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Latent Variables
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Theory: A regression model of latent variables
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A measurement model for X – Correlated factors
δ X ξ
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A measurement model for Y - uncorrelated factors
η Y ϵ
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A complete structural model
δ X ξ η Y ϵ
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Types of Validity
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Face Validity

X1
Face/Faith

Representative Content

Seeming relevance
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Concurrent Validity

X2 Concurrent Y2

Does a measure correlate with the criterion?

Need to define the criterion.

Assumes that what correlates now will have predictive value.
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Predictive Validity

X3 -
Predictive Y3

Does a measure correlate with the criterion?

Need to define the criterion.

Allow time to pass
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Prediction
1. Continuous predictor, continuous criterion

• Regression, multiple regression, correlation
• Slope of regression implies how much change for unit change

in predictor

2. Continuous predictor, dichotomous criterion
• point bi-serial correlation

3. Dichotomous predictor, dichotomous outcome
• Phi
• The Taylor-Russell tables (Taylor and Russell, 1939) and the

problem of Selection Ratios and Base Rates

ϕ =
VP − BR ∗ SR√

(BR)(1 − BR)(SR)(1 − SR)
(1)

• Therefore, the number of valid positives is

VP = BR ∗ SR + ϕ
√
(BR)(1 − BR)(SR)(1 − SR) (2)
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Tetrachoric and phi as function of cut points
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A decision theoretic approach
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Tetrachoric and phi as function of cut points .5,0
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A decision theoretic approach with low beta
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Tetrachoric and phi as function of cut points 1,0
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A decision theoretic approach with high beta
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Tetrachoric and phi as function of cut points 2,0
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A decision theoretic approach with high beta

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Valid Positives as function of False Positives

False Positives

V
al

id
 P

os
iti

ve
s

-3 -2 -1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4 Decision Theory

P
ro

ba
bi

lit
y 

of
 o

bs
er

va
tio

n

21 / 100



Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math A few examples Discussion References

A decision theoretic analysis with 4 different cut points
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Applying decision theory to a prediction problem: the case of
predicting future psychiatric diagnoses from military inductees. (Data

from Danielson and Clark (1954) as discussed by Wiggins (1973).
Predicted Positive Predicted Negative Row Totals

True Positive 49 40 99
True Negative 79 336 406
Column Totals 118 376 505

Fraction of Total
Predicted Positive Predicted Negative Row Totals

True Positive .097 .079 .196
True Negative .157 .667 .804
Column Totals .234 .746 1.00
Accuracy = .097 + .667 = .76
Sensitivity = .097/(.097 + .079) = .55
Specificity = .667 / (.667+.157) = .81
Phi = .097−.196∗.234√

.196∗.804∗.234∗.747
= .32

What if we went with the base rates and predicted everyone was healthy?
Predicted Positive Predicted Negative Row Totals

True Positive .0 .196 .196
True Negative .0 .804 .804
Column Totals .0 1.000 1.00
Accuracy = 0 +.804 =.80
Sensitivity = 0/.196 = 0
Specificity = .196 / 1.0 = .196
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The Danielson and Clark data as a decision problem
R code

dd
pred.pos pred.neg

obs.pos 49 79
obs.neg 40 336

AUC(dd)

AUC(dd)

Decision Theory and Area under the Curve

The original data implied the following 2 x 2 table
Predicted.Pos Predicted.Neg

True.Pos 0.097 0.079
True.Neg 0.157 0.667

Conditional probabilities of
Predicted.Pos Predicted.Neg

True.Pos 0.55 0.45
True.Neg 0.19 0.81

Accuracy = 0.76 Sensitivity = 0.55 Specificity = 0.81
with Area Under the Curve = 0.76
d.prime = 1 Criterion = 0.88 Beta = 0.15
Observed Phi correlation = 0.32
Inferred latent (tetrachoric) correlation = 0.53
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The Danielson and Clark data set as a decision problem
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Classics in Prediction and selection

1. Gideon’s sequential selection of soldiers (The Hebrew Bible:
Judges 6-7, McPherson, 1901)

• Gideon was ordered to select troops to fight the Midianites,
• From 32,000 volunteers, selected the 10,000 non-timid but

then selected 300 battle ready by observing how they drank
water.

