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Why linear algebra?

• Linear algebra is the fundamental notational technique used
in multiple correlation, factor analysis, and structural equation
modeling.

• Although it is possible to do psychometrics and statistics
without understanding linear algebra, it is helpful to do so.

• Linear algebra is a convenient notational system that allows
us to think about data at a higher (broader) level rather than
data point by data point.

• Commercial stats programs do their calculations in linear
algebra but “protect” the user from their seeming complexity.

• Some instructors of statistics think it is better to not show the
basic principles used in the analysis and instead perform
“cookbook" exercises.

• I do not.
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Linear Algebra
• Matrices were used by the Babylonians and Chinese (ca. 100

BCE) to do basic calculations and solve simultaneous
equations but were not introduced in Western mathematics
until the early 19th century.

• Introduced to psychologists by Thurstone in 1933 who had
learned about them from a mathematician colleague.

• Until then, all analysis was done on “tables” with fairly
laborious ad hoc procedures.

• Matrices may be thought of as “spreadsheets” but with their
own algebra.

• Most modern statistics are actually performed by applying
basic principles of linear algebra.

• Developments in psychometrics and structural modeling are
almost all done using using linear algrebra.

• R is explicit in its use of matrices, so am I.
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Linear Algebra: a gentle introduction to R

1. Cleary linear algebra is implementation independent.

2. The basic concepts are shown with the corresponding R
notation.

3. These slides include a gentle introduction to R syntax.

4. See Venables et al. (2025) for a good overview, or visit
https://cran.r-project.org for an extensive list of short
and long texts.

5. CRAN is the Comprehensive R Archive Network and is the
central repository of published R packages and the source of
the most recent release of R.
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Scalars, Vectors and Matrices
• A scalar is just a single value, e.g., an integer, a real number,

or a character (string).
• A vector is a one dimensional array of n elements where the

most frequently used elements are integers, reals (numeric),
characters, or logical.

• vectors have length x =
(

42 17 3 2 9 4
)

• elements are indexed by location in the vector. xi is the i th

element. x2 = 17
• A matrix is a two dimensional array of m vectors, each with n

elements. (More than 2D are called tensors).
• Matrices have 2 dimensions (rows and columns) r Xc e.g.,

2X6 =

(
42 17 3 2 9 4
39 21 7 4 8 6

)
• elements are indexed by location in the matrix. Xi,j is the

element in the i th row and j th column. X 2,3 = 7
• (In an attempt at consistent notation, vectors will be bold

faced lower case letters, matrices will be CAPITALIZED).
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Basic operations
• Basic operations on a vector or a MATRIX are addition,

subtraction and multiplication.
• First consider addition, subtraction and multiplication by

scalars.
• Consider v1 = the first 6 integers, and v2 = the next 6

integers:

> v1 <− seq (1 , 6) #use the seq function
> v2<− seq (7 , 12)
> v3<− v21 + 20 #add a scalar

> v1 #show the elements o f the vec to r
[ 1 ] 1 2 3 4 5 6
> v2
[ 1 ] 7 8 9 10 11 12
> v3
[ 1 ] 21 22 23 24 25 26
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Basic operations
We can add a constant to each element in a vector, add each
element of the first vector to the corresponding element of the
second vector, multiply each element by a scalar, or multiply each
element in the first by the corresponding element in the second:

> v3 <− v1 + 20 #add a scaler
> v4 <− v1 + v2 #add two vectors
> v5 <− v1 * 3 #multiply by a scaler
> v6 <− v1 * v2 #mulltiply a vector by a vector

> v3
[ 1 ] 21 22 23 24 25 26
> v4
[ 1 ] 8 10 12 14 16 18
> v5
[ 1 ] 3 6 9 12 15 18
> v6
[ 1 ] 7 16 27 40 55 72 8 / 71
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row and column vectors and the transpose operator

• vectors can be either row vectors or column vectors.
• the transpose, t, of a row vector is a column vector and vice

versa

v1 =
(

1 2 3 4 5 6
)

t(v1) =



1
2
3
4
5
6



9 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Outer product = multiplication of a column vector by a row vector

Although addition and subtraction are straightforward,
multiplication is somewhat more complicated, for the order in which
two vectors are multiplied changes the result. That is ab ̸= ba. A
column vector times a row vector (also known as the outer product
or the tensor product) yields a matrix but a row vector times a
column vectors (the dot product) yields a scalar. Consider v2

⊗
v1

7
8
9
10
11
12

%∗%
(

1 2 3 4 5 6
)
=



7 14 21 28 35 42
8 16 24 32 40 48
9 18 27 36 45 54
10 20 30 40 50 60
11 22 33 44 55 66
12 24 36 48 60 72


each row * each column

10 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Vector multiplication of a row vector by a column vector

But the dot product (or inner product) of a row vector by a column
vector is a scalar. Consider v1 · v2

(
1 2 3 4 5 6

)
%∗%



7
8
9
10
11
12

 =
n∑

i=1

v1i iv2 =
n∑

i=1

v6i = 217

It is this operation, the dot product which is a very powerful matrix
operation, for it does summations of products in one line. This
inner product will become even more useful with matrices. In both
the inner and outer product, the same rule is followed: the i th, j th

element of the result is the sum of the products of the i th row of the
first vector and the j th column of the second vector.
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More on outer products
It is important to realize that the dimensions of the vectors must
match to do either inner or outer products. Consider
v1
(6x1)

⊗
v7′
(1x4)

and v7
(4x1)

⊗
v1′
(1x6)

which can be done,

(# rows must match #columns)

v1
(6x1)

% ∗% v7′
(1x4)

=


1
2
3
4
5
6

% ∗%
(

1 2 3 4
)
=


1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20
6 12 18 24

 = V8
(6x4)

(1)
and

v7
(4x1)

%∗% v1′
(1x6)

=


1
2
3
4

%∗%
(

1 2 3 4 5 6
)
=


1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24

 = V9
(4x6)

(2)

but that v1
(6x1)

⊗
v7
(4x1)

can not be done. (The column dimension of

the first needs to match the row dimension of the second).
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Matrices and data

• A matrix is just a two dimensional (rectangular) organization
of numbers.

• It is a vector of vectors.
• For data analysis, the typical data matrix is organized with

rows containing the responses of a particular subject and the
columns representing different variables.

• Thus, a 6 x 4 data matrix (6 rows, 4 columns) would contain
the data of 6 subjects on 4 different variables.

• In the example below the matrix operation has taken the
numbers 1 through 24 and organized them column wise. That
is, a matrix is just a way (and a very convenient one at that) of
organizing a data vector in a way that highlights the
correspondence of multiple observations for the same
individual. (The matrix is an ordered n-tuplet where n is the
number of columns).
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Matrices in R
R provides numeric row and column names (e.g., [1,] is the first
row, [,4] is the fourth column, but it is useful to label the rows and
columns to make the rows (subjects) and columns (variables)
distinction more obvious. We do this using the rownames and
colnames functions, combined with the paste and seq functions.

