Predictions and Decisions The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Psychology 405: Psychometric Theory Validity

William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA

May, 2025

The VA study

rediction Construct val

n Interviews It

00

A Fishing nets

A bit of matl

Outline

Predictions and Decisions Classics in prediction and selection The VA study Interviews Predicting important outcomes Extremes Construct validation Interviews do not predict Measuring individual differences: the power of items **PWAS** spi data SAPA Peer - self ratings as examples of construct validity Fishing nets vs spear fishing A bit of math A few examples Discussion

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Y

3/100

SAPA Fishing nets A bit of math

 η_1

4/100

Theory: A regression model of latent variables ξ

 η

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

δ

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

A measurement model for X – Correlated factors Х ξ

A measurement model for Y - uncorrelated factors

Prediction Construct validation Interviews Items

 η

Υ

SAPA Fishing nets A bit of math

 ϵ

Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math δ X ξ η Y ϵ

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Face Validity

Face/Faith

Representative Content

Seeming relevance

Concurrent Validity

Does a measure correlate with the criterion?

Need to define the criterion.

Assumes that what correlates now will have predictive value.


```
Predictive Validity
```


Does a measure correlate with the criterion?

Need to define the criterion.

Allow time to pass

Prediction

- 1. Continuous predictor, continuous criterion
 - Regression, multiple regression, correlation
 - Slope of regression implies how much change for unit change in predictor
- 2. Continuous predictor, dichotomous criterion
 - point bi-serial correlation
- 3. Dichotomous predictor, dichotomous outcome
 - Phi
 - The Taylor-Russell tables (Taylor and Russell, 1939) and the problem of Selection Ratios and Base Rates

$$\phi = \frac{VP - BR * SR}{\sqrt{(BR)(1 - BR)(SR)(1 - SR)}}$$
(1)

Therefore, the number of valid positives is

$$VP = BR * SR + \phi \sqrt{(BR)(1 - BR)(SR)(1 - SR)}$$
(2)

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Tetrachoric and phi as function of cut points

SAPA Fishing nets A bit of math

A decision theoretic approach Valid Positives as function of False Positives

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Tetrachoric and phi as function of cut points .5,0

SAPA Fishing nets A bit of math

A decision theoretic approach with low beta Valid Positives as function of False Positives

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Tetrachoric and phi as function of cut points 1,0

SAPA Fishing nets A bit of math

A decision theoretic approach with high beta Valid Positives as function of False Positives

The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Tetrachoric and phi as function of cut points 2,0

The VA study

Prediction Construct valida

n Interviews I

SAPA Fishing nets A bit of math

A decision theoretic approach with high beta Valid Positives as function of False Positives

Valid Positives as function of False Positives

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

A decision theoretic analysis with 4 different cut points

Applying decision theory to a prediction problem: the case of predicting future psychiatric diagnoses from military inductees. (Data from Danielson and Clark (1954) as discussed by Wiggins (1973).

	Predicted Positive	Predicted Negative	Row Totals
True Positive	49	40	99
True Negative	79	336	406
Column Totals	118	376	505
Fraction of Total			
	Predicted Positive	Predicted Negative	Row Totals
True Positive	.097	.079	.196
True Negative	.157	.667	.804
Column Totals	.234	.746	1.00
Accuracy =	.097 + .667	= .76	
Sensitivity =	.097/(.097 + .079)	= .55	
Specificity =	.667 / (.667+.157)	= .81	
Phi =	$\frac{.097196 * .234}{\sqrt{.196 * .804 * .234 * .747}} =$	= .32	
What if we went	with the base rates and	d predicted everyone w	as healthy?
	Predicted Positive	Predicted Negative	Row Totals
True Positive	.0	.196	.196
True Negative	.0	.804	.804
Column Totals	.0	1.000	1.00
Accuracy =	0 +.804 =.80		
Sensitivity =	0/.196 = 0		
Specificity =	.196 / 1.0 = .196		

Predictions and Decisions

The	Danielso	on and Cla rk data	as a de	ecision r	orob	lem	
Predictions and Decisions	The VA study	Prediction Construct validation	Interviews 00	Items	SAPA	Fishing nets	A bit of math

			n coue		
dd					
	pred.pos	pred.neg			
obs.pos	49	79			
obs.neg	40	336			
AUC (dd)					

AUC (dd)

```
Decision Theory and Area under the Curve
The original data implied the following 2 x 2 table
        Predicted.Pos Predicted.Neg
True Pos
               0 097
                           0 079
               0.157
True.Neg
                           0.667
Conditional probabilities of
        Predicted.Pos Predicted.Neg
True.Pos
                0.55
                             0.45
                0.19
                              0 81
True.Neg
Accuracy = 0.76 Sensitivity = 0.55 Specificity = 0.81
with Area Under the Curve = 0.76
d.prime = 1 Criterion = 0.88 Beta = 0.15
Observed Phi correlation = 0.32
Inferred latent (tetrachoric) correlation = 0.53
```

The Danielson and Clark data set as a decision problem Valid Positives as function of False Positives

 0
 0
 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

Classics in Prediction and selection

- 1. Gideon's sequential selection of soldiers (The Hebrew Bible: Judges 6-7, McPherson, 1901)
 - Gideon was ordered to select troops to fight the Midianites,
 - From 32,000 volunteers, selected the 10,000 non-timid but then selected 300 battle ready by observing how they drank water.
- 2. Selecting spies (OSS Assessment Staff, 1948) and Pilots Army Air Corps selection studies (Dubois, 1947).
- 3. Kelly and Fiske (1950) (1950) selection of psychology students (Kelly and Fiske, 1951).
- 4. Astronaut selection, from 10,000 to 7. (selecting for the "Right Stuff" Wolfe, 1970).
- 5. Peace Corps selection as a process of sequential selection
 - Psych Testing, Peer ratings, Staff ratings after 6 weeks
 - Peer ratings, staff ratings after 12 weeks of training
 - But what was the criterion?

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Gideon's assessment (McPherson, 1901)

Predictor set is positively correlated (Dubois, 1947)

g

Predictions and Decisions

																							**	A 17.5	. et
	1			Γ		Γ														ŀ				Valid	itles
Varisble	Code	1	2	3	1	8	8	7	8	٩	10	-11	12	13	14	15	26	17	18-	19	.20	м	8. D.	Rombi	Pilot 7
Printed tests: 1. Technical vocabulary-pilot. 2. Technical vocabulary bom- bardier	CE505C	0.36	0.36	0. 43	0.17	0.15	0.07	0.40	0. 29 , 21	0.04	-9.04 -09	0.14	0.24	0.09	0.11 .18	0.09 .18	-0.01 -03	0.11 .04	0.09	0.02	0.15	18.0 1.8	7.1	0.10 .00	0.2
3. Technical vocabulary-navi- gator.	CESOSC	.43	.37	.13	. 13	.58	.27	. 53	.34	.14	.18	.20	.23	.35	.27	.28	.00	.05	.16	.01 .10	.12	11:3	6.5 6.9	۵۵۰ (۱)	.15
5. Mathematics. 6. Numerical approximation 7. Reading comprehension 8. Mathematical comprehension	CI702E CI705A CI619D	.15	.23	-58	.11	.45	.45	.46	.28 .16 .35	38285	.39	.22	.21	.54 .55 .45	.42	.41 .34 .35	03	.03	.27	.03	15	19.9 10.9 33.9 8.5	14.1 5.6 10.4 5.5	.05 .09 .15	
 Numerical operations I Numerical operations II Spatial orientation part I Spatial orientation part II 	CI701A CI701A CP501B	04	.05	.14	.13	.32	.42		02 .04 .16	.66	.00	.27	.08 .12 .40	.38 .46 .21	.42	.40 .40 .39	01 01	.01	194 57 5	.11	.05	16.9	5.8 6.0 5.5	.13	
13. Arithmetic reasoning 14. Dial reading 15. Table reading	CI2%B CP622A CP621A	.00 .11 .00	.18	337.2	.03	.54 .42 .41	.55	.45 .40 .35	.30 .19 .17	33	.46 .46 .40	.21 .36 .39	.21 .31 .26	.49 .35	- 45 - 45	.35 .48	01 01 .04	.00	5132	.06	.15	12.7 24.0 39.7	5.5 7.4 14.1	.13 .18 .25	1212
 apparatus tests: 16. SAM steadiness 17. Two hand coordinator 18. SAM reaction time 19. Füger dexterity 20. Complex coordinator 	CM103A CM101A CP6i1D CM116A CM1701A	01 .11 .02 .15	.03 .04 .12 .03 .10	.00 .05 .16 .01 .12	.06 .09 .18 .10 .16	03 .07 .27 .03 .15	.00 .03 .19 .07	02 .14 .24 .07 .20	.00	.02 .01 .19 .11	01 .00 .24 .07 .12	.04 .12 .27 .14 .24	.14.20	01 .09 .21 .05	01	.04 .17 .30 .15 .24	.07 .00 .16	.07 .16 .19 .39	.00 .16 .15 .32	.16 .19 .15 .22	.12 .39 .32	49.5 51.3 51.7 52.7 50.4	10.9 9.9 9.9 10.1	886389 	.03 .24 .21 .30

