

+ byrow = TRUE)

> phi <- matrix(c(1, 0, 0, 1), ncol = 2)

> population <- sim.sem(loads = pattern, phi = phi, obs = FALSE)

> round(population$pattern, 2)

theta1 theta2 e1 e2 e3 e4 e5 e6
V1 0.9 0.0 0.44 0.0 0.00 0.0 0.00 0.0
V2 0.8 0.0 0.00 0.6 0.00 0.0 0.00 0.0
V3 0.7 0.0 0.00 0.0 0.71 0.0 0.00 0.0
V4 0.0 0.8 0.00 0.0 0.00 0.6 0.00 0.0
V5 0.0 0.7 0.00 0.0 0.00 0.0 0.71 0.0
V6 0.0 0.6 0.00 0.0 0.00 0.0 0.00 0.8

> pop.cor <- round(population$structure %*% t(population$pattern), 2)

> pop.cor

V1 V2 V3 V4 V5 V6
V1 1.00 0.72 0.63 0.00 0.00 0.00
V2 0.72 1.00 0.56 0.00 0.00 0.00
V3 0.63 0.56 1.00 0.00 0.00 0.00

11

> pairs.panels(data.f2)

V1

−2 2 4

0.71 0.64

−3 0 2

0.01 −0.02

−3 0 2

−
3

0
2

0.00

−
2

2
4

●●

●

●

●

●

●●
●●

●

● ●
●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●

●

●●
●●

●
●

●

●●
●

●
●●

●

●
●

●

●

●
●●

●

●

●
●

●●
●

●
●

●●

● ●●●
●

●●
●

●
●●

●

●
●●

●
●

●
●

●

●

●

●

●
●●

●●●●

●

●
●●

●

●●
●

●●

●
●

●

●

●●

●

● ●●●
● ●

●

●●

●

● ●●

●

●
●

●●

●

●●

●

●

●
● ●●
●

●
●●

●
●

●●
●

●

● ●●

●●

●
●

●
●●

●

● ●

●

●

●
●

●

●
●

●
●

●
● ●

●

●
●

●●●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●
● ●

● ●

●

●●
●

●●●

●
● ●●●
●

●

●●

●

●

●
●

●●
●
●

●

●● ●
●

●
●

●

●
●

●
● ●

●

●
● ●●

●

●
●

●●
●

●

●
●

●

●●

●
●

●
●

●

●
●

●
●

●

●● ●
●●●

●

●●

●
●●
●

●
●●

● ●●

●
●

●
●

●
●

●●
●

●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●
●

●
● ●● ●

●

●●
●

●
●

●●
● ●● ●●

● ●●●
●●

●
●

●

●

●
●

●●
●

●
●

●
●●

●

●
●

●

●
●●●
●

●

●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●●●
●

● ●

●
●

● ●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●
●

●●
●

●

●
●

●
●

●●
●

●

●

●

●
●

● ●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

●

●
●
●

●●

●●●
●

●

●

●

●
●
●●

●● ●
●

●

●
●

●●

●

●
●●

●

● ●●

●

●

●

●

●●

●●
●

●
●

●

●

●● ●
●

●

●
● ●●

●
● ● ●●

●

●

●
●●

●
●
●

●
●●

●
●

●

●
●

●
●●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●

●
●●

●

●

●
● ●

●●

●
●●

●●
●
●

● ●
●

●

●

● ●

●

●

●

●

●

● ●
●●

●
●● ●

●

●
●●●●●

●

●
●

●

●
●

●
●

●

●
● ●

●●

●

●

●
●
●

●

●●
●

●●

●

●

●
●

●
●

●
●●

●
●●

●●
●

●●

● ●
● ●

●

●●●
●
●

●

●

●

●
●

●
● ●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●
●

●

●
●●

●●

●

●

●

●●

●
●

●●●

●●

●
●

●
●
●

●

●●

●

●●●

●

●●

●

●

●●

●●
●

● ●● ●
● ●

●

●
●

●
●

●

●

●●
●●

●

●

●
●

●

●
● ●●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●●
●

●
● ●

●

●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●●
●

●●

●

●

●
●

●
●

●
●

●

●

●●●●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●●
●●

●

●●●

●
●

●

●
●

●

●

●●
● ●

●●
●

●●●

●

●

●
●

●

● ●

●

●

●

●

● ●●●●
●

●

●

● ●●
●● ●●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●● ●●
●
●

V2
0.56 0.00 0.00 0.01

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●● ●●●●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●
●

●

●

● ●

●

●

●●

●

●

●
●

●●

●

●

● ●

●

●
●● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●●●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●
●

● ●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●●

●●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●
●

●
●

● ●●

● ●

● ●
●

●
●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●
● ●

●
●

●

●

● ●
●

●●●
●
●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●●●

●
●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●●
●

●●
●

●
●●

● ●

●

●●

●
●

●

●●

●

●

●

●
●

●

● ●
●●

●
●

●

●
●

●
●●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●●

●
●

●

● ●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●●

● ●
●

●●

●
● ●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●● ●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●
●

●

●

●●

●

●
●

●●

●

● ●● ●

●

●

●

●●

●

● ●

●
●

●
●
●

●

●
●

●

●

●
●

●

● ●●●

●●●
●

● ●

●

●
●●

●

●

● ●●●
●

●

●

●●

●●

●

●
●

●

●●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●
●●

●
●●

●
●

●

●●
●●

●

● ●

● ●

●

● ●

●
●

●

●

● ●●

●

●●

●

●

●
●
●

●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●●●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●● ●●
●●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●
●

●

●
●

●
●

●

●●

●

●

●●

●

●

●
●
●●

●

●

● ●

●

●
●● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●
●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●
●

● ●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●●

●●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●
●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●
●

●
●

●●●

●●

●●
●

●
●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●
●●
●

●
●

●

●●
●

●●●
●
●

●

●

●

●

●

●
●●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●● ●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●●
●

●●
●

●
●●

●●

●

●●

●
●

●

●●

●

●

●

●
●

●

● ●
●●

●
●

●

●
●

●
●●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●
●

●

●●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

● ●

●●
●

●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●
●

●

●

● ●

●

●
●

●●

●

●●●●

●

●

●

●●

●

● ●

●
●
●

●
●

●

●
●

●

●

●
●

●

● ●● ●

●●●
●

● ●

●

●
●●

●

●

● ●● ●
●

●

●

● ●

●●

●

●
●

●

●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●
●●

●
●●

●
●

●

●●
●●

●

● ●

●●

●

●●

●
●

●

●

●●●

●

●●

●

●

●
●
●

●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●
●
●

●●
●●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●
●

V3
−0.01 −0.01

−
3

0
2

−0.03

−
3

0
2

●

●

●

●●

●

●● ●

●

●
●

●●

●

●

●

●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●●●

●

●●

●

●●
●

●

●

●

●

●

●●

●
●●

●
●

●

●

●
●

●
●

●

●
● ●

●●

●
●

●● ●

●

●●
●

●●
● ●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●
● ●

●

●

●
● ●

●●

●

●

●

●●
●
●

●

●
●

●
●●

●

●
●

●

●
●

●

●

● ●

●●
●

●
●●

●
●

●
●

●●●
●●

●

●

●

●

●● ●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●
●

●

● ●●
●

●● ●
●

●●

●

● ●●
●

●

●

●

● ●
● ●●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

● ●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●

● ● ●
●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

● ●
●

●

●

●

●
●● ●

●
●

●
●

●

●●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●
●●

●
●
●

●

●
●

●
●

●

●

●

●
● ●●

●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●
● ●

●

●●

● ●

●

●

●
●●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●●

●
●●

● ●

● ●●
●

●

●●

●●
●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●● ●

● ●●

●

●

●
●

●
●

●

●
●

●
●

●

●●
●

●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

● ●
●

●

●

●

●

●
●

●
●

● ●
●

●

●

● ●●

●●

●

●

●
●

●
●● ●

●

●
●

●●

●

●
● ●

●
●

●

●
●

●

●●
●

●●

●

●
●●●

●

●

●●

●
●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
● ●

●●
●

●
●●

●
●

●
●

●

●
●

●

● ●

●

●
●

● ●●

●

●●
●

●

●
●

●
●

●
●

●
●

●● ●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

●● ●
●

●
●● ●●

●
●

●

● ●●
●

● ●

●●

●
●

●

●

●

●

●
●

●

●

● ●●

●

●●
●

●

●

●● ●

●●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●
●

●

●

●

●
●

●
●

●●
●

● ●●● ●●●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●
●●

●●
●●

●

●

● ●
●

● ●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●●

● ●

●

●●
●●

●
●

●●

●

●
●

● ●

●

●

●
●●●

● ●●

●

● ●

●

●
●

●
● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●●

●

●

●

●●

●

●●●

●

●
●

● ●

●

●

●

●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●●●

●

● ●

●

●●
●

●

●

●

●

●

●●

●
●●

●
●

●

●

●
●

●
●

●

●
●●

●●

●
●

●●●

●

●●
●

●●
●●

●

●

●

● ●

●

●
●
●

●

●
●

●

●
●

●

●
● ●

●

●

●
● ●

●●

●

●

●

●●
●
●

●

●
●

●
●●●

●
●
●

●
●

●

●

● ●

●●
●

●
●●
●
●

●
●

●●●
● ●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●
●

●
●

●
●

●

●

●

●●●
●
●

● ●●
●
●● ●

●

● ●

●

● ●●
●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

● ●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●

● ●●
●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●●
●

●

●

●

●
●● ●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●
● ●●

●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●
● ●
●

●●

● ●

●

●

●
●●

●

● ●●
●

●

●

●

●

●

●

●

●

●●●●

●
●●

● ●

● ● ●
●

●

●●

●●
●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●● ●

●●●

●

●

●
●

●
●

●

●
●
●

●

●

●●
●

●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

● ●
●

●

●

●

●

●
●

●
●

●●
●

●

●

● ●●

● ●

●

●

●
●

●
●●●

●

●
●

●●

●

●
● ●

●
●

●

●
●

●

●●
●

●●

●

●
● ●●

●

●

●●

●
●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●●

●●
●

●
●●

●
●

●
●

●

●
●

●

● ●

●

●
●

●●●

●

●●
●

●

●
●

●
●

●
●

●
●

●● ●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●

● ●
●
●
●

●
●

●

●

●

●

●
●

●● ●
●
●
●●●●

●
●

●

● ●●
●
●●

●●

●
●
●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●● ●

●●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●●●
● ●●●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●
●