2. Selecting spies (OSS Assessment Staff, 1948) and Pilots
Army Air Corps selection studies (Dubois, 1947).

3. Kelly and Fiske (1950) (1950) selection of psychology
students (Kelly and Fiske, 1951).

4. Astronaut selection, from 10,000 to 7. (selecting for the “Right
Stuff" Wolfe, 1970).

5. Peace Corps selection as a process of sequential selection
• Psych Testing, Peer ratings, Staff ratings after 6 weeks
• Peer ratings, staff ratings after 12 weeks of training
• But what was the criterion?
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Gideon’s assessment (McPherson, 1901)
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Predictor set is positively correlated (Dubois, 1947)
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Validities are small but meaningful
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The assessment of pilots – how to show a .45 correlation makes a
difference
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Predicting clinical psychologists – Kelly and Fiske

1. Multiple predictors of graduate school performance: Kelly and
Fiske (1950), Multiple predictors

2. Ability, Interests, temperament (each with r ≈ .2 -.25) have
multiple R of .4-.5

3. Are they able, interested and stable?
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VA study: overview

• Researchers
• nearly 40 cooperating clinical training programs
• ≈ 75 psychologists on research staff

• Participants
• 3/4 of those entering graduate training in 1946, 1947, 1948
• N = 160, 128, 545 (selected down to 98)

• Measures
• Objective tests
• Clinical assessments
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Objective instruments

• Ability
• Millers Analogy Test
• Thurstone Tests of Primary Mental Abilities

• Temperament and Character
• Minnesota Multiphasic Personality Inventory
• Guildord Martin Battery of Personality Inventories

• Interests, Values
• Allport-Vernon Scale of Values
• Strong Vocational Interest Blank
• Kuder Preference Record
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Assessment ratings

• Seven days of tests, interviews and “other” procedures
• Three raters spent a week studying 4 trainees
• Staff time devoted to each candidate was at least 7 man-days

• Ratings based on interviews, projective tests, role playing
• Ratings on:

• 22 descriptive variables (e.g., cooperativeness, talkativeness)
• 10 evaluative variabels (e.g., social adjustment, emotional

expression)
• 11 predictive variables (e.g. academic, diagnostician, overall

suitability)
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Criterion variables after 2 years

• Training status (Failure, still in Training, Ph.D. obtained)
• 2nd year evaluations

• Skill in clinical diagnosis
• Skill in individual psychotherapy
• Skill in Research
• Preference for hiring

• Generally high correlations among all the criteria
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High correlations among the criteria
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The more they know about you, the more they will judge you
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Objectives are just as good
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Interviews might actually hurt!

The finding that the interview did not add to, but actually tended to
decrease, the validity of clinical judgments made in the 1947
assessment program was confirmed by submitting the paper and-
pencil materials on these same candidates to a later assessment
staff which made predictions without any face-to-face contact with
the assessee. Under these conditions, the new staff made
predictions with slightly higher validities than those made by the
staff in 1947, who had the additional data from the interview,
situation tests, etc.
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Interests matter

The VA Clinical Psychologist key, developed by this project on the
basis of the responses of full time VA psychologists, regularly
yields relatively high correlations with all criterion evaluations, and
compares favorably with the best predictions based on assessment
ratings. Other psychologist keys, including the original (1938)
general psychologist key and two developed by Kriedt (2), do fairly
well. Not shown in the table is a correlation of .61 (N = 44) between
scores based on the psychologist key (1938) and the scores made
on the objective test of Knowledge of Clinical Psychology three
years later. Thus, scores from a single objective test obtainable by
mail, at little cost, predicted each of several criteria as well as any
of the clinical judgments made in the entire assessment program
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Motivation

Our findings suggest that, in selection for professional training,
more attention might well be given to the role of motivation,
Perhaps at the level of graduate training, we need establish only a
minimal cutting score on tests of intellectual aptitudes; beyond that
point, the strength of motivation and the absence of conflicting
drives may be the determining factors in success in professional
training, and even in the conduct of professional duties.
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Faith validity of interviews

Many who have seen our results have been disturbed by the
findings regarding the validity for this selection problem of specific
techniques which are felt by many professional psychologists to
have a high degree of face-validity (or is it faith validity?). Thus, it
was the firm conviction of the staff of the OSS assessment
program that the global evaluation of a person permits much more
accurate predictions of his future performance than can possibly
be achieved by a more segmental approach. Unfortunately, the
OSS data did not provide a conclusive answer to this question.
Our own findings to date serve to raise doubts concerning the
validity of this general proposition.
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We must evaluate our judgments

Evidence such as that accumulating in this project serves to
remind us of the fallibility of the human being both as a measuring
device and as an integrator of data. In laboratories, in factories,
and in accounting offices, it has been found necessary to
supplement his sensory and perceptual capacities with an
elaborate array of measuring instruments and computing devices.
Pending the gradual development of better measures of
psychological variables and comparable aids for combining them,
we must continue to rely heavily on human judgment. In so doing,
however, we must be continually aware of the magnitude of the
errors of such judgments. These errors can be minimized by
placing greatest reliance on measures of demonstrated reliability
and validity.
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Putting it together

We are, in fact, rather encouraged at the probability of being able
to predict such criteria with a multiple R of around .50 on the basis
of an inexpensive test battery which may be administered without
requiring the applicant to present himself at the university of his
choice.
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More recent prediction studies

1. Longitudinal study of life time accomplishments (Terman and
Oden, 1947, 1959; Oden, 1968) and mortality (Friedman
et al., 1995).