X i j <− matrix ( seq ( 1 : 2 4 ) , ncol = 4) #create the matrix
rownames ( X i j ) <− paste ( "S" , seq (1 , dim ( X i j ) [ 1 ] ) , sep = " " )
colnames ( X i j ) <− paste ( "V" , seq (1 , dim ( X i j ) [ 2 ] ) , sep = " " )
Y i j <− matrix ( seq ( 1 : 2 4 ) , ncol =4 , byrow = TRUE)
colnames ( Y i j ) <− colnames ( X i j ) ; rownames ( Y i j ) <− rownames ( X i j )
X i j ; Y i j

X i j
V1 V2 V3 V4

S1 1 7 13 19
S2 2 8 14 20
S3 3 9 15 21
S4 4 10 16 22
S5 5 11 17 23
S6 6 12 18 24

Y i j
V1 V2 V3 V4

S1 1 2 3 4
S2 5 6 7 8
S3 9 10 11 12
S4 13 14 15 16
S5 17 18 19 20
S6 21 22 23 24

Note that the elements (by default) are entered column wise but
can be forced to be by rows. 14 / 71
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Transpose of a matrix

Just as the transpose of a vector makes a column vector into a row
vector, so does the transpose of a matrix swap the rows for the
columns. Applying the t function to the matrix Xij produces Xij ′.
Note that now the subjects are columns and the variables are the
rows.

> t ( X i j ) ; t ( Y i j

t ( X i j )
S1 S2 S3 S4 S5 S6

V1 1 2 3 4 5 6
V2 7 8 9 10 11 12
V3 13 14 15 16 17 18
V4 19 20 21 22 23 24

t ( Y i j )
S1 S2 S3 S4 S5 S6

V1 1 5 9 13 17 21
V2 2 6 10 14 18 22
V3 3 7 11 15 19 23
V4 4 8 12 16 20 24
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Adding or multiplying by a scalar

Just as we could with vectors, we can add, subtract, multiply or
divide the matrix by a scalar (a number without a dimension).

X i j

V1 V2 V3 V4
S1 1 7 13 19
S2 2 8 14 20
S3 3 9 15 21
S4 4 10 16 22
S5 5 11 17 23
S6 6 12 18 24

round ( ( X i j ) / 3 , 2)

V1 V2 V3 V4
S1 0.33 2.33 4.33 6.33
S2 0.67 2.67 4.67 6.67
S3 1.00 3.00 5.00 7.00
S4 1.33 3.33 5.33 7.33
S5 1.67 3.67 5.67 7.67
S6 2.00 4.00 6.00 8.00

X i j + 4

V1 V2 V3 V4
S1 5 11 17 23
S2 6 12 18 24
S3 7 13 19 25
S4 8 14 20 26
S5 9 15 21 27
S6 10 16 22 28

round ( ( X i j + 4) / 3 , 2)

V1 V2 V3 V4
S1 1.67 3.67 5.67 7.67
S2 2.00 4.00 6.00 8.00
S3 2.33 4.33 6.33 8.33
S4 2.67 4.67 6.67 8.67
S5 3.00 5.00 7.00 9.00
S6 3.33 5.33 7.33 9.33 16 / 71
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Multiplying by a vector, caution required

> v <− 1:4

[ 1 ] 1 2 3 4

> X i j + v

V1 V2 V3 V4
S1 2 10 14 22
S2 4 12 16 24
S3 6 10 18 22
S4 8 12 20 24
S5 6 14 18 26
S6 8 16 20 28

> X i j * v

V1 V2 V3 V4
S1 1 21 13 57
S2 4 32 28 80
S3 9 9 45 21
S4 16 20 64 44
S5 5 33 17 69
S6 12 48 36 96

• We can also add or multiply each
row (or column, depending upon
order) by a vector.

• This is more complicated that it
would appear, for R does the
operations columnwise.

• This is best seen in an example:

• This is not what we expected!
• We expected (wanted?) the first

column to be added to 1 or
multiplied by 1, the second by 2,
etc.

• But the operation is down the first
column rather than what we
expected which would be across
the columns. 17 / 71
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Multiplying by a vector, transpose and then transpose again

> t ( t ( X i j ) + v )

V1 V2 V3 V4
S1 2 9 16 23
S2 3 10 17 24
S3 4 11 18 25
S4 5 12 19 26
S5 6 13 20 27
S6 7 14 21 28

> V10 <− t ( t ( X i j ) * v )
> V10

V1 V2 V3 V4
S1 1 14 39 76
S2 2 16 42 80
S3 3 18 45 84
S4 4 20 48 88
S5 5 22 51 92
S6 6 24 54 96

• These are not the expected results
if the intent was to add or multiply a
different number to each column!

• R operates on the columns and
wraps around to the next column to
complete the operation.

• To add the n elements of v to the n
columns of Xij ,

• use the t function to transpose
Xij

• and then transpose the result
back to the original order:
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The scale function
To find a matrix of deviation scores, just subtract the means vector
from each cell. The scale function does this with the option
scale=FALSE. The default for scale is to convert a matrix to
standard scores.

> scale (V10 , scale=FALSE)

V1 V2 V3 V4
S1 −2.5 −5 −7.5 −10
S2 −1.5 −3 −4.5 −6
S3 −0.5 −1 −1.5 −2
S4 0.5 1 1.5 2
S5 1.5 3 4.5 6
S6 2.5 5 7.5 10
a t t r ( , " scaled : center " )

V1 V2 V3 V4
3.5 19.0 46.5 86.0

> round ( scale ( v10 ) , 2 )

V1 V2 V3 V4
S1 −1.34 −1.34 −1.34 −1.34
S2 −0.80 −0.80 −0.80 −0.80
S3 −0.27 −0.27 −0.27 −0.27
S4 0.27 0.27 0.27 0.27
S5 0.80 0.80 0.80 0.80
S6 1.34 1.34 1.34 1.34
a t t r ( , " scaled : center " )

V1 V2 V3 V4
3.5 19.0 46.5 86.0

a t t r ( , " scaled : sca le " )
V1 V2 V3

V4
1.870829 3.741657 5.612486 7.483315
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Matrix multiplication

Matrix multiplication is a combination of multiplication and addition
and is one of the most used and useful matrix operations. For a
matrix X

(rxp)
of dimensions r*p and Y

(pxc)
of dimension p * c, the

product, X
(rxp)

Y
(pxc)

, is a r * c matrix where each element is the sum

of the products of the rows of the first and the columns of the
second. That is, the matrix XY

(rxc)
has elements xyij where each

xyij =
n∑

k=1

xik ∗ ykj
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Matrix multiplication

The resulting xij cells of the product matrix are sums of the
products of the column elements of the first matrix times the row
elements of the second. There will be as many cell as there are
rows of the first matrix and columns of the second matrix.

XY
(rx x p)(p x cy )

=

(
x11 x12 x13 x14
x21 x22 x23 x24

)
−−−−−−−−−−−−−−−−−−−−→

|
↓


y11 y12
y21 y22
y31 y32
y41 y42

 =


p∑
i

x1i yi1

p∑
i

x1i yi2

p∑
i

x2i yi1

p∑
i

x2i yi2


It should be obvious that matrix multiplication is a very powerful
operation, for it represents in one product the r * c summations
taken over p observations.