●
●●

●●
●●

●

●

● ●
●

●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
● ●

●

●

●●

●●

●

●●
●●

●
●

●●

●

●
●

●●

●

●

●
●●

●

●●●

●

● ●

●

●
●

●
● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●

●

●

●

●●

●

● ●●

●

●
●

●●

●

●

●

●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●●●

●

●●

●

●●
●

●

●

●

●

●

●●

●
●●

●
●

●

●

●
●

●
●
●

●
● ●

●●

●
●

●● ●

●

●●
●

●●
●●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●
● ●

●

●

●
● ●

●●

●

●

●

●●
●

●

●

●
●

●
● ●

●

●
●

●

●
●

●

●

● ●

●●
●

●
●●
●

●

●
●

●● ●
● ●

●

●

●

●

●● ●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●
●

●

●● ●
●

●● ●
●

●●

●

● ●●
●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

● ●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

● ●●
●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

● ●
●

●

●

●

●
●● ●

●
●
●

●

●

●●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
● ●

●
●

●

●

●
●
●

●

●

●

●

●
●●●

●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●
●●

●

●●

● ●

●

●

●
●●

●

●● ● ●

●

●

●

●

●

●

●

●

●●● ●

●
●●

● ●

● ●●
●

●

●●

●●
●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●● ●

●● ●

●

●

●
●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●
●

●
●

● ●
●

●

●

● ●●

●●

●

●

●
●

●
●●●

●

●
●

●●

●

●
● ●

●
●

●

●
●

●

● ●
●

●●

●

●
● ●●

●

●

●●

●
●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●●

●●
●

●
●●

●
●

●
●

●

●
●

●

●●

●

●
●

● ●●

●

● ●
●

●

●
●

●
●

●
●

●
●

●●●
●●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●● ●
●
●
●● ●●

●
●

●

●●●
●

● ●

●●

●
●

●

●

●

●

●
●

●

●

● ●●

●

●●
●

●

●

●● ●

● ●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

● ● ●● ●●●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

● ●
● ●

●

●

●
●

●
●

●
●●

● ●
●●

●

●

●●
●

●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
● ●

●

●

●●

● ●

●

●●
●●

●
●

●●

●

●
●

● ●

●

●

●
●●

●

● ●●

●

●●

●

●
●

●
● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●●

V4
0.58 0.50

●

●

●

●

●●

●
●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
● ●

●

●
● ●●

●
●

●●
●

●

●●●

●
●

●

●

●

●

●
●

●
● ●

●
●

●

●

● ●

●

●
●

●●●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●●

●

● ●●●
●

●

●

●● ●

● ●

●
● ●

●
●

●
●

●
●

●

●

●

●●
●

● ●
●●

●

●

●

●●

●
●

●

● ●

●

●

● ● ●
●

●
● ●

●

●

● ●
●

●
● ●●

●

●

●●●

●

●

●
●

●
●

●

●
●

●
●

●
● ●
●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●
●

●●
●●

●
●

●●

●

●
●

●
●

●

●●
● ● ●●

●●

●

●
●●

●●●

●●

●

●
●●

●●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●●
●

●●

●

●●

●

● ●
●

●

●

●
●

●

●●

● ●

●

●

●●
●●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●●
●●

●

●

●
●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●
●●

●

●●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●●

●●●

●

●

●
●

●
● ●

●

●
●

●

●

●
●

●●

●

●

● ●
●

● ●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
● ●

●

●
●

●

●
●

●●
●●

●

●
●

●

● ●

●
●

●

●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
● ●

●
●

●●

●
●

●●
●
●

●

●
●

●

●

●●

●
●

●

●

●
●●

●●
●

●

●
●

●

● ●●

● ●

●
●

● ●
●

●
●

●

●

●
●

●

● ●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

● ●
●

●●

●
●

●

●
●

●

● ●

●
●

●
●

●

●

●
● ●

●

●
●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●
●● ●

●
●

●

●

●

●
●

●

●
●●

●
●●

●

●

●●

●
●

●●

●

●
●● ●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●
●

●

●●
●●

●

●
●●

●

●

●

●

●

●

●●●
●●

●

● ●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●●

●

●
● ●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●●
●

●

● ●●

●●

●

●
●

●

●
●

●●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
● ●

●

●

●

● ●
●

●
●

●

●

●● ●
● ●

●
●

●

●●

●

●

● ●
●

●

●

●

●
●

●
●●

●

●

●●
● ●

●

●
● ●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●
●

●
● ●

●

●

●

●

●
●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●

●●
●●

●

● ●
●

●●

●

●

●

●

● ●

●
●

●●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●
●●●

●
●

●●
●

●

●●●

●
●

●

●

●

●

●
●

●
● ●

●
●

●

●

● ●

●

●
●

●●●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●●

●

●●● ●
●

●

●

●● ●

●●

●
● ●

●
●

●
●

●
●

●

●

●

●●
●

● ●
●●

●

●

●

●●

●
●

●

● ●

●

●

● ●●
●

●
●●

●

●

● ●
●

●
●●●

●

●

●●●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●●

●●

●
●

●●

●

●
●

●
●

●

●●
● ● ●●

●●

●

●
●●

●●●

●●

●

●
●●

●●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●●
●

●●

●

●●

●

●●
●

●

●

●
●

●

●●

● ●

●

●

●●
● ●●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●●
●●

●

●

●
●

●●

●

●● ●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●●
●●

●

●●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●●
●

●

●
●

●●

●●●

●

●

●
●

●
● ●

●

●
●

●

●

●
●

●●

●

●

●●
●

● ●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
● ●

●

●
●

●

●
●
●●
●●

●

●
●

●

●●

●
●

●

●●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●●

●
●

●●

●
●

● ●
●
●

●

●
●

●

●

●●

●
●

●

●

●
●●

●●
●

●

●
●

●

●●●

● ●

●
●

● ●
●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

● ●
●

● ●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●
● ●

●

●
●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●
●● ●

●
●

●

●

●

●
●

●

●
●●

●
●●

●

●

●●

●
●

●●

●

●
●● ●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●
●

●

●●
●●

●

●
●●

●

●

●

●

●

●

●●●
●●

●

● ●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ● ●

●

●
● ●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●●
●

●

●●●

●●

●

●
●

●

●
●

●●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

● ●
●

●
●

●

●

●● ●
●●

●
●

●

●●

●

●

● ●
●

●

●

●

●
●

●
●●

●

●

●●
● ●

●

●
● ●

●

●
●

● ●
●
●
●

●

●

●

●

●
●
●

●

●

●

●
● ●

●●
●

●
● ●

●

●

●

●

●
●

●

●
●

● ●

●●

●

●
●

●

●
●

●

●

●

●●
●●
●

●●
●

●●

●

●

●

●

● ●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
● ●
●

●
● ●●

●
●

●●
●

●

●●●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

● ●

●

●
●

●●●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●●

●

●●● ●
●

●

●

●● ●

● ●

●
● ●

●
●

●
●

●
●

●

●

●

●●
●

●●
●●

●

●

●

●●

●
●

●

● ●

●

●

● ● ●
●

●
●●

●

●

● ●
●

●
● ●●
●

●

●●●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●
●

●●
●●

●
●

● ●

●

●
●

●
●

●

●●
●● ●●

●●

●

●
●●

●●●

●●

●

●
● ●

●●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

● ● ●
●●

●

●●

●

●●

●

●●
●

●

●

●
●

●

●●

● ●

●

●

●●
●●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

● ●
● ●

●

●

●
●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●
● ●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●●

●●●

●

●

●
●

●
● ●

●

●
●
●

●

●
●

●●

●

●

●●
●

● ●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
● ●

●

●
●

●

●
●
●●
●●

●

●
●

●

●●

●
●

●

●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●●

●
●

●●

●
●

●● ●
●

●

●
●

●

●

●●

●
●

●

●

●
● ●

●●
●

●

●
●

●

●●●

● ●

●
●

● ●
●

●
●

●

●

●
●

●

● ●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●
●

●

● ●
●

●●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●
● ●

●

●
●

●

●● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●
● ● ●

●
●

●

●

●

●
●

●

●
●●

●
● ●

●

●

●●

●
●

●●

●

●
●●●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●
●

●

●●
●●

●

●
●●

●

●

●

●

●

●

● ●●
●●
●

●●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●●
●

●

●●●

●●

●

●
●

●

●
●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
● ●

●

●

●

●●
●

●
●

●

●

●● ●
● ●

●
●

●

●●

●

●

● ●
●

●

●

●

●
●

●
●●

●

●

●●
●●

●

●
● ●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

● ●
●

●
●●

●

●

●

●

●
●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●

●●
● ●
●

● ●
●

●●

●

●

●

●

● ●

●
●
● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●
● ●
●

●
● ●●

●
●

● ●
●

●

●● ●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

● ●

●

●
●

●● ●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

● ●

●●

●

●

●
●

●

●

●

●
● ●

●

●● ●●
●

●

●

●●●

● ●

●
●●

●
●

●
●

●
●

●

●

●

●●
●
●●

● ●

●

●

●

●●

●
●

●

●●

●

●

●● ●
●

●
●●

●

●

●●
●

●
●● ●
●

●

●●●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●
● ●

●●

●
●

●●

●

●
●

●
●

●

● ●
●● ●●

●●

●

●
● ●

●● ●

●●

●

●
●●

● ●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●● ●
● ●
●

●●

●

●●

●

●●
●

●

●

●
●

●

● ●

●●

●

●

● ●
●● ●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●●
● ●

●

●

●
●

●●

●

● ● ●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●
●●

●

●●

● ●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●●
●

●

●
●

●●

●●●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●●

●

●

●●
●

● ●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●
● ●

●

●
●

●

●
●

●●
●●

●

●
●

●

●●

●
●

●

●●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●●

●
●

●●
●

●
●

●
●

●

●

● ●

●
●

●

●

●
●●

● ●
●

●

●
●

●

●● ●

● ●

●
●

●●
●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●
●

●

●●
●

●●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●
●

●

●●●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●
●●

●
●●

●

●

●●

●
●

●●

●

●
●●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●
●

●

●●
●●

●

●
●●

●

●

●

●

●

●

●●●
● ●

●

● ●

●

●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

● ●●

●

●
●●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●
●

●

●
●

●
●

●●

●●
●

●

●●●

●●

●

●
●

●

●
●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
● ●

●

●

●

●●
●

●
●

●

●

●● ●
● ●

●
●

●

●●

●

●

●●
●

●

●

●

●
●

●
●●

●

●

●●
●●

●

●
●●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●
●●

●

●

●

●

●
●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●

●●
●●

●

●●
●

●●
V5

−
3

0
2

0.43

−3 0 2

−
3

0
2

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●
●

● ●●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●●

●●

●●●
●

●

●

●

●
●

●● ●●●

●
●●

●

●● ●

●

●
● ●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●● ●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●
●●

●

●
● ●●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●
●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●

●

● ●

●●

●

●●

● ●

●

●●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
● ●●

●

●●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●●

●
●

● ●●
●● ●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●●

●

●

●

●●

●● ●●
●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●
●

● ●
●●

●

●

●

● ●
●

●

●●●
●

●

●

●

●●
●

●

●

●

●
● ●

●●

●

●

●
● ●

●
●

●

●
●●

●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●● ●
●

●●
●

●

●

●

●

●

●
● ●● ●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●

● ●

●

● ●
●

●

●

● ●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
● ●

●
●●

●
●

●
●

●

●

●
●●

●

●

● ●
●

●
● ●

●
●●● ●

● ●

●
●

●

●
●

●
●

● ●

●

●

●●
●

●

●●

●

● ●

●
●●●

●

●

● ●
●

●

●●●
●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●●●

●

● ●
●

●

●

● ●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●●●

●●
● ●

●
●

● ●

●

●

●

●

●
●

●

●
● ●

●
●

●●
●●

●

●

●
●

●

●

●

●
●
●●

●●
●

●

●
●

●

●

● ●
●
●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●
●

●

●

●
● ●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●
●

● ●●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●●

●●

●●●
●

●

●

●

●
●

●●●●●

●
●●

●

●●●

●

●
●●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●
●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●● ●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●
● ●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●
●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●

●

● ●

●●

●

●●

● ●

●

● ●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
● ●●

●

● ●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●●

●

●

●

●
●●

●

●
●●

●

●

●

●

● ●

●
●

●●●
●● ●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●
●

●●

●

●

●

●●

●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●
●

●●
●●

●

●

●

●●
●

●

●● ●
●
●

●

●

●●
●

●

●

●

●
●●

●●

●

●

●
● ●

●
●

●

●
●●

●

● ●

●

●●

●
●

●

●

●

●

●

●
●

●● ●
●

●●
●

●

●

●

●

●

●
●●●●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●

●●

●

● ●
●

●

●

● ●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●
●●

●
●●

●
●

●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●●●●

● ●

●
●

●

●
●

●
●

●●

●

●

● ●
●

●

●●

●

● ●

●
●●●

●

●

● ●
●

●

● ●●
●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

● ●●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●
●

●

●

●●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●
●●●●

●●● ●
●

●

●●

●

●

●

●

●
●

●

●
● ●

●
●

●●
●●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

● ●●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●
●

●
●

●

●
● ●

●
●

●

●

●

●●

●
●

−3 0 2

●
●

●

●

●
●

●

●

●
●

●
●
●

●

●

● ●
●

●●●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

● ●

● ●

●●●
●

●

●

●

●
●

● ●●●●

●
●●

●

●● ●

●

●
● ●

●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
● ●
●

●

●
●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●● ●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●
●●

●

●
● ●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●●

●

●●

●●

●

● ●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
● ●●

●

●●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●
●

● ●

●
●●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●●

●
●

●● ●
●● ●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●●

●● ●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●
●

● ●
●●

●

●

●

●●
●

●

●●●
●

●

●

●

●●
●

●

●

●

●
●●

● ●

●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●●

●
●
●

●

●

●

●

●
●

●● ●
●

●●
●

●

●

●

●

●

●
● ●● ●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●
●

●

●

● ●

●●

●

● ●
●

●

●

● ●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●
● ●

●
●●

●
●

●
●

●

●

●
●●

●

●

●●
●

●
● ●

●
●●●●

● ●

●
●

●

●
●

●
●

●●

●

●

●●
●

●

●●

●

● ●

●
● ●●

●

●

● ●
●

●

● ●●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

● ●●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

● ●
●

●

●

● ●

●
●

●
●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●
●

● ●

●

●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

● ●
●●

●●● ●
●

●

●●

●

●

●

●

●
●

●

●
● ●

●
●

●●
●●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●●●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

● ●

●●●
●

●

●

●

●
●

●●●● ●

●
● ●

●

●● ●

●

●
● ●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●

●●

● ●

●●●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●
●●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●●