2. Meta analyses of graduate school prediction (Kuncel et al.,
1998, 2001; Kuncel and Hezlett, 2007)

3. Predicting from early adolescence Benbow et al. (1996);
Lubinski and Benbow (2000); Lubinski et al. (2001); Lubinski
and Benbow (2006); Lubinski (2016)

4. Predicting mortality from measures at age 11 (Deary et al.,
2004; Deary and Batty, 2007; Deary et al., 2007, 2013)
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Kuncel et al. meta analysis predicting graduate school performance
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Kuncel et al. meta analysis predicting graduate school performance
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Restrictions of range

1. Many claim that ability does not predict above about 2 sd.

2. But David Lubinski points out that there are 6 sd above the
mean.

3. Validity of SAT is partially limited by range restriction. see
(Lubinski and Benbow, 2000, 2006)

4. Consider giving SATs to 12-13 year olds
• SAT M ≥390 or SAT V ≥370 (top 1 in 100)
• SAT M ≥ 500 or SAT V ≥ 430 (top 1 in 200)
• SAT M ≥ 700 or SAT V ≥ 430 (top 1 in 10,000)

5. Longitudinal study started by Camille Benbow while at Johns
Hopkins Benbow et al. (1996)
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Benbow and Lubinski: Beyond the threshold
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Tenure differs even among the top 1%
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Income of top 1 in 10,000
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Predicting the ultimate criterion: mortality

1. Scottish Mental Survey of 1932 tested all 11 year olds in
Scotland.

2. Repeated the data collection in 1947 for another cohort

3. In 1997 Ian Deary and his colleagues found the original
testing records and started a longitudinal study (the
Midlothian Birth Cohort) (Deary et al., 2004; Deary, 2008,
2009) and started a new field: cognitive epidemiology.

4. They recruited participants from the 1932 and 1947 cohorts to
do retesting, health workups, MRI scans, and examined
mortality statistics.

5. See Underwood (2014) for a account of the work.
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The Midlothian sample
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Deary: the Scottish sample and test retest reliability

54 / 100



Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math A few examples Discussion References

Deary: the Scottish sample and mortality
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Deary: the Scottish sample and mortality: a model

56 / 100



Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math A few examples Discussion References

Mean differences and extreme scores
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Variances differfences and extreme scores
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Mean differences and extreme scores: odds ratio
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Validation as a process

1. The many kinds of validity (Loevinger, 1957)

2. Construct validation (Cronbach and Meehl, 1955)

3. The multi-Trait-Multi-Method Matrix (Campbell and Fiske,
1959)
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The need for other variables
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The Multi-Trait-Multi-Method Correlation matrix
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The Multi-Trait-Multi-Method as a factor model
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Construct Validity as an extension of True Score Theory

1. Construct validity in terms of the structure of
latent variables was introduced by Cronbach
and Meehl (1955). This was probably partly
as a counter to behaviorism.

2. Elaborated by Loevinger (1957) who
dismissed the idea of mere “practical" validity.

3. Construct validity could be conceptualized
• Convergent: different measures of the same

construct should go together
• Divergent: measures of different constructs

should not go together
• Incremental: a measure should add

something .

A test should be defined by what it measures
and what it does not measure.

64 / 100



Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math A few examples Discussion References

Construct validity and the “Nomological Net"

1. Tests did not have validity, they were part of a network of
validity.

2. Best exemplified in the Multi-Trait – Multi-Method Matrix of
Campbell and Fiske (1959).
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Agreement between Self Report and Peer Ratings
An example of a Multi-Trait–Multi-Method Matrix

Table: Self report and peer report from the SAPA-project. Correlations
reported by Zola et al. (2021). Reliabilities on the main diagonal. Raw
correlations below the diagonal. Correlations corrected for reliability
above the diagonal. Upper left quadrant reflects SAPA Personality
Inventory scores (Condon, 2018) for 158,631 participants, mean n/item =
18,180. Other quadrants reflect 908 peer rated participants. Data from
the zola dataset in the psychTools package.

