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Outline of Reliability Theory

1. Classical Test Theory

2. Generalizability approaches – ICC and raters

3. Item Response Theory: The new psychometrics?
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Outline: Part I: Classical Test Theory

Preliminaries
Classical test theory

Congeneric test theory and alternatives
Estimating reliability by split halves

Domain Sampling Theory

Coefficients based upon the internal structure of a test
Alpha

An example
Problems with α

Model based estimates

2 ̸= 1
Multiple dimensions - falsely labeled as one
Using score.items to find reliabilities of multiple scales
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Observed Variables
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Latent Variables
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Theory: A regression model of latent variables
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A measurement model for X – Correlated factors
δ X ξ
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A measurement model for Y - uncorrelated factors
η Y ϵ
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A complete structural model
δ X ξ η Y ϵ
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All data are befuddled with error

Reliability: the correlation between a test and a test just like it.

But when are two tests just allike?
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All data are befuddled with error

Now, suppose that we wish to ascertain the correspon-
dence between a series of values, p, and another series,
q. By practical observation we evidently do not obtain the
true objective values, p and q, but only approximations
which we will call p’ and q’. Obviously, p’ is less closely
connected with q’, than is p with q, for the first pair only
correspond at all by the intermediation of the second pair;
the real correspondence between p and q, shortly rpq has
been "attenuated" into rp′q′ (Spearman, 1904, p 90).

See also Revelle and Condon (2018, 2019); Revelle and Zinbarg
(2009).
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Consider some hypothetical data

Create 5 variables to measure some construct. Are some better
than others? How can we tell?R code
set.seed(42) #for reproducible results
sim.data <- sim.congeneric(loads=c(.9,.5,.9,.5,0),N=10000,

short=FALSE)
lowerCor(sim.data$observed[,1:2])

describe(sim.data$observed)
vars n mean sd median trimmed mad min max range skew kurtosis se

V1 1 10000 -0.01 1.00 -0.01 -0.01 1.00 -4.17 4.30 8.48 -0.01 0.00 0.01
V2 2 10000 0.00 1.01 0.01 0.00 1.02 -3.73 4.20 7.93 0.01 -0.02 0.01
V3 3 10000 -0.01 1.01 -0.01 -0.01 1.01 -4.26 4.18 8.45 0.00 0.05 0.01
V4 4 10000 -0.01 0.99 -0.01 -0.01 0.99 -3.20 3.52 6.71 0.00 -0.05 0.01
V5 5 10000 0.00 0.99 0.00 -0.01 1.00 -3.90 3.59 7.50 0.01 -0.01 0.01

#consider the first 2
lowerCor(sim.data$observed[,1:2])

V1 V2
V1 1.00
V2 0.45 1.00

Two not very related tests. Why is this? Is one test better than the
other? How can we tell?
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Is there a single factor? Two variables are underidentified.
Do the two variables share a common factor?

Two variables are underidentified

observed.V2

observed.V1

MR1

0.7

0.7
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Same data set, more of the variables
R code

set.seed(42) #for reproducible results
sim.data <- sim.congeneric(loads=c(.9,.5,.9,.5,0),N=10000,

short=FALSE)
lowerCor(sim.data$observed[,1:3])
f1 <- fa(sim.data$observed[,1:3])
fa.diagram(f1, main="Three variables are just identified")

describe(sim.data$observed)
vars n mean sd median trimmed mad min max range skew kurtosis se

V1 1 10000 -0.01 1.00 -0.01 -0.01 1.00 -4.17 4.30 8.48 -0.01 0.00 0.01
V2 2 10000 0.00 1.01 0.01 0.00 1.02 -3.73 4.20 7.93 0.01 -0.02 0.01
V3 3 10000 -0.01 1.01 -0.01 -0.01 1.01 -4.26 4.18 8.45 0.00 0.05 0.01
V4 4 10000 -0.01 0.99 -0.01 -0.01 0.99 -3.20 3.52 6.71 0.00 -0.05 0.01
V5 5 10000 0.00 0.99 0.00 -0.01 1.00 -3.90 3.59 7.50 0.01 -0.01 0.01

lowerCor(sim.data$observed)
V1 V2 V3 V4 V5

V1 1.00
V2 0.45 1.00
V3 0.81 0.44 1.00
V4 0.45 0.23 0.45 1.00
V5 0.01 0.01 0.00 0.00 1.00

Consider just the first three variables. Factor them and plot the
fa.diagram.
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Is there a single factor? Three variables are just identified
Three variables are just identified

observed.V1
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Is there a single factor? More than 3 is gravy (Kenny, 1979)
Five variables are gravy
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The generating data

Observed = Latent score + Error score

R code
df <- data.frame(observed = sim.data$observed,

latent=sim.data$latent)

lowerCor(df)
ob.V1 ob.V2 ob.V3 ob.V4 ob.V5 ltnt. ltn.1 ltn.2 ltn.3 ltn.4 ltn.5

observed.V1 1.00
observed.V2 0.45 1.00
observed.V3 0.81 0.44 1.00
observed.V4 0.45 0.23 0.45 1.00
observed.V5 0.01 0.01 0.00 0.00 1.00
latent.theta 0.90 0.50 0.90 0.51 0.00 1.00
latent.e1 0.43 0.01 -0.01 -0.01 0.00 -0.01 1.00
latent.e2 0.01 0.87 0.00 -0.02 0.01 0.00 0.01 1.00
latent.e3 0.00 -0.01 0.44 0.00 0.00 0.00 0.00 -0.01 1.00
latent.e4 0.00 -0.02 0.00 0.86 0.00 0.00 -0.01 -0.03 -0.01 1.00
latent.e5 0.01 0.01 0.00 0.00 1.00 0.00 0.00 0.01 0.00 0.00 1.00

The correlation with the latent is the square root of the reliability
(the correlation of a test with a test just like it.)
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All data are befuddled by error: Observed Score = True score + Error
score
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Regression effects due to unreliability of measurement

Consider the case of air force instructors evaluating the effects of
reward and punishment upon subsequent pilot performance.
Instructors observe 100 pilot candidates for their flying skill. At the
end of the day they reward the best 50 pilots and punish the worst
50 pilots.

• Day 1
• Mean of best 50 pilots 1 is 75
• Mean of worst 50 pilots is 25

• Day 2
• Mean of best 50 has gone down to 65 ( a loss of 10 points)
• Mean of worst 50 has gone up to 35 (a gain of 10 points)

• It seems as if reward hurts performance and punishment
helps performance.

• If there is no effect of reward and punishment, what is the
expected correlation from day 1 to day 2?
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Spearman’s parallell test theory

p'1

p q

p'2

q'1

q'2

rpq

rp'q'

rp'p' rq'q'

rpp'

p'1

p q

q'1

rpq

rp'q'

e1 e2

rpp'

rep' req'

rqq'

rpp'

rqq'

rqq'

A

B
ep1

ep2 eq2

eq1

rep' req'

rep' req'

20 / 139



Preliminaries Congeneric Domain Sampling α and λi An example Model based 2 ̸= 1

Classical True score theory
Let each individual score, x, reflect a true value, t, and an error
value, e, and the expected score over multiple observations of x is
t, and the expected score of e for any value of p is 0. Then,
because the expected error score is the same for all true scores,
the covariance of true score with error score (σte) is zero, and the
variance of x, σ2

x , is just

σ2
x = σ2

t + σ2
e + 2σte = σ2

t + σ2
e.