●

●●

●●

●

● ●

● ●

●

●●

●
●

●
●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●● ●

●

●●

●

●

●●●
●

●

●

●

●
●

●

●

●

●
●
●●

●
●●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●●

●
●

● ●●
●●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

● ●

● ●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●

●

●

●
●

●

●

●
●

● ●

●
●

● ●
●●

●

●

●

● ●
●

●

● ●●
●

●

●

●

●●
●

●

●

●

●
● ●

●●

●

●

●
●●

●
●

●

●
●●

●

●●

●

●●

●
●
●

●

●

●

●

●
●

● ●●
●

●●
●

●

●

●

●

●

●
●● ● ●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

● ●

●

●●
●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●●

●
●

●
●

●

●

●
●●

●

●

●●
●

●
●●
●
●●● ●

●●

●
●

●

●
●

●
●

●●

●

●

●●
●

●

●●

●

● ●

●
●●●

●

●

●●
●

●

● ●●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●
●

●

●

●●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

● ●
● ●

● ●●●
●
●

●●

●

●

●

●

●
●

●

●
● ●

●
●

●●
● ●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●●

●
●

−3 0 2

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

● ●●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●●

●●

●●●
●

●

●

●

●
●

● ●● ●●

●
●●

●

●●●

●

●
●●

● ●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●
●

●

●
●●

●

●

●
●

●

●
●
●

●

●
●

●

●●

●●

●

●●

●●

●

●●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●
●

● ●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
● ●●

●

● ●

●

●

●●●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●●

●
●

● ●●
●●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

● ●

●●● ●
●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●
●

● ●
● ●

●

●

●

● ●
●

●

●●●
●
●

●

●

●●
●

●

●

●

●
●●

●●

●

●

●
●●

●
●

●

●
●●

●

●●

●

●●

●
●
●

●

●

●

●

●
●

●●●
●

●●
●

●

●

●

●

●

●
●●● ●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●

● ●

●

●●
●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●●

●
●

●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●● ●●

●●

●
●

●

●
●

●
●

● ●

●

●

●●
●

●

●●

●

●●

●
● ● ●

●

●

● ●
●

●

● ●●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●● ●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

● ●
●

●

●

●●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●
●
●

●

●
●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●
●●

● ●

● ● ●●
●

●

● ●

●

●

●

●

●
●

●

●
● ●

●
●

●●
● ●

●

●

●
●

●

●

●

●
●

● ●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●
●●

●
●
●

●

●

●●

●
● V6

Figure 3.3: A ScatterPlot Matrix, SPLOM, of the six variables.

V4 0.00 0.00 0.00 1.00 0.56 0.48
V5 0.00 0.00 0.00 0.56 1.00 0.42
V6 0.00 0.00 0.00 0.48 0.42 1.00

> data.f2 <- sim.sem(loads = pattern, phi = phi)

The SPLOM suggests two separate factors in the data.

3.2.2 Exploratory Factor analysis of the data

This structure may be analyzed in a variety of different ways, including exploratory factor
analysis. A“scree”plot of the eigen values of the matrix suggests a two factor solution. Based
upon this “prior” hypotheses, we extract two factors using the factanal function.

> f2 <- factanal(data.f2, 2)

> f2

12

> VSS.scree(cor(data.f2))

●

●

●

●
●

●

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

scree plot

Index

pr
in

c$
va

lu
es

Figure 3.4: A scree plot of the eigen values of the simulated data suggests that two factors
are the best representation of the data. Compare this to the two correlated factor problem,
Figure 3.6, and the three correlated factor problem, Figure 3.9

13

Call:
factanal(x = data.f2, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6

0.201 0.374 0.491 0.329 0.496 0.626

Loadings:
Factor1 Factor2

V1 0.894
V2 0.791
V3 0.713
V4 0.819
V5 0.709
V6 0.611

Factor1 Factor2
SS loadings 1.934 1.548
Proportion Var 0.322 0.258
Cumulative Var 0.322 0.580

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 3.97 on 4 degrees of freedom.
The p-value is 0.41

The factor loadings nicely capture the population values specified in section 3.2.1.

3.2.3 Confirmatory analysis with a predicted structure

We can also analyze these data taking a confirmatory, proposing that the first 3 variables
load on one factor, and the second 3 variables load on a second factor.

> S.f2 <- cov(data.f2)

> model.two <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b", NA, "theta1 -> V3",

+ "c", NA, "theta2 -> V4", "d", NA, "theta2 -> V5", "e", NA, "theta2 -> V6",

+ "f", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA,

+ "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1",

+ NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.two) <- c("path", "label", "initial estimate")

> model.two

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA

14

[6,] "theta2 -> V6" "f" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.two = sem(model.two, S.f2, N)

> summary(sem.two, digits = 3)

Model Chisquare = 4.91 Df = 9 Pr(>Chisq) = 0.842
Chisquare (null model) = 2004 Df = 15
Goodness-of-fit index = 0.998
Adjusted goodness-of-fit index = 0.996
RMSEA index = 0 90% CI: (NA, 0.0205)
Bentler-Bonnett NFI = 0.998
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -57.3

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.02e-01 -4.43e-02 -7.84e-06 -8.03e-02 2.63e-05 3.51e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.898 0.0283 31.66 0.00e+00 V1 <--- theta1
b 0.770 0.0282 27.31 0.00e+00 V2 <--- theta1
c 0.727 0.0301 24.18 0.00e+00 V3 <--- theta1
d 0.817 0.0340 24.03 0.00e+00 V4 <--- theta2
e 0.731 0.0345 21.19 0.00e+00 V5 <--- theta2
f 0.644 0.0348 18.50 0.00e+00 V6 <--- theta2
u 0.204 0.0267 7.64 2.22e-14 V1 <--> V1
v 0.354 0.0244 14.53 0.00e+00 V2 <--> V2
w 0.510 0.0282 18.11 0.00e+00 V3 <--> V3
x 0.327 0.0391 8.36 0.00e+00 V4 <--> V4
y 0.527 0.0375 14.06 0.00e+00 V5 <--> V5
z 0.696 0.0385 18.09 0.00e+00 V6 <--> V6

Iterations = 22

> round(residuals(sem.two), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.01 -0.02 0.00
V2 0.00 0.00 0.00 0.00 0.00 0.01

15

V3 0.00 0.00 0.00 -0.01 -0.01 -0.03
V4 0.01 0.00 -0.01 0.00 0.00 0.00
V5 -0.02 0.00 -0.01 0.00 0.00 0.00
V6 0.00 0.01 -0.03 0.00 0.00 0.00

> std.coef(sem.two)

Std. Estimate
a a 0.89320 V1 <--- theta1
b b 0.79150 V2 <--- theta1
c c 0.71341 V3 <--- theta1
d d 0.81904 V4 <--- theta2
e e 0.70975 V5 <--- theta2
f f 0.61113 V6 <--- theta2

It is useful to compare these “confirmatory” factor loadings with the factor loadings obtained
by the exploratory factor analysis in section 3.2.2. Although the unstandardized loadings
differ, the standardized loadings are identical to 3 decimals.

3.2.4 Confirmatory factor analysis with two independent factors with equal
loadings within factors

The previous model allowed the factor loadings (and hence the quality of measurement of
the variables) to differ. A more restrictive model (e.g., tau equivalence) forces the true score
loadings to be equal within each factor. Note that although the χ2 suggests that the model
is not adequate, the more standard measures of adequacy of fit (e.g., RMSEA and the NFI)
incorrectly show a good fit.

> model.twotau <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "a", NA,

+ "theta1 -> V3", "a", NA, "theta2 -> V4", "d", NA, "theta2 -> V5", "d", NA,

+ "theta2 -> V6", "d", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3",

+ "w", NA, "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA,

+ "theta1 <-> theta1", NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.twotau) <- c("path", "label", "initial estimate")

> model.twotau

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "a" NA
[3,] "theta1 -> V3" "a" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "d" NA
[6,] "theta2 -> V6" "d" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA

16

[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.twotau = sem(model.twotau, S.f2, N)

> summary(sem.twotau, digits = 3)

Model Chisquare = 46.1 Df = 13 Pr(>Chisq) = 1.38e-05
Chisquare (null model) = 2004 Df = 15
Goodness-of-fit index = 0.985
Adjusted goodness-of-fit index = 0.976
RMSEA index = 0.0505 90% CI: (0.0352, 0.0666)
Bentler-Bonnett NFI = 0.977
Tucker-Lewis NNFI = 0.98
Bentler CFI = 0.983
BIC = -43.7

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.3600 -0.7210 -0.0444 -0.2320 0.2160 1.8500

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.808 0.0215 37.5 0 V1 <--- theta1
d 0.739 0.0221 33.5 0 V4 <--- theta2
u 0.280 0.0198 14.2 0 V1 <--> V1
v 0.321 0.0212 15.1 0 V2 <--> V2
w 0.480 0.0275 17.5 0 V3 <--> V3
x 0.400 0.0270 14.8 0 V4 <--> V4
y 0.510 0.0309 16.5 0 V5 <--> V5
z 0.648 0.0366 17.7 0 V6 <--> V6

Iterations = 15

> round(residuals(sem.twotau), 2)

V1 V2 V3 V4 V5 V6
V1 0.08 0.04 0.00 0.01 -0.02 0.00
V2 0.04 -0.03 -0.09 0.00 0.00 0.01
V3 0.00 -0.09 -0.09 -0.01 -0.01 -0.03
V4 0.01 0.00 -0.01 0.05 0.05 -0.02
V5 -0.02 0.00 -0.01 0.05 0.01 -0.08
V6 0.00 0.01 -0.03 -0.02 -0.08 -0.08

> std.coef(sem.twotau)

Std. Estimate
1 a 0.83640 V1 <--- theta1
2 a 0.81881 V2 <--- theta1
3 a 0.75897 V3 <--- theta1

17

4 d 0.75999 V4 <--- theta2
5 d 0.71919 V5 <--- theta2
6 d 0.67637 V6 <--- theta2

3.2.5 Structure invariance, part I— unequal loadings within factors - matched
across factors

Are the two factors measured the same way? That is, are the loadings for the first factor the
same as those for the second factor? We can test the model that the ordered loadings are the
same across the two factors. We allow the errors to differ.

> model.two.invar <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b", NA,

+ "theta1 -> V3", "c", NA, "theta2 -> V4", "a", NA, "theta2 -> V5", "b", NA,

+ "theta2 -> V6", "c", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3",

+ "w", NA, "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA,

+ "theta1 <-> theta1", NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.two.invar) <- c("path", "label", "initial estimate")

> model.two.invar

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "a" NA
[5,] "theta2 -> V5" "b" NA
[6,] "theta2 -> V6" "c" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.two.invar = sem(model.two.invar, S.f2, N)

> summary(sem.two.invar, digits = 3)

Model Chisquare = 10.7 Df = 12 Pr(>Chisq) = 0.557
Chisquare (null model) = 2004 Df = 15
Goodness-of-fit index = 0.996
Adjusted goodness-of-fit index = 0.994
RMSEA index = 0 90% CI: (NA, 0.0293)
Bentler-Bonnett NFI = 0.995
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -72.2

18

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.7400 -0.8010 -0.0444 -0.0818 0.4770 1.6000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.862 0.0214 40.26 0 V1 <--- theta1
b 0.750 0.0215 34.91 0 V2 <--- theta1
c 0.690 0.0225 30.67 0 V3 <--- theta1
u 0.211 0.0249 8.48 0 V1 <--> V1
v 0.350 0.0235 14.86 0 V2 <--> V2
w 0.513 0.0277 18.53 0 V3 <--> V3
x 0.312 0.0315 9.89 0 V4 <--> V4
y 0.536 0.0330 16.24 0 V5 <--> V5
z 0.692 0.0371 18.66 0 V6 <--> V6

Iterations = 18

> round(residuals(sem.two.invar), 2)

V1 V2 V3 V4 V5 V6
V1 0.06 0.04 0.06 0.01 -0.02 0.00
V2 0.04 0.03 0.04 0.00 0.00 0.01
V3 0.06 0.04 0.05 -0.01 -0.01 -0.03
V4 0.01 0.00 -0.01 -0.06 -0.05 -0.07
V5 -0.02 0.00 -0.01 -0.05 -0.04 -0.05
V6 0.00 0.01 -0.03 -0.07 -0.05 -0.06

> std.coef(sem.two.invar)

Std. Estimate
1 a 0.88236 V1 <--- theta1
2 b 0.78527 V2 <--- theta1
3 c 0.69405 V3 <--- theta1
4 a 0.83927 V4 <--- theta2
5 b 0.71551 V5 <--- theta2
6 c 0.63875 V6 <--- theta2

What is both interesting and disappointing from this example is that although the true
loadings (refer back to 3.2.1) are not matched across the two factors, estimating a model
that they are equivalent across factors can not be rejected, even with 1000 subjects. In
addition, the correct population values are not included in the normal confidence intervals of
the estimated values of a,b, and c.