Self Report Peer Ratings
Variable Agrbl Cnscn Nrtcs Extrv Opnnn Agrbl Cnscn Stblt Extrv IntlO
Agreeableness 0.87 0.32 -0.14 0.28 0.09 0.75 0.21 0.18 0.34 0.22
Conscientiousness 0.28 0.87 -0.20 0.13 0.06 0.16 0.78 0.22 0.42 0.13
Neuroticism -0.12 -0.18 0.90 -0.28 -0.10 -0.01 -0.16 -0.78 -0.40 -0.25
Extraversion 0.25 0.12 -0.25 0.90 0.14 0.01 -0.01 0.07 0.71 0.14
Opennness 0.08 0.05 -0.09 0.13 0.86 -0.14 -0.06 0.10 0.17 0.49
Agreeableness 0.47 0.10 -0.01 0.00 -0.09 0.45 0.36 0.47 0.15 0.44
Conscientiousness 0.15 0.55 -0.12 -0.01 -0.04 0.18 0.58 0.42 0.41 0.47
Stability 0.13 0.16 -0.58 0.05 0.07 0.25 0.25 0.60 0.38 0.52
Extraversion 0.23 0.28 -0.27 0.49 0.11 0.07 0.23 0.22 0.52 0.32
IntellectOpenness 0.14 0.08 -0.15 0.09 0.30 0.19 0.24 0.27 0.15 0.44
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The unfortunate emphasis upon construct validity reduced the
emphasis upon the practical use of tests

1. In a response to operationalism, construct validity was in
strong contrast to three other approaches.

2. Constructs, as embedded in nomological networks, were seen
as theoretical concepts and could only be evaluated in terms
of the pattern of correlations.

3. Criterion-oriented validation procedures, on the other hand,
harkened back to the operational definitions of behaviorism.

• Concurrent validity is the correlation with a current criterion.
• Predictive validity is the correlation with a future criterion.

4. Content validity was established by showing that the test
items were a sample of a universe in which the investigator is
interested.
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Loevinger and the boiling of eggs
1. Favorably quoting Marschak, Loevinger said: (p 641) “A

theory provides us with solutions which are potentially useful
for a large class of decisions.

2. Hence, the more we know about its properties the better. If we
merely want to know how long it takes to boil an egg, the best
is to boil one or two without going into the chemistry of protein
molecules. The need for chemistry is due to our want to do
other and new things "

3. She goes on to say “The argument against classical
criterion-oriented psychometrics is thus two-fold: it contributes
no more to the science of psychology than rules for boiling an
egg contribute to the science of chemistry.

4. And the number of genuine egg-boiling decisions which
clinicians and psychotechnologists face is small compared
with the number of situations where a deeper knowledge of
psychological theory would be helpful."
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In case we did not understand

“the most fruitful direction for the development of psychometric
devices, and hence of psychometric theory, is toward
measurement of traits which have real existence in some sense;
that this orientation is antithetical to one which places first
emphasis on prediction, decisions, or "utility;" that most
decision-oriented psychometric studies would be more fruitfully
formulated as trait-oriented studies;
and that such legitimately pressing decisions as must inevitably be
made will also best be served by a predominantly trait-oriented
psychometrics." Loevinger (1957)

But see “The seductive beauty of latent variable models:
or why I don’t believe in the Easter Bunny" (Revelle, 2024) for
another perspective.
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The persistent myth of the validity of the interview

1. It has been known since 1950 that interviews are appealing
but do not work.

2. Everyone relies on their feeling that they work, remembering
successes, forgetting failures.

3. Clinical versus actuarial prediction Dawes et al. (1989)

4. Experience is not a good teacher when the feedback is slow
Dawes (1989)

5. Belief in the unstructured interview Dana et al. (2013)

6. Summarized very well in Dawes (2009)
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Medical School Admissions

1. As discussed by Dawes (2009), DeVaul et al. (1987)
examined the effect of interview ratings on later success in
medical school.

2. Of 2200 applicants to medical school, 800 were invited to
interview and were interviewed

3. Of these, 150 of the top 350 were offered positions

4. The state then provided funding for an additional 50 students

5. only the 700-800 ranked students were still available

6. After four years: “Even when the top 50 students in committee
preference were compared with the 50 applicants, there were
no differences. Thus, the least desirable candidates
performed as well as the most desirable.
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How useful are items?

1. The common observation/belief is that items have low
correlations with other items.

2. From a classical reliability perspective:
Item variance = general + group + specific + error.

3. The “gospel" is that items are mainly error variance.

4. This is true from a latent variable perspective, but less true if
we actually examine item variance.

5. Perhaps 20% of an item is general factor variance, another
10-20% group variance but about 40% is specific and reliable
variance.