Similarly, the covariance of observed score with true score is just
the variance of true score

σxt = σ2
t + σte = σ2

t

and the correlation of observed score with true score is

ρxt =
σxt√

(σ2
t + σ2

e)(σ
2
t )

=
σ2

t√
σ2

xσ
2
t

=
σt

σx
. (1)
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Classical Test Theory

By knowing the correlation between observed score and true
score, ρxt , and from the definition of linear regression predicted
true score, t̂ , for an observed x may be found from

t̂ = bt.xx =
σ2

t

σ2
x

x = ρ2
xtx . (2)

All of this is well and good, but to find the correlation we need to
know either σ2

t or σ2
e . The question becomes how do we find σ2

t or
σ2

e?.
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Correcting for attenuation
To ascertain the amount of this attenuation, and thereby
discover the true correlation, it appears necessary to
make two or more independent series of observations of
both p and q. (Spearman, 1904, p 90)

Spearman’s solution to the problem of estimating the true
relationship between two variables, p and q, given observed
scores p’ and q’ was to introduce two or more additional variables
that came to be called parallel tests. These were tests that had the
same true score for each individual and also had equal error
variances. To Spearman (1904b p 90) this required finding “the
average correlation between one and another of these
independently obtained series of values" to estimate the reliability
of each set of measures (rp′p′ , rq′q′), and then to find

rpq =
rp′q′

√
rp′p′rq′q′

. (3)
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Two parallel tests
The correlation between two parallel tests is the squared
correlation of each test with true score and is the percentage of
test variance that is true score variance

ρxx =
σ2

t

σ2
x
= ρ2

xt . (4)

Reliability is the fraction of test variance that is true score variance.
Knowing the reliability of measures of p and q allows us to correct
the observed correlation between p’ and q’ for the reliability of
measurement and to find the unattenuated correlation between p
and q.

rpq =
σpq√
σ2

pσ
2
q

(5)

and
rp′q′ =

σp′q′√
σ2

p′σ2
q′

=
σ(p+e′

1)(q+e′
2)√

σ2
p′σ2

q′

=
σpq√
σ2

p′σ2
q′

(6)
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Modern “Classical Test Theory”

Reliability is the correlation between two parallel tests where tests
are said to be parallel if for every subject, the true scores on each
test are the expected scores across an infinite number of tests and
thus the same, and the true score variances for each test are the
same (σ2

p′
1
= σ2

p′
2
= σ2

p′), and the error variances across subjects

for each test are the same (σ2
e′

1
= σ2

e′
2
= σ2

e′) (see Figure 27), (Lord
and Novick, 1968; McDonald, 1999). The correlation between two
parallel tests will be

ρp′
1p′

2
= ρp′p′ =

σp′
1p′

2√
σ2

p′
1
σ2

p′
2

=
σ2

p +���σpe1 +���σpe2 +���σe1e2

σ2
p′

=
σ2

p

σ2
p′
. (7)
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Classical Test Theory

but from Eq 4,
σ2

p = ρp′p′σ2
p′ (8)

and thus, by combining equation 5 with 6 and 8 the unattenuated
correlation between p and q corrected for reliability is Spearman’s
equation 3

rpq =
rp′q′

√
rp′p′rq′q′

. (9)

As Spearman recognized, correcting for attenuation could show
structures that otherwise, because of unreliability, would be hard to
detect.
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Spearman’s parallell test theory
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When is a test a parallel test?

But how do we know that two tests are parallel? For just knowing
the correlation between two tests, without knowing the true scores
or their variance (and if we did, we would not bother with
reliability), we are faced with three knowns (two variances and one
covariance) but ten unknowns (four variances and six covariances).
That is, the observed correlation, rp′

1p′
2

represents the two known
variances s2

p′
1

and s2
p′

2
and their covariance sp′

1p′
2
. The model to

account for these three knowns reflects the variances of true and
error scores for p′

1 and p′
2 as well as the six covariances between

these four terms. In this case of two tests, by defining them to be
parallel with uncorrelated errors, the number of unknowns drop to
three (for the true scores variances of p′

1 and p′
2 are set equal, as

are the error variances, and all covariances with error are set to
zero) and the (equal) reliability of each test may be found.
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The problem of parallel tests

Unfortunately, according to this concept of parallel tests, the
possibility of one test being far better than the other is ignored.
Parallel tests need to be parallel by construction or assumption
and the assumption of parallelism may not be tested. With the use
of more tests, however, the number of assumptions can be relaxed
(for three tests) and actually tested (for four or more tests).
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Reliability: Consistency
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Reliability: States and Traits
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Four congeneric tests – 1 latent factor

Four congeneric tests

V1 V2 V3 V4

F1

0.9 0.8 0.7 0.6
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Reliability: Parallel Tests and Attenuation
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Observed variables and estimated parameters of a congeneric test

Observed correlations and modeled parameters
Variable Test1 Test2 Test3 Test4
Test1 σ2

x1
= λ1σ

2
θ + ϵ2

1
Test2 σx1x2 = λ1σθλ2σθ σ2

x2
= λ2σ

2
θ + ϵ2

2
Test3 σx1x3 = λ1σθλ3σθ σx2x3 = λ2σθλ3σθ σ2

x3
= λ3σ

2
θ + ϵ2

3
Test4 σx1x4 = λ1σθλ4σt σx2x4 = λ2σθλ4σθ σx3x4 = λ3σθλ4σθ σ2

x4
= λ4σ

2
θ + ϵ2

4

We have a model of the observed variances and covariances in
terms of the unknown parameters. We can solve these as a series
of simultaneous equations. However, with just 2 tests we need to
make some very strong assumptions (λ1 = λ2 and ϵ1 = ϵ2). With
three tests, we can relax these assumptions need to assume either
that λ1 = λ2 = λ3 or ϵ1 = ϵ2 = ϵ3.
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Observed variables and estimated parameters of a congeneric test

V1 V2 V3 V4 V1 V2 V3 V4
V1 s2

1 λ1σ
2
t + σ2

e1
V2 s12 s2

2 λ1λ2σ
2
t λ2σ

2
t + σ2

e2
V3 s13 s23 s2

3 λ1λ3σ
2
t λ2λ3σ

2
t λ3σ

2
t + σ2

e3
V4 s14 s24 s34 s2

4 λ1λ4σ
2
t λ2λ3σ

2
t λ3λ4σ

2
t λ4σ

2
t + σ2

e4

Solve for the unknown parameters in terms of the known
(observed) variances and covariances. We have a model of the
observed variances and covariances in terms of the unknown
parameters. We can solve these as a series of simultaneous
equations. However, with just 2 tests we need to make some very
strong assumptions (λ1 = λ2 and ϵ1 = ϵ2). With three tests, we
can relax these assumptions need to assume either that
λ1 = λ2 = λ3 or ϵ1 = ϵ2 = ϵ3.
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But what if we don’t have three or more tests?

Unfortunately, with rare exceptions, we normally are faced with just
one test, not two, three or four. How then to estimate the reliability
of that one test? Defined as the correlation between a test and a
test just like it, reliability would seem to require a second test. The
traditional solution when faced with just one test is to consider the
internal structure of that test. Letting reliability be the ratio of true
score variance to test score variance (Equation 1), or alternatively,
1 - the ratio of error variance to true score variance, the problem
becomes one of estimating the amount of error variance in the
test. There are a number of solutions to this problem that involve
examining the internal structure of the test. These range from
considering the correlation between two random parts of the test to
examining the structure of the items themselves.
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Split halves

ΣXX ′ =

 Vx
... Cxx′

. . . . . . . . . . . . .