21 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Matrix addition

Analogous to matrix multiplication is a function to add elements
from row and column vectors to fill a complete matrix. This is a
non-standard function %+% and is an add on to psych

XY
(rx x p)(p x cy )

=

(
x11 x12 x13 x14
x21 x22 x23 x24

)
−−−−−−−−−−−−−−−−−−−−→

|
↓


y11 y12
y21 y22
y31 y32
y41 y42

 =


p∑
i

x1i + yi1

p∑
i

x1i + yi2

p∑
i

x2i + yi1

p∑
i

x2i+yi2


It should be obvious that matrix addition is a very powerful
operation, for it represents in one operation the r * c summations
taken over p observations.
Note that matrix addition done this way is a function unique to the
psych package. (Adapted from Krus, D. J. (2001) Matrix addition. Journal of Visual Statistics, 1, (February,

2001)

22 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Examples of matrix “addition" and normal matrix addition
R code

x <- c(1,2,3,4)
y <- x + x #normal vector addition adds corresponding elements
y

xx <- x %+% t(x) #"addition" adds row entries to column entries
xx

x %*% t(x) #matrix multiplication

[1] 2 4 6 8 #normal vector addition

[,1] [,2] [,3] [,4] #special addition
[1,] 2 3 4 5
[2,] 3 4 5 6
[3,] 4 5 6 7
[4,] 5 6 7 8

[,1] [,2] [,3] [,4] #matrix multiplication
[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16
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Matrix multiplication can be used with vectors as well as matrices.
Consider the product of a vector of ones, 1, and the matrix Xij

(rxc)
with 6 rows of 4 columns. Call an individual element in this matrix
xij . Then the sum for each column of the matrix is found multiplying
the matrix by the “one" vector with Xij . Dividing each of these
resulting sums by the number of rows (cases) yields the mean for
each column. That is, find

1′Xij =
n∑

i=1

Xij

for the c columns, and then divide by the number (n) of rows. Note
that the same result is found by the colMeans(Xij) function.

1′ Xij
1

n
=

(
1 1 1 1 1 1

)
−−−−−−−−−−−−−−−−−−−−−→

|
↓


1 7 13 19
2 8 14 20
3 9 15 21
4 10 16 22
5 11 17 23
6 12 18 24


1

6
=
(

21 57 93 129
) 1

6
=

(
3.5 9.5 15.5 21.5

)
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Means for columns
We can use the dim function to find out how many cases (the
number of rows) or the number of variables (number of columns).
dim has two elements: dim(Xij)[1] = number of rows, dim(Xij)[2] is
the number of columns.

> dim ( X i j )

[ 1 ] 6 4

#a vector of 1s
> one <− rep (1 ,dim ( X i j ) [ 1 ] )
#find the column sum
> t ( one ) %*% X i j

V1 V2 V3 V4
[ 1 , ] 21 57 93 129

#find the column average
> X. means <−
t ( one ) %*% X i j / dim ( X i j ) [ 1 ]

V1 V2 V3 V4
3.5 9.5 15.5 21.5

Or, just use the colMeans
function:
> colMeans ( X i j )

V1 V2 V3 V4
3.5 9.5 15.5 21.5

See rowMeans for the equivalent
for rows.
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Deviation scores

To form a matrix of deviation scores, where the elements of each
column are deviations from that column mean, it is necessary to
either do the operation on the transpose of the Xij matrix, or to
create a matrix of means by premultiplying the means vector by a
vector of ones and subtracting this from the data matrix.
> X. d i f f <− X i j − one %*% X. means

> X. d i f f
V1 V2 V3 V4

S1 −2.5 −2.5 −2.5 −2.5
S2 −1.5 −1.5 −1.5 −1.5
S3 −0.5 −0.5 −0.5 −0.5
S4 0.5 0.5 0.5 0.5
S5 1.5 1.5 1.5 1.5
S6 2.5 2.5 2.5 2.5
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Variances and covariances

Variances and covariances are measures of dispersion around the
mean. We find these by first subtracting the means from all the
observations. This means centered matrix is the original matrix
minus a vector of means. To make a more interesting data set,
randomly order (in this case, sample without replacement) from
the items in Xij and then find the X .means and X .diff matrices.
> set . seed (42) #set random seed for a repeatable example
> X i j <− matrix ( sample ( X i j ) , ncol =4) #random sample from Xij
> rownames ( X i j ) <− paste ( "S" , seq (1 , dim ( X i j ) [ 1 ] ) , sep = " " )
> colnames ( X i j ) <− paste ( "V" , seq (1 , dim ( X i j ) [ 2 ] ) , sep = " " )
> X i j

V1 V2 V3 V4
S1 22 14 12 15
S2 24 3 17 6
S3 7 11 5 4
S4 18 16 9 21
S5 13 23 8 2
S6 10 19 1 20
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> X. means <− t ( one ) %*% X i j / dim ( X i j ) [ 1 ] #find the column average
> X. d i f f <− X i j −one %*% X. means
> X. d i f f

V1 V2 V3 V4
S1 6.333333 −0.3333333 3.3333333 3.666667
S2 8.333333 −11.3333333 8.3333333 −5.333333
S3 −8.666667 −3.3333333 −3.6666667 −7.333333
S4 2.333333 1.6666667 0.3333333 9.666667
S5 −2.666667 8.6666667 −0.6666667 −9.333333
S6 −5.666667 4.6666667 −7.6666667 8.666667

Compare this result to just using the scale function to mean
center the data:

X. cen <− scale ( X i j , scale=FALSE ) .
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Variances and covariances
To find the variance/covariance matrix, find the the matrix product
of the means centered matrix X .diff with itself and divide by n-1.
Compare this result to the result of the cov function (the normal
way to find covariances). The differences between these two
results is the rounding to whole numbers for the first, and to two
decimals in the second.
> X. cov <− t (X . d i f f ) %*% X. d i f f / ( dim (X . d i f f ) [ 1 ] − 1 )
> round (X . cov )

V1 V2 V3 V4
V1 46 −23 34 8
V2 −23 48 −25 12
V3 34 −25 31 −12
V4 8 12 −12 70

> round ( cov ( X i j ) , 2 )

V1 V2 V3 V4
V1 45.87 −22.67 33.67 8.13
V2 −22.67 47.87 −24.87 11.87
V3 33.67 −24.87 30.67 −12.47
V4 8.13 11.87 −12.47 70.27
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• Some operations need to find just the diagonal of the matrix.
• For instance, the diagonal of the matrix X .cov (found above)

contains the variances of the items.
• To extract just the diagonal, or create a matrix with a particular

diagonal we use the diag command.

• We can convert the covariance matrix X .cov to a correlation
matrix X .cor by pre and post multiplying the covariance
matrix with a diagonal matrix containing the reciprocal of the
standard deviations (square roots of the variances).