6. We can see this by doing a variance decomposition of items
that are repeated across time (Revelle and Condon, 2019)

7. So what?

8. Lets look at the correlates of items.
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Items as analogous to SNPs in GWAS studies
1. In Genome Wide Association Studies one examines

phenotypic variation as it correlates with differences in SNP
frequencies across the genome.

2. We can do the same by examining phenotypic variation and
correlation across the persome (Möttus et al., 2019)

3. A typical approach is to show the correlations and their
probability values (corrected for multiple tests)

• Typically displayed in “Manhattan Plots" across the genome.
We do this across the “Persome".

4. First show plots for an open source data set (spi) available in
the psych package (Revelle, 2025).

• This is a set of 135 temperament items (Condon, 2018), with 10
criteria for 4,000 subjects.

5. Then do the same for items from the Big 5, then an extended
set (the little 27) then for a bigger data set with even more
items.

6. Finally, we show the profile correlations of college majors and
occupations for 255K participants across 900 items 73 / 100
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Sapa Personality Inventory (spi data set)

Table: Descriptive statistics for the 10 criteria variable taken from the spi

data set.

Variable vars n mean sd median trmmd mad min max range skew krtss se
age 1 4000 26.90 11.49 23 25.02 7.41 11 90 79 1.45 1.80 0.18
sex 2 3946 1.60 0.49 2 1.62 0.00 1 2 1 -0.39 -1.85 0.01
health 3 3536 3.51 0.98 4 3.54 1.48 1 5 4 -0.25 -0.42 0.02
p1edu 4 3051 4.72 2.39 5 4.77 4.45 1 8 7 -0.11 -1.33 0.04
p2edu 5 2896 4.33 2.32 5 4.28 4.45 1 8 7 0.09 -1.33 0.04
education 6 3330 4.10 2.21 3 4.00 1.48 1 8 7 0.41 -1.04 0.04
wellness 7 3311 1.54 0.50 2 1.55 0.00 1 2 1 -0.17 -1.97 0.01
exer 8 3310 3.57 1.60 4 3.60 1.48 1 6 5 -0.35 -1.06 0.03
smoke 9 3348 2.19 2.04 1 1.70 0.00 1 9 8 1.83 2.19 0.04
ER 10 3347 1.16 0.48 1 1.03 0.00 1 4 3 3.42 12.74 0.01

spi items are taken from Condon (2018)
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Scale development and cross validation
1. Weights based upon data are best fits for those data
2. Need to “Cross Validate" on a different set
3. Original cross validation technique was to split the sample into

2, derive on first half, report the validities on the second half
4. KFold cross validation splits the data into K parts, derives the

model on K-1 parts and then validate it on the remaining part.
Repeat this K times (folds) and then average across folds.

5. Boot Strap Aggregation (“bagging") takes many (100 - 1000)
bootstrap samples and then aggregates across the hold out
sample. Bootstrap automatically produces a hold out since
62.3% of subjects are in the derivation sample and 37.7% are
in the holdout for each iteration.

6. The bestScales function does either K-fold or bagging and
produces the Best Items Scale that is Cross-validated
Unit-weighted, Informative and Transparent (Elleman et al.,
2020) .
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Internal consistency and correlations of the Big 5

Table: Reliabilities and correlations of the Big 5 scales from the spi data
set. α reliability is on the diagonal of the correlations.

Variable ωtotal ωh Agree Consc Neuro Extra Open
Agreeableness 0.91 0.61 0.87
Conscientiousness 0.89 0.61 0.24 0.86
Neuroticism 0.93 0.71 -0.12 -0.19 0.90
Extraversion 0.92 0.70 0.23 0.07 -0.20 0.89
Openness 0.88 0.72 0.00 0.01 -0.12 0.13 0.84
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Item Validities: Manhattan plots
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Cross validation of predictions

1. 10 criteria from the spi data set.

2. Linear regression using the spi-Big 5 (14 item scales for each
of 5 dimensions)

3. bestScales solution choosing items from the spi to predict
criteria

4. The “little 27" lower level factors of the spi

5. Multiple regression using all 135 items

6. All models developed on random subset of 2,000 subjects,
cross validated on the remaining 2,000.
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Why and what is cross validation?

1. Items or scales selected to predict will best fit derivation
sample.

2. Regressions will “shrink" in other samples.

3. Particularly a problem with small samples and a large number
of predictors.

4. Perhaps the best discussion is a delightful paper by Cureton
(1950): “Validity, reliability, and baloney".
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Profile Correlations

1. Normally, we examine the correlations of scales with criteria
and criteria with criteria

2. Analogous to the “genetic correlation" which is the correlation
of phenotypes across the genome, we can find the “persome
correlation" which is the correlation of the criteria across the
persome.

3. These reflect the amount that the predictable variance in one
outcome is the same as the predictable variance in another
outcome.