TABLE 3.8.—Intercorrelations of classification battery of August 1912, aviation codels tested at Psychological Research Unit No. 8 and trained in clementary pilot class 43-D

[N=1,520]

SAPA Fishing nets A bit of math

The VA study

Prediction Construct validat

on Interviews

00000000 00

SAPA Fishing nets A bit of math

Validities are small but meaningful

lery, logether with approximate numbers of cases

Track	Code	Bomt	ardler	Navi	sator	Pilot		
1636	Cods	r	N	r	N	r	N	
Printed tests: Reading comprehension 1	C1014Q C1/201B C1/201B C1/201B C1/201B C1/201B C1/202B	0.12 .07 .19 .19 .08 .04 .04 .04 .04 .04 .04 .12 .13 .13 .13 .13 .13 .13 .13 .13 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12	1, 200 3, 200 3, 200 1, 400 3, 200 1, 400 3, 200 3, 200 1, 200 3, 200 1, 200	0.32 33 33 33 33 33 33 33 33 33 33 35 35 35	700 700 700 700 700 700 700 700 700 700	6.19 .23 .19 .32 32 .37 .37 .37 .37 .37 .37 .37 .37	7,400 9,100 3,200 1,000 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 13,700 14,7000 14,7000 14,7000 14,7000 14,700000000000000000000000000	

1 Bastonie of fictor tries factories a different frank of this task

The assessment of pilots – how to show a .45 correlation makes a difference

The VA study

Predictions and Decisions

Ability by Stanine

0000000

Predicting clinical psychologists – Kelly and Fiske

- 1. Multiple predictors of graduate school performance: Kelly and Fiske (1950), Multiple predictors
- 2. Ability, Interests, temperament (each with r \approx .2 -.25) have multiple R of .4-.5
- 3. Are they able, interested and stable?

VA study: overview

Researchers

0000000

- nearly 40 cooperating clinical training programs
- \approx 75 psychologists on research staff
- Participants
 - 3/4 of those entering graduate training in 1946, 1947, 1948
 - N = 160, 128, 545 (selected down to 98)
- Measures
 - Objective tests
 - Clinical assessments

Objective instruments

Ability

Millers Analogy Test

00000000

- Thurstone Tests of Primary Mental Abilities
- Temperament and Character
 - Minnesota Multiphasic Personality Inventory
 - Guildord Martin Battery of Personality Inventories
- Interests, Values
 - Allport-Vernon Scale of Values
 - Strong Vocational Interest Blank
 - Kuder Preference Record

Assessment ratings

- Seven days of tests, interviews and "other" procedures
 - Three raters spent a week studying 4 trainees

- Staff time devoted to each candidate was at least 7 man-days
- Ratings based on interviews, projective tests, role playing
 - Ratings on:

00000000

Predictions and Decisions The VA study

- 22 descriptive variables (e.g., cooperativeness, talkativeness)
- 10 evaluative variabels (e.g., social adjustment, emotional expression)
- 11 predictive variables (e.g. academic, diagnostician, overall suitability)

Criterion variables after 2 years

- Training status (Failure, still in Training, Ph.D. obtained)
- 2nd year evaluations

00000000

- Skill in clinical diagnosis
- Skill in individual psychotherapy
- Skill in Research •
- Preference for hiring
- Generally high correlations among all the criteria

The VA study

00000000

Prediction Construct validatio

n Interviews It

0 0 00000000 00

SAPA Fishing nets A bit of math

High correlations among the criteria

Intercorrelations among selected criterion evaluations

N = 130 P-3 trainces evaluated in the spring of 1949, for whom all evaluation measures were available.

		Clinical	Diagnosis	Individua	l Therapy	Rest	arch	Preference for Hiting		
		Univ. ¹	Instal.2	Univ.	Instal.	Univ,	Instal.	Univ.	Instal.	
Clinical Diagnosis:	Univ. Instal.	72	47 79	81	60	55	54	88	65	
Individual Therapy:	Univ. Instal.	62	38	73	63 86	48	37	78	. 74	
Research:	Univ. Instal.	11	28	30	31	65	54 85	76	56	
Preference for Hiring	Univ. Instal.	44	34	38	70	40	31	71	56 85	

1 University staff evaluations.

² Installation staff evaluations.

00000000

Predictions and Decisions The VA study

The more they know about you, the more they will judge you

Prediction Construct validation Interviews Items

	Information on Which Predictions Were Based								Criterion Evaluations									
			npl.	ţ		×1×	tical							icerion i				
Assessor	chach		suce Cor	ler-Gesta	entials	ctive Te	biograpl	riew	tions		Cli Dias	Clinical Diagnosis		Individual Therapy		earch	Preference for Hiring	
	Rors	TAT	Sent	Bend	Cred	Obje	Auto Mi	Inter	Situa	Othe	Univ.	Instal,	Univ,	Instai.	Univ.	Instal.	Univ.	Instal.
A. Assessment Ratings																		
Projectivist	x										02	08	07	01	17	22	24*	13
	1	\mathbf{X}]				1			17	18	17	17	-06	-07	17	16
			х								18	32**	04	15	25*	25*	12	20
Proj. Integration	x	x	х	л Х							-01	-03	-05	01	12	00	08	11
Initial Inferviewer					X X			x			13	10 04	22 22	25* 16	14 13	21 20	09 09	25* 14
Intensive Interviewer					XX	x					16 36**	07 22	16 26*	14 19	24* 32**	15 22	20 34**	20 28*
					X	х	Х				19	08	20	16	35**	24*	30**	23*
	х	X	X	X	Х	х	Х		1		24*	21	27*	22	40**	33**	33**	33**
	X	X	X	Х	Х	Х	Х	Х			24*	24*	30**	22	28*	22	31**	33**
Pre-Conference	x	x	х	х	x	х	х				38*	29	32*	19	44**	27	48**	37*
Situationists (Pooled Rating)									х		30**	28*	23*	25*	31**	22	18	36**
Prelim. Pooled	x	х	х	х	X	х	х	х			22	13	26*	22	21	24*	29*	35**
Final Pooled	x	х	х	Х	x	x	х	х	x	x	23*	11	30**	18	12	14	21	21
	1	L	1			Į .			1		1			1		1	1	i

Predictions and Decisions The VA study

00000000

Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Objectives are just as good

B. Objective Test Scores										
Miller Analogies	24*	15	06	05	24*	23*	23*	18		
Strong Test Psychologist—1938 Psychologist—1948 (Kriedt) Psychologist, Clinical, 1948 (Kriedt) Psychologist, VA Clinical (This Project)	29* 36** 22 36**	14 20 30** 33**	20 28* 18 35**	21 21 16 32**	35** 41** 07 33**	31** 32** 07 27*	27* 31** 17 36**	19 20 09 25*		
Allport-Vernon Theoretical	2.3*	-03	16	04	25*	15	23*	-02		
Guilford-Martin C—Lack of Cycloid Disposition N—Lack of Nervous Tenseness and Irritability	29* 28*	24* 23*	29* 21	17 24*	19 21	11 06	28* 22	16 20		

The VA study

00000

The finding that the interview did not add to, but actually tended to decrease, the validity of clinical judgments made in the 1947 assessment program was confirmed by submitting the paper andpencil materials on these same candidates to a later assessment staff which made predictions without any face-to-face contact with the assessee. Under these conditions, the new staff made predictions with slightly higher validities than those made by the staff in 1947, who had the additional data from the interview, situation tests, etc.

Interests matter

The VA study

The VA Clinical Psychologist key, developed by this project on the basis of the responses of full time VA psychologists, regularly yields relatively high correlations with all criterion evaluations, and compares favorably with the best predictions based on assessment ratings. Other psychologist keys, including the original (1938) general psychologist key and two developed by Kriedt (2), do fairly well. Not shown in the table is a correlation of .61 (N = 44) between scores based on the psychologist key (1938) and the scores made on the objective test of Knowledge of Clinical Psychology three years later. Thus, scores from a single objective test obtainable by mail, at little cost, predicted each of several criteria as well as any of the clinical judgments made in the entire assessment program

The VA study

SAPA Fishing nets A bit of math

Motivation

Our findings suggest that, in selection for professional training, more attention might well be given to the role of motivation, Perhaps at the level of graduate training, we need establish only a minimal cutting score on tests of intellectual aptitudes; beyond that point, the strength of motivation and the absence of conflicting drives may be the determining factors in success in professional training, and even in the conduct of professional duties.