• Remember that the correlation, rxy , is the ratio of the
covariance to the squareroot of the product of the variances:

rxy =
Cxy√
VxVy

=
Cxy

σxσy
.
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Correlations from linear algebra

> X. var <− diag (X . cov )

V1 V2 V3
V4
45.86667 47.86667 30.66667 70.26667

> sd i <− diag (1 / sqrt ( diag (X . cov ) ) )
> colnames ( sd i ) <− colnames (X . cov )
> rownames ( sd i ) <− colnames (X . cov )
> round ( sdi , 2)

V1 V2 V3 V4
V1 0.15 0.00 0.00 0.00
V2 0.00 0.14 0.00 0.00
V3 0.00 0.00 0.18 0.00
V4 0.00 0.00 0.00 0.12

> X. cor <− sd i %*% X. cov %*% sd i #pre and
post multiply by 1/sd
> rownames (X . cor ) <− colnames (X . cor ) <− colnames (X . cov )
> round (X . cor , 2)

V1 V2 V3 V4
V1 1.00 −0.48 0.90 0.14
V2 −0.48 1.00 −0.65 0.20
V3 0.90 −0.65 1.00 −0.27
V4 0.14 0.20 −0.27 1.00

Compare this to the standard command
for finding correlations cor.
> round ( cor ( X i j ) , 2)

V1 V2 V3 V4
V1 1.00 −0.48 0.90 0.14
V2 −0.48 1.00 −0.65 0.20
V3 0.90 −0.65 1.00 −0.27
V4 0.14 0.20 −0.27 1.00
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The identity matrix

The identity matrix is merely that matrix, which when multiplied by
another matrix, yields the other matrix. (The equivalent of 1 in
normal arithmetic.) It is a diagonal matrix with 1 on the diagonal.

> I <− diag (1 ,nrow=dim (X . cov ) [ 1 ] )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
[ 1 , ] 1 0 0 0
[ 2 , ] 0 1 0 0
[ 3 , ] 0 0 1 0
[ 4 , ] 0 0 0 1
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Simultaneous equations without matrices

Many problems in data analysis require solving a system of
simultaneous equations. For instance, in multiple regression with
two predictors and one criterion with a set of correlations of:

rx1x1 rx1x2 rx1y

rx1x2 rx2x2 rx2y

rx1y rx2y ryy

 (3)

we want to find the find weights, βi , that when multiplied by x1 and
x2 maximize the correlations with y. That is, we want to solve the
two simultaneous equations{

rx1x1β1 + rx1x2β2 = rx1y

rx1x2β1 + rx2x2β2 = rx2y

}
. (4)
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Solving two simultaneous equations
We can directly solve these two equations by adding and
subtracting terms to the two such that we end up with a solution to
the first in terms of β1 and to the second in terms of β2:{

β1 + rx1x2β2/rx1x1 = rx1y/rx1x1

rx1x2β1/rx2x2 + β2 = rx2y/rx2x2

}
(5)

which becomes {
β1 = (rx1y − rx1x2β2)/rx1x1

β2 = (rx2y − rx1x2β1)/rx2x2

}
(6)

Substituting the second row of (6) into the first row, and vice versa
we find{

β1 = (rx1y − rx1x2(rx2y − rx1x2β1)/rx2x2)/rx1x1

β2 = (rx2y − rx1x2(rx1y − rx1x2β2)/rx1x1)/rx2x2

}
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Solving simultaneous equations – continued
Collecting terms, we find:{

β1rx1x1rx2x2 = (rx1y rx2x2 − rx1x2(rx2y − rx1x2β1))
β2rx2x2rx1x1 = (rx2y rx1x1 − rx1x2(rx1y − rx1x2β2)

}
and rearranging once again:{

β1rx1x1rx2x2 − r2
x1x2β1 = (rx1y rx2x2 − rx1x2(rx2y)

β2rx1x1rx2x2 − r2
x1x2β2 = (rx2y rx1x1 − rx1x2(rx1y

}
Struggling on:{

β1(rx1x1rx2x2 − r2
x1x2) = rx1y rx2x2 − rx1x2rx2y

β2(rx1x1rx2x2 − r2
x1x2) = rx2y rx1x1 − rx1x2rx1y

}
And finally:{

β1 = (rx1y rx2x2 − rx1x2rx2y)/(rx1x1rx2x2 − r2
x1x2)

β2 = (rx2y rx1x1 − rx1x2rx1y)/(rx1x1rx2x2 − r2
x1x2)

}
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Using matrices to solve simultaneous equations
Alternatively, these two equations (4) may be represented as the
product of a vector of unknowns (the βs ) and a matrix of
coefficients of the predictors (the rxi ’s) and a matrix of coefficients
for the criterion (rxiy ):

(β1β2)

(
rx1x1 rx1x2

rx1x2 rx2x2

)
= (rx1y rx2y) (7)

If we let β = (β1β2), R =
(

rx1x1 rx1x2

rx1x2 rx2x2

)
and rxy = (rx1y rx2y)

then equation (7) becomes

βR = rxy (8)

and we can solve (8) for β by multiplying both sides by the inverse
of R.

β = βRR−1 = rxy R−1

This works for any number of variables! But, it requires R−1.
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Matrix Inversion
The inverse of a square matrix is the matrix equivalent of dividing
by that matrix. That is, either pre or post multiplying a matrix by its
inverse yields the identity matrix. The inverse is particularly
important in multiple regression, for it allows us to solve for the
beta weights.
Given the equation

ŷ = bX + c

we can solve for b by multiplying both sides of the equation by X ’
to form a square matrix XX ′ and then take the inverse of that
square matrix:

yX ′ = bXX ′ <=> b = yX ′(XX ′)−1

Divide by sides by N (or N-1) and we get a covariance equation

cyx = bCxx <==> b = cyxCxx
−1
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Matrix operations for finding an inverse

But, how do we find the inverse (R−1)? As an example we solve
the inverse of a 2 x2 matrix, but the technique may be applied to a
matrix of any size. First, define the identity matrix, I, as

I =
(

1 0
0 1

)
and then the equation

R = IR

may be represented as(
rx1x1 rx1x2

rx1x2 rx2x2

)
=

(
1 0
0 1

)(
rx1x1 rx1x2

rx1x2 rx2x2

)
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Transform both sides of the equation
Dropping the x subscript (for notational simplicity) we have(

r11 r12

r12 r22

)
=

(
1 0
0 1

)(
r11 r12

r12 r22

)
(9)

We may multiply both sides of equation (9) by a simple
transformation matrix (T) without changing the equality. If we do
this repeatedly until the left hand side of equation (9) is the identity
matrix, then the first matrix on the right hand side will be the
inverse of R. We do this in several steps to show the process.
Let

T1 =

(
1

r11
0

0 1
r22

)
then we multiply both sides of equation (9) by T1 in order to make
the diagonal elements of the left hand equation = 1 and we have

T1R = T1IR (10)
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Keep transforming

(
1 r12

r11
r12
r22

1

)
=

(
1

r11
0

0 1
r22

)(
r11 r12

r12 r22

)
(11)

Then, by letting

T2 =

(
1 0

− r12
r22

1

)
and multiplying T2 times both sides of equation (11) we can make
the lower off diagonal element = 0. (Functionally, we are
subtracting r12

r22
times the first row from the second row).