4. The next slide compares phenotypic correlations with
persomic corrrelations.

See Revelle et al. (2021) for more examples and the data and
code for doing these examles.
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Cross validated correlations predictions 10 different criteria.
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Comparing phenotypic to profile correlations

phenotypic and profile correlations

ER

smoke

exer

wellness

education

p2edu

p1edu

health

sex

age

age sex health p1edu p2edu education wellness exer smoke ER

-0.06 0.1 -0.14 -0.05 -0.06 -0.1 0.08 -0.05 0.08

0.11 -0.05 -0.15 -0.08 -0.08 0.01 -0.06 -0.14 0.49

0.04 -0.07 0.35 0.1 0.09 0.07 0.15 -0.26 -0.45

0.08 0.1 0.09 0.04 0.06 0 0.67 -0.25 -0.04

0.57 -0.08 0.09 0.06 0.06 0.47 0.67 -0.3 -0.68

-0.14 -0.02 0.12 0.58 0.42 0.22 0.47 0.12 -0.39

-0.12 -0.02 0.12 0.93 0.49 0.38 0.59 0.07 -0.35

0 -0.05 0.56 0.48 0.66 0.65 0.95 -0.35 -0.57

-0.05 -0.26 -0.26 -0.31 -0.15 0.38 -0.22 -0.07 0.45

0.02 0.59 0.25 0.13 0.92 0.57 0.6 -0.35 -0.52
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The SAPA project emphasizes item validities

1. Random sampling of many items

2. Basic psychometrics of composites

3. Best Scales approach to scale construction

4. Profile analysis of groups

5. For an example: Open science, open items PWAS or
Persome Wide Association Studies.
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SAPA measures self report

1. How to validate the self reports of the SAPA project

2. SAPA participants were asked to nominate anonymous friends

3. These friends then gave peer ratings

4. Zola et al. (2021) reported the validity of self report personality
items from the SAPA personality inventory (SPI) (Condon,
2018) in terms of 30 peer reports on 8 dimensions. Here are
the polychoric correlations of these items. spi items were
collected using SAPA procedures for 158,631 participants
(mean n/item = 18,180), 908 of whom received peer ratings..

5. The Multitrait-multimethod correlations were found from the
correlations.
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Zola validitiies
R code

scores <- psych::scoreOverlap(zola.keys[c(1:5,33:37)],zola) #MTMM of Big 5

lowerMat(scores$cor)
Agrbl Cnscn Nrtcs Extrv Opnnn Agrbl Cnscn Stblt Extrv IntlO

Agreeableness 1.00
Conscientiousness 0.28 1.00
Neuroticism -0.12 -0.18 1.00
Extraversion 0.25 0.12 -0.25 1.00
Opennness 0.08 0.05 -0.09 0.13 1.00
Agreeableness 0.47 0.10 -0.01 0.00 -0.09 1.00
Conscientiousness 0.15 0.55 -0.12 -0.01 -0.04 0.18 1.00
Stability 0.13 0.16 -0.58 0.05 0.07 0.25 0.25 1.00
Extraversion 0.23 0.28 -0.27 0.49 0.11 0.07 0.23 0.22 1.00
IntellectOpenness 0.14 0.08 -0.15 0.09 0.30 0.19 0.24 0.27 0.15 1.00

lowerMat(scores$MIMS) #average item correlations within and between domains
Agrbl Cnscn Nrtcs Extrv Opnnn Agrbl Cnscn Stblt Extrv IntlO

Agreeableness 0.33
Conscientiousness 0.10 0.32
Neuroticism -0.05 -0.07 0.38
Extraversion 0.10 0.05 -0.11 0.39
Opennness 0.03 0.02 -0.03 0.05 0.30
Agreeableness 0.18 0.04 0.00 0.00 -0.03 0.17
Conscientiousness 0.06 0.23 -0.05 0.00 -0.02 0.07 0.26
Stability 0.05 0.07 -0.25 0.02 0.03 0.10 0.11 0.28
Extraversion 0.09 0.11 -0.11 0.21 0.04 0.03 0.10 0.09 0.21
IntellectOpenness 0.05 0.03 -0.06 0.03 0.11 0.07 0.10 0.11 0.06 0.16
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Introduction to the question

1. In a brilliant manuscript which I had the good fortune to
review, Mijke Rhemtulla developed the “Dart Board"
validity/reliability metaphor.

• This was based on a strong assumption that validity can be
defined as what a factor measures.

• That is, validity is factorial validity.
• Reliability is just how well we measure the construct.
• Validity is the ratio of internal consistency to test-retest

reliability.