Faith validity of interviews

The VA study

Many who have seen our results have been disturbed by the findings regarding the validity for this selection problem of specific techniques which are felt by many professional psychologists to have a high degree of face-validity (or is it faith validity?). Thus, it was the firm conviction of the staff of the OSS assessment program that the global evaluation of a person permits much more accurate predictions of his future performance than can possibly be achieved by a more segmental approach. Unfortunately, the OSS data did not provide a conclusive answer to this question. Our own findings to date serve to raise doubts concerning the validity of this general proposition.

We must evaluate our judgments

The VA study

Evidence such as that accumulating in this project serves to remind us of the fallibility of the human being both as a measuring device and as an integrator of data. In laboratories, in factories, and in accounting offices, it has been found necessary to supplement his sensory and perceptual capacities with an elaborate array of measuring instruments and computing devices. Pending the gradual development of better measures of psychological variables and comparable aids for combining them, we must continue to rely heavily on human judgment. In so doing, however, we must be continually aware of the magnitude of the errors of such judgments. These errors can be minimized by placing greatest reliance on measures of demonstrated reliability and validity.

00000

The VA study

Putting it together

We are, in fact, rather encouraged at the probability of being able to predict such criteria with a multiple R of around .50 on the basis of an inexpensive test battery which may be administered without requiring the applicant to present himself at the university of his choice.

More recent prediction studies

Prediction Construct validation Interviews

- 1. Longitudinal study of life time accomplishments (Terman and Oden, 1947, 1959; Oden, 1968) and mortality (Friedman et al., 1995).
- 2. Meta analyses of graduate school prediction (Kuncel et al., 1998, 2001; Kuncel and Hezlett, 2007)
- Predicting from early adolescence Benbow et al. (1996); Lubinski and Benbow (2000); Lubinski et al. (2001); Lubinski and Benbow (2006); Lubinski (2016)
- 4. Predicting mortality from measures at age 11 (Deary et al., 2004; Deary and Batty, 2007; Deary et al., 2007, 2013)

Kuncel et al. meta analysis predicting graduate school performance

Predictor	N	k	robs	SDobs	SD _{res}	ρ	SD_{ρ}	90% credibility i	nterva
				GGI	PA				
Verbal	14,156	103	.23	.14	.10	.34	.15	.09 to .5	i9
Quantitative	14,425	103	.21	.11	.06	.32	.08	.19 to .4	5
Analytical	1,928	20	.24	.12	.04	.36	.06	.26 to .4	6
Subject	2,413	22	.31	.12	.05	.41	.07	.30 to .5	2
UGPA ^a	9,748	58	.28	.13	.10	.30	.11	.12 to .4	8
				1st-year	GGPA				
Verbal	45,615	1,231	.24	.19	.09	.34	.12	.14 to .5	4
Quantitative	45,618	1,231	.24	.19	.08	.38	.12	.18 to .5	8
Analytical	36,325	1,080	.24	.19	.06	.36	.09	.21 to .5	1
Subject	10,225	98	.34	.11	.03	.45	.04	.38 to .5	2
UGPA ^a	42,193	1,178	.30	.18	.10	.33	.10	.17 to .4	9
			Com	prehensive	exam scor	res ^b			
Verbal ^c	1,198	11	.34	.16	.12	.44	.15	.19 to .6	9
Quantitative ^c	1,194	11	.19	.11	.04	.26	.06	.16 to .3	6
Subject ^d	534	4	.43	.07	.00	.51	.00	.51 to .5	1
UGPA ^a	592	6	.12	.05	.00	.12	.00	.12 to .1	2
				Faculty	ratings				
Verbal	4,766	35	.23	.12	.08	.42	.14	.19 to .6	5
Quantitative	5,112	34	.25	.10	.02	.47	.04	.40 to .5	4
Analytical	1,982	9	.23	.05	.00	.35	.00	.35 to .3	5
Subject	879	12	.30	.16	.11	.50	.18	.20 to .8	0
UGPA ^a	3,695	22	.25	.12	.10	.35	.14	.12 to .5	8
				Degree att	ainment ^a				
Verbal	6,304	32	.14	.14	.12	.18	.16	08 to .4	4
Quantitative	6,304	32	.14	.17	.15	.20	.20	13 to .5	3
Analytical	1,233	16	.08	.25	.22	.11	.30	38 to .6	0
Subject	2,575	11	.32	.16	.14	.39	.17	.11 to .6	7
UGPA ^a	6,315	33	.12	.17	.16	.12	.16	14 to3	8

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

Kuncel et al. meta analysis predicting graduate school performance

Table 9 GRE and UGPA Unit-Weighted Composite Predicting GGPA and Faculty Ratings

Predictor set	Predictive validity of unit-weighted composite	Predictive validity of composite plus UGPA (unit weighted)
Verbal	.41	.48
Quantitative	.42	.50
Analytical	.38	.46
Subject	.49	.54
Verbal + Quantitative	.46	.53
Verbal + Quantitative + Analytical	.45	.50
Verbal + Quantitative + Subject	.52	.56
Verbal + Quantitative + Analytical		
+ Subject	.50	.54

Note. GRE = Graduate Record Examinations; UGPA = undergraduate grade point average; GGPA = graduate grade point average.

Restrictions of range

- 1. Many claim that ability does not predict above about 2 sd.
- 2. But David Lubinski points out that there are 6 sd above the mean.
- 3. Validity of SAT is partially limited by range restriction. see (Lubinski and Benbow, 2000, 2006)
- 4. Consider giving SATs to 12-13 year olds

Predictions and Decisions The VA study **Prediction** Construct validation Interviews

- SAT M ≥390 or SAT V ≥370 (top 1 in 100)
- SAT M \geq 500 or SAT V \geq 430 (top 1 in 200)
- SAT M \geq 700 or SAT V \geq 430 (top 1 in 10,000)
- 5. Longitudinal study started by Camille Benbow while at Johns Hopkins Benbow et al. (1996)

Benbow and Lubinski: Beyond the threshold

Prediction Construct validation Interviews Items

Beyond the Threshold Hypothesis

347

Tenure differs even among the top 1%

Percent Earning Income Greater Than or Equal To Median Within Sex

Percent Earning Tenure at a Top 50 U.S. University

Income of top 1 in 10,000

Fig. 3. Percentage of graduate students (Cohort 5) and lalent-search participants (Cohort 3, top 1 in 10,000) with tenuer terack or tourned positions (left) and annual incomes of \$100,000 or more (right) at follow-up. The data shows here are based on samples of 299 and 287 male and female graduate students, respectively, and 286 and 94 male and female talent-search participants, respectively. From Librishi, Benbow Web, and Blenke-Rechek (2006).

Predicting the ultimate criterion: mortality

Prediction Construct validation Interviews

- 1. Scottish Mental Survey of 1932 tested all 11 year olds in Scotland.
- 2. Repeated the data collection in 1947 for another cohort
- In 1997 Ian Deary and his colleagues found the original testing records and started a longitudinal study (the Midlothian Birth Cohort) (Deary et al., 2004; Deary, 2008, 2009) and started a new field: cognitive epidemiology.
- 4. They recruited participants from the 1932 and 1947 cohorts to do retesting, health workups, MRI scans, and examined mortality statistics.
- 5. See Underwood (2014) for a account of the work.

The Midlothian sample

Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math

Prediction Construct validation Interviews

Deary: the Scottish sample and test retest reliability

Figure 3. Scattergram of age-corrected Moray House Test (MHT) scores at age 11 and age 80 for participants in the Lothian Birth Cohort 1921 of the Scottish Mental Survey 1932.

The VA study

Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

Deary: the Scottish sample and mortality

Deary: the Scottish sample and mortality: a model

Figure 6. Some possible influences and pathways linking mental ability in childhood and survival. From Brain and Longevity: Perspectives in Longevity (p. 162, Figure 3), by C. Finch, J.-M. Robine, & Y. Christen (Eds.), 2003, Berlin: Springer. Copyright 2003 by Springer. Adapted with permission.