3.2.6 Estimate two correlated factors

This next example is a bit more subtle, in that we generate data with a particular causal
structure. The matrix of intercorrelations of the two factors leads to correlations between the

19

variables, but reflects the idea of a path coefficent from the first latent variable to the second
one. 1

> set.seed(42)

> N <- 1000

> pattern <- matrix(c(0.9, 0, 0.8, 0, 0.7, 0, 0, 0.8, 0, 0.7, 0, 0.6), ncol = 2,

+ byrow = TRUE)

> phi <- matrix(c(1, 0.4, 0.4, 1), ncol = 2)

> population <- sim.sem(loads = pattern, phi = phi, obs = FALSE)

> round(population$pattern, 2)

theta1 theta2 e1 e2 e3 e4 e5 e6
V1 0.9 0.0 0.44 0.0 0.00 0.0 0.00 0.0
V2 0.8 0.0 0.00 0.6 0.00 0.0 0.00 0.0
V3 0.7 0.0 0.00 0.0 0.71 0.0 0.00 0.0
V4 0.0 0.8 0.00 0.0 0.00 0.6 0.00 0.0
V5 0.0 0.7 0.00 0.0 0.00 0.0 0.71 0.0
V6 0.0 0.6 0.00 0.0 0.00 0.0 0.00 0.8

> round(population$structure, 2)

theta1 theta2 e1 e2 e3 e4 e5 e6
V1 0.90 0.36 0.44 0.0 0.00 0.0 0.00 0.0
V2 0.80 0.32 0.00 0.6 0.00 0.0 0.00 0.0
V3 0.70 0.28 0.00 0.0 0.71 0.0 0.00 0.0
V4 0.32 0.80 0.00 0.0 0.00 0.6 0.00 0.0
V5 0.28 0.70 0.00 0.0 0.00 0.0 0.71 0.0
V6 0.24 0.60 0.00 0.0 0.00 0.0 0.00 0.8

> pop.cor <- population$structure %*% t(population$pattern)

> round(pop.cor, 2)

V1 V2 V3 V4 V5 V6
V1 1.00 0.72 0.63 0.29 0.25 0.22
V2 0.72 1.00 0.56 0.26 0.22 0.19
V3 0.63 0.56 1.00 0.22 0.20 0.17
V4 0.29 0.26 0.22 1.00 0.56 0.48
V5 0.25 0.22 0.20 0.56 1.00 0.42
V6 0.22 0.19 0.17 0.48 0.42 1.00

> data.f2 <- sim.sem(loads = pattern, phi = phi)

The scree test for this problem also suggests two factors, although not as clearly as in example
3.2.1. We first conduct an exploratory factor analysis of the data. Rather than accepting the
default value of a VARIMAX rotation, we examine the unrotated solution. For comparisons to
a confirmatory factor analysis, we repeat the exploratory analysis with a VARIMAX rotation
to simple structure.

1Once again, we set the seed for the random number generator to a particular value in order to have
reproducible results.

20

> pairs.panels(data.f2)

V1

−2 2 4

0.71 0.64

−3 0 2

0.29 0.22

−4 −1 2

−
3

0
2

0.20

−
2

2
4

●●

●

●

●

●

●●
●●

●

● ●
●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●

●

●●
●●

●
●

●

●●
●

●
●●

●

●
●

●

●

●
●●

●

●

●
●

●●
●

●
●

●●

● ●●●
●

●●
●

●
●●

●

●
●●

●
●

●
●

●

●

●

●

●
●●

●●●●

●

●
●●

●

●●
●

●●

●
●

●

●

●●

●

● ●●●
● ●

●

●●

●

● ●●

●

●
●

●●

●

●●

●

●

●
● ●●
●

●
●●

●
●

●●
●

●

● ●●

●●

●
●

●
●●

●

● ●

●

●

●
●

●

●
●

●
●

●
● ●

●

●
●

●●●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●
● ●

● ●

●

●●
●

●●●

●
● ●●●
●

●

●●

●

●

●
●

●●
●
●

●

●● ●
●

●
●

●

●
●

●
● ●

●

●
● ●●

●

●
●

●●
●

●

●
●

●

●●

●
●

●
●

●

●
●

●
●

●

●● ●
●●●

●

●●

●
●●
●

●
●●

● ●●

●
●

●
●

●
●

●●
●

●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●
●

●
● ●● ●

●

●●
●

●
●

●●
● ●● ●●

● ●●●
●●

●
●

●

●

●
●

●●
●

●
●

●
●●

●

●
●

●

●
●●●
●

●

●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●●●
●

● ●

●
●

● ●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●
●

●●
●

●

●
●

●
●

●●
●

●

●

●

●
●

● ●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

●

●
●
●

●●

●●●
●

●

●

●

●
●
●●

●● ●
●

●

●
●

●●

●

●
●●

●

● ●●

●

●

●

●

●●

●●
●

●
●

●

●

●● ●
●

●

●
● ●●

●
● ● ●●

●

●

●
●●

●
●
●

●
●●

●
●

●

●
●

●
●●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●

●
●●

●

●

●
● ●

●●

●
●●

●●
●
●

● ●
●

●

●

● ●

●

●

●

●

●

● ●
●●

●
●● ●

●

●
●●●●●

●

●
●

●

●
●

●
●

●

●
● ●

●●

●

●

●
●
●

●

●●
●

●●

●

●

●
●

●
●

●
●●

●
●●

●●
●

●●

● ●
● ●

●

●●●
●
●

●

●

●

●
●

●
● ●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●
●

●

●
●●

●●

●

●

●

●●

●
●

●●●

●●

●
●

●
●
●

●

●●

●

●●●

●

●●

●

●

●●

●●
●

● ●● ●
● ●

●

●
●

●
●

●

●

●●
●●

●

●

●
●

●

●
● ●●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●●
●

●
● ●

●

●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●
●

●
●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●●
●

●●

●

●

●
●

●
●

●
●

●

●

●●●●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●●
●●

●

●●●

●
●

●

●
●

●

●

●●
● ●

●●
●

●●●

●

●

●
●

●

● ●

●

●

●

●

● ●●●●
●

●

●

● ●●
●● ●●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●● ●●
●
●

V2
0.56 0.24 0.21 0.18

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●● ●●●●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●
●

●

●

● ●

●

●

●●

●

●

●
●

●●

●

●

● ●

●

●
●● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●●●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●
●

● ●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●●

●●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●
●

●
●

● ●●

● ●

● ●
●

●
●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●
● ●

●
●

●

●

● ●
●

●●●
●
●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●●●

●
●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●●
●

●●
●

●
●●

● ●

●

●●

●
●

●

●●

●

●

●

●
●

●

● ●
●●

●
●

●

●
●

●
●●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●●

●
●

●

● ●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●●

● ●
●

●●

●
● ●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●● ●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●
●

●

●

●●

●

●
●

●●

●

● ●● ●

●

●

●

●●

●

● ●

●
●

●
●
●

●

●
●

●

●

●
●

●

● ●●●

●●●
●

● ●

●

●
●●

●

●

● ●●●
●

●

●

●●

●●

●

●
●

●

●●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●
●●

●
●●

●
●

●

●●
●●

●

● ●

● ●

●

● ●

●
●

●

●

● ●●

●

●●

●

●

●
●
●

●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●●●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●● ●●
●●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●
●

●

●
●

●
●

●

●●

●

●

●●

●

●

●
●
●●

●

●

● ●

●

●
●● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●
●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●
●

● ●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●●

●●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●
●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●
●

●
●

●●●

●●

●●
●

●
●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●
●●
●

●
●

●

●●
●

●●●
●
●

●

●

●

●

●

●
●●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●● ●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●●
●

●●
●

●
●●

●●

●

●●

●
●

●

●●

●

●

●

●
●

●

● ●
●●

●
●

●

●
●

●
●●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●
●

●

●●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

● ●

●●
●

●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●
●

●

●

● ●

●

●
●

●●

●

●●●●

●

●

●

●●

●

● ●

●
●
●

●
●

●

●
●

●

●

●
●

●

● ●● ●

●●●
●

● ●

●

●
●●

●

●

● ●● ●
●

●

●

● ●

●●

●

●
●

●

●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●
●●

●
●●

●
●

●

●●
●●

●

● ●

●●

●

●●

●
●

●

●

●●●

●

●●

●

●

●
●
●

●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●
●
●

●●
●●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●
●

V3
0.20 0.18

−
3

0
2

0.13

−
3

0
2

●

●

●

●●

●

●● ●

●

●●

●
●

●

●
●

●

● ●●●●
●

● ●

●

● ●●

●

●
●

●

●

●

● ●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

● ●●

●
●● ●

●

●

●

●●

●
● ●

●
● ●

●●

●
●

●● ●

●
●●

●

●●
●

●●
●

●

●
●

●

● ●●

●

●●

●

●
●

●

●● ●
●

●

●
●

●
●

●
●

●

●

●

● ●
●

●

●
●
●
●●

● ●
●● ●

●

●
●
●

●

●
●

●

●
●●

●
●

●●●●
● ●

●

●

●

●●

●●
●

●

●

●

●

●

●

● ●

●

●
●●
●

●

●

●
●

● ●● ●● ●●

●
●● ●

●

●
●

●

●
●●●

●

●
●

● ●●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●●● ●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●●

●
●

●●

●

●

●

●●●

●
●

●

● ●●

●

●

●
●

● ●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

● ● ●●
●

●
●●●

●

●
●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
●

●
●

●

●

●
●●

●

● ●● ●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●
●

●

●
●●

●●

●●

●
●

●

●●

●

●●
● ●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●
●
●

●

●●

●

●

●

●
●●
●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●
●●
●

●

●

●

●●

●
●

●
●
●

●

●

● ●
●

●●

●

●

●
●

● ●● ●

●

● ●

●
●

●

●

●

●
●
●

●

● ●

●
●

●●

●
● ●●

●●●

●

●

●●
●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●
●●

●
●●

●●

●
● ●

●
●

●

●

●

●

●●
●

●●

●

●●
●

●

●●
●

●

●●
●

●

●● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●

●●
●

●
●

●●

●

●

●●

●

●
●

●
●

●
●

●●

● ●●

●

●

●

●
●

●

●

● ●●

●

●
●

●
●

●

●● ●

●●

●

●

●

●

●

●

●

● ●
●●

●●

●

●●
●

●

● ●
●

●

●

●

● ●
●

●

●
●●

●
●●●

●●●● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●●
● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●
●●●●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●
●● ●

●

●●
● ●

● ●
●

●

●
●

●

●●

●

●●

●
●

●

●

●

●●●

● ●
●

●

● ●

●
● ●

●●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●●●

●

●●

●
●

●

●
●

●

● ●●●●
●

● ●

●

● ●●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

● ●●

●
●● ●

●

●

●

●●

●
● ●

●
●●

●●

●
●

●●●

●
●●
●

●●
●

●●
●

●

●
●

●

●●●

●

●●

●

●
●

●

●● ●
●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●
●

●
●●

● ●
●● ●

●

●
●

●
●

●
●

●

●
●●
●
●

●●●●
● ●

●

●

●

●●

●●
●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●●●●● ●●

●
●● ●

●

●
●

●

●
●●●

●

●
●

●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●●
● ●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●●

●
●

● ●

●

●

●

●●●

●
●

●

●●●

●

●

●
●

●●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●●● ●
●

●
●●

●
●

●
●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●
●

●

●
●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
●

●
●

●

●

●
●●

●

● ●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
● ●
●●

●●

●
●

●

●●

●

●●
● ●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●●

●
●
●

●

●●

●

●

●

●
●●
●
●

●

●
●

●
● ●

●

●●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●●

●
●

●
●
●

●

●

● ●
●

● ●

●

●

●
●

● ●●●

●

● ●

●
●

●

●

●

●
●

●

●

● ●

●
●

● ●

●
● ●●● ●●

●

●

●●
●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●
●●●
●●

●●

●
● ●

●
●

●

●

●

●

●●
●

●●

●

●●
●

●

●●
●

●

●●
●
●

●● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●
●
●

●

●

●

●

●
●

●●

●●
●

●
●
●●

●

●

●●

●

●
●

●
●
●

●

●●

●●●

●

●

●

●
●

●

●

●●●

●

●
●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●●
●●

● ●

●

●●
●

●

● ●
●
●

●

●

●●
●

●

●
● ●

●
●●●

●●●● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

● ●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●● ●●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●
●
●