2. Dartboard validity wants scales to be internally consistent
measures of single constructs.

3. Dartboard validity equates validity with how well the test
measures a construct.
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Reliability and Validity as dart throwing

Reliable and Valid

Reliable and InvalidUnreliable and Invalid

Unreliable but Valid
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1. Unfortunately for Mijke, I had just given a keynote address at
ISSID entitled “The seductive beauty of latent variables"
(Revelle, 2023)

• That paper was an attack on our beloved application of latent
variable models and argued that we should worry more about
prediction than factorial homegeneity.

• I even suggested that to believe in latent variables was akin to
believing in the Easter Bunny or the Tooth Fairy.

2. In addition, I had recently published an article with Alice Eagly
“Understanding the Magnitude of Psychological Differences
Between Women and Men Requires Seeing the Forest and
the Trees" (Eagly and Revelle, 2022) which examined the
effect of aggregation on reliability and validity.

• That paper showed that while aggregation could increase
reliability, aggregating unrelated concepts could increase
validity.

• It rediscovered Gulliksen (1950).
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Which set of items (X1..X4) have the highest validity when predicting
Y?

A) α = .73 Ry =?
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.4 1.0
X3 0.4 0.4 1.0
X4 0.4 0.4 0.4 1.0
Y 0.2 0.2 0.2 0.2 1.0

C) α = .5 Ry = .?
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.2 1.0
X3 0.2 0.2 1.0
X4 0.2 0.2 0.2 1.0
Y 0.2 0.2 0.2 0.2 1.0

B) α = .63 Ry =?
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.3 1.0
X3 0.3 0.3 1.0
X4 0.3 0.3 0.3 1.0
Y 0.2 0.2 0.2 0.2 1.0

D) α = .31 Ry =?
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.1 1.0
X3 0.1 0.1 1.0
X4 0.1 0.1 0.1 1.0
Y 0.2 0.2 0.2 0.2 1.0

Please rank order these four cells in terms of validity.
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Which set of items (X1..X4) have the highest validity when predicting
Y?

A) α = .73 Ry = .27
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.4 1.0
X3 0.4 0.4 1.0
X4 0.4 0.4 0.4 1.0
Y 0.2 0.2 0.2 0.2 1.0

C) α = .5 Ry = .32
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.2 1.0
X3 0.2 0.2 1.0
X4 0.2 0.2 0.2 1.0
Y 0.2 0.2 0.2 0.2 1.0

B) α = .63 Ry = .29
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.3 1.0
X3 0.3 0.3 1.0
X4 0.3 0.3 0.3 1.0
Y 0.2 0.2 0.2 0.2 1.0

D) α = .31 Ry = .35
Variable X1 X2 X3 X4 Y
X1 1.0
X2 0.1 1.0
X3 0.1 0.1 1.0
X4 0.1 0.1 0.1 1.0
Y 0.2 0.2 0.2 0.2 1.0

Validity is higher the lower the internal consistency.
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Validity and reliability: a short digression

1. Although we know from Spearman that we can correct for
reliability to find the “True" relationship between two variables,
this does not help us in the real world.

2. Reliability is incorrectly associated with internal consistency
which leads to such derivations as coefficients KR20 (Kuder and

Richardson, 1937), λ3 (Guttman, 1945) or α (Cronbach, 1951).

3. Expressed terms of inter-item correlations, this is just k r̄
1+(k−1)r̄

and increases with test length (k) and the average interitem
correlation (r̄ )

4. However, validity of a k item test (ryk ) or the correlation with an
external criterion, Y, also increases with test length, and the
average item validity (r̄y ) but decreases as the inter-item
correlation increases ryk =

k r̄y
σx

=
k r̄y√

k+k∗(k−1)r̄
.
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Reliability and Validity

1. Lets unpack these two equations.
Internal consistency

λ3 = α =
k r̄

1 + (k − 1)r̄
(3)

2. but validity

ryk =
k r̄y

σx
=

k r̄y√
k + k ∗ (k − 1)r̄

. (4)
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The trade off between test consistency and test validity
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The trade off between test consistency and test validity
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Increasing validity implies increasing the diversity of the item content

1. The goal of construct validity is have pure measures with high
internal consistency. (Measure one thing well).

2. And highly correlated measures of the same constructs.

3. But if the goal is predictive validity, we should minimize
internal consistency and have independent predictors.

4. By emphasizing practical validity, we are ignoring most of
what we have been taught (and teach) about reliability (Revelle and

Condon, 2018, 2019) and scale construction (Revelle and Garner, 2023).