The VA study

Prediction Construct validation Interviews Items ●00

SAPA Fishing nets A bit of math

Mean differences and extreme scores

difference = .25

difference=.25

difference = .5

difference=.5

х

2 3

The VA study

Prediction Construct validation Interviews

SAPA Fishing nets A bit of math

Variances differfences and extreme scores

sigma = 1.1

sigma = 1.1

sigma = 1.2

sigma = 1.2

3

Mean differences and extreme scores: odds ratio

Prediction Construct validation Interviews

Validation as a process

- 1. The many kinds of validity (Loevinger, 1957)
- 2. Construct validation (Cronbach and Meehl, 1955)
- 3. The multi-Trait-Multi-Method Matrix (Campbell and Fiske, 1959)

The need for other variables Construct Validity: Convergent, Discriminant, Incremental

The VA study Prediction Construct validation Interviews Items

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

SAPA Fishing nets A bit of math

The Multi-Trait-Multi-Method Correlation matrix

	T1M1	T2M1	T3M1	T1M2	T2M2	T3M2	T1M3	T2M3	T3M3			
T1M1	T1M1											
T2M1	M 1	T2M1										
T3M1	M 1	M 1	T3M1									
T1M2	T 1			T1M2								
T2M2		T2		M2	T2M2							
T3M2			T3	M2	M2	T3M2						
T1M3	T1			T1			T1M3					
T2M3		T2			T2		M3	T2M3				
T3M3			T3			Т3	M3	M3	T3M3			
Mo	Mono-Method, Mono trait = reliability											
Het	Hetero Method, Mono Trait = convergent validity											

Hetero Method, Hetero Trait = discriminant validity

The Multi-Trait-Multi-Method as a factor model

The VA study Prediction Construct validation Interviews Items

Construct Validity as an extension of True Score Theory

Prediction Construct validation Interviews

- Construct validity in terms of the structure of latent variables was introduced by Cronbach and Meehl (1955). This was probably partly as a counter to behaviorism.
- Elaborated by Loevinger (1957) who dismissed the idea of mere "practical" validity.
- 3. Construct validity could be conceptualized
 - Convergent: different measures of the same construct should go together
 - Divergent: measures of different constructs should not go together
 - Incremental: a measure should add something .

A test should be defined by what it measures and what it does not measure.

A bit of math

Construct validity and the "Nomological Net"

- 1. Tests did not have validity, they were part of a network of validity.
- Best exemplified in the Multi-Trait Multi-Method Matrix of Campbell and Fiske (1959).

Agreement between Self Report and Peer Ratings An example of a Multi-Trait–Multi-Method Matrix

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

Table: Self report and peer report from the SAPA-project. Correlations reported by Zola et al. (2021). Reliabilities on the main diagonal. Raw correlations below the diagonal. Correlations corrected for reliability above the diagonal. Upper left quadrant reflects SAPA Personality Inventory scores (Condon, 2018) for 158,631 participants, mean n/item = 18,180. Other quadrants reflect 908 peer rated participants. Data from the zola dataset in the *psychTools* package.

			Self Repor	rt	Peer Ratings						
Variable	Agrbl	Cnscn	Nrtcs	Extrv	Opnnn	Agrbl	Cnscn	Stblt	Extrv	IntlO	
Agreeableness	0.87	0.32	-0.14	0.28	0.09	0.75	0.21	0.18	0.34	0.22	
Conscientiousness	0.28	0.87	-0.20	0.13	0.06	0.16	0.78	0.22	0.42	0.13	
Neuroticism	-0.12	-0.18	0.90	-0.28	-0.10	-0.01	-0.16	-0.78	-0.40	-0.25	
Extraversion	0.25	0.12	-0.25	0.90	0.14	0.01	-0.01	0.07	0.71	0.14	
Opennness	0.08	0.05	-0.09	0.13	0.86	-0.14	-0.06	0.10	0.17	0.49	
Agreeableness	0.47	0.10	-0.01	0.00	-0.09	0.45	0.36	0.47	0.15	0.44	
Conscientiousness	0.15	0.55	-0.12	-0.01	-0.04	0.18	0.58	0.42	0.41	0.47	
Stability	0.13	0.16	-0.58	0.05	0.07	0.25	0.25	0.60	0.38	0.52	
Extraversion	0.23	0.28	-0.27	0.49	0.11	0.07	0.23	0.22	0.52	0.32	
IntellectOpenness	0.14	0.08	-0.15	0.09	0.30	0.19	0.24	0.27	0.15	0.44	

The unfortunate emphasis upon construct validity reduced the emphasis upon the practical use of tests

Prediction Construct validation Interviews

- 1. In a response to operationalism, construct validity was in strong contrast to three other approaches.
- 2. Constructs, as embedded in nomological networks, were seen as theoretical concepts and could only be evaluated in terms of the pattern of correlations.
- 3. Criterion-oriented validation procedures, on the other hand, harkened back to the operational definitions of behaviorism.
 - Concurrent validity is the correlation with a current criterion.
 - Predictive validity is the correlation with a future criterion.
- 4. Content validity was established by showing that the test items were a sample of a universe in which the investigator is interested.

Loevinger and the boiling of eggs

- 1. Favorably quoting Marschak, Loevinger said: (p 641) "A theory provides us with solutions which are potentially useful for a large class of decisions.
- Hence, the more we know about its properties the better. If we merely want to know how long it takes to boil an egg, the best is to boil one or two without going into the chemistry of protein molecules. The need for chemistry is due to our want to do other and new things "
- She goes on to say "The argument against classical criterion-oriented psychometrics is thus two-fold: it contributes no more to the science of psychology than rules for boiling an egg contribute to the science of chemistry.
- 4. And the number of genuine egg-boiling decisions which clinicians and psychotechnologists face is small compared with the number of situations where a deeper knowledge of psychological theory would be helpful."

In case we did not understand

Prediction Construct validation Interviews

"the most fruitful direction for the development of psychometric devices, and hence of psychometric theory, is toward measurement of traits which have real existence in some sense; that this orientation is antithetical to one which places first emphasis on prediction, decisions, or "utility;" that most decision-oriented psychometric studies would be more fruitfully formulated as trait-oriented studies; and that such legitimately pressing decisions as must inevitably be

and that such legitimately pressing decisions as must inevitably be made will also best be served by a predominantly trait-oriented psychometrics." Loevinger (1957)

But see "The seductive beauty of latent variable models: or why I don't believe in the Easter Bunny" (Revelle, 2024) for another perspective.

The persistent myth of the validity of the interview

- 1. It has been known since 1950 that interviews are appealing but do not work.
- 2. Everyone relies on their feeling that they work, remembering successes, forgetting failures.
- 3. Clinical versus actuarial prediction Dawes et al. (1989)
- 4. Experience is not a good teacher when the feedback is slow Dawes (1989)
- 5. Belief in the unstructured interview Dana et al. (2013)
- 6. Summarized very well in Dawes (2009)

Medical School Admissions

0.

- 1. As discussed by Dawes (2009), DeVaul et al. (1987) examined the effect of interview ratings on later success in medical school.
- 2. Of 2200 applicants to medical school, 800 were invited to interview and were interviewed
- 3. Of these, 150 of the top 350 were offered positions

Predictions and Decisions The VA study Prediction Construct validation Interviews

- 4. The state then provided funding for an additional 50 students
- 5. only the 700-800 ranked students were still available
- 6. After four years: "Even when the top 50 students in committee preference were compared with the 50 applicants, there were no differences. Thus, the least desirable candidates performed as well as the most desirable.

How useful are items?

Items SAI

- 1. The common observation/belief is that items have low correlations with other items.
- From a classical reliability perspective: Item variance = general + group + specific + error.
- 3. The "gospel" is that items are mainly error variance.
- 4. This is true from a latent variable perspective, but less true if we actually examine item variance.
- 5. Perhaps 20% of an item is general factor variance, another 10-20% group variance but about 40% is specific and reliable variance.
- 6. We can see this by doing a variance decomposition of items that are repeated across time (Revelle and Condon, 2019)
- 7. So what?
- 8. Lets look at the correlates of items.
Items as analogous to SNPs in GWAS studies

000000000 80

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

- In Genome Wide Association Studies one examines phenotypic variation as it correlates with differences in SNP frequencies across the genome.
- 2. We can do the same by examining phenotypic variation and correlation across the persome (Mõttus et al., 2019)
- 3. A typical approach is to show the correlations and their probability values (corrected for multiple tests)
 - Typically displayed in "Manhattan Plots" across the genome. We do this across the "Persome".
- 4. First show plots for an open source data set (spi) available in the *psych* package (Revelle, 2025).
 - This is a set of 135 temperament items (Condon, 2018), with 10 criteria for 4,000 subjects.
- 5. Then do the same for items from the Big 5, then an extended set (the little 27) then for a bigger data set with even more items.
- 6. Finally, we show the profile correlations of college majors and occupations for 255K participants across 900 items

redictions and Decisions The VA study Prediction Construct validation Interviews SAPA Fishing nets A bit of math

Sapa Personality Inventory (spi data set)

Table: Descriptive statistics for the 10 criteria variable taken from the spi data set.