Cxx′
... Vx′

 (10)

and letting Vx = 1′Vx1′ and CXX′ = 1′CXX ′1 the correlation
between the two tests will be

ρ =
Cxx ′

√
VxVx ′

But the variance of a test is simply the sum of the true covariances
and the error variances:

Vx = 1′Vx1 = 1′Ct1 + 1Ve1 = Vt + Ve
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Split halves

and the structure of the two tests seen in Equation 10 becomes

ΣXX ′ =

 VX = Vt + Ve
... Cxx′ = Vt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt = Cxx′
... Vt′ + Ve′ = VX ′


and because Vt = Vt ′ and Ve = Ve′ the correlation between each
half, (their reliability) is

ρ =
CXX ′

VX
=

Vt

VX
= 1 − Ve

Vt
.
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Split halves

The split half solution estimates reliability based upon the
correlation of two random split halves of a test and the implied
correlation with another test also made up of two random splits:

ΣXX ′ =



Vx1

... Cx1x2 Cx1x′1

... Cx1x′2
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2 Cx2x′1

... Cx2x′1

Cx1x′1

... Cx2x′1
Vx′1

... Cx′1x′2

Cx1x′2

... Cx2x′2
Cx′1x′2

... Vx′2


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Split halves
Because the splits are done at random and the second test is
parallel with the first test, the expected covariances between splits
are all equal to the true score variance of one split (Vt1), and the
variance of a split is the sum of true score and error variances:

ΣXX ′ =



Vt1 + Ve1

... Vt1 Vt1

... Vt1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt1

... Vt1 + Ve1 Vt1

... Vt1

Vt1

... Vt1 Vt′1
+ Ve′1

... Vt′1

Vt1

... Vt1 Vt′1

... Vt′1
+ Ve′1


The correlation between a test made of up two halves with
intercorrelation (r1 = Vt1/Vx1) with another such test is

rxx ′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus
rxx ′ =

2r1

1 + r1
(11)
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The Spearman Brown Prophecy Formula

The correlation between a test made of up two halves with
intercorrelation (r1 = Vt1/Vx1) with another such test is

rxx ′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus
rxx ′ =

2r1

1 + r1
(12)

A problem is knowing how to split the test into two parts. Are all
splits equally similar?

Spearman (1910); Brown (1910)
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Consider 2 different ways of splitting 16 ability items

R code
R <- cor(ability,use="pairwise")
colnames(R) <- rownames(R) <- paste0("V",1:16)
keys <- list(odd = paste0("V",seq(1,15,2)),

even = paste0("V",seq(2,16,2))
,first=paste0("V",1:8),second=paste0("V",9:16))

sc <- scoreItems(keys,R)
lowerMat(sc$corrected)

2 * .75 /(1+.75) # odds versus evens
2 * .58 /(1 + .58) # first versus second

> R <- cor(ability,use="pairwise")
> colnames(R) <- rownames(R) <- paste0("V",1:16)
> keys <- list(odd = paste0("V",seq(1,15,2)),even = paste0("V",seq(2,16,2))
+ ,first=paste0("V",1:8),second=paste0("V",9:16))
> sc<- scoreItems(keys,R)
> lowerMat(sc$corrected)

odd even first secnd
odd 0.72
even 0.75 0.68
first 0.85 0.82 0.77
second 0.81 0.83 0.58 0.72
> 2 * .75 /(1+.75) # odds versus evens
[1] 0.8571429
> 2 * .58 /(1 + .58) # first versus second
[1] 0.7341772
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The scoreItems function returns many things
R code

scoreItems(keys,R)

Call: scoreItems(keys = keys, items = R)
(Standardized) Alpha:

odd even first second
alpha 0.72 0.68 0.77 0.72

Average item correlation:
odd even first second

average.r 0.25 0.21 0.29 0.24
Median item correlation:

odd even first second
0.24 0.20 0.29 0.20
Guttman 6* reliability:

odd even first second
Lambda.6 0.74 0.69 0.75 0.73

Signal/Noise based upon av.r :
odd even first second

Signal/Noise 2.6 2.1 3.3 2.6

Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

odd even first second
odd 0.72 1.07 1.14 1.12
even 0.75 0.68 1.14 1.19
first 0.85 0.82 0.77 0.77
second 0.81 0.83 0.58 0.72

In order to see the item by scale loadings and frequency counts of the data
print with the short option = FALSE
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6,435 possible eight item splits of the 16 ability items

Split Half reliabilities of a test with 16 ability items

Split Half reliability
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0
50

10
0

15
0

Figure: There are 6,435 possible eight item splits of the 16 ability items of
the ability data set. Of these, the maximum split half reliability is .87,
the minimum is .73 and the average is .83. All possible splits were found
using the splitHalf function.
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Domain sampling

Other techniques to estimate the reliability of a single test are
based on the domain sampling model in which tests are seen as
being made up of items randomly sampled from a domain of items.
Analogous to the notion of estimating characteristics of a
population of people by taking a sample of people is the idea of
sampling items from a universe of items.
Consider a test meant to assess English vocabulary. A person’s
vocabulary could be defined as the number of words in an
unabridged dictionary that he or she recognizes. But since the
total set of possible words can exceed 500,000, it is clearly not
feasible to ask someone all of these words. Rather, consider a test
of k words sampled from the larger domain of n words. What is the
correlation of this test with the domain? That is, what is the
correlation across subjects of test scores with their domain
scores.?
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Correlation of an item with the domain

First consider the correlation of a single (randomly chosen) item
with the domain. Let the domain score for an individual be Di and
the score on a particular item, j, be Xij . For ease of calculation,
convert both of these to deviation scores. di = Di − D̄ and
xij = Xij − X̄j . Then

rxj d =
covxj d√
σ2

xj
σ2

d

.

Now, because the domain is just the sum of all the items, the
domain variance σ2

d is just the sum of all the item variances and all
the item covariances

σ2
d =

n∑
j=1

n∑
k=1

covxjk =
n∑

j=1

σ2
xj
+

n∑
j=1

∑
k ̸=j

covxjk .
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Correlation of an item with the domain

Then letting c̄ =
∑j=n

j=1
∑

k ̸=j covxjk
n(n−1) be the average covariance and

v̄ =

∑j=n
j=1 σ

2
xj

n the average item variance, the correlation of a
randomly chosen item with the domain is

rxj d =
v̄ + (n − 1)c̄√

v̄(nv̄ + n(n − 1)c̄)
=

v̄ + (n − 1)c̄√
nv̄(v̄ + (n − 1)c̄))

.

Squaring this to find the squared correlation with the domain and
factoring out the common elements leads to

r2
xj d =

(v̄ + (n − 1)c̄)
nv̄

.

and then taking the limit as the size of the domain gets large is

lim
n→∞

r2
xj d =

c̄
v̄
. (13)

That is, the squared correlation of an average item with the domain
is the ratio of the average interitem covariance to the average item
variance. Compare the correlation of a test with true score (Eq 4)
with the correlation of an item to the domain score (Eq 14).
Although identical in form, the former makes assumptions about
true score and error, the latter merely describes the domain as a
large set of similar items.
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Domain sampling – correlation of an item with the domain

lim
n→∞

r2
xj d =

c̄
v̄
. (14)

That is, the squared correlation of an average item with the domain
is the ratio of the average interitem covariance to the average item
variance. Compare the correlation of a test with true score (Eq 4)
with the correlation of an item to the domain score (Eq 14).
Although identical in form, the former makes assumptions about
true score and error, the latter merely describes the domain as a
large set of similar items.
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Correlation of a test with the domain

A similar analysis can be done for a test of length k with a large
domain of n items. A k-item test will have total variance, Vk , equal
to the sum of the k item variances and the k(k-1) item covariances:

Vk =
k∑

i=1

vi +
k∑

i=1

k∑
j ̸=i

cij = kv̄ + k(k − 1)c̄.