5. Variations on this theme have been discussed before by (Condon

et al., 2021; Möttus et al., 2020).
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10 items from Athenstaedt (2003)

Ten items from Athenstaedt

V30

V57

V54

V29

V32

V71

V38

V72

V45

V46

V46 V45 V72 V38 V71 V32 V29 V54 V57 V30

0.06 0.05 0.00 0.03 0.14 0.51 0.58 0.35 0.36 1.00

-0.01 -0.09 -0.12 -0.09 0.01 0.61 0.47 0.42 1.00 0.36

-0.02 -0.01 -0.07 0.01 0.10 0.46 0.43 1.00 0.42 0.35

-0.11 -0.10 -0.14 -0.17 -0.02 0.66 1.00 0.43 0.47 0.58

-0.06 -0.11 -0.15 -0.12 0.00 1.00 0.66 0.46 0.61 0.51

0.51 0.53 0.54 0.59 1.00 0.00 -0.02 0.10 0.01 0.14

0.47 0.58 0.48 1.00 0.59 -0.12 -0.17 0.01 -0.09 0.03

0.61 0.50 1.00 0.48 0.54 -0.15 -0.14 -0.07 -0.12 0.00

0.56 1.00 0.50 0.58 0.53 -0.11 -0.10 -0.01 -0.09 0.05

1.00 0.56 0.61 0.47 0.51 -0.06 -0.11 -0.02 -0.01 0.06

-1

-0.8

-0.6

-0.4

-0.2
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1

Clearly a two factor solution (using the inter-ocular trauma test).
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10 items from Athenstaedt (2003) predict gender
10 items from Athenstaedt

gender

clean_drain

home_improve

shovel_snow

change_fuses

repair_work
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dust
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0.50 0.42 0.53 0.42 0.35 -0.47 -0.52 -0.38 -0.35 -0.27 1.00

0.06 0.05 0.00 0.03 0.14 0.51 0.58 0.35 0.36 1.00 -0.27

-0.01 -0.09 -0.12 -0.09 0.01 0.61 0.47 0.42 1.00 0.36 -0.35

-0.02 -0.01 -0.07 0.01 0.10 0.46 0.43 1.00 0.42 0.35 -0.38

-0.11 -0.10 -0.14 -0.17 -0.02 0.66 1.00 0.43 0.47 0.58 -0.52

-0.06 -0.11 -0.15 -0.12 0.00 1.00 0.66 0.46 0.61 0.51 -0.47

0.51 0.53 0.54 0.59 1.00 0.00 -0.02 0.10 0.01 0.14 0.35

0.47 0.58 0.48 1.00 0.59 -0.12 -0.17 0.01 -0.09 0.03 0.42

0.61 0.50 1.00 0.48 0.54 -0.15 -0.14 -0.07 -0.12 0.00 0.53

0.56 1.00 0.50 0.58 0.53 -0.11 -0.10 -0.01 -0.09 0.05 0.42

1.00 0.56 0.61 0.47 0.51 -0.06 -0.11 -0.02 -0.01 0.06 0.50
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Clearly a two factor solution but with some interesting correlations
with gender.

97 / 100



Predictions and Decisions The VA study Prediction Construct validation Interviews Items SAPA Fishing nets A bit of math A few examples Discussion References

Form various short scales

1. It is easy to form 2 ... 5 item short and factorially pure scales
from these items. (F2 ... F5, or M2 ... M5)

2. Equally easy to form 2 .. 10 item composite scales mixing M
and F content (MF2 ... MF10)

3. Just M or just F scales are very internally consistent
(ωh = .72 ... .85) and reasonably valid (rgender = .52 ... .58)

4. But the composite (MF) scales are much less internally
consistent (ωh = .11 ... .23, α = .11 ... .77) and more valid
(rgender = .67 ... .75)
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Reliability and Validity for Short M, F, and MF scales

Relability and Validity
Scale ωh α rgender
F2 0.72 0.72 0.52
F3 0.79 0.79 0.57
F4 0.69 0.82 0.58
F5 0.71 0.85 0.56
M2 0.79 0.79 0.54
M3 0.77 0.76 0.55
M4 0.70 0.81 0.54
M5 0.69 0.82 0.52
MF2 0.11 0.11 0.67
MF4 0.13 0.59 0.71
MF6 0.23 0.69 0.75
MF8 0.24 0.75 0.74
MF10 0.15 0.77 0.74
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Darts or Fishing Spears versus Fishing Nets

1. The M and F scales are sharper spears (more internally
consistent) and have a clear one factor solution.

2. And the mixed composite scales are looser (less internally
consistent), less clear construct (multifactorial) and more net
like.

3. But Fishing Nets catch more fish (have higher validities) than
do Spears.

4. Perhaps it is time to not focus on construct validity or factorial
purity but rather on predictive validity.
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