Variable	vars	n	mean	sd	median	trmmd	mad	min	max	range	skew	krtss
age	1	4000	26.90	11.49	23	25.02	7.41	11	90	79	1.45	1.80
sex	2	3946	1.60	0.49	2	1.62	0.00	1	2	1	-0.39	-1.85
health	3	3536	3.51	0.98	4	3.54	1.48	1	5	4	-0.25	-0.42
p1edu	4	3051	4.72	2.39	5	4.77	4.45	1	8	7	-0.11	-1.33
p2edu	5	2896	4.33	2.32	5	4.28	4.45	1	8	7	0.09	-1.33
education	6	3330	4.10	2.21	3	4.00	1.48	1	8	7	0.41	-1.04
wellness	7	3311	1.54	0.50	2	1.55	0.00	1	2	1	-0.17	-1.97
exer	8	3310	3.57	1.60	4	3.60	1.48	1	6	5	-0.35	-1.06
smoke	9	3348	2.19	2.04	1	1.70	0.00	1	9	8	1.83	2.19
ER	10	3347	1.16	0.48	1	1.03	0.00	1	4	3	3.42	12.74

spi items are taken from Condon (2018)

Scale development and cross validation

Items

00000000 80

1. Weights based upon data are best fits for those data

- 2. Need to "Cross Validate" on a different set
- Original cross validation technique was to split the sample into
 derive on first half, report the validities on the second half
- KFold cross validation splits the data into K parts, derives the model on K-1 parts and then validate it on the remaining part. Repeat this K times (folds) and then average across folds.
- Boot Strap Aggregation ("bagging") takes many (100 1000) bootstrap samples and then aggregates across the hold out sample. Bootstrap automatically produces a hold out since 62.3% of subjects are in the derivation sample and 37.7% are in the holdout for each iteration.
- The bestScales function does either K-fold or bagging and produces the Best Items Scale that is Cross-validated Unit-weighted, Informative and Transparent (Elleman et al., 2020).

Predictions and Decisions

The VA study

Prediction Construct validation

on Interviews Items

ts A bit of math

Internal consistency and correlations of the Big 5

Table: Reliabilities and correlations of the Big 5 scales from the spi data set. α reliability is on the diagonal of the correlations.

Variable	$\omega_{\textit{total}}$	ω_h	Agree	Consc	Neuro	Extra	Open
Agreeableness	0.91	0.61	0.87				
Conscientiousness	0.89	0.61	0.24	0.86			
Neuroticism	0.93	0.71	-0.12	-0.19	0.90		
Extraversion	0.92	0.70	0.23	0.07	-0.20	0.89	
Openness	0.88	0.72	0.00	0.01	-0.12	0.13	0.84

The VA study Prediction Construct validation Interviews Items

00000000 00

SAPA Fishing nets A bit of math

Item Validities: Manhattan plots

Cross validation of predictions

- 1. 10 criteria from the spi data set.
- 2. Linear regression using the spi-Big 5 (14 item scales for each of 5 dimensions)
- 3. bestScales solution choosing items from the spi to predict criteria
- 4. The "little 27" lower level factors of the spi
- 5. Multiple regression using all 135 items
- 6. All models developed on random subset of 2,000 subjects, cross validated on the remaining 2,000.

Why and what is cross validation?

- 1. Items or scales selected to predict will best fit derivation sample.
- 2. Regressions will "shrink" in other samples.
- 3. Particularly a problem with small samples and a large number of predictors.
- 4. Perhaps the best discussion is a delightful paper by Cureton (1950): "Validity, reliability, and baloney".

Profile Correlations

Items SAI

- 1. Normally, we examine the correlations of scales with criteria and criteria with criteria
- 2. Analogous to the "genetic correlation" which is the correlation of phenotypes across the genome, we can find the "persome correlation" which is the correlation of the criteria across the persome.
- These reflect the amount that the predictable variance in one outcome is the same as the predictable variance in another outcome.
- 4. The next slide compares phenotypic correlations with persomic corrrelations.

See Revelle et al. (2021) for more examples and the data and code for doing these examles.

SAPA Fishing nets A bit of math

Cross validated correlations predictions 10 different criteria.

Cross validation of multiple regression on spi data

Predictions and Decisions The VA study Prediction Construct validation Interviews Items

88000000 80

SAPA Fishing nets A bit of math

Comparing phenotypic to profile correlations

age -		0.02	0.59	0.25	0.13	0.92	0.57	0.6	-0.35	-0.52		1
sex -	-0.05		-0.26	-0.26	-0.31	-0.15	0.38	-0.22	-0.07	0.45	- (J.8
health -	0	-0.05		0.56	0.48	0.66	0.65	0.95	-0.35	-0.57	- (J.6
p1edu -	-0.12	-0.02	0.12		0.93	0.49	0.38	0.59	0.07	-0.35	- (J.4
p2edu -	-0.14	-0.02	0.12	0.58		0.42	0.22	0.47	0.12	-0.39	- (0.2
education -	0.57	-0.08	0.09	0.06	0.06		0.47	0.67	-0.3	-0.68	- (D
wellness -	0.08	0.1	0.09	0.04	0.06	0		0.67	-0.25	-0.04		-0.2
exer -	0.04	-0.07	0.35	0.1	0.09	0.07	0.15		-0.26	-0.45		0.4
smoke -	0.11	-0.05	-0.15	-0.08	-0.08	0.01	-0.06	-0.14		0.49		•0.6
ER -	-0.06	0.1	-0.14	-0.05	-0.06	-0.1	0.08	-0.05	0.08			-0.8
	ane	SPY	health	n1edu	n2edu	education	wellness	exer	smoke	FR		-1
	-30	2.54			u			201	2			

phenotypic and profile correlations

dictions and Decisions The VA study Procession Control of Control

Prediction Construct valida

n Interviews Ite

SAPA Fishing nets A bit of math

The SAPA project emphasizes item validities

- 1. Random sampling of many items
- 2. Basic psychometrics of composites
- 3. Best Scales approach to scale construction
- 4. Profile analysis of groups
- 5. For an example: Open science, open items PWAS or Persome Wide Association Studies.

SAPA measures self report

SAPA

1. How to validate the self reports of the SAPA project

- 2. SAPA participants were asked to nominate anonymous friends
- 3. These friends then gave peer ratings
- 4. Zola et al. (2021) reported the validity of self report personality items from the SAPA personality inventory (SPI) (Condon, 2018) in terms of 30 peer reports on 8 dimensions. Here are the polychoric correlations of these items. spi items were collected using SAPA procedures for 158,631 participants (mean n/item = 18,180), 908 of whom received peer ratings..
- 5. The Multitrait-multimethod correlations were found from the correlations.

Predictions and Decisions	The VA study	Prediction 00000000 000	Construct validation	Interviews 00	Items 00 000000000	SAPA 0	Fishing nets	A bit of math 00000	1

Zola validitiies

R code

scores <- psych::scoreOverlap(zola.keys[c(1:5,33:37)],zola) #MTMM of 1

lowerMat(scores\$cor)