The correlation with the domain will be

rkd =
covk d
√

Vk Vd
=

kv̄ + k(n − 1)c̄√
(kv̄ + k(k − 1)c̄)(nv̄ + n(n − 1)c̄)

=
k(v̄ + (n − 1)c̄)√

nk(v̄ + (k − 1)c̄)(v̄ + (n − 1)c̄)
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Correlation of a test with the domain

Then the squared correlation of a k item test with the n item
domain is

r2
kd =

k(v̄ + (n − 1)c̄)
n(v̄ + (k − 1)c̄)

and the limit as n gets very large becomes

lim
n→∞

r2
kd =

kc̄
v̄ + (k − 1)c̄

. (15)
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Reliability: Parallel Tests and Attenuation
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Reliability: Consistency
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Reliability: States and Traits
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Coefficient α and the internal structure of tests
Find the correlation of a test with a test (X1) just like it (X2) based
upon the internal structure of the first test. Basically, we are just
estimating the error variance of the individual items within each
test. The variance of test X1 is made up of the item variances and
covariances within X1 and the covariance with test X2 is made up
of the individual item covariances.

Σ(X1+X2)(X1+X2)′ =



X1 X2

σ2
x1

... σx1x2 σx1x ′
1

... σx1x ′
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σx1x2

... σ2
x2

σx2x ′
1

... σx2x ′
1

σx1x ′
1

... σx2x ′
1

σ2
x ′

1

... σx ′
1x ′

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σx1x ′
2

... σx2x ′
2

σx ′
1x ′

2

... σ2
x ′

2


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Coefficient α and the internal structure of tests

Σ(X1+X2)(X1+X2)′ =



X1 X2

σ2
x1

... σx1x2 σx1x ′
1

... σx1x ′
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σx1x2

... σ2
x2

σx2x ′
1

... σx2x ′
1

σx1x ′
1

... σx2x ′
1

σ2
x ′

1

... σx ′
1x ′

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σx1x ′
2

... σx2x ′
2

σx ′
1x ′

2

... σ2
x ′

2


rx1x2 = rxx =

CX1X2√
X1X2

but, since the tests are randomly just like each other, the variances
in the first test should be the same (on the average) as the
variances in the second test, and the average covariances should
all be the same. 55 / 139
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Coefficient α estimates the average interitem covariance

Find the correlation of a test with a test just like it based upon the
internal structure of the first test. Basically, we are just estimating
the error variance of the individual items.
The average covariance should be

σ̄ij =
σ2

x −
∑

σ2
i

k(k − 1)
(16)

and therefore, the covariance between the two tests should be

k2σ̄ij =
k2σ2

x −
∑

σ2
i

k(k − 1)
=

k
k − 1

σ2
x −

∑
σ2

i (17)

α = rxx =
σ2

t

σ2
x
=

k2 σ2
x−

∑
σ2

i
k(k−1)

σ2
x

=
k

k − 1
σ2

x −
∑

σ2
i

σ2
x

(18)
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The seductive appeal of α
1. α may be found by just comparing the total test variance to

the sum of the item variances.
2. This does not require examining the internal structure of the

test.
3. We just assume that all of the items have equal covariances

(are tau equivalent) but might differ in their variances.
4. There are a number of alternative assumptions about how to

find the average covariance, α is just the easiest to
understand.

5. The resulting correlation of a test with a test just like it is the
same as the (squared) correlation of a test with the domain of
all items.

6. Reliability is the fraction of a test that is reliable (true) variance
=

ρ =
CXX ′

VX
=

Vt

VX
= 1 − Ve

Vt
.
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How to find α or KR20: Use your Frieden calculator
α is a function of Total Test Variance (VX ), sum of item variances
(Σvi ) and number of items (n):
So, if you know how to add and subtract: α = VX−Σvi

Vx

n
n−1
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Alpha varies by the number of items and the inter item correlation

0 20 40 60 80 100

0.
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0.
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0.
8
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Alpha varies by r and number of items

Number of items

al
ph
a

r=.2

r=.1

r=.05

Raw α in terms of
item variances (vi )
and total test
variance (Vt )

α =
Vt − Σvi

Vt

k
k − 1

Standardized α in
terms of average
correlations

α =
nr̄

1 + (n − 1)r̄
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Signal to Noise Ratio

The ratio of reliable variance to unreliable variance is known as the
Signal/Noise ratio and is just

S
N

=
ρ2

1 − ρ2 ,

which for the same assumptions as for α, will be

S
N

=
nr̄

1 − r̄
. (19)

That is, the S/N ratio increases linearly with the number of items as
well as with the average intercorrelation
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Alpha vs signal/noise: and r and n
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Find alpha using the alpha functionR code
> alpha(bfi[16:20])

reliability analysis
Call: alpha(x = bfi[16:20])

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.81 0.81 0.8 0.47 4.4 0.0056 3.2 1.2 0.41

95% confidence boundaries
lower alpha upper

Feldt 0.8 0.81 0.82
Duhachek 0.8 0.81 0.82

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

N1 0.76 0.76 0.71 0.44 3.1 0.0075 0.0061 0.41
N2 0.76 0.76 0.72 0.45 3.2 0.0073 0.0054 0.41
N3 0.76 0.76 0.73 0.44 3.1 0.0077 0.0178 0.39
N4 0.80 0.80 0.77 0.49 3.9 0.0064 0.0181 0.49
N5 0.81 0.81 0.79 0.52 4.3 0.0059 0.0137 0.53
Item statistics

n raw.r std.r r.cor r.drop mean sd
N1 2778 0.80 0.80 0.76 0.67 2.9 1.6
N2 2779 0.79 0.79 0.75 0.65 3.5 1.5
N3 2789 0.81 0.81 0.74 0.67 3.2 1.6
N4 2764 0.72 0.71 0.60 0.54 3.2 1.6
N5 2771 0.68 0.67 0.53 0.49 3.0 1.6
Non missing response frequency for each item

1 2 3 4 5 6 miss
N1 0.24 0.24 0.15 0.19 0.12 0.07 0.01
N2 0.12 0.19 0.15 0.26 0.18 0.10 0.01
N3 0.18 0.23 0.13 0.21 0.16 0.09 0.00
N4 0.17 0.24 0.15 0.22 0.14 0.09 0.01
N5 0.24 0.24 0.14 0.18 0.12 0.09 0.01
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What if items differ in their direction?R code
alpha(bfi[6:10])

Call: alpha(x = bfi[6:10])

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
-0.28 -0.22 0.13 -0.038 -0.18 0.04 3.8 0.56 -0.27

95% confidence boundaries
lower alpha upper

Feldt -0.35 -0.28 -0.2
Duhachek -0.36 -0.28 -0.2

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

C1 -0.430 -0.471 -0.020 -0.0870 -0.320 0.045 0.15 -0.317
C2 -0.367 -0.424 -0.017 -0.0804 -0.298 0.043 0.14 -0.293
C3 -0.263 -0.295 0.094 -0.0605 -0.228 0.040 0.16 -0.274
C4 -0.022 0.123 0.283 0.0339 0.141 0.032 0.13 0.029
C5 -0.028 0.023 0.243 0.0058 0.023 0.030 0.16 -0.014