(
1 r12

r11

0 1 − r2
12

r11r22

)
=

(
1 r12

r11

0 r11r22−r2
12

r11r22

)
=

(
1

r11
0

− r12
r11r22

1
r22

)(
r11 r12

r12 r22

)
(12)
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Continue to diagonalize

Then, in order to make the diagonal elements all = 1 , we let

T3 =

(
1 0
0 r11r22

r11r22−r2
12

)

and multiplying T3 times both sides of equation (12) we have

(
1 r12

r11

0 1

)
=

(
1

r11
0

− r12
r11r22−r2

12

r11
r11r22−r2

12

)(
r11 r12

r12 r22

)
(13)

Then, to make the upper off diagonal element = 0, we let

T4 =

(
1 − r12

r11

0 1

)
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The inverse by successive transformations

and multiplying T4 times both sides of equation (13) we have(
1 0
0 1

)
=

( r22
r11r22−r2

12
− r12

r11r22−r2
12

− r12
r11r22−r2

12

r11
r11r22−r2

12

)(
r11 r12

r12 r22

)
That is, the inverse of our original matrix, R, is

R−1 =

( r22
r11r22−r2

12
− r12

r11r22−r2
12

− r12
r11r22−r2

12

r11
r11r22−r2

12

)
(14)
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Finding the inverse as a series of transformations

The previous example was drawn out to be easier to follow, and it
would be possible to combine several steps together. The
important point is that by successively multiplying equation 9 by a
series of transformation matrices, we have found the inverse of the
original matrix.

T4T3T2T1R = T4T3T2T1IR

or, in other words

T4T3T2T1R = I = R−1R

T4T3T2T1I = R−1 (15)

43 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Empirical examples of the inverse – use solve

O r i g i n a l matrix
> a

[ , 1 ] [ , 2 ]
[ 1 , ] 1.0 0.5
[ 2 , ] 0.5 1.0
> b

[ , 1 ] [ , 2 ]
[ 1 , ] 1.0 0.8
[ 2 , ] 0.8 1.0
> c

[ , 1 ] [ , 2 ]
[ 1 , ] 1.0 0.9
[ 2 , ] 0.9 1.0

> B
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.0 0.0 0.5
[ 2 , ] 0.0 1.0 0.3
[ 3 , ] 0.5 0.3 1.0

Inverse o f Mat r i x
> round ( solve ( a ) , 2 )

[ , 1 ] [ , 2 ]
[ 1 , ] 1.33 −0.67
[ 2 , ] −0.67 1.33
> round ( solve ( b ) , 2 )

[ , 1 ] [ , 2 ]
[ 1 , ] 2.78 −2.22
[ 2 , ] −2.22 2.78
> round ( solve ( c ) , 2 )

[ , 1 ] [ , 2 ]
[ 1 , ] 5.26 −4.74
[ 2 , ] −4.74 5.26

> round ( solve (B) , 2 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.38 0.23 −0.76
[ 2 , ] 0.23 1.14 −0.45
[ 3 , ] −0.76 −0.45 1.52
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>C
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.0 0.8 0.5
[ 2 , ] 0.8 1.0 0.3
[ 3 , ] 0.5 0.3 1.0
> D

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.0 0.9 0.5
[ 2 , ] 0.9 1.0 0.3
[ 3 , ] 0.5 0.3 1.0
> E

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.00 0.95 0.5
[ 2 , ] 0.95 1.00 0.3
[ 3 , ] 0.50 0.30 1.0
> F

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.00 0.99 0.5
[ 2 , ] 0.99 1.00 0.3
[ 3 , ] 0.50 0.30 1.0

> round ( solve (C) , 2 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 3.5 −2.50 −1.00
[ 2 , ] −2.5 2.88 0.38
[ 3 , ] −1.0 0.38 1.38
> round ( solve (D) , 2 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 7.58 −6.25 −1.92
[ 2 , ] −6.25 6.25 1.25
[ 3 , ] −1.92 1.25 1.58
> round ( solve (E) , 2 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 21.41 −18.82 −5.06
[ 2 , ] −18.82 17.65 4.12
[ 3 , ] −5.06 4.12 2.29
> round ( solve (F ) , 2 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] −39.39 36.36 8.79
[ 2 , ] 36.36 −32.47 −8.44
[ 3 , ] 8.79 −8.44 −0.86

As the correlations become bigger, the inverse becomes
numerically less stable, and eventually not positive semidefinite.
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Instability of the inverse with high values of correlations

The problem of collinearity arises when the inverse becomes
unstable. As we shall see, this is when the matrix has 0 or negative
eigenvalues. Consider what happens if one correlation changes in
the 5th decimal place:

> F
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.0000 0.9761 0.5
[ 2 , ] 0.9761 1.0000 0.3
[ 3 , ] 0.5000 0.3000 1.0

> F2
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.00000 0.97613 0.5
[ 2 , ] 0.97613 1.00000 0.3
[ 3 , ] 0.50000 0.30000 1.0

> F3
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.00000 0.97615 0.5
[ 2 , ] 0.97615 1.00000 0.3
[ 3 , ] 0.50000 0.30000 1.0

> solve (F )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 15478.823 −14051.709 −3523.8986
[ 2 , ] −14051.709 12757.272 3198.6732
[ 3 , ] −3523.899 3198.673 803.3473

> solve ( F2 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 98665.31 −89571.84 −22461.103
[ 2 , ] −89571.84 81317.56 20390.650
[ 3 , ] −22461.10 20390.65 5114.357

> solve ( F3 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] −38199.18 34679.400 8695.771
[ 2 , ] 34679.40 −31482.842 −7894.847
[ 3 , ] 8695.77 −7894.847 −1978.431
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Collinearity is not just very high correlations

It is when one variable is a linear sum of other variables. Examine
what happens when the x1,3 correlation changes.

> F1
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.00 0.9 0.43
[ 2 , ] 0.90 1.0 0.00
[ 3 , ] 0.43 0.0 1.00
> F2

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.000 0.9 0.435
[ 2 , ] 0.900 1.0 0.000
[ 3 , ] 0.435 0.0 1.000
> F3

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.00 0.9 0.44
[ 2 , ] 0.90 1.0 0.00
[ 3 , ] 0.44 0.0 1.00

> solve ( F1 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 196.07843 −176.47059 −84.31373
[ 2 , ] −176.47059 159.82353 75.88235
[ 3 , ] −84.31373 75.88235 37.25490
> solve ( F2 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1290.3226 −1161.2903 −561.2903
[ 2 , ] −1161.2903 1046.1613 505.1613
[ 3 , ] −561.2903 505.1613 245.1613
> solve ( F3 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] −277.7778 250 122.22222
[ 2 , ] 250.0000 −224 −110.00000
[ 3 , ] 122.2222 −110 −52.77778
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Colinearity and computational singularity

> F1
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1.00 0.8 0.59
[ 2 , ] 0.80 1.0 0.00
[ 3 , ] 0.59 0.0 1.00
> F2

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.000 0.8 0.599
[ 2 , ] 0.800 1.0 0.000
[ 3 , ] 0.599 0.0 1.000
> F3

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.000 0.8 0.601
[ 2 , ] 0.800 1.0 0.000
[ 3 , ] 0.601 0.0 1.000
> F

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 1.0 0.8 0.6
[ 2 , ] 0.8 1.0 0.0
[ 3 , ] 0.6 0.0 1.0