	Agrbl	Cnscn	Nrtcs	Extrv	Opnnn	Agrbl	Cnscn	Stblt	Extrv	IntlO
Agreeableness	1.00									
Conscientiousness	0.28	1.00								
Neuroticism	-0.12	-0.18	1.00							
Extraversion	0.25	0.12	-0.25	1.00						
Opennness	0.08	0.05	-0.09	0.13	1.00					
Agreeableness	0.47	0.10	-0.01	0.00	-0.09	1.00				
Conscientiousness	0.15	0.55	-0.12	-0.01	-0.04	0.18	1.00			
Stability	0.13	0.16	-0.58	0.05	0.07	0.25	0.25	1.00		
Extraversion	0.23	0.28	-0.27	0.49	0.11	0.07	0.23	0.22	1.00	
IntellectOpenness	0.14	0.08	-0.15	0.09	0.30	0.19	0.24	0.27	0.15	1.00
lowerMat(scores\$M)	(MS)	#avera	ge iter	n corre	elation	ns with	nin and	l betwe	en don	nains
lowerMat (scores\$M]	MS) i Agrbl	avera Cnscn	ge iter Nrtcs	n corre Extrv	elation Opnnn	ns witl Agrbl	nin and Cnscn	l betwe Stblt	en dom Extrv	nains IntlO
lowerMat (scores\$M] Agreeableness	MS) Agrbl 0.33	avera Cnscn	ge iter Nrtcs	n corre Extrv	elation Opnnn	ns with Agrbl	nin and Cnscn	i betwe Stblt	en dom Extrv	nains IntlO
lowerMat(scores\$M) Agreeableness Conscientiousness	MS) Agrbl 0.33 0.10	tavera Cnscn 0.32	ge iter Nrtcs	n corre Extrv	elation Opnnn	ns with Agrbl	nin and Cnscn	i betwe Stblt	en dom Extrv	nains IntlO
lowerMat (scores\$M) Agreeableness Conscientiousness Neuroticism	MS) Agrbl 0.33 0.10 -0.05	#averag Cnscn 0.32 -0.07	ge iter Nrtcs 0.38	n corre Extrv	elation Opnnn	ns with Agrbl	nin and Cnscn	i betwe Stblt	een dom Extrv	nains IntlO
lowerMat(scores\$MI Agreeableness Conscientiousness Neuroticism Extraversion	IMS) Agrbl 0.33 0.10 -0.05 0.10	#averag Cnscn 0.32 -0.07 0.05	ge iter Nrtcs 0.38 -0.11	n corre Extrv 0.39	elation Opnnn	ns witl Agrbl	nin and Cnscn	i betwe Stblt	een dom Extrv	mains IntlO
lowerMat (scores\$MI Agreeableness Conscientiousness Neuroticism Extraversion Opennness	IMS) Agrbl 0.33 0.10 -0.05 0.10 0.03	#averag Cnscn 0.32 -0.07 0.05 0.02	ge iter Nrtcs 0.38 -0.11 -0.03	n corre Extrv 0.39 0.05	elation Opnnn 0.30	ns with Agrbl	nin and Cnscn	l betwe Stblt	en dom Extrv	mains IntlO
lowerMat (scores\$MI Agreeableness Conscientiousness Neuroticism Extraversion Opennness Agreeableness	MS) = Agrb1 0.33 0.10 -0.05 0.10 0.03 0.18	#averag Cnscn 0.32 -0.07 0.05 0.02 0.04	ge iter Nrtcs 0.38 -0.11 -0.03 0.00	n corre Extrv 0.39 0.05 0.00	0.30 -0.03	ns with Agrbl 0.17	nin and Cnscn	l betwe Stblt	een dom Extrv	nains IntlO
lowerMat (scores\$M1 Agreeableness Conscientiousness Neuroticism Extraversion Opennness Agreeableness Conscientiousness	MS) + Agrbl 0.33 0.10 -0.05 0.10 0.03 0.18 0.06	averag Cnscn 0.32 -0.07 0.05 0.02 0.04 0.23	0.38 -0.11 -0.03 0.00 -0.05	0.39 0.05 0.00 0.00	0.30 -0.03 -0.02	ns with Agrbl 0.17 0.07	nin and Cnscn 0.26	i betwe Stblt	een dom Extrv	nains IntlO
lowerMat (scores\$M1 Agreeableness Conscientiousness Neuroticism Extraversion Opennness Agreeableness Conscientiousness Stability	<pre>MS) # Agrbl 0.33 0.10 -0.05 0.10 0.03 0.18 0.06 0.05</pre>	#averag Cnscn 0.32 -0.07 0.05 0.02 0.04 0.23 0.07	ge iter Nrtcs 0.38 -0.11 -0.03 0.00 -0.05 -0.25	0.39 0.05 0.00 0.00 0.00	0.30 -0.03 -0.02 0.03	ns with Agrbl 0.17 0.07 0.10	0.26 0.11	i betwe Stblt	een dom Extrv	mains IntlO
lowerMat (scores\$M1 Agreeableness Conscientiousness Neuroticism Extraversion Opennness Agreeableness Conscientiousness Stability Extraversion	<pre>MS) # Agrbl 0.33 0.10 -0.05 0.10 0.03 0.18 0.06 0.05 0.09</pre>	#averag Cnscn 0.32 -0.07 0.05 0.02 0.04 0.23 0.07 0.11	ge iter Nrtcs -0.11 -0.03 0.00 -0.05 -0.25 -0.11	0.39 0.05 0.00 0.00 0.02 0.21	0.30 -0.03 -0.02 0.03 0.04	ns with Agrbl 0.17 0.07 0.10 0.03	0.26 0.11 0.10	0.28 0.09	een dom Extrv	mains IntlO

Introduction to the question

1. In a brilliant manuscript which I had the good fortune to review, Mijke Rhemtulla developed the "Dart Board" validity/reliability metaphor.

- This was based on a strong assumption that validity can be defined as what a factor measures.
- That is, validity is factorial validity.
- Reliability is just how well we measure the construct.
- Validity is the ratio of internal consistency to test-retest reliability.
- 2. Dartboard validity wants scales to be internally consistent measures of single constructs.
- 3. Dartboard validity equates validity with how well the test measures a construct.

SAPA Fishing nets A bit of math

Reliability and Validity as dart throwing

 Unfortunately for Mijke, I had just given a keynote address at ISSID entitled "The seductive beauty of latent variables" (Revelle, 2023)

- That paper was an attack on our beloved application of latent variable models and argued that we should worry more about prediction than factorial homegeneity.
- I even suggested that to believe in latent variables was akin to believing in the Easter Bunny or the Tooth Fairy.
- 2. In addition, I had recently published an article with Alice Eagly "Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Trees" (Eagly and Revelle, 2022) which examined the effect of aggregation on reliability and validity.
 - That paper showed that while aggregation could increase reliability, aggregating unrelated concepts could increase validity.
 - It rediscovered Gulliksen (1950).

SAPA Fishing nets A bit of math

Which set of items (X1..X4) have the highest validity when predicting Y?

A)	α	= .73	$R_y =$	=?		B)	α	= .63	$R_y =$	=?	
Variable	X1	X2	X3	X4	Y	Variable	X1	X2	Х3	X4	Y
X1	1.0					X1	1.0				
X2	0.4	1.0				X2	0.3	1.0			
X3	0.4	0.4	1.0			X3	0.3	0.3	1.0		
X4	0.4	0.4	0.4	1.0		X4	0.3	0.3	0.3	1.0	
Y	0.2	0.2	0.2	0.2	1.0	Y	0.2	0.2	0.2	0.2	1.0
C)	α	= .5	$R_y =$.?		D)	α	= .31	R _y =	=?	
C) Variable	α X1	= .5 X2	$R_y = X3$.? X4	Y	D) Variable	α X1	= .31 X2	<i>R_y</i> = X3	=? X4	Y
C) Variable X1	α X1 1.0	= .5 X2	<i>R_y</i> = X3	.? X4	Y	D) Variable X1	α X1 1.0	= .31 X2	<i>R_y</i> = X3	=? X4	Y
C) Variable X1 X2	α X1 1.0 0.2	= .5 X2 1.0	$\frac{R_y}{X3}$.? X4	Y	D) Variable X1 X2	α X1 1.0 0.1	= .31 X2 1.0	R _y = X3	=? X4	Y
C) Variable X1 X2 X3	α X1 1.0 0.2 0.2	= .5 X2 1.0 0.2	$\frac{R_y}{X3} =$.? X4	Y	D) Variable X1 X2 X3	α X1 1.0 0.1 0.1	= .31 X2 1.0 0.1	R _y = X3	=? X4	Y
C) Variable X1 X2 X3 X4	α X1 1.0 0.2 0.2 0.2	= .5 X2 1.0 0.2 0.2	$\frac{R_y}{X3} = 1.0$.? X4 1.0	Y	D) Variable X1 X2 X3 X4	α X1 1.0 0.1 0.1 0.1	= .31 X2 1.0 0.1 0.1	R _y = X3 1.0 0.1	=? X4 1.0	Y

Please rank order these four cells in terms of validity.

Which set of items (X1..X4) have the highest validity when predicting Y?