Item statistics
n raw.r std.r r.cor r.drop mean sd

C1 2779 0.48 0.56 0.51 0.0354 4.5 1.2
C2 2776 0.47 0.54 0.51 -0.0076 4.4 1.3
C3 2780 0.40 0.48 0.27 -0.0655 4.3 1.3
C4 2774 0.29 0.20 -0.34 -0.2122 2.6 1.4
C5 2784 0.41 0.29 -0.19 -0.1875 3.3 1.6

Non missing response frequency for each item
1 2 3 4 5 6 miss

C1 0.03 0.06 0.10 0.24 0.37 0.21 0.01
C2 0.03 0.09 0.11 0.23 0.35 0.20 0.01
C3 0.03 0.09 0.11 0.27 0.34 0.17 0.01
C4 0.28 0.29 0.17 0.16 0.08 0.02 0.01
C5 0.18 0.20 0.12 0.22 0.17 0.10 0.01
Warning message:
In alpha(bfi[6:10]) :
Some items were negatively correlated with the first principal component and probably

should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option
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But what if some items are reversed keyed?R code
alpha(bfi[6:10],check.keys=TRUE)

Reliability analysis
Call: alpha(x = bfi[6:10], check.keys = TRUE)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.73 0.73 0.69 0.35 2.7 0.0081 4.3 0.95 0.34

lower alpha upper 95% confidence boundaries
0.71 0.73 0.74

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

C1 0.69 0.70 0.64 0.36 2.3 0.0093 0.0037 0.35
C2 0.67 0.67 0.62 0.34 2.1 0.0099 0.0056 0.34
C3 0.69 0.69 0.64 0.36 2.3 0.0096 0.0070 0.36
C4- 0.65 0.66 0.60 0.33 2.0 0.0107 0.0037 0.32
C5- 0.69 0.69 0.63 0.36 2.2 0.0096 0.0017 0.35

Item statistics
n raw.r std.r r.cor r.drop mean sd

C1 2779 0.65 0.67 0.54 0.45 4.5 1.2
C2 2776 0.70 0.71 0.60 0.50 4.4 1.3
C3 2780 0.66 0.67 0.54 0.46 4.3 1.3
C4- 2774 0.74 0.73 0.64 0.55 4.4 1.4
C5- 2784 0.72 0.68 0.57 0.48 3.7 1.6

Non missing response frequency for each item
1 2 3 4 5 6 miss

C1 0.03 0.06 0.10 0.24 0.37 0.21 0.01
C2 0.03 0.09 0.11 0.23 0.35 0.20 0.01
C3 0.03 0.09 0.11 0.27 0.34 0.17 0.01
C4 0.28 0.29 0.17 0.16 0.08 0.02 0.01
C5 0.18 0.20 0.12 0.22 0.17 0.10 0.01
Some items were negatively correlated with total scale and were automatically reversed
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Bootstrapped confidence intervals for α

Distribution of 10,000 bootstrapped values of alpha

Alpha for 16 ability items

Fr
eq
ue
nc
y

0.81 0.82 0.83 0.84 0.85

0
50

10
0

15
0

20
0

25
0

30
0

35
0

65 / 139



Preliminaries Congeneric Domain Sampling α and λi An example Model based 2 ̸= 1

Many ways of estimating reliability: Most are not used
All are easy to find

But what are they?
1. Multiple Occasions

• 2 Occasions: Test retest reliability
• Many Occasions: multilevel reliabilities (Shrout and Lane, 2012)

2. One Occasion
• Greatest Lower Bound (Bentler, 2017)

• ωt (McDonald, 1999)

• Best Split Half (λ4) (Guttman, 1945)

• Average Split half (≈ α = λ3) (Cronbach, 1951; Guttman, 1945)

• ωh (McDonald, 1999; Revelle and Zinbarg, 2009; Zinbarg et al., 2005)

• Worst Split Half ( β ) (Revelle, 1979; Reise and Haviland, 2024)

3. Remember, reliability is not of a test, but of a test given to
particular subjects at a particular time.
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How to find α or KR20: Use your Frieden calculator
α is a function of Total Test Variance (VX ), sum of item variances
(Σvi ) and number of items (n):
So, if you know how to add and subtract: α = VX−Σvi

Vx

n
n−1
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How to do modern statistics: Use R

But we know more than addition and subtraction. We can do
modern statistics and take advantage of computers.
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Consider two data sets, A and B. They look similar.

headTail(A)
A1 A2 A3 A4 A5 A6 A7 A8

1 2 2 3 2 1 2 2 2
2 3 3 4 3 4 4 3 2
3 2 4 3 2 3 2 2 1
4 4 2 2 3 3 2 2 1
... ... ... ... ... ... ... ... ...
997 4 4 4 3 2 4 1 4
998 2 2 2 2 2 1 3 2
999 4 4 4 3 4 3 4 5
1000 5 3 2 4 3 4 3 3

describe(A,skew=FALSE)
vars n mean sd min max range se

A1 1 1000 3.03 1.03 1 6 5 0.03
A2 2 1000 2.96 1.09 1 6 5 0.03
A3 3 1000 3.01 1.06 1 6 5 0.03
A4 4 1000 3.03 1.05 1 6 5 0.03
A5 5 1000 3.03 1.00 1 6 5 0.03
A6 6 1000 3.05 1.03 1 6 5 0.03
A7 7 1000 3.02 1.02 1 6 5 0.03
A8 8 1000 3.00 1.05 1 6 5 0.03

alpha(A)

Call: alpha(x = A)
raw_alpha std.alpha G6(smc) average_r med_r

0.75 0.75 0.73 0.28 .28
95% confidence boundaries

lower alpha upper
0.73 0.75 0.78

headTail(B)
B1 B2 B3 B4 B5 B6 B7 B8

1 2 3 1 2 1 2 1 1
2 3 4 3 4 3 2 3 3
3 3 4 4 4 1 3 2 3
4 2 3 3 2 3 2 3 3
... ... ... ... ... ... ... ... ...
997 5 5 4 3 2 3 3 3
998 1 1 2 2 4 4 4 5
999 4 3 5 4 3 2 3 3
1000 3 3 3 3 3 3 3 3

describe(B,skew=FALSE)
vars n mean sd min max range se

B1 1 1000 3.07 1.04 1 6 5 0.03
B2 2 1000 3.02 1.00 1 6 5 0.03
B3 3 1000 3.02 1.02 1 6 5 0.03
B4 4 1000 3.04 1.01 1 6 5 0.03
B5 5 1000 3.00 1.03 1 6 5 0.03
B6 6 1000 3.02 0.99 1 6 5 0.03
B7 7 1000 3.02 1.02 1 6 5 0.03
B8 8 1000 3.01 0.99 1 6 5 0.03

alpha(B)

Call: alpha(x = B)

raw_alpha std.alpha G6(smc) average_r med_r
0.75 0.75 0.84 0.28 .03

95% confidence boundaries
lower alpha upper
0.73 0.75 0.78

69 / 139



Preliminaries Congeneric Domain Sampling α and λi An example Model based 2 ̸= 1

But they are actually quite different in their internal structure.