●

●

●
● ● ●

●

●●
●●

● ●
●

●

●
●
●

●●

●

●●

●
●

●

●

●

●● ●

●●
●

●

● ●

●
● ●

●●
●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

● ●●

●

●●

●
●

●

●
●

●

●●●●●
●

● ●

●

● ●●

●

●
●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

● ●●

●
●● ●

●

●

●

●●

●
●●

●
● ●

●●

●
●

●● ●

●
●●

●

●●
●

●●
●

●

●
●

●

● ●●

●

● ●

●

●
●

●

●● ●
●

●

●
●

●
●

●
●

●

●

●

● ●
●

●

●
●

●
● ●

● ●
●● ●

●

●
●

●
●

●
●

●

●
●●
●

●

● ●●●
●●

●

●

●

●●

●●
●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

● ●● ●●● ●

●
●● ●

●

●
●

●

●
●● ●

●

●
●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●●● ●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●●

●
●

● ●

●

●

●

●● ●

●
●

●

● ●●

●

●

●
●

●●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

● ●●●
●

●
●●

●
●

●
●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●
●●

●

●● ● ●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●●

●●

●●

●
●

●

●●

●

●●
● ●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●●

●
●

●

●

● ●

●

●

●

●
●●

●
●

●

●
●

●
● ●

●

●●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

● ● ●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●

● ●
●

●●

●

●

●
●

● ●●●

●

●●

●
●

●

●

●

●
●

●

●

● ●

●
●

●●

●
● ●●
● ●●

●

●

●●
●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●
●●

●
●●

●●

●
● ●

●
●

●

●

●

●

●●
●

●●

●

● ●
●

●

●●
●

●

●●
●

●

●●●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●

●●
●
●
●
●●

●

●

●●

●

●
●

●
●

●
●

●●

●● ●

●

●

●

●
●

●

●

● ●●

●

●
●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●●
●

●

● ●
●

●

●

●

● ●
●

●

●
● ●

●
● ●●

●●● ● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●● ●●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●
● ●●

●

●●
● ●

● ●
●

●

●
●

●

●●

●

●●

●
●

●

●

●

●● ●

● ●
●

●

●●

●
● ●

●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●●

V4
0.61 0.53

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●
●

●
●●

●
●

●
●

●

● ●●

●

●
●

●

●●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●
●●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

● ●
●●

●

●

●

●● ●

●
●

●●
●

●●●

●

●●

●

●

●

●●
●

● ●
●●

●

●

●
●●

●
●

●

●

●

●

●

●
● ●

●
●● ●

●

●

●
●●

●●
●

● ●

●

●●●
●

●

●●

●
●

●

●●

●

●
●

● ●● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●●
●●
●●
●

●● ●
●

●

●●

●
● ●●

●●

●

● ●
●

●●●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●●
●●●●

●
●

●

●
●

●

●
●

●

●

●

● ●

●
●●

● ●

●

●

●●
●●●

●

●

●
● ●

●●

● ●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●●
●●

●

●
●●

●●

●

●
●●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●●

●
●●

●●

●

●●

●
●

●
●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●●● ●
● ●

●

●●

●●

●●●

●

●
●

●

●●
●

●

●
●●

●

●

● ●●

●

●

● ●

●
●

●
●

●

●

●

● ●
● ●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
● ●

●●

●

●●
●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
●●

●

● ●
●●

●●

●
●

●●
●
●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●
● ●

●

●
●

●

●
●

●
●

●●
●

●
●

● ●●
●

●

●
●

●

● ●
●

●

●
●
●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●●

●

●
●

●

●
●

●

●●

● ●

●

●
●

●

● ●

●
●

●

●

●

●

●●
●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●●
● ●

●●

●
● ●●

●

●
●

●●

●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
● ●●

●
● ●

●

●

●

●

●

●

●
●●

●

●●
●

●
●

●

●
●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
● ●

●

●
●●

●

●●
●

●
●

●

●
● ●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●● ●

●●

●●● ●
● ●●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
● ●

●
●●

●●

●
●●

●

●

● ●
●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●●● ●

●

●

●
● ●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●●
●

● ●
●

●
● ●

●

● ●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●● ●●

●

●
●●

●●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●
●

●
●●

●
●

●
●

●

● ●●

●

●
●

●

●●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●
●●

●
●

●

●

●

●

●
●

●

● ●

●
●
●

●

● ●

●

●
●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
● ●

●

●

●

●● ●

●
●

●●
●

●●●

●

●●

●

●

●

●●
●

● ●
●●

●

●

●
●●

●
●

●

●

●

●

●

●
●●

●
● ●●

●

●

●
●●

●●
●

● ●

●

●●●
●

●

● ●

●
●

●

●●

●

●
●

●●● ●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●●
●●

●●
●

●● ●
●

●

●●

●
● ●●

●●

●

● ●
●

●●●

●
●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●●
●●●●

●
●

●

●
●

●

●
●
●

●

●

●●

●
●●

● ●

●

●

●●
● ●●
●

●

●
● ●

●●

● ●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●●

●
●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●●

●

●

●●●●

●

●
● ●

●●

●

●
● ●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●●

●
●●

●●

●

●●

●
●

●
●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●● ●
● ●

●

●●

●●

●●●

●

●
●

●

●●
●

●

●
●●

●

●

● ●●

●

●

●●

●
●

●
●

●

●

●

● ●
● ●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●●

●

●●
●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●●

●

●●●●
●●

●
●
● ●
●
●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●
● ●

●

●
●

●

●
●

●
●

●●
●

●
●

● ●●
●

●

●
●

●

●●
●

●

●
●
●

●

●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●●

●

●
●

●

●
●

●

● ●

●●

●

●
●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●●
● ●

●●

●
● ●●
●

●
●

●●

●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
● ●●

●
● ●

●

●

●

●

●

●

●
●●

●

●●
●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

●

●●
●

●
●

●

●
●●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●● ●

●●

●●● ●
●●●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
● ●

●
● ●

●●

●
●●

●

●

● ●
●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●● ● ●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●● ●

●●
●

●
● ●

●

● ●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●
●● ●●

●

●
●●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●
● ●

●
●

●
●

●

●●●

●

●
●

●

●●
●

●●
●

●

●
●

●

●

●

●
●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
● ●

●

●

●

●● ●

●
●

●● ●

●●
●

●

●●

●

●

●

●●
●

●●
●●

●

●

●
●●

●
●

●

●

●

●

●

●
● ●

●
● ●●

●

●

●
●●

●●
●

●●

●

●●●
●

●

●●

●
●

●

● ●

●

●
●

●● ● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●●
●●

● ●
●

●● ●
●

●

●●

●
● ●●

●●

●

● ●
●

●●●

●
●

●

●● ●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

● ●
●●●●

●
●

●

●
●

●

●
●
●

●

●

●●

●
●●

● ●

●

●

●●
●●●

●

●

●
● ●

●●

● ●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

● ●
● ●

●

●
●●

●●

●

●
●●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●●

●
●●

● ●

●

●●

●
●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●●● ●
● ●

●

●●

●●

●●●

●

●
●

●

●●
●
●

●
●●

●

●

● ●●

●

●

●●

●
●

●
●

●

●

●

● ●
● ● ●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●●

●

●●
●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●●

●

●●
●●

●●

●
●

●● ●
●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●
● ●

●

●
●

●

●
●

●
●

●●
●

●
●

● ●●
●

●

●
●

●

● ●
●

●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●
●●

●

●
●

●

●
●

●

●●

●●

●

●
●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●●
● ●

●●

●
● ●●

●

●
●

●●

●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●●●

●
●●

●

●

●

●

●

●

●
● ●

●

●●
●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
● ●

●

●●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●
●

●

●

●
● ● ●

●●

●●● ●
●●●

●●

●

●

●
●

●
●

●
●

●

●●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
● ●

●●

●
●●

●

●

●●
●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●● ●●

●

●

●
● ●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●● ●

● ●
●

●
●●

●

● ●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●●● ●

●

●
●●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●
●

●
● ●

●
●

●
●

●

● ●●

●

●
●

●

●●
●

● ●
●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●
● ●

●
●

●

●

●

●

●
●

●

●●

●
●
●

●

● ●

●

●
●
●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●●
●●

●

●

●

●●●

●
●

● ●●

●●
●

●

●●

●

●

●

●●
●

●●
● ●

●

●

●
●●

●
●

●

●

●

●

●

●
● ●

●
●●●

●

●

●
●●

●●
●
●●

●

●●●
●

●

●●

●
●

●

●●

●

●
●

●●● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●
●●

●●
●●

●●
●

● ●●
●

●

● ●

●
● ●●

●●

●

●●
●

●●●

●
●

●

●●●

● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●●
●● ●●

●
●

●

●
●

●

●
●
●

●

●

●●

●
●●

●●

●

●

● ●
●● ●

●

●

●
●●

●●

●●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

● ●

●
●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●●
●●

●

●
●●

●●

●

●
● ●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●●

●
●●

●●

●

●●

●
●

●
●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●●●● ●
● ●

●

●●

●●

●●●

●

●
●

●

●●
●

●

●
●●

●

●

●●●

●

●

●●

●
●

●
●

●

●

●

● ●
●● ●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●●

●

●●
●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
● ●
●

●●
●●

●●

●
●
●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●
●●

●

●
●

●

●
●
●

●

●●
●

●
●

●● ●
●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●
●●

●

●
●

●

●
●

●

●●

● ●

●

●
●
●

●●

●
●

●

●

●

●

●●
●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●

●
●
●

●

●

●●
● ●

●●

●
● ●●

●

●
●

●●

●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●
●

●

●
●

●

●
●

●

●
● ●●

●
●●

●

●

●

●

●

●

●
●●

●

● ●
●

●
●

●

●
●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●●●

●●

●●● ●
● ●●

●●

●

●

●
●

●
●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
●●
●●

●
●●

●

●

●●
●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●●●●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●●●