- T)	$\alpha =$	= .73	$R_y =$.27		B)	α =	= .63	$R_y =$.29	
Variable	X1	X2	Х3	X4	Y	Variable	X1	X2	Х3	X4	Y
X1	1.0					X1	1.0				
X2	0.4	1.0				X2	0.3	1.0			
X3	0.4	0.4	1.0			X3	0.3	0.3	1.0		
X4	0.4	0.4	0.4	1.0		X4	0.3	0.3	0.3	1.0	
Y	0.2	0.2	0.2	0.2	1.0	Y	0.2	0.2	0.2	0.2	1.0
C)	α :	= .5	$R_y = 1$.32		D)	α =	= .31	$R_y =$.35	
C) Variable	α : X1	= .5 X2	$R_y = \frac{1}{X3}$.32 X4	Y	D) Variable	α = X1	= .31 X2	<i>R_y</i> = X3	.35 X4	Y
C) Variable X1	α : X1 1.0	= .5 X2	$R_y = \frac{1}{X3}$.32 X4	Y	D) Variable X1	α = X1 1.0	= .31 X2	<i>R_y</i> = X3	.35 X4	Y
C) Variable X1 X2	α = X1 1.0 0.2	= .5 X2 1.0	$\frac{R_y}{X3}$.32 X4	Y	D) Variable X1 X2	α = X1 1.0 0.1	= .31 X2 1.0	<i>R_y</i> = X3	.35 X4	Y
C) Variable X1 X2 X3	α : X1 1.0 0.2 0.2	= .5 X2 1.0 0.2	$\frac{R_y}{X3}$.32 X4	Y	D) Variable X1 X2 X3	α = X1 1.0 0.1 0.1	= .31 X2 1.0 0.1	<i>R_y</i> = X3	.35 X4	Y
C) Variable X1 X2 X3 X4	α : X1 1.0 0.2 0.2 0.2	= .5 X2 1.0 0.2 0.2	$\frac{R_y = 1}{X3}$ 1.0 0.2	. <u>32</u> X4 1.0	Y	D) Variable X1 X2 X3 X4	α = X1 1.0 0.1 0.1 0.1	= .31 X2 1.0 0.1 0.1	$\frac{R_y}{X3} = 1.0$.35 X4 1.0	Y

Validity is higher the lower the internal consistency.

Validity and reliability: a short digression

- 1. Although we know from Spearman that we can correct for reliability to find the "True" relationship between two variables, this does not help us in the real world.
- 2. Reliability is incorrectly associated with internal consistency which leads to such derivations as coefficients KR20 (Kuder and Richardson, 1937), λ_3 (Guttman, 1945) Or α (Cronbach, 1951).
- 3. Expressed terms of inter-item correlations, this is just $\frac{k\bar{r}}{1+(k-1)\bar{r}}$ and increases with test length (k) and the average interitem correlation (\bar{r})
- 4. However, validity of a k item test (r_{y_k}) or the correlation with an external criterion, Y, also increases with test length, and the average item validity $(\bar{r_y})$ but decreases as the inter-item correlation increases $r_{y_k} = \frac{k\bar{r_y}}{\sigma_x} = \frac{k\bar{r_y}}{\sqrt{k+k*(k-1)\bar{r}}}$.

Reliability and Validity

1. Lets unpack these two equations. Internal consistency

$$\lambda_3 = \alpha = \frac{k\bar{r}}{1 + (k-1)\bar{r}} \tag{3}$$

2. but validity

$$r_{y_k} = \frac{k\bar{r}_y}{\sigma_x} = \frac{k\bar{r}_y}{\sqrt{k+k*(k-1)\bar{r}}}.$$
 (4)

Test validity increases with test length

A bit of math 00000

The trade off between test consistency and test validity

Internal consistency varies by test length and inter-item r

93/100

The trade off between test consistency and test validity

alpha

Increasing validity implies increasing the diversity of the item content

- 1. The goal of construct validity is have pure measures with high internal consistency. (Measure one thing well).
- 2. And highly correlated measures of the same constructs.
- 3. But if the goal is predictive validity, we should minimize internal consistency and have independent predictors.
- 4. By emphasizing practical validity, we are ignoring most of what we have been taught (and teach) about reliability (Revelle and Condon, 2018, 2019) and scale construction (Revelle and Garner, 2023).
- 5. Variations on this theme have been discussed before by (Condon

et al., 2021; Möttus et al., 2020).

SAPA Fishing nets A bit of math

SAPA Fishing nets A bit of math

10 items from Athenstaedt (2003)

140	1.00	0.56	0.61	0.47	0.51						- 1
V40 -	1.00	0.56	0.01	0.47	0.51	-0.06	-0.11	-0.02	-0.01	6.06	
V45 -	0.56	1.00	0.50	0.58	0.53	-0.11	-0.10	-0.01	-0.09	0.05	- U.8
V72 -	0.61	0.50	1.00	0.48	0.54	-0.15	-0.14	-0.07	-0.12	0.00	- 0.6
V38 -	0.47	0.58	0.48	1.00	0.59	-0.12	-0.17	0.01	-0.09	0.03	- 0.4
V71 -	0.51	0.53	0.54	0.59	1.00	0.00	-0.02	0.10	0.01	0.14	- 0.2
V32 -	-0.06	-0.11	-0.15	-0.12	0.00	1.00	0.66	0.46	0.61	0.51	- 0
V29 -	-0.11	-0.10	-0.14	-0.17	-0.02	0.66	1.00	0.43	0.47	0.58	0.2
V54 -	402	-0.01	-0.07	0.01	0.10	0.46	0.43	1.00	0.42	0.35	0.4
V57 -	-0.01	-0.09	-0.12	-0.09	0.01	0.61	0.47	0.42	1.00	0.36	0.6
V30 -	0.06	0.05	0.00	0.02	0.14	0.51	0.58	0.35	0.36	1.00	0.8
		1	1	1	1	1	1	1	1		1
	V46	V45	V72	V38	V71	V32	V29	V54	V57	V30	

Ten items from Athenstaedt

Clearly a two factor solution (using the inter-ocular trauma test).

10 items from Athenstaedt (2003) predict gender

10 items from Athenstaedt

Clearly a two factor solution but with some interesting correlations with gender.

Form various short scales

- 1. It is easy to form 2 ... 5 item short and factorially pure scales from these items. (F2 ... F5, or M2 ... M5)
- Equally easy to form 2 .. 10 item composite scales mixing M and F content (MF2 ... MF10)
- 3. Just M or just F scales are very internally consistent $(\omega_h = .72 \dots .85)$ and reasonably valid $(r_{gender} = .52 \dots .58)$
- 4. But the composite (MF) scales are much less internally consistent ($\omega_h = .11 \dots .23$, $\alpha = .11 \dots .77$) and more valid ($r_{gender} = .67 \dots .75$)

Reliability and Validity for Short M, F, and MF scales

Relabilit	y and V	alidity			0.75		• MF6	8					
Scale	ω_h	α	r _{gender}			• MF	10						
F2	0.72	0.72	0.52			• MF4		Comp	oosite so	ales			
F3	0.79	0.79	0.57		0.7								
F4	0.69	0.82	0.58										
F5	0.71	0.85	0.56	fer		● MF2							
M2	0.79	0.79	0.54	Jenc	- 0.65								
M3	0.77	0.76	0.55	lity =									
M4	0.70	0.81	0.54	Valio	_								
M5	0.69	0.82	0.52		0.60						Unidimens	sional scale	s
MF2	0.11	0.11	0.67									• F4	F3
MF4	0.13	0.59	0.71									• F5	мз
MF6	0.23	0.69	0.75		0.55								
MF8	0.24	0.75	0.74									114	IVIZ
MF10	0.15	0.77	0.74									M5▲ ●F2	
						0.1	12	0.3	0.4	0.5	0.6	0.7	0.8

Validity x ω_h varies by number of items and factor loadings

ω_h

Darts or Fishing Spears versus Fishing Nets

- 1. The M and F scales are sharper spears (more internally consistent) and have a clear one factor solution.
- 2. And the mixed composite scales are looser (less internally consistent), less clear construct (multifactorial) and more net like.
- 3. But Fishing Nets catch more fish (have higher validities) than do Spears.
- 4. Perhaps it is time to not focus on construct validity or factorial purity but rather on predictive validity.

Athenstaedt, U. (2003). On the content and structure of the gender role self-concept: Including gender-stereotypical behaviors in addition to traits. *Psychology of Women Quarterly*, 27(4):309–318.

Benbow, C. P., Lubinski, D. J., and Stanley, J. C. (1996). *Intellectual talent: psychometric and social issues.* Johns Hopkins University Press, Baltimore.

Campbell, D. T. and Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. *Psychological Bulletin*, 56(8):81–105.

Condon, D. M. (2018). The SAPA Personality Inventory: An empirically-derived, hierarchically-organized self-report personality assessment model. *PsyArXiv*.

Condon, D. M., Wood, D., Möttus, R., Booth, T., Costani, G., Greiff, S., Johnson, W., Lukaszesksi, A., Murray, A., Revelle, W., Wright, A. G., Ziegler, M., and Zimmerman, J. (2021). Bottom Up Construction of a Personality Taxonomy. *European Journal of Psychological Assessment*.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, 16:297–334.

Cronbach, L. J. and Meehl, P. E. (1955). Construct validity in psychological tests. *Psychological Bulletin*, 52(4):281–302.