Data Set A: one construct

A8

A7

A6

A5

A4

A3

A2

A1

A1 A2 A3 A4 A5 A6 A7 A8

0.3 0.3 0.3 0.28 0.26 0.3 0.31 1

0.3 0.22 0.35 0.2 0.28 0.28 1 0.31

0.27 0.24 0.29 0.32 0.25 1 0.28 0.3

0.3 0.26 0.29 0.23 1 0.25 0.28 0.26

0.25 0.28 0.27 1 0.23 0.32 0.2 0.28

0.27 0.28 1 0.27 0.29 0.29 0.35 0.3

0.28 1 0.28 0.28 0.26 0.24 0.22 0.3

1 0.28 0.27 0.25 0.3 0.27 0.3 0.3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Data Set B: two constructs

B8

B7

B6

B5

B4

B3

B2

B1

B1 B2 B3 B4 B5 B6 B7 B8

0.01 -0.01 -0.02 0.01 0.65 0.64 0.63 1

0.01 0.02 -0.01 0.01 0.64 0.62 1 0.63

0.01 0.03 0.02 0.03 0.64 1 0.62 0.64

0.02 0.01 0 0.02 1 0.64 0.64 0.65

0.63 0.63 0.64 1 0.02 0.03 0.01 0.01

0.61 0.63 1 0.64 0 0.02 -0.01 -0.02

0.62 1 0.63 0.63 0.01 0.03 0.02 -0.01

1 0.62 0.61 0.63 0.02 0.01 0.01 0.01

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α = .75
ωh = .70

α = .75
ωh = .03

What is this thing called ωh?
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Guttman’s alternative estimates of reliability

Reliability is amount of test variance that is not error variance. But
what is the error variance?

rxx =
Vx − Ve

Vx
= 1 −

Ve

Vx
. (20)

λ1 = 1 −
tr(Vx)

Vx
=

Vx − tr(Vx )

Vx
. (21)

λ2 = λ1 +

√
n

n−1 C2

Vx
=

Vx − tr(Vx ) +
√

n
n−1 C2

Vx
. (22)

λ3 = λ1 +

VX −tr(VX )
n(n−1)

VX
=

nλ1

n − 1
=

n
n − 1

(
1 −

tr(V)x

Vx

)
=

n
n − 1

Vx − tr(Vx )

Vx
= α (23)

λ4 = 2
(

1 −
VXa + VXb

VX

)
=

4cab

Vx
=

4cab

VXa + VXb + 2cabVXa VXb

. (24)

λ6 = 1 −
∑

e2
j

Vx
= 1 −

∑
(1 − r2

smc)

Vx
(25)
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Four different correlation matrices, one value of α

S1: no group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

S2: large g, small group factors

V1 V2 V3 V4 V5 V6
V
6

V
4

V
2

S3: small g, large group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

S4: no g but large group factors

V1 V2 V3 V4 V5 V6

V
6

V
4

V
2

1. The problem of
group factors

2. If no groups, or
many groups,
α is ok
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Decomposing a test into general, Group, and Error variance
Total = g + Gr + E

V 1 V 3 V 5 V 7 V 9 V 11

V
 1

2
V

 9
V

 7
V

 5
V

 3
V

 1

σ2= 53.2
General = .2

V 1 V 3 V 5 V 7 V 9 V 11
V

 1
2

V
 9

V
 7

V
 5

V
 3

V
 1

σ2= 28.8

3 groups =  .3, .4, .5

V 1 V 3 V 5 V 7 V 9 V 11

V
 1

2
V

 9
V

 7
V

 5
V

 3
V

 1

σ2 = 19.2

σ2 = 10.8

σ2  =  6.4

σ2 = 2

Item Error

V 1 V 3 V 5 V 7 V 9 V 11

V
 1

2
V

 9
V

 7
V

 5
V

 3
V

 1

σ2= 5.2

1. Decompose
total variance
into general,
group, specific,
and error

2. α < total

3. α > general
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How to find α or KR20: Use your Frieden calculator
α is a function of Total Test Variance (VX ), sum of item variances
(Σvi ) and number of items (n):
So, if you know how to add and subtract: α = VX−Σvi

Vx

n
n−1
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How to do modern statistics: Use R

But we know more than addition and subtraction. We can do
modern statistics and take advantage of computers.
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Model based approaches to reliability

1. KR 20, α, λ3 were based upon simple assumptions and did
not require finding the correlation matrix

2. What would the correlation between two tests be if ...?

3. Alternatively, we can model the correlations/covariances using
latent variable approaches.

4. This requires find the covariances and then doing factor
analysis.

5. This used to be difficult, now is trivial.

6. No excuse for using earlier techniques.
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Three additional alternatives to α: ωhierarchical , ωtotal , GLB
If a test is made up of a general, a set of group factors, and
specific as well as error:

x = cg + Af + Ds + e (26)

then the communality of itemj , based upon general as well as
group factors,

h2
j = c2

j +
∑

f 2
ij (27)

and the unique variance for the item

u2
j = σ2

j (1 − h2
j ) (28)

may be used to estimate the test reliability.

ωt =
1cc′1′ + 1AA′1′

Vx
= 1 −

∑
(1 − h2

j )

Vx
= 1 −

∑
u2

Vx
(29)
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McDonald (1999) introduced two different forms for ω

ωt =
1cc′1′ + 1AA′1′

Vx
= 1 −

∑
(1 − h2

j )

Vx
= 1 −

∑
u2

Vx
(30)

and

ωh =
1cc′1

Vx
=

(
∑

Λi)
2∑∑

Rij
. (31)

These may both be find by factoring the correlation matrix and
finding the g and group factor loadings using the omega function.
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Using omega on the Thurstone data set to find alternative reliability
estimates

> lower . mat ( Thurstone )
> omega( Thurstone )

Sntnc Vcb l r Snt .C Frs . L 4 . L .W Sf fxs L t t .S Pdgrs L t t .G
Sentences 1.00
Vocabulary 0.83 1.00
Sent . Completion 0.78 0.78 1.00
F i r s t . L e t t e r s 0.44 0.49 0.46 1.00
4. L e t t e r . Words 0.43 0.46 0.42 0.67 1.00
Su f f i xes 0.45 0.49 0.44 0.59 0.54 1.00
L e t t e r . Ser ies 0.45 0.43 0.40 0.38 0.40 0.29 1.00
Pedigrees 0.54 0.54 0.53 0.35 0.37 0.32 0.56 1.00
L e t t e r . Group 0.38 0.36 0.36 0.42 0.45 0.32 0.60 0.45 1.00

Omega
Cal l : omega(m = Thurstone )
Alpha : 0.89
G. 6 : 0.91
Omega H i e r a r c h i c a l : 0.74
Omega H asymptot ic : 0.79
Omega To ta l 0.93
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Two ways of showing a general factor

Omega

Sentences

Vocabulary

Sent.Completion

First.Letters

4.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

F1*

0.6
0.6
0.5

0.2

F2*
0.6
0.5

0.4

F3*
0.6
0.5
0.3

g

0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.5
0.6

Omega

Sentences

Vocabulary

Sent.Completion

First.Letters

4.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

F1

0.9
0.9
0.8

0.4

F2
0.9
0.7

0.6

0.2

F3
0.8
0.6
0.5

g

0.8

0.8

0.7
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omega function does a Schmid Leiman transformation
> omega( Thurstone , s l =FALSE)