●●
●

●
●●

●

●●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●● ●●

●

●
●●

●●
V5

−
4

−
1

2

0.46

−3 0 2

−
4

−
1

2

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●●
●●

●●●
●

●

● ●
●

●
●● ●●

●
●●●

●

●
●

●

●

●

●
●

● ●
● ●●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●

●
●● ●●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●
● ●

●●

●

●

●●
●●

●● ●●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●●
●

●

●

●●
●

●

●
●

●
●

● ●●

●
●

●

●
●

●
●

●

●
●

● ●
●

●●

●●

●
●●

●
●

●
● ●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●●

●

●

● ●●●● ●

●

● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●

●
● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
● ●

●●
●

●

●

●

●

●

●
●

●

● ●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●

●●

●

●

●

●

●● ●

●●

●

●

●●
●

●
●

●
●

●●

●

●
●

●

● ●

●
● ●

●
●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●
● ●● ●

●

●

●
●

●●

●●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●
● ●
● ●

●

●
●
●

●

●

●

●

● ●●
●

●

● ●
●

●●

●

●

●
●

●

● ●
●

●
●●

●●

●●

●

●

● ●●

●

●
● ●

●
●
● ●●

●●● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●

●
●

●●●●

●

●

● ●
●●

●●●
●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ● ●
●

●● ●

● ●
●

●
●

●

●

●

●
●

●
●

●
●●

●

●

● ●
●

●

●

●
●

●●
●

● ●

●
●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●●
●

●

●
●● ●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●●●●●

●
●

●
●

●
●

● ●

●
●

●

●

●
●

●

●●
●●

●

●●
●

●
●

●

● ●

●

●

●

● ●
●●

●●
●

●

●

●
●

●

● ●●
●

●

●

●

●

●
●

● ●
●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●
●
● ●

●
●●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●●
●●

●●●
●

●

● ●
●

●
●●●●

●
●●●

●

●
●

●

●

●

●
●

●●
● ●●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●●
●

●
●

●
●

●
●

●

●

●

●
●●●●

●●

●

●
●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
● ●

●●

●

●

●●
● ●

●● ●●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●

●

●

●

●●
●

●

●
●

●
●
● ●●

●
●

●

●
●

●
●

●

●
●

● ●
●

● ●

●●

●
●●

●
●

●
● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●●

●

●
●●

●

●

●

●

● ●

●

●

●●●●● ●

●

● ●●
●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●
●

●

●

●

●

●

●
●

●

● ●

●
●

●●
●

●
●

●

●

●
●

●

●

●
● ●●
●

●
●

●●

●

●

●

●

●●●

●●

●

●

●●
●

●
●

●
●

●●

●

●
●

●

●●

●
●●

●
●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●
●●●●

●

●

●
●
●●

●●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●
● ●
●●

●

●
●
●

●

●

●

●

● ●●
●

●

● ●
●

● ●

●

●

●
●

●

● ●
●

●
●●

●●

●●

●

●

● ●●

●

●
●●

●
●

●● ●●●●●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●
●

●●●●

●

●

● ●
●●

● ●●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●●
●
●●●

● ●
●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●●
●

●

●

●
●

●●●
● ●

●
●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●●
●

●

●
●● ●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●●●●●

●
●

●
●

●
●

●●

●
●

●

●

●
●

●

●●
●●

●

●●
●

●
●

●

● ●

●

●

●

● ●
●●

●●
●

●

●

●
●

●

● ●●
●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●
●

● ●

●
●●

●

●

●●

●

●

●●

●
●

−3 0 2

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

● ●
● ●

●●●
●

●

●●
●

●
● ●●●

●
●●●

●

●
●

●

●

●

●
●

●●
● ●●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●

●
●● ●●

● ●

●

●
●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●
●●

●●

●

●

●●
●●

●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●●
●

●

●
●

●
●

● ●●

●
●

●

●
●

●
●

●

●
●

●●
●

● ●

●●

●
●●

●
●

●
● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●●

●

●

●● ●●● ●

●

● ●●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●
●

●

●

●

●

●

●
●
●

● ●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●●●

●

●
●

●●

●

●

●

●

● ●●

● ●

●

●

●●
●

●
●

●
●

● ●

●

●
●

●

●●

●
●●

●
●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●
● ●● ●

●

●

●
●

●●

●●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●
● ●

●●

●

●
●

●

●

●

●

●

● ● ●
●

●

● ●
●

● ●

●

●

●
●

●

●●
●

●
●●

●●

●●

●

●

● ●●

●

●
●●

●
●
● ● ●●●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●
●

●● ●●

●

●

● ●
●●

● ●●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●●
●
●● ●

●●
●

●
●
●

●

●

●
●

●
●

●
● ●

●

●

● ●
●

●

●

●
●

●●
●

●●

●
●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●●
●

●

●
●● ●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●● ●
●●

●
●

●
●

●
●

●●

●
●

●

●

●
●

●

●●
●●

●

●●
●

●
●

●

● ●

●

●

●

●●
●●

●●
●

●

●

●
●

●

●● ●
●

●

●

●

●

●
●

● ●
●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●
●●

●
●●

●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●●
● ●

●●●
●

●

● ●
●

●
●●●●

●
●● ●

●

●
●

●

●

●

●
●

●●
●● ●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●
●

●
●

●
●

●
●

●

●

●

●
●●●●

●●

●

●
●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●
●●

●●

●

●

● ●
●●

● ●●●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●
● ●● ●

●

●

●

●

●

●

●

●

● ●
●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●●
●

●

●
●

●
●

●● ●

●
●

●

●
●

●
●

●

●
●

●●
●

● ●

● ●

●
●●

●
●

●
●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●●

●

●

● ●● ●●●

●

●●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

● ●
●

●

●

●

●

●

●
●

●

● ●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●●●

●

●
●

●●

●

●

●

●

●● ●

●●

●

●

● ●
●

●
●

●
●

●●

●

●
●

●

●●

●
● ●

●
●

●

●

●
●

●●
●

●
●●
●

●

●

●

●

●

●
●● ● ●

●

●

●
●

● ●

● ●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●●
●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●●●
●

●

●●
●

●●

●

●

●
●

●

● ●
●

●
●●

● ●

●●

●

●

● ●●

●

●
●●

●
●
●●

●●●● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●
●

●● ●●

●

●

●●
●●

● ●●
●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●● ●
●

●● ●

● ●
●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●●
●

●

●

●
●

●● ●
● ●

●
●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●●
●
●

●
●●●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●
●● ●

● ●

●
●

●
●

●
●

●●

●
●

●

●

●
●

●

●●
●●

●

●●
●

●
●

●

● ●

●

●

●

●●
●●

●●
●

●

●

●
●

●

●●●
●

●

●

●

●

●
●

● ●
●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●
●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●●

●
●●

●

●

●●

●

●

●●

●
●

−4 −1 2

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●●
●●

●●●
●

●

●●
●

●
● ●● ●

●
●●●

●

●
●
●

●

●

●
●

● ●
●●●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●
●
●

●
●

●

●
●

●

●

●

●
●● ●●

●●

●

●
●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●●

●●

●

●

● ●
●●

●●● ●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●
● ●●●

●

●

●

●

●

●

●

●

● ●
●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●● ●●

●

●

●

●●
●

●

●
●

●
●

● ●●

●
●

●

●
●

●
●

●

●
●

●●
●

●●

●●

●
●●

●
●

●
●●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●● ●

●

●●

●

●
●●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●●

●

●

● ●● ●●●

●

●●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●
●

● ●

●●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

● ●
●

●

●

●

●

●

●
●
●

●●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●●●

●

●
●

●●

●

●

●

●

●● ●

●●

●

●

●●
●

●
●

●
●

●●

●

●
●

●

●●

●
● ●

●
●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●
●●● ●

●

●

●
●

● ●

●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

● ●
●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●●●
●

●

● ●
●

●●

●

●

●
●

●

●●
●

●
●●

● ●

●●

●

●

● ●●

●

●
●●

●
●

●●● ●● ●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●

●
●

●● ● ●

●

●

● ●
●●

● ●●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●● ●
●

●● ●

●●
●

●
●
●

●

●

●
●

●
●

●
●●

●

●

● ●
●

●

●

●
●

●● ●
● ●

●
●

●

●
●

●

●

●

●

●

● ●●
●

●
●

● ●
●
●

●
●●●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●
●●●

● ●

●
●
●

●

●
●

● ●

●
●

●

●

●
●

●

●●
● ●

●

●●
●
●

●

●

● ●

●

●

●

●●
●●
●●

●

●

●

●
●

●

●●●
●

●

●

●

●

●
●

● ●
●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●
●●

●
● ●

●

●

●●

●

●

●●

●
● V6

Figure 3.5: Six variables loading on 2 correlated factors

21

> VSS.scree(cor(data.f2))

●

●

●

●
●

●

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

scree plot

Index

pr
in

c$
va

lu
es

Figure 3.6: Scree plot of two correlated factors. Compare to Figure 3.4
.

22

> f2 <- factanal(data.f2, 2, rotation = "none")

> f2

Call:
factanal(x = data.f2, factors = 2, rotation = "none")

Uniquenesses:
V1 V2 V3 V4 V5 V6

0.201 0.374 0.491 0.295 0.463 0.600

Loadings:
Factor1 Factor2

V1 0.845 -0.291
V2 0.749 -0.256
V3 0.667 -0.254
V4 0.552 0.633
V5 0.463 0.568
V6 0.404 0.487

Factor1 Factor2
SS loadings 2.401 1.175
Proportion Var 0.400 0.196
Cumulative Var 0.400 0.596

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 3.99 on 4 degrees of freedom.
The p-value is 0.407

> f2v <- factanal(data.f2, 2)

> f2v

Call:
factanal(x = data.f2, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6

0.201 0.374 0.491 0.295 0.463 0.600

Loadings:
Factor1 Factor2

V1 0.888
V2 0.786
V3 0.711
V4 0.226 0.809
V5 0.174 0.711
V6 0.156 0.613

Factor1 Factor2

23

SS loadings 2.018 1.558
Proportion Var 0.336 0.260
Cumulative Var 0.336 0.596

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 3.99 on 4 degrees of freedom.
The p-value is 0.407

The sem for uncorrelated factors does not fit very well (as it should not!)

> S.f2 <- cov(data.f2)

> model.two <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b", NA, "theta1 -> V3",

+ "c", NA, "theta2 -> V4", "d", NA, "theta2 -> V5", "e", NA, "theta2 -> V6",

+ "f", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA,

+ "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1",

+ NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.two) <- c("path", "label", "initial estimate")

> model.two

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.two = sem(model.two, S.f2, N)

> summary(sem.two, digits = 3)

Model Chisquare = 101 Df = 9 Pr(>Chisq) = 0
Chisquare (null model) = 2206 Df = 15
Goodness-of-fit index = 0.969
Adjusted goodness-of-fit index = 0.927
RMSEA index = 0.101 90% CI: (0.0838, 0.119)
Bentler-Bonnett NFI = 0.954
Tucker-Lewis NNFI = 0.93
Bentler CFI = 0.958
BIC = 38.5

Normalized Residuals

24

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.56e-05 -3.80e-06 2.10e+00 3.26e+00 6.43e+00 9.05e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.898 0.0283 31.66 0.00e+00 V1 <--- theta1
b 0.770 0.0282 27.31 0.00e+00 V2 <--- theta1
c 0.727 0.0301 24.18 0.00e+00 V3 <--- theta1
d 0.883 0.0341 25.88 0.00e+00 V4 <--- theta2
e 0.782 0.0344 22.74 0.00e+00 V5 <--- theta2
f 0.682 0.0346 19.72 0.00e+00 V6 <--- theta2
u 0.204 0.0267 7.64 2.22e-14 V1 <--> V1
v 0.354 0.0244 14.53 0.00e+00 V2 <--> V2
w 0.510 0.0282 18.11 0.00e+00 V3 <--> V3
x 0.328 0.0401 8.18 2.22e-16 V4 <--> V4
y 0.527 0.0376 14.02 0.00e+00 V5 <--> V5
z 0.696 0.0383 18.19 0.00e+00 V6 <--> V6

Iterations = 22

> std.coef(sem.two)

Std. Estimate
a a 0.89320 V1 <--- theta1
b b 0.79150 V2 <--- theta1
c c 0.71341 V3 <--- theta1
d d 0.83905 V4 <--- theta2
e e 0.73296 V5 <--- theta2
f f 0.63266 V6 <--- theta2

> round(residuals(sem.two), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.30 0.23 0.22
V2 0.00 0.00 0.00 0.25 0.22 0.19
V3 0.00 0.00 0.00 0.22 0.20 0.15
V4 0.30 0.25 0.22 0.00 0.00 0.00
V5 0.23 0.22 0.20 0.00 0.00 0.00
V6 0.22 0.19 0.15 0.00 0.00 0.00

and so we allow the two factors to be correlated.

> S.f2 <- cov(data.f2)

> model.two <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b", NA, "theta1 -> V3",

+ "c", NA, "theta2 -> V4", "d", NA, "theta2 -> V5", "e", NA, "theta2 -> V6",

+ "f", NA, "theta1 <-> theta2", "g", NA, "V1 <-> V1", "u", NA, "V2 <-> V2",

+ "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA,

+ "V6 <-> V6", "z", NA, "theta1 <-> theta1", NA, 1, "theta2 <-> theta2", NA,

+ 1), ncol = 3, byrow = TRUE)

25

> colnames(model.two) <- c("path", "label", "initial estimate")

> model.two

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "theta1 <-> theta2" "g" NA
[8,] "V1 <-> V1" "u" NA
[9,] "V2 <-> V2" "v" NA
[10,] "V3 <-> V3" "w" NA
[11,] "V4 <-> V4" "x" NA
[12,] "V5 <-> V5" "y" NA
[13,] "V6 <-> V6" "z" NA
[14,] "theta1 <-> theta1" NA "1"
[15,] "theta2 <-> theta2" NA "1"

> sem.two = sem(model.two, S.f2, N)

> summary(sem.two, digits = 3)

Model Chisquare = 5.39 Df = 8 Pr(>Chisq) = 0.715
Chisquare (null model) = 2206 Df = 15
Goodness-of-fit index = 0.998
Adjusted goodness-of-fit index = 0.995
RMSEA index = 0 90% CI: (NA, 0.0278)
Bentler-Bonnett NFI = 0.998
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -49.9

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.888000 -0.057500 -0.000009 -0.062200 0.086200 0.443000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.899 0.0280 32.10 0e+00 V1 <--- theta1
b 0.770 0.0280 27.46 0e+00 V2 <--- theta1
c 0.726 0.0300 24.20 0e+00 V3 <--- theta1
d 0.890 0.0332 26.84 0e+00 V4 <--- theta2
e 0.776 0.0338 22.98 0e+00 V5 <--- theta2
f 0.679 0.0344 19.74 0e+00 V6 <--- theta2
g 0.359 0.0337 10.65 0e+00 theta2 <--> theta1
u 0.201 0.0256 7.86 4e-15 V1 <--> V1
v 0.354 0.0239 14.83 0e+00 V2 <--> V2

26

w 0.513 0.0280 18.34 0e+00 V3 <--> V3
x 0.315 0.0378 8.34 0e+00 V4 <--> V4
y 0.536 0.0361 14.82 0e+00 V5 <--> V5
z 0.700 0.0380 18.42 0e+00 V6 <--> V6

Iterations = 22

> std.coef(sem.two)

Std. Estimate
a a 0.89472 V1 <--- theta1
b b 0.79114 V2 <--- theta1
c c 0.71163 V3 <--- theta1
d d 0.84578 V4 <--- theta2
e e 0.72766 V5 <--- theta2
f f 0.63007 V6 <--- theta2

> round(residuals(sem.two), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.02 -0.02 0.00
V2 0.00 0.00 0.00 0.00 0.00 0.01
V3 0.00 0.00 0.00 -0.01 -0.01 -0.03
V4 0.02 0.00 -0.01 0.00 0.00 0.00
V5 -0.02 0.00 -0.01 0.00 0.00 0.01
V6 0.00 0.01 -0.03 0.00 0.01 0.00

3.3 Hierarchical models

The two correlated factors of section 3.2.1 may be thought of as representing two lower level
factors each of which loads on a higher level factor. With just two lower level factors, the
loadings on the higher level factor are not unique (one correlation, r, between the two factors
may be represented in an infinite number of ways as the product of loadings ga and gb).