> solve ( F1 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 84.03361 −67.22689 −49.57983
[ 2 , ] −67.22689 54.78151 39.66387
[ 3 , ] −49.57983 39.66387 30.25210
> solve ( F2 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 834.0284 −667.2227 −499.5830
[ 2 , ] −667.2227 534.7781 399.6664
[ 3 , ] −499.5830 399.6664 300.2502
> solve ( F2 )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] −832.6395 666.1116 500.4163
[ 2 , ] 666.1116 −531.8893 −400.3331
[ 3 , ] 500.4163 −400.3331 −299.7502

> solve (F )
Er ro r i n solve . defaul t (F ) :

system is computa t iona l l y s i n g u l a r :
r e c i p r o c a l c o n d i t i o n number = 9.25186e−18
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Eigen Values and Eigen Vectors
The eigenvectors of a matrix are said to provide a basis space for
the matrix. This is a set of orthogonal vectors which when
multiplied by the appropriate scaling vector of eigenvalues will
reproduce the matrix.
Given a n ∗ n matrix R, each eigenvector solves the equation

xiR = λixi

and the set of n eigenvectors are solutions to the equation

XR = λX

where X is a matrix of orthogonal eigenvectors and λ is a diagonal
matrix of the the eigenvalues, λi . Then

xiR − λiXI = 0 <=> xi(R − λi I) = 0
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Finding eigen values

Finding the eigenvectors and values is computationally tedious, but
may be done using the eigen function which uses a QR
decomposition of the matrix. That the vectors making up X are
orthogonal means that

XX ′ = I

and because they form the basis space for R that

XR = λX <=> R = X ′λX .

That is, it is possible to recreate the correlation matrix R in terms of
an orthogonal set of vectors (the eigenvectors) scaled by their
associated eigenvalues.
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Eigen vectors of a 2 x 2 correlation matrix
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Although the length
(eigen values) of
the axes differ, their
orientation (eigen
vectors) are the
same. In this case
the vectors are
x1 + x2 and x2 − x1

r2 <− matrix ( c ( 1 , . 6 , . 6 , 1 ) , 2 , 2 )
pr in t ( eigen ( r2 ) , 2 )

$values
[ 1 ] 1.6 0.4

$ vec to rs
[ , 1 ] [ , 2 ]

[ 1 , ] 0.71 −0.71
[ 2 , ] 0.71 0.71
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Consider a 4 x 4 matrix of mood items from the msq data set

R code
R <- lowerCor(msq[cs(happy,

cheerful, sad,depressed)])
ev <- eigen(R)
ev$values
round(ev$vectors,2)

R <- lowerCor(msq[cs(happy,cheerful,
sad,depressed)])

happy chrfl sad dprss
happy 1.00
cheerful 0.75 1.00
sad -0.23 -0.19 1.00
depressed -0.32 -0.28 0.70 1.00
> ev <- eigen(R)
> ev$values
[1] 2.2375374 1.2214288 0.2922463 0.2487875
> round(ev$vectors,2)

[,1] [,2] [,3] [,4]
[1,] -0.52 -0.46 -0.01 0.72
[2,] -0.50 -0.51 0.11 -0.69
[3,] 0.46 -0.56 -0.69 -0.03
[4,] 0.51 -0.46 0.72 0.08

The eigen vectors are orthogonal
round(ev$vectors %*%t(ev$vectors),4)

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

And with the eigen values can
reproduce the matrix
round(ev$vectors%*%diag(ev$values)

%*% t(ev$vectors),2)
[,1] [,2] [,3] [,4]

[1,] 1.00 0.75 -0.23 -0.32
[2,] 0.75 1.00 -0.19 -0.28
[3,] -0.23 -0.19 1.00 0.70
[4,] -0.32 -0.28 0.70 1.00

52 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Eigenvalue decomposition and matrix inverses

1. A correlation matrix can be recreated by its (orthogonal)
eigenvectors and eigen values

• R = XλX ′ where
• XX ′ = I = X ′X the eigenvectors are orthogonal.

2. The inverse of a matrix R−1 is that matrix which when
multiplied by R is the Identify matrix I .

• RR−1 = R−1R = I

3. Combine these two concepts and we see that the inverse is
X (1/λ)X ′ since

• RR−1 = (XλX ′)(X (1/λ)X ′) = (Xλ)(X ′X )(1/λ)X ′)
• (Xλ)I(1/λ)X ′) = X(λI(1/λ)X ′ = XIX ′ = I

4. Thus, the problem of a non-semidefinite matrix is really a
problem of 0 or negative eigen values.
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Using eigen values and eigen vectors to smooth a matrix
Consider the burt correlation matrix:
lowerMat(burt)

Sclty Sorrw Tndrn Joy Wondr Elatn Dsgst Anger Sex Fear Sbjct
Sociality 1.00
Sorrow 0.83 1.00
Tenderness 0.81 0.87 1.00
Joy 0.80 0.62 0.63 1.00
Wonder 0.71 0.59 0.37 0.49 1.00
Elation 0.70 0.44 0.31 0.54 0.54 1.00
Disgust 0.54 0.58 0.30 0.30 0.34 0.50 1.00
Anger 0.53 0.44 0.12 0.28 0.55 0.51 0.38 1.00
Sex 0.59 0.23 0.33 0.42 0.40 0.31 0.29 0.53 1.00
Fear 0.24 0.45 0.33 0.29 0.19 0.11 0.21 0.10 -0.09 1.00
Subjection 0.13 0.21 0.36 -0.06 -0.10 0.10 0.08 -0.16 -0.10 0.41 1.00

Unfortunately, one eigen value is negative:
round( eigen(burt)$values,2)
[1] 5.17 1.79 0.97 0.78 0.69 0.62 0.51 0.35 0.13 0.01 -0.02

1. Because the matrix is not positive, semi-definite (it has a negative determinant – see
below –and has negative eigen values) we can not apply normal multivariate
techniques.

2. We can smooth the matrix by finding its eigen value/vector decomposition, and
adjusting the eigen values to be all positive.

R = X ′λX

3. We use cor.smooth and then compare the results by using the lowerUpper
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Using eigen values and eigen vectors to smooth a matrix
R code

smoothed <- cor.smooth(burt)
lu <- lowerUpper(lower=burt, upper=smoothed,diff=TRUE)
df2latex(lu)

Table: The original (lower off diagonal) and difference from smoothed
(upper off diagonal) matrix

Variable Sclty Sorrw Tndrn Joy Wondr Elatn Dsgst Anger Sex Fear Sbjct
Sociality 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sorrow 0.83 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00
Tenderness 0.81 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Joy 0.80 0.62 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Wonder 0.71 0.59 0.37 0.49 0.00 0.00 0.00 0.00 0.00 0.00
Elation 0.70 0.44 0.31 0.54 0.54 0.00 0.00 0.00 0.00 0.00
Disgust 0.54 0.58 0.30 0.30 0.34 0.50 0.00 0.00 0.00 0.00
Anger 0.53 0.44 0.12 0.28 0.55 0.51 0.38 0.00 0.00 0.00
Sex 0.59 0.23 0.33 0.42 0.40 0.31 0.29 0.53 0.00 0.00
Fear 0.24 0.45 0.33 0.29 0.19 0.11 0.21 0.10 -0.09 0.00
Subjection 0.13 0.21 0.36 -0.06 -0.10 0.10 0.08 -0.16 -0.10 0.41
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Singular Value Decomposition (SVD) of a matrix