Omega
Cal l : omega(m = Thurstone , s l = FALSE)
Alpha : 0.89
G. 6 : 0.91
Omega H i e r a r c h i c a l : 0.74
Omega H asymptot ic : 0.79
Omega To ta l 0.93
Schmid Leiman Factor load ings grea te r than 0.2

g F1* F2* F3* h2 u2 p2
Sentences 0.71 0.57 0.82 0.18 0.61
Vocabulary 0.73 0.55 0.84 0.16 0.63
Sent . Completion 0.68 0.52 0.73 0.27 0.63
F i r s t . L e t t e r s 0.65 0.56 0.73 0.27 0.57
4. L e t t e r . Words 0.62 0.49 0.63 0.37 0.61
Su f f i xes 0.56 0.41 0.50 0.50 0.63
L e t t e r . Ser ies 0.59 0.61 0.72 0.28 0.48
Pedigrees 0.58 0.23 0.34 0.50 0.50 0.66
L e t t e r . Group 0.54 0.46 0.53 0.47 0.56
With eigenvalues o f :

g F1* F2* F3*
3.58 0.96 0.74 0.71
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An example of two different scales confused as one

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Factor Analysis

MR1

M
R
2

1
2

3

4

56

7
8

R code

set.seed(17)
two.f <- sim.item(8)
f2 <- fa(two.f$item,2)
fa.plot(f2)
lowerCor(two.f$item)

V1 V2 V3 V4 V5 V6 V7 V8
V1 1.00
V2 0.29 1.00
V3 0.05 0.03 1.00
V4 0.03 -0.02 0.34 1.00
V5 -0.38 -0.35 -0.02 -0.01 1.00
V6 -0.38 -0.33 -0.10 0.06 0.33 1.00
V7 -0.06 0.02 -0.40 -0.36 0.03 0.04 1.00
V8 -0.08 -0.04 -0.39 -0.37 0.05 0.03 0.37 1.00

82 / 139



Preliminaries Congeneric Domain Sampling α and λi An example Model based 2 ̸= 1

Rearrange the items to show it more clearly

Correlation plot

V8

V7

V4

V3

V6

V5

V2

V1

V1 V2 V5 V6 V3 V4 V7 V8

-0.08 -0.04 0.05 0.03 -0.39 -0.37 0.37 1.00

-0.06 0.02 0.03 0.04 -0.40 -0.36 1.00 0.37

0.03 -0.02 -0.01 0.06 0.34 1.00 -0.36 -0.37

0.05 0.03 -0.02 -0.10 1.00 0.34 -0.40 -0.39

-0.38 -0.33 0.33 1.00 -0.10 0.06 0.04 0.03

-0.38 -0.35 1.00 0.33 -0.02 -0.01 0.03 0.05

0.29 1.00 -0.35 -0.33 0.03 -0.02 0.02 -0.04

1.00 0.29 -0.38 -0.38 0.05 0.03 -0.06 -0.08

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R code
cor.2f <- lowerCor(

two.f$item[,c(1:2,5:6,3:4,7:8)])
#use cex=.8 to make pretty
cor.plot( cor.plot(cor.2f,cex=.8)

V1 V2 V5 V6 V3 V4 V7 V8
V1 1.00
V2 0.29 1.00
V5 -0.38 -0.35 1.00
V6 -0.38 -0.33 0.33 1.00
V3 0.05 0.03 -0.02 -0.10 1.00
V4 0.03 -0.02 -0.01 0.06 0.34 1.00
V7 -0.06 0.02 0.03 0.04 -0.40 -0.36 1.00
V8 -0.08 -0.04 0.05 0.03 -0.39 -0.37 0.37 1.00
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α of two scales confused as one
Note the use of the keys parameter to specify how some items
should be reversed.
alpha ( two . f $ i tem , check . keys=TRUE)
R e l i a b i l i t y ana l ys i s
Cal l : alpha ( x = two . f $ i tem , check . keys = TRUE)

raw_alpha std . alpha G6(smc) average_ r S /N ase mean sd median_ r
0.62 0.62 0.65 0.17 1.6 0.026 0.023 0.52 0.07

95% conf idence boundaries
lower alpha upper

Fe ld t 0.57 0.62 0.67
Duhachek 0.57 0.62 0.67

R e l i a b i l i t y i f an i tem is dropped :
raw_alpha std . alpha G6(smc) average_ r S /N alpha se var . r med. r

V1− 0.59 0.58 0.61 0.17 1.4 0.029 0.031 0.051
V2− 0.61 0.60 0.63 0.18 1.5 0.027 0.029 0.078
V3− 0.58 0.58 0.60 0.16 1.4 0.029 0.029 0.063
V4− 0.60 0.60 0.62 0.18 1.5 0.028 0.026 0.078
V5 0.59 0.59 0.61 0.17 1.4 0.028 0.029 0.078
V6 0.59 0.59 0.61 0.17 1.4 0.028 0.029 0.063
V7 0.58 0.58 0.61 0.17 1.4 0.029 0.028 0.078
V8 0.58 0.58 0.60 0.16 1.4 0.029 0.029 0.063

Item s t a t i s t i c s
n raw . r s td . r r . cor r . drop mean sd

V1− 500 0.54 0.54 0.44 0.33 −0.020 1.01
V2− 500 0.47 0.48 0.35 0.26 −0.028 0.95
V3− 500 0.56 0.56 0.47 0.36 0.073 1.01
V4− 500 0.49 0.48 0.37 0.28 0.172 0.97
V5 500 0.51 0.52 0.42 0.31 −0.073 0.97
V6 500 0.51 0.52 0.41 0.31 −0.071 0.95
V7 500 0.54 0.53 0.44 0.34 0.035 1.00
V8 500 0.57 0.56 0.47 0.36 0.097 1.02
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Score as two different scales
First, make up a keys matrix to specify which items should be
scored, and in which way
> keys <− make . keys ( nvars =8 , keys . l i s t = l i s t ( one=c (1 ,2 , −5 , −6) , two=c (3 ,4 , −7 , −8) ) )
> keys

one two
[ 1 , ] 1 0
[ 2 , ] 1 0
[ 3 , ] 0 1
[ 4 , ] 0 1
[ 5 , ] −1 0
[ 6 , ] −1 0
[ 7 , ] 0 −1
[ 8 , ] 0 −1

#or
keys <− l i s t ( one=cs (V1 , V2 , −V5, −V6 ) , two = cs (V3 , V4, −V7, −V8 ) )

> keys
$one
[ 1 ] "V1" "V2" "−V5" "−V6"

$two
[ 1 ] "V3" "V4" "−V7" "−V8"
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Now score the two scales and find α and other reliability estimates
Cal l : scoreI tems ( keys = keys , i tems = two . f $ i tem )

( Unstandardized ) Alpha :
one two

alpha 0.68 0.7

Standard e r r o r s o f unstandardized Alpha :
one two

ASE 0.04 0.038

Average i tem c o r r e l a t i o n :
one two

average . r 0.34 0.37

Median i tem c o r r e l a t i o n :
one two

0.34 0.37

Guttman 6 * r e l i a b i l i t y :
one two

Lambda.6 0.62 0.64

Signa l / Noise based upon av . r :
one two

Signa l / Noise 2.1 2.4

Scale i n t e r c o r r e l a t i o n s cor rec ted for a t t enua t i on
raw c o r r e l a t i o n s below the diagonal , alpha on the d iagonal
cor rec ted c o r r e l a t i o n s above the d iagonal :

one two
one 0.677 0.085
two 0.059 0.702

Average adjusted c o r r e l a t i o n s w i t h i n and between scales (MIMS)
one two

one 0.34
two 0.03 0.37

Average adjusted i tem x scale c o r r e l a t i o n s w i t h i n and between scales (MIMT)
one two

one 0.71
two 0.04 0.73
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Try an omega solution: No general factor!R code
omega(two.f,2)

Alpha: 0.62
G.6: 0.65
Omega Hierarchical: 0.12
Omega H asymptotic: 0.16
Omega Total 0.71