There are several ways of representing hierarchical models, including correlated level one
factors with a g factor and uncorrelated lower level factors with a g factor (a bifactor solution).
The latter may be estimated directly from the data, or may be found by using the Schmid-
Leiman transformation of the correlated factors.

3.3.1 Two Correlated factors with a g factor

The hierarchical model of a g factor is underidentified unless we specify one of the g paths.
Here we set it to 1 and then estimate the rest of the model.

> S.g2 <- cov(data.f2)

> model.g2 <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b", NA, "theta1 -> V3",

+ "c", NA, "theta2 -> V4", "d", NA, "theta2 -> V5", "e", NA, "theta2 -> V6",

+ "f", NA, "g -> theta1", NA, 1, "g -> theta2", "g2", NA, "V1 <-> V1", "u",

27

X1 X2 X3 Y1 Y2 Y3

X

a b c

Y

d e f

g

gx gy

e1 e2 e3 e4 e5 e6

Figure 3.7: The correlation between two factors may be modeled by a g, general, factor. This
representation shows all the errors that need to be estimated.

+ NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4", "x", NA, "V5 <-> V5",

+ "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1", NA, 1, "theta2 <-> theta2",

+ NA, 1, "g <-> g", NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.g2) <- c("path", "label", "initial estimate")

> model.g2

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "g -> theta1" NA "1"
[8,] "g -> theta2" "g2" NA
[9,] "V1 <-> V1" "u" NA
[10,] "V2 <-> V2" "v" NA
[11,] "V3 <-> V3" "w" NA
[12,] "V4 <-> V4" "x" NA
[13,] "V5 <-> V5" "y" NA
[14,] "V6 <-> V6" "z" NA
[15,] "theta1 <-> theta1" NA "1"
[16,] "theta2 <-> theta2" NA "1"
[17,] "g <-> g" NA "1"

28

> sem.g2 = sem(model.g2, S.g2, N)

> summary(sem.g2, digits = 3)

Model Chisquare = 5.39 Df = 8 Pr(>Chisq) = 0.715
Chisquare (null model) = 2206 Df = 15
Goodness-of-fit index = 0.998
Adjusted goodness-of-fit index = 0.995
RMSEA index = 0 90% CI: (NA, 0.0278)
Bentler-Bonnett NFI = 0.998
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -49.9

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.88e-01 -5.75e-02 6.72e-07 -6.22e-02 8.61e-02 4.43e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.636 0.0198 32.10 0.00e+00 V1 <--- theta1
b 0.544 0.0198 27.46 0.00e+00 V2 <--- theta1
c 0.513 0.0212 24.20 0.00e+00 V3 <--- theta1
d 0.767 0.0361 21.21 0.00e+00 V4 <--- theta2
e 0.669 0.0345 19.36 0.00e+00 V5 <--- theta2
f 0.585 0.0337 17.33 0.00e+00 V6 <--- theta2
g2 0.590 0.0747 7.90 2.89e-15 theta2 <--- g
u 0.201 0.0256 7.86 4.00e-15 V1 <--> V1
v 0.354 0.0239 14.83 0.00e+00 V2 <--> V2
w 0.513 0.0280 18.34 0.00e+00 V3 <--> V3
x 0.315 0.0378 8.34 0.00e+00 V4 <--> V4
y 0.536 0.0361 14.82 0.00e+00 V5 <--> V5
z 0.700 0.0380 18.42 0.00e+00 V6 <--> V6

Iterations = 26

> std.coef(sem.g2)

Std. Estimate
a a 0.89472 V1 <--- theta1
b b 0.79114 V2 <--- theta1
c c 0.71163 V3 <--- theta1
d d 0.84578 V4 <--- theta2
e e 0.72766 V5 <--- theta2
f f 0.63007 V6 <--- theta2

0.70711 theta1 <--- g
g2 g2 0.50800 theta2 <--- g

> round(residuals(sem.g2), 2)

29

X1 X2 X3 Y1 Y2 Y3

X

a b c

Y

d e f

g

gx gy

Figure 3.8: The correlation between two factors may be modeled by a g, general, factor. This
representation is somewhat more compact than the previous figure (3.7.)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.02 -0.02 0.00
V2 0.00 0.00 0.00 0.00 0.00 0.01
V3 0.00 0.00 0.00 -0.01 -0.01 -0.03
V4 0.02 0.00 -0.01 0.00 0.00 0.00
V5 -0.02 0.00 -0.01 0.00 0.00 0.01
V6 0.00 0.01 -0.03 0.00 0.01 0.00

3.3.2 Generating the data for 3 correlated factors

We have two demonstrations: the first is the two correlated factor data from section 3.2.1,
the second is a three correlated factors. To create the later we use the sim.sem function with
three latent variables.

> pattern <- matrix(c(0.9, 0.8, 0.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0.7, 0.6,

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 0.5, 0.4), ncol = 3)

> colnames(pattern) <- c("F1", "F2", "F3")

> rownames(pattern) <- paste("V", 1:dim(pattern)[1], sep = "")

> pattern

F1 F2 F3
V1 0.9 0.0 0.0
V2 0.8 0.0 0.0
V3 0.7 0.0 0.0
V4 0.0 0.8 0.0
V5 0.0 0.7 0.0
V6 0.0 0.6 0.0
V7 0.0 0.0 0.6
V8 0.0 0.0 0.5
V9 0.0 0.0 0.4

30

> VSS.scree(cor(data.f3))

●

●

●

●

●
●

●
●

●

2 4 6 8

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

scree plot

Index

pr
in

c$
va

lu
es

Figure 3.9: Scree plot of three correlated factors. Compare to the two uncorrelated factors,
Figure 3.4, and the two correlated factors, ??
.

> phi <- matrix(c(1, 0, 0, 0.5, 1, 0, 0.4, 0.4, 1), ncol = 3, byrow = TRUE)

> phi

[,1] [,2] [,3]
[1,] 1.0 0.0 0
[2,] 0.5 1.0 0
[3,] 0.4 0.4 1

> data.f3 <- sim.sem(loads = pattern, phi = phi)

3.3.3 Exploratory factor analysis with 3 factors

As a first approximation to these data, we can do a three factor exploratory analysis to try
to understand the structure of the data.

31

theta1 theta2 theta3

g

V1

a

V2

b

V3

c

V4

d

V5

e

V6

f

V7

g

V8

h

V9

i

g1 g2 g3

Figure 3.10: The correlation between three factors may be modeled by a g, general, factor.

> f3 <- factanal(data.f3, 3, rotation = "none")

> f3

Call:
factanal(x = data.f3, factors = 3, rotation = "none")

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9

0.203 0.357 0.516 0.319 0.412 0.622 0.485 0.746 0.839

Loadings:
Factor1 Factor2 Factor3

V1 0.835 -0.316
V2 0.745 -0.297
V3 0.659 -0.221
V4 0.648 0.497 -0.121
V5 0.572 0.486 -0.154
V6 0.459 0.399
V7 0.322 0.188 0.613
V8 0.226 0.196 0.406
V9 0.196 0.148 0.317

Factor1 Factor2 Factor3
SS loadings 2.837 0.974 0.688
Proportion Var 0.315 0.108 0.076
Cumulative Var 0.315 0.424 0.500

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 11.91 on 12 degrees of freedom.
The p-value is 0.453

32

Orthogonal Rotation

The loadings from this factor analysis are not particularly easy to understand and can be
rotated to a more somewhat more understandable structure using the VARIMAX rotation
(which is actually the default for factanal). We use the GPArotaton package.

> library(GPArotation)

> f3v <- Varimax(loadings(f3))

> round(loadings(f3v), 2)

Factor1 Factor2 Factor3
V1 0.87 0.20 0.07
V2 0.78 0.17 0.05
V3 0.67 0.17 0.09
V4 0.26 0.77 0.12
V5 0.20 0.74 0.07
V6 0.16 0.59 0.09
V7 0.14 0.14 0.69
V8 0.06 0.16 0.48
V9 0.07 0.13 0.37

The structure is more easy to understand than the original one, but still is somewhat hard to
understand.

Oblique Rotation

By allowing the factors to be correlated, we are able to find a more simple representation of
the factor pattern. However, we need to report both the factor loadings as well as the factor
intercorrelations.

> f3o <- oblimin(loadings(f3))

> round(loadings(f3o), 2)

Factor1 Factor2 Factor3
V1 0.89 0.00 0.00
V2 0.81 -0.01 -0.01
V3 0.68 0.02 0.03
V4 0.03 0.80 0.02
V5 -0.01 0.78 -0.03
V6 -0.02 0.62 0.01
V7 0.02 -0.02 0.72
V8 -0.04 0.06 0.49
V9 -0.02 0.05 0.38

The alternatives to exploratory factor analysis is to apply a confirmatory model specifying
the “expected” structure. We do this with both a hierarchical g factor model as well as a
bifactor model.

33

3.3.4 Three correlated factors with a g factor

> S.g3 <- cov(data.f3)

> model.g3 <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b", NA, "theta1 -> V3",

+ "c", NA, "theta2 -> V4", "d", NA, "theta2 -> V5", "e", NA, "theta2 -> V6",

+ "f", NA, "theta3 -> V7", "g", NA, "theta3 -> V8", "h", NA, "theta3 -> V9",

+ "i", NA, "g -> theta1", "g1", NA, "g -> theta2", "g2", NA, "g -> theta3",

+ "g3", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w",

+ NA, "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "V7 <-> V7",

+ "s", NA, "V8 <-> V8", "t", NA, "V9 <-> V9", "r", NA, "theta1 <-> theta1",

+ NA, 1, "theta2 <-> theta2", NA, 1, "theta3 <-> theta3", NA, 1, "g <-> g",

+ NA, 1), ncol = 3, byrow = TRUE)

> colnames(model.g3) <- c("path", "label", "initial estimate")

> model.g3

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "theta3 -> V7" "g" NA
[8,] "theta3 -> V8" "h" NA
[9,] "theta3 -> V9" "i" NA
[10,] "g -> theta1" "g1" NA
[11,] "g -> theta2" "g2" NA
[12,] "g -> theta3" "g3" NA
[13,] "V1 <-> V1" "u" NA
[14,] "V2 <-> V2" "v" NA
[15,] "V3 <-> V3" "w" NA
[16,] "V4 <-> V4" "x" NA
[17,] "V5 <-> V5" "y" NA
[18,] "V6 <-> V6" "z" NA
[19,] "V7 <-> V7" "s" NA
[20,] "V8 <-> V8" "t" NA
[21,] "V9 <-> V9" "r" NA
[22,] "theta1 <-> theta1" NA "1"
[23,] "theta2 <-> theta2" NA "1"
[24,] "theta3 <-> theta3" NA "1"
[25,] "g <-> g" NA "1"

> sem.g3 = sem(model.g3, S.g3, N)

> summary(sem.g3, digits = 3)

Model Chisquare = 20.5 Df = 24 Pr(>Chisq) = 0.665
Chisquare (null model) = 2647 Df = 36
Goodness-of-fit index = 0.995

34

Adjusted goodness-of-fit index = 0.991
RMSEA index = 0 90% CI: (NA, 0.0211)
Bentler-Bonnett NFI = 0.992
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -145