1. Given a subjects * variables data matrix X, we can find the
svd = X = UDV ′

2. If we form the square matrix R = XX ′, then R = UDU′ where

3. U are the eigen vectors and D is the diagonal matrix of eigen
values

4. If the matrix is not positive definite (some negative eigen
values), the two solutions do not agree

5. Compare svd and eigen for Thurstone and burt data sets.
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svd of our mood data
R code

svd(R)

svd(R)
$d
[1] 2.2375374 1.2214288 0.2922463 0.2487875

$u
[,1] [,2] [,3] [,4]

[1,] -0.5227398 0.4621859 -0.005493445 -0.71630797
[2,] -0.5015151 0.5075127 0.105625925 0.69264465
[3,] 0.4625534 0.5601855 -0.686575838 0.02915850
[4,] 0.5111458 0.4636887 0.719323714 -0.07934774

$v
[,1] [,2] [,3] [,4]

[1,] -0.5227398 0.4621859 -0.005493445 -0.71630797
[2,] -0.5015151 0.5075127 0.105625925 0.69264465
[3,] 0.4625534 0.5601855 -0.686575838 0.02915850
[4,] 0.5111458 0.4636887 0.719323714 -0.07934774

Note how the u and v matrices are identical, and the d is the same
as the eigen value solution from before.

ev$values
[1] 2.2375374 1.2214288 0.2922463 0.2487875
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svd and eigen of Thurstone and burt data sets

R code
th.svd <-svd(Thurstone)
th.ev <- eigen(Thurstone)
round(th.svd$d - th.ev$values,5) #compare them
#but
bu.svd <-svd(burt)
bu.ev <- eigen(burt)
round(bu.svd$d - bu.ev$values,3)
round(bu.ev$values,2) #burt eigen values
round(bu.svd$d,2) #burt svd

round(th.svd$d - th.ev$values,5) #svd and eigen produce the same results
[1] 0 0 0 0 0 0 0 0 0
#
round(bu.svd$d - bu.ev$values,3) #but they differ for the burt data set
[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.039

> round(bu.ev$values,2) #burt eigen values
#Burt is not positive semi definite and has a negative eigen value
[1] 5.17 1.79 0.97 0.78 0.69 0.62 0.51 0.35 0.13 0.01 -0.02

> round(bu.svd$d,2) #burt svd
[1] 5.17 1.79 0.97 0.78 0.69 0.62 0.51 0.35 0.13 0.02 0.01
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Reproduce the burt data set from svd and eigen
Even though the two solutions differ, they both reproduce the
original matrix.

R code
bu.svd$d - bu.ev$values # these differ
#but they both produce the same result
round(burt - bu.svd$u %*% diag( bu.svd$d)%*% t(bu.svd$v),2)
round(burt - bu.ev$vectors %*% diag( bu.ev$values) %*%

t(bu.ev$vectors),2)

round(bu.svd$d - bu.ev$values,5)
[1] 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01040 0.03867

Sociality Sorrow Tenderness Joy Wonder Elation Disgust Anger Sex Fear Subjection
Sociality 0 0 0 0 0 0 0 0 0 0 0
Sorrow 0 0 0 0 0 0 0 0 0 0 0
Tenderness 0 0 0 0 0 0 0 0 0 0 0
Joy 0 0 0 0 0 0 0 0 0 0 0
Wonder 0 0 0 0 0 0 0 0 0 0 0
Elation 0 0 0 0 0 0 0 0 0 0 0
Disgust 0 0 0 0 0 0 0 0 0 0 0
Anger 0 0 0 0 0 0 0 0 0 0 0
Sex 0 0 0 0 0 0 0 0 0 0 0
Fear 0 0 0 0 0 0 0 0 0 0 0
Subjection 0 0 0 0 0 0 0 0 0 0 0
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Pseudo Inverses are based upon the Singular Value Decomposition of
a matrix

1. A matrix may be decomposed into three matrices X = UDV ′

2. We do this with the svd function

3. The pseudo inverse is UD−1 for positive values of D.

4. Seems to be more robust for finding regressions than simple
inverse.

5. Compare the D value of svd to the eigen values of an eigen
decomposition
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The Penrose Pseudo Inverse

Find the left inverse of a matrix which might not be positive
semi-definite. R code
Pinv <-
function (X, tol = sqrt(.Machine$double.eps))
{

svdX <- svd(X) #find the singular values
p <- svdX$d > max(tol * svdX$d[1], 0)
if (all(p)) { #the normal case

Pinv <- svdX$v %*% (1/svdX$d * t(svdX$u))
}
else { #the some eigen values are < 0 case

Pinv <- svdX$v[, p, drop = FALSE] %*% (1/svdX$d[p] *
t(svdX$u[, p, drop = FALSE]))

}
return(Pinv)

}

Useful for problems in regression if the correlation matrix is not
invertible.

61 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Determinants

• The determinant of an n * n correlation matrix may be thought
of as the proportion of the possible n-space spanned by the
variable space and is sometimes called the generalized
variance of the matrix. As such, it can also be considered as
the volume of the variable space.

• If the correlation matrix is thought of a representing vectors
within a n dimensional space, then the eigenvalues are the
lengths of the axes of that space. The product of these, the
determinant, is then the volume of the space.

• It will be a maximum when the axes are all of unit length and
be zero if at least one axis is zero.

• Think of a three dimensional sphere (and then generalize to a
n dimensional hypersphere.)

• If it is squashed in a way that preserves the sum of the lengths
of the axes, then volume of the oblate hyper sphere will be
reduced.

62 / 71



Introduction Vectors Matrices Descriptive statistics Matrix Inversion eigen decomposition multiple R, partial R References References

Determinants and redundancy
The determinant is an inverse measure of the redundancy of the
matrix. The smaller the determinant, the more variables in the
matrix are measuring the same thing (are correlated). The
determinant of the identity matrix is 1, the determinant of a matrix
with at least two perfectly correlated (linearly dependent) rows or
columns will be 0. If the matrix is transformed into a lower diagonal
matrix, the determinant is the product of the diagonals. The
determinant of a n * n square matrix, R is also the product of the n
eigenvalues of that matrix.

det(R) = ∥R∥ = Πn
i=1λi (16)

and the characteristic equation for a square matrix, X , is

∥X − λI∥ = 0

where λi is an eigenvalue of X .
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Finding and using the determinant

1. The determinant may be found by the det function.

2. A negative determinant implies the matrix is not positive
semi-definite. It will have negative eigen values.

3. A determinant of 0 means the matrix is not invertible
4. The determinant may be used in estimating the goodness of

fit of a particular model (Σ) to the data (S)
• for when the model fits perfectly, then the inverse of the model

times the data (Σ−1S) will be an identity matrix and the
determinant (det(Σ−1S) will be 1.