Cureton, E. E. (1950). Validity, reliability, and baloney. *Educational* and *Psychological Measurement*, 10(1):94–96.

Dana, J., Dawes, R., and Peterson, N. (2013). Belief in the unstructured interview: The persistence of an illusion. *Judgment* & Decision Making, 8(5):512–520.

Danielson, J. R. and Clark, J. H. (1954). A personality inventory for induction screening. *Journal of Clinical Psychology*, 10(2):137 – 143.

Dawes, R. (2009). House of cards. Simon and Schuster.

Dawes, R. M. (1989). Experience and validity of clinical judgment: The illusory correlation. *Behavioral Sciences & the Law*, 7(4):457–467. Predictions and Decisio

The VA study Predic

Prediction Construct validation Inter

terviews Items SA

Fishing nets A bit of ma

- Dawes, R. M., Faust, D., and Meehl, P. E. (1989). Clinical versus actuarial judgment. *Science*, 243(4899):1668–1674.
- Deary, I. J. (2008). Why do intelligent people live longer? *Nature*, 456(7219):175–176.
- Deary, I. J. (2009). Introduction to the special issue on cognitive epidemiology. *Intelligence*, 37:517–519.
- Deary, I. J. and Batty, G. D. (2007). Cognitive epidemiology. *British Medical Journal*, 61(5):378–384.
- Deary, I. J., Pattie, A., and Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian Birth Cohort of 1921. *Psychological Science*, 24(12):2361–2368.
- Deary, I. J., Strand, S., Smith, P., and Fernandes, C. (2007). Intelligence and educational achievement. *Intelligence*, 35(1):13–21.
- Deary, I. J., Whiteman, M., Starr, J., Whalley, L., and Fox, H.
 (2004). The impact of childhood intelligence on later life:
 Following up the Scottish mental surveys of 1932 and 1947. *Journal of Personality and Social Psychology*, 86:130–147.

Predictions and Decision

Prediction Construct validation In

ation Interviews It

SAPA Fishing nets A bit of math

DeVaul, R. A., Jervey, F., Chappell, J. A., Caver, P., Short, B., and O'Keefe, S. (1987). Medical school performance of initially rejected students. *JAMA*, 257(1):47–51.

Dubois, P. H. (1947). The classification program report no. 2. Army air forces aviation psychology program research reports, Army Air Forces, Defense Documentation Center Defense Supply Agency.

Eagly, A. H. and Revelle, W. (2022). Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Trees. *Perspectives on Psychological Science*, 17(5):1339–1358.

Elleman, L. G., McDougald, S., Revelle, W., and Condon, D. (2020). That takes the BISCUIT: a comparative study of predictive accuracy and parsimony of four statistical learning techniques in personality data, with data missingness conditions. *European Journal of Psychological Assessment*, 36(6):948–958.
Friedman, H. S., Tucker, J. S., Schwartz, J. E., Tomlinson-Keasey, C., Martin, L. R., Wingard, D. L., and Criqui, M. H. (1995).

Psychosocial and behavioral predictors of longevity: The aging and death of the "termites". *American Psychologist*, 50(2):69 – 78.

- Gulliksen, H. (1950). *Theory of mental tests*. John Wiley & Sons, Inc.
- Guttman, L. (1945). A basis for analyzing test-retest reliability. *Psychometrika*, 10(4):255–282.
- Kelly, E. L. and Fiske, D. W. (1950). The prediction of success in the VA training program in clinical psychology. *American Psychologist*, 5(8):395 – 406.
- Kelly, E. L. and Fiske, D. W. (1951). *The prediction of performance in clinical psychology*. University of Michigan Press, Ann Arbor, Michigan.
- Kuder, G. and Richardson, M. (1937). The theory of the estimation of test reliability. *Psychometrika*, 2(3):151–160.
- Kuncel, N. R., Campbell, J. P., and Ones, D. S. (1998). Validity of the graduate record examination: Estimated or tacitly known? *American Psychologist*, 53(5):567–568.

Kuncel, N. R. and Hezlett, S. A. (2007). Standardized tests predict graduate students' success. *Science*, 315(5815):1080–1081.
Kuncel, N. R., Hezlett, S. A., and Ones, D. S. (2001). A comprehensive meta-analysis of the predictive validity of the graduate record examinations: Implications for graduate student selection and performance. *Psychological Bulletin*, 127(1):162 – 181.

Loevinger, J. (1957). Objective tests as instruments of psychological theory. *Psychological Reports Monograph Supplement 9*, 3:635–694.

Lubinski, D. (2016). From Terman to today: A century of findings on intellectual precocity. *Review of Educational Research*.

Lubinski, D. and Benbow, C. P. (2000). States of excellence.

American Psychologist, 55(1):137 – 150.

Lubinski, D. and Benbow, C. P. (2006). Study of Mathematically Precocious Youth after 35 years: Uncovering antecedents for the development of math-science expertise. *Perspectives on Psychological Science*, 1(4):316–345. Lubinski, D., Webb, R., Morelock, M., and Benbow, C. (2001). Top 1 in 10,000: A 10-year follow-up of the profoundly gifted. *Journal* of Applied Psychology, 86(4):718–729.

- McPherson, W. B. (1901). Gideon's water-lappers. *Journal of the American Oriental Society*, 22:70–75.
- Möttus, R., Sinick, J., A.Terracciano, Hřebíckova, M., Kandler, C., and Jang, J. A. . . . K. L. (2019). Personality characteristics below facets: A replication and meta-analysis of cross-rater agreement, rank-order stability, heritability, and utility of personality nuances. *Journal of Personality and Social Psychology*, 117(4).
- Möttus, R., Wood, D., Condon, D. M., Back, M., Baumert, A., Costani, G., Epskamp, S., Greiff, S., Johnson, W., Lukaszesksi, A., Murray, A., Revelle, W., Wright, A. G., Yarkoni, T., Ziegler, M., and Zimmerman, J. (2020). Descriptive, predictive and explanatory personality research: Different goals, different approaches, but a shared need to move beyond the big few traits. *European Journal of Personality*, 34(6).

Oden, M. (1968). *The fulfillment of promise: 40-year follow-up of the Terman gifted group*, volume 77. Stanford University Press.

- OSS Assessment Staff (1948). Assessment of Men: Selection of personnel for the office of strategic services. Rinehart, New York.
- Revelle, W. (2023). The seductive beauty of latent variables: ISSID award for distinguished contribution to the study of individual differences. Belfast. International Society for the Study of Individual Differences.
- Revelle, W. (2024). The seductive beauty of latent variable models: Or why I don't believe in the Easter Bunny. *Personality and Individual Differences*, 221:112552.

Revelle, W. (2025). *psych:Procedures for Psychological, Psychometric, and Personality Research.* Northwestern University, Evanston, https://CRAN.r-project.org/package=psych, 2.5.3 edition. R package version 2.5.3.
Revelle, W. and Condon, D. M. (2018). Reliability. In Irwing, P., Booth, T., and Hughes, D. J., editors, *The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development*. John Wily & Sons, London.

Revelle, W. and Condon, D. M. (2019). Reliability: from alpha to omega. *Psychological Assessment*, 31(12):1395–1411.

- Revelle, W., Dworak, E. M., and Condon, D. M. (2021). Exploring the persome: The power of the item in understanding personality structure. *Personality and Individual Differences*, 169.
- Revelle, W. and Garner, K. M. (2023). Measurement: Reliability, construct validation, and scale construction. In Harry T. Reis, T. W. and Judd, C. M., editors, *Handbook of Research Methods in Social and Personality Psychology (in press)*.
- Taylor, H. C. and Russell, J. T. (1939). The relationship of validity coefficients to the practical effectiveness of tests in selection: discussion and tables. *Journal of Applied Psychology*, 23(5):565 578.

Terman, L. M. and Oden, M. (1947). *Genetic studies of genius*. Stanford University Press; Oxford University Press., Palo Alto, CA.

- Terman, L. M. and Oden, M. (1959). *The gifted group at mid-life: Thirty-five years' follow-up of the superior child*, volume 5. Stanford Univ Pr.
- Underwood, E. (2014). Starting young. *Science*, 346(6209):568–572.
- Wiggins, J. S. (1973). *Personality and prediction: principles of personality assessment*. Addison-Wesley Pub. Co, Reading, Mass.
- Wolfe, T. (1970). *The Right Stuff*. Straus & Giroux, New York: Farrar.
- Zola, A., Condon, D. M., and Revelle, W. (2021). The Convergence of Self and Informant Reports in a Large Online Sample. *Collabra: Psychology*, 7(1).