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.27e+00 -1.64e-01 1.63e-05 3.16e-02 3.43e-01 1.19e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.699 0.0380 18.40 0.00e+00 V1 <--- theta1
b 0.642 0.0361 17.77 0.00e+00 V2 <--- theta1
c 0.542 0.0327 16.55 0.00e+00 V3 <--- theta1
d 0.543 0.0744 7.29 3.02e-13 V4 <--- theta2
e 0.482 0.0664 7.26 3.79e-13 V5 <--- theta2
f 0.379 0.0535 7.09 1.34e-12 V6 <--- theta2
g 0.618 0.0485 12.72 0.00e+00 V7 <--- theta3
h 0.461 0.0392 11.77 0.00e+00 V8 <--- theta3
i 0.377 0.0379 9.95 0.00e+00 V9 <--- theta3
g1 0.788 0.0985 8.00 1.11e-15 theta1 <--- g
g2 1.370 0.2804 4.89 1.02e-06 theta2 <--- g
g3 0.583 0.0758 7.69 1.47e-14 theta3 <--- g
u 0.204 0.0238 8.54 0.00e+00 V1 <--> V1
v 0.375 0.0251 14.92 0.00e+00 V2 <--> V2
w 0.503 0.0268 18.78 0.00e+00 V3 <--> V3
x 0.342 0.0364 9.39 0.00e+00 V4 <--> V4
y 0.524 0.0356 14.71 0.00e+00 V5 <--> V5
z 0.702 0.0365 19.21 0.00e+00 V6 <--> V6
s 0.575 0.0609 9.43 0.00e+00 V7 <--> V7
t 0.781 0.0475 16.44 0.00e+00 V8 <--> V8
r 0.925 0.0480 19.26 0.00e+00 V9 <--> V9

Iterations = 35

> std.coef(sem.g3)

Std. Estimate
a a 0.89200 V1 <--- theta1
b b 0.80019 V2 <--- theta1
c c 0.69736 V3 <--- theta1
d d 0.84402 V4 <--- theta2
e e 0.74887 V5 <--- theta2
f f 0.60882 V6 <--- theta2
g g 0.68604 V7 <--- theta3
h h 0.51711 V8 <--- theta3

35

theta1 theta2 theta3

g

V1

0.7

V2

0.64

V3

0.54

V4

0.54

V5

0.48

V6

0.38

V7

0.62

V8

0.46

V9

0.38

0.79 1.37 0.58

Figure 3.11: A hierarchical solution to the three correlated factors problem.

i i 0.41359 V9 <--- theta3
g1 g1 0.61912 theta1 <--- g
g2 g2 0.80777 theta2 <--- g
g3 g3 0.50360 theta3 <--- g

3.3.5 Bifactor solutions

An alternative to the correlated lower level factors and a g factor is a “bifactor” model where
each item is represented by two factors, a lower level, group, factor and a higher level, g,
factor. This may be found directly through sem - cfa, or may be done indirectly by using a
Schmid-Leiman transformation of the correlated factors. We use the same three factor data
set as in the two previous sections (3.3.2, 3.3.4)

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "theta3 -> V7" "g" NA
[8,] "theta3 -> V8" "h" NA
[9,] "theta3 -> V9" "i" NA
[10,] "g -> V1" "g1" NA
[11,] "g -> V2" "g2" NA
[12,] "g -> V3" "g3" NA
[13,] "g -> V4" "g4" NA
[14,] "g -> V5" "g5" NA
[15,] "g -> V6" "g6" NA
[16,] "g -> V7" "g7" NA
[17,] "g -> V8" "g8" NA
[18,] "g -> V9" "g9" NA
[19,] "V1 <-> V1" "u" NA
[20,] "V2 <-> V2" "v" NA

36

[21,] "V3 <-> V3" "w" NA
[22,] "V4 <-> V4" "x" NA
[23,] "V5 <-> V5" "y" NA
[24,] "V6 <-> V6" "z" NA
[25,] "V7 <-> V7" "s" NA
[26,] "V8 <-> V8" "t" NA
[27,] "V9 <-> V9" "r" NA
[28,] "theta1 <-> theta1" NA "1"
[29,] "theta2 <-> theta2" NA "1"
[30,] "theta3 <-> theta3" NA "1"
[31,] "g <-> g" NA "1"

Model Chisquare = 16.8 Df = 18 Pr(>Chisq) = 0.536
Chisquare (null model) = 2647 Df = 36
Goodness-of-fit index = 0.996
Adjusted goodness-of-fit index = 0.99
RMSEA index = 0 90% CI: (NA, 0.0263)
Bentler-Bonnett NFI = 0.994
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -108

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.92e-01 -5.80e-02 -1.59e-05 1.55e-02 1.22e-01 8.96e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.697 0.0412 16.91 0.00e+00 V1 <--- theta1
b 0.658 0.0406 16.21 0.00e+00 V2 <--- theta1
c 0.517 0.0416 12.44 0.00e+00 V3 <--- theta1
d 0.501 0.0842 5.95 2.63e-09 V4 <--- theta2
e 0.533 0.0755 7.06 1.69e-12 V5 <--- theta2
f 0.409 0.0710 5.77 8.14e-09 V6 <--- theta2
g 0.642 0.0745 8.62 0.00e+00 V7 <--- theta3
h 0.451 0.0579 7.78 7.33e-15 V8 <--- theta3
i 0.355 0.0512 6.94 4.06e-12 V9 <--- theta3
g1 0.552 0.0477 11.57 0.00e+00 V1 <--- g
g2 0.490 0.0474 10.34 0.00e+00 V2 <--- g
g3 0.455 0.0466 9.77 0.00e+00 V3 <--- g
g4 0.758 0.0603 12.56 0.00e+00 V4 <--- g
g5 0.639 0.0591 10.81 0.00e+00 V5 <--- g
g6 0.503 0.0560 8.98 0.00e+00 V6 <--- g
g7 0.356 0.0426 8.37 0.00e+00 V7 <--- g
g8 0.268 0.0411 6.53 6.37e-11 V8 <--- g
g9 0.237 0.0423 5.60 2.15e-08 V9 <--- g
u 0.206 0.0272 7.57 3.84e-14 V1 <--> V1

37

theta1 theta2 theta3

g

V1

0.7

V2

0.66

V3

0.52

V4

0.5

V5

0.53

V6

0.41

V7

0.64

V8

0.45

V9

0.36

0.55 0.49 0.45 0.76 0.64 0.5 0.36 0.27 0.24

Figure 3.12: A bifactor solution to the three correlated factors problem.

v 0.369 0.0283 13.06 0.00e+00 V2 <--> V2
w 0.504 0.0267 18.87 0.00e+00 V3 <--> V3
x 0.364 0.0370 9.84 0.00e+00 V4 <--> V4
y 0.500 0.0431 11.60 0.00e+00 V5 <--> V5
z 0.695 0.0378 18.37 0.00e+00 V6 <--> V6
s 0.546 0.0898 6.09 1.15e-09 V7 <--> V7
t 0.791 0.0553 14.30 0.00e+00 V8 <--> V8
r 0.933 0.0494 18.88 0.00e+00 V9 <--> V9

Iterations = 54

Std. Estimate
a a 0.69823 V1 <--- theta1
b b 0.64468 V2 <--- theta1
c c 0.52288 V3 <--- theta1
d d 0.45929 V4 <--- theta2
e e 0.48816 V5 <--- theta2
f f 0.38775 V6 <--- theta2
g g 0.61642 V7 <--- theta3
h h 0.43658 V8 <--- theta3
i i 0.33635 V9 <--- theta3
g1 g1 0.55298 V1 <--- g
g2 g2 0.47981 V2 <--- g
g3 g3 0.45993 V3 <--- g
g4 g4 0.69494 V4 <--- g
g5 g5 0.58531 V5 <--- g
g6 g6 0.47594 V6 <--- g
g7 g7 0.34180 V7 <--- g
g8 g8 0.25990 V8 <--- g
g9 g9 0.22427 V9 <--- g

3.3.6 Schmid Leiman transformations to orthogonalize the factors

An alternative to a confirmatory hierarchical analysis or bifactor solution is to extract at least
3 factors from a correlation matrix, transform them obliquely to a simple pattern soltion, and

38

then extract the first factor from the correlations of these factors. From the resulting matrices,
it is possible to find the g loading for each of the original variables (based upon the product of
the g loadings of the factors and the loadings of the variables on these factors. Functionally,
this is an alternative way of estimating a bifactor solution.

The schmid function found in the psych package finds the g factor and group factor loadings
by doing a Schmid Leiman transfortion. Here we show the Schmid Leiman analysis applied
to the 3 correlated factors problem of section 3.3.4.

$sl
g factor Factor1 Factor2 Factor3 h2 u2

V1 0.56 0.692 0.0016 0.0031 0.80 0.20
V2 0.50 0.629 0.0053 0.0122 0.66 0.34
V3 0.46 0.525 0.0098 0.0290 0.46 0.54
V4 0.66 0.022 0.5005 0.0161 0.65 0.35
V5 0.59 0.011 0.4874 0.0226 0.61 0.39
V6 0.48 0.017 0.3859 0.0129 0.38 0.62
V7 0.34 0.014 0.0150 0.6298 0.52 0.48
V8 0.26 0.034 0.0376 0.4296 0.25 0.75
V9 0.22 0.012 0.0308 0.3361 0.15 0.85

$orthog
Factor1 Factor2 Factor3

V1 0.892 0.0025 -0.0035
V2 0.810 -0.0085 -0.0139
V3 0.677 0.0157 0.0332
V4 0.028 0.8039 0.0185
V5 -0.014 0.7829 -0.0258
V6 -0.022 0.6198 0.0148
V7 0.018 -0.0240 0.7207
V8 -0.044 0.0603 0.4916
V9 -0.016 0.0495 0.3846

$fcor
[,1] [,2] [,3]

[1,] 1.00 0.49 0.31
[2,] 0.49 1.00 0.38
[3,] 0.31 0.38 1.00

$gloading

Loadings:
Factor1

[1,] 0.631
[2,] 0.783
[3,] 0.486

Factor1

39

SS loadings 1.247
Proportion Var 0.416

Although not identical to the results of the bifactor solution, the results agree to two decimal
places. Why are these estimates not the same? Because in the case of the confirmatory model,
the loadings of the variables on one factor on other factors are set to 0, while in the Schmid
Leiman case, they are allowed to be non-zero. The loadings on the general factor are used to
calculate the ωh coefficient discussed by Zinbarg et al. 2006.

3.3.7 Omega as an estimate of reliability

Many scales are assumed by their developers and users to be primarily a measure of one latent
variable. When it is also assumed that the scale conforms to the effect indicator model of
measurement (as is almost always the case in psychological assessment), it is important to
support such an interpretation with evidence regarding the internal structure of that scale.
In particular, it is important to examine two related properties pertaining to the internal
structure of such a scale. The first property relates to whether all the indicators forming the
scale measure a latent variable in common.

The second internal structural property pertains to the proportion of variance in the scale
scores (derived from summing or averaging the indicators) accounted for by this latent variable
that is common to all the indicators (Cronbach, 1951; McDonald, 1999; Revelle, 1979). That
is, if an effect indicator scale is primarily a measure of one latent variable common to all the
indicators forming the scale, then that latent variable should account for the majority of the
variance in the scale scores. Put differently, this variance ratio provides important information
about the sampling fluctuations when estimating individuals’ standing on a latent variable
common to all the indicators arising from the sampling of indicators (i.e., when dealing with
either Type 2 or Type 12 sampling, to use the terminology of Lord, 1956). That is, this
variance proportion can be interpreted as the square of the correlation between the scale score
and the latent variable common to all the indicators in the infinite universe of indicators of
which the scale indicators are a subset. Put yet another way, this variance ratio is important
both as reliability and a validity coefficient. This is a reliability issue as the larger this variance
ratio is, the more accurately one can predict an individual’s relative standing on the latent
variable common to all the scale’s indicators based on his or her observed scale score. At
the same time, this variance ratio also bears on the construct validity of the scale given that
construct validity encompasses the internal structure of a scale.” (Zinbarg, Yovel, Revelle, and
McDonald, 2006). McDonald has proposed coefficient omega as an estimate of the general
factor saturation of a test. Zinbarg, Revelle, Yovel and Li (2005) compare McDonald’s Omega
to Cronbach’s alpha and Revelle’s beta. They conclude that omega is the best estimate. (See
also Zinbarg et al., 2006)

One way to find omega is to do a factor analysis of the original data set, rotate the factors
obliquely, do a Schmid-Leiman (schmid) transformation, and then find omega. The psych
package function omega does that.

40

http://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf

	One factor --- congeneric data model
	Generating the data
	Estimate a congeneric model
	Estimate a tau equivalent model with equal true score and unequal error loadings
	Estimate a parallel test model with equal true score and equal error loadings
	Estimate a parallel test model with fixed loadings
	Comparison of models

	Two (perhaps correlated) factors
	Generating the data
	Exploratory Factor analysis of the data
	Confirmatory analysis with a predicted structure
	Confirmatory factor analysis with two independent factors with equal loadings within factors
	Structure invariance, part I--- unequal loadings within factors - matched across factors
	Estimate two correlated factors

	Hierarchical models
	Two Correlated factors with a g factor
	Generating the data for 3 correlated factors
	Exploratory factor analysis with 3 factors
	Three correlated factors with a g factor
	Bifactor solutions
	Schmid Leiman transformations to orthogonalize the factors
	Omega as an estimate of reliability