• A poor model fit will have a determinant much less than 1.
• Remember, that the determinant is just the product of the

eigen values
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Multiple R and matrix multiplication

ŷ = bX ′ + c

Because we can not divide by a matrix, nor take the inverse of a
non-square matrix, we can solve for b by multiplying both sides of
the equation by X to form a square matrix X ′X which is the
“moments matrix" if raw data, “covariance matrix" if centered,
correlation matrix if standardized and then take the inverse of that
square matrix:

yX = bX ′X <=> b = yX ′(X ′X )−1
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Squared Multiple Correlations

Given C = (X ′X )/N for deviation scores and V = diag(X ′X )/N
are the variances, then R = (1/

√
V )C(1/

√
V ) then

1. The elements of the diagonal of the inverse are the
reciprocals of the amount of unique variance in each variable.

2. Thus, the squared multiple correlation of each variable with
each of the other variables is known as the SMC and is

smc = 1 − 1/diag(R−1)

3. The partial correlations when all other variables are removed
are the negative values of the inverse of the correlation matrix
divided by the sqrt of the products of diagonal of the inverse.
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Consider the following matrix
R

V1 V2 V3 V4
V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00

round(solve(R),2)
V1 V2 V3 V4

V1 1.71 -0.66 -0.45 -0.32
V2 -0.66 1.55 -0.28 -0.20
V3 -0.45 -0.28 1.37 -0.13
V4 -0.32 -0.20 -0.13 1.24

> round(cov2cor(solve(R)),2)
V1 V2 V3 V4

V1 1.00 -0.40 -0.29 -0.22
V2 -0.40 1.00 -0.19 -0.14
V3 -0.29 -0.19 1.00 -0.10
V4 -0.22 -0.14 -0.10 1.00

smc(R)
V1 V2 V3 V4

0.4159588 0.3566163 0.2715891 0.1918748

round(partial.r(R),2)
V1 V2 V3 V4

V1 1.00 0.40 0.29 0.22
V2 0.40 1.00 0.19 0.14
V3 0.29 0.19 1.00 0.10
V4 0.22 0.14 0.10 1.00

The determinant is
det(R)
[1] 0.40842

The inverse is

The diag of the inverse
is the reciprocal of the
unexplained variance
round(1/diag(solve(R)),2)
V1 V2 V3 V4

0.58 0.64 0.73 0.81

The Squared Multiple Correlation (SMC)
1 - 1/diag(solve(R))
V1 V2 V3 V4

0.42 0.36 0.27 0.19

The determinant of the partial R
det(partial.r(R))
[1] 0.719825
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Multple R from correlation matrix input using lmCor

R code
lmCor(V1 ~ V2 + V3 + V4,data=R)
lmCor(r(V2 ~ V1 + V3 + V4, data =R)
round(smc(R),2)

Call: lmCor(y = V1 ~ V2 + V3 + V4, data = R)
Multiple Regression from matrix input

DV = V1 slope VIF
V2 0.38 1.30
V3 0.26 1.25
V4 0.19 1.18

Multiple Regression
R R2 Ruw R2uw

V1 0.64 0.42 0.64 0.4

Call:lmCor(y = V2 ~ V1 + V3 + V4, data = R)
Multiple Regression from matrix input

DV = V2 slope VIF
V1 0.42 1.43
V3 0.18 1.32
V4 0.13 1.21

Multiple Regression
R R2 Ruw R2uw

V2 0.6 0.36 0.57 0.33

V1 V2 V3 V4
0.42 0.36 0.27 0.19

Regression Models

V2

V3

V4

V1

0.38

0.26

0.19

0.42

0.35

0.3

Regression Models

V1

V3

V4

V2

0.42

0.18

0.13

0.48

0.4

0.3
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Regression using matrices

R code
R.inv <- solve(R[-1,-1]) #find the inverse of R [2:4,2:4]
R.inv %*% R[2:4,1] #multiple this by R[2:4,1] the first column
solve(R[-1,-1],R[2:4,1]) # or do it directly

> R.inv <- solve(R[-1,-1])
> R.inv

V2 V3 V4
V2 1.3013013 -0.4504505 -0.3203203
V3 -0.4504505 1.2548263 -0.2187902
V4 -0.3203203 -0.2187902 1.1777492
> R.inv %*% R[2:4,1]

[,1]
V2 0.3843844
V3 0.2625483
V4 0.1867010

solve(R[-1,-1],R[2:4,1])
V2 V3 V4

0.3843844 0.2625483 0.1867010

1. find the Inverse of the 2 - 4th
column and row

2. Matrix multiply this by the
first column

3. Or, just solve it using the
solve function
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R code
R
round(partial.r(R),2)
partial.r(R,1:2,3:4)
partial.r(R,c(1,3),c(2,4))
partial.r(R,c(1,4),c(2,3))

R
V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00
> round(partial.r(R),2)

V1 V2 V3 V4
V1 1.00 0.40 0.29 0.22
V2 0.40 1.00 0.19 0.14
V3 0.29 0.19 1.00 0.10
V4 0.22 0.14 0.10 1.00
> partial.r(R,1:2,3:4)
partial correlations

V1 V2
V1 1.0 0.4
V2 0.4 1.0
> partial.r(R,c(1,3),c(2,4))
partial correlations

V1 V3
V1 1.00 0.29
V3 0.29 1.00
> partial.r(R,c(1,4),c(2,3))
partial correlations

V1 V4
V1 1.00 0.22
V4 0.22 1.00

Using the partial.r function

The original correlation matrix

The partial correlations (everything from
everything)

Partial of 1 and 2 removing 3 and 4

Partial of 1 and 3 removing 2 and 4

Partial of 1 and 4 removing 2 and 3
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Multiple correlation and partial RR code
lmCor(V1 ~ V2 + V3 + V4, data=R)
lmCor(V1 ~ V2 + V3 - V4, data=R)
lmCor( V1 ~ V2 - V3 - V4, data = R)

lmCor(V1 ~ V2 + V3 + V4, data=R)
Call: lmCor(y = V1 ~ V2 + V3 + V4, data = R)
Multiple Regression from matrix input
DV = V1 slope VIF

V2 0.38 1.30
V3 0.26 1.25
V4 0.19 1.18
Multiple Regression

R R2 Ruw R2uw
V1 0.64 0.42 0.64 0.4
> lmCor(V1 ~ V2 + V3 - V4, data=R)
Call: lmCor(y = V1 ~ V2 + V3 - V4, data = R)
Multiple Regression from matrix input
DV = V1 slope VIF

V2 0.38 1.14
V3 0.26 1.14
Multiple Regression

R R2 Ruw R2uw
V1 0.55 0.3 0.5 0.25
> lmCor(V1 ~ V2 - V3 - V4, data=R)
Call: lmCor(y = V1 ~ V2 - V3 - V4, data = R)
Multiple Regression from matrix input
DV = V1 slope VIF

V2 0.38 1
Multiple Regression

R R2 Ruw R2uw
V1 0.4 0.16 0.34 0.11

The complete regression of 1 on 2,3,4

Regression of 1 on 2, 3 removing 4

Regression of 1 on 2, removing 3 and 4
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