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* h2 u2 p2

V1- 0.57 0.36 0.64 0.10
V2- 0.51 0.29 0.71 0.08
V3- 0.59 0.39 0.61 0.10
V4- 0.56 0.34 0.66 0.07
V5 0.58 0.37 0.63 0.09
V6 0.57 0.36 0.64 0.09
V7 0.59 0.38 0.62 0.09
V8 0.20 0.59 0.39 0.61 0.10

With eigenvalues of:
g F1* F2*

0.26 1.36 1.26

general/max 0.19 max/min = 1.07
mean percent general = 0.09 with sd = 0.01 and cv of 0.12
Explained Common Variance of the general factor = 0.09

The degrees of freedom are 13 and the fit is 0.03
The number of observations was 500 with Chi Square = 16.11 with prob < 0.24
The root mean square of the residuals is 0.02
The df corrected root mean square of the residuals is 0.03
RMSEA index = 0.022 and the 10 % confidence intervals are 0 0.052
BIC = -64.68

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 20 and the fit is 1.01
The number of observations was 500 with Chi Square = 500.1 with prob < 2.8e-93
The root mean square of the residuals is 0.22
The df corrected root mean square of the residuals is 0.25
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Do it for the bfi (Big 5) items with keysR code
b5 <-scoreItems(bfi.keys,bfi)

Call: scoreItems(keys = bfi.keys, items = bfi)
(Unstandardized) Alpha:

agree conscientious extraversion neuroticism openness
alpha 0.7 0.72 0.76 0.81 0.6
Standard errors of unstandardized Alpha:

agree conscientious extraversion neuroticism openness
ASE 0.014 0.014 0.013 0.011 0.017
Average item correlation:

agree conscientious extraversion neuroticism openness
average.r 0.32 0.34 0.39 0.46 0.23
Median item correlation:

agree conscientious extraversion neuroticism openness
0.34 0.34 0.38 0.41 0.22

Guttman 6* reliability:
agree conscientious extraversion neuroticism openness

Lambda.6 0.7 0.72 0.76 0.81 0.6
Signal/Noise based upon av.r :

agree conscientious extraversion neuroticism openness
Signal/Noise 2.3 2.6 3.2 4.3 1.5

Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

agree conscientious extraversion neuroticism openness
agree 0.70 0.36 0.63 -0.245 0.23
conscientious 0.26 0.72 0.35 -0.305 0.30
extraversion 0.46 0.26 0.76 -0.284 0.32
neuroticism -0.18 -0.23 -0.22 0.812 -0.12
openness 0.15 0.19 0.22 -0.086 0.60

In order to see the item by scale loadings and frequency counts of the data
print with the short option = FALSE

>
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Show the bfi items ordered by scale and correlationR code
lookupFromKeys(bfi.keys,psychTools::bfi.dictionary[1:2],n=5,

cors=b5$item.corrected)

$agree
ItemLabel Item cors

A3 q_1206 Know how to comfort others. 0.70
A2 q_1162 Inquire about others' well-being. 0.67
A5 q_1419 Make people feel at ease. 0.62
A4 q_1364 Love children. 0.49
A1- q_146 Am indifferent to the feelings of others. -0.39

$conscientious
ItemLabel Item cors

C4- q_626 Do things in a half-way manner. -0.66
C2 q_530 Continue until everything is perfect. 0.61
C5- q_1949 Waste my time. -0.59
C3 q_619 Do things according to a plan. 0.54
C1 q_124 Am exacting in my work. 0.53

$extraversion
ItemLabel Item cors

E2- q_901 Find it difficult to approach others. -0.70
E4 q_1410 Make friends easily. 0.68
E3 q_1205 Know how to captivate people. 0.60
E1- q_712 Don't talk a lot. -0.59
E5 q_1768 Take charge. 0.55

$neuroticism
ItemLabel Item cors

N1 q_952 Get angry easily. 0.76
N2 q_974 Get irritated easily. 0.74
N3 q_1099 Have frequent mood swings. 0.74
N4 q_1479 Often feel blue. 0.62
N5 q_1505 Panic easily. 0.54

$openness
ItemLabel Item cors

O3 q_492 Carry the conversation to a higher level. 0.61
O5- q_1964 Will not probe deeply into a subject. -0.53
O1 q_128 Am full of ideas. 0.52
O2- q_316 Avoid difficult reading material. -0.45
O4 q_1738 Spend time reflecting on things. 0.32
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Intraclass correlations ICC of judges Kappa

Outline of Part II: Generalizability Theory and the IntraClass
Correlation

Intraclass correlations

ICC of judges

Kappa
Cohen’s kappa
Weighted kappa

90 / 139



Intraclass correlations ICC of judges Kappa

The Intraclass correlation

1. The Pearson correlation coefficient measures similarity of
patterns of two distinct variables across people.

2. The variables are two measures (say height and weight) on
the same set of people, and the two variables are logically
distinct.

3. But sometimes it is desired to measure how similar pairs (or
more) of people are on one variable.

4. xij = µ+ ai + bj + (ab)ij + eij

5. σ2
t = σ2

i + σ2
j + σ2

w .

6. ρ =
σ2

i
σ2

t
=

σ2
i

σ2
i +σ2

j +σ2
w
.

7. Generalizability Theory considers these multiple sources of
variance.
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Test Retest Reliability

1. Variance due to subjects

2. Variance due to items

3. Variance due to time

4. and the various interactions

92 / 139



Intraclass correlations ICC of judges Kappa

Consider the example of the EPI impulsivity scale
R code

Imp <- c("V1", "V3", "V8", "V10","V13" ,"V22", "V39" , "V5" , "V41")
imp.alpha <- alpha(epiR[Imp], check.keys=TRUE)

Reliability analysis
Call: alpha(x = epiR[Imp], check.keys = TRUE)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.51 0.52 0.52 0.11 1.1 0.023 1.6 0.21 0.099

lower alpha upper 95% confidence boundaries
0.47 0.51 0.56

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

V1 0.53 0.54 0.53 0.128 1.17 0.023 0.0100 0.129
V3 0.48 0.48 0.48 0.105 0.94 0.025 0.0108 0.099
V8 0.44 0.45 0.45 0.092 0.81 0.027 0.0097 0.085
V10 0.47 0.47 0.48 0.100 0.89 0.025 0.0124 0.092
V13 0.41 0.42 0.42 0.083 0.73 0.029 0.0085 0.092
V22 0.53 0.53 0.52 0.123 1.12 0.023 0.0107 0.114
V39 0.45 0.46 0.46 0.097 0.86 0.027 0.0106 0.092
V5- 0.46 0.45 0.46 0.094 0.83 0.026 0.0106 0.095
V41 0.55 0.55 0.54 0.133 1.23 0.022 0.0086 0.129

Not a very good scale!
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But we look at the documentation

These are actually 4 studies and two time points. Score the scale
and then correlate across time.
Note, that we have to sort the file

R code
imp.scores <- data.frame(epiR[1:3] ,imp =imp.alpha$scores)
imp.ordered <-dfOrder(imp.scores,cs(time,study)) #sort them
cor2(imp.ordered[1:474,],imp.ordered[475:948,]) #correlate them

id time study* imp
id 1.00 NA 0.36 -0.05
time NA NA NA NA
study* 0.36 NA 1.00 -0.04
imp -0.10 NA 0.00 0.70

Although α = .51 the correlation over several weeks is .70!
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Use testRetest to do this and more
R code

imp.analysis <- testRetest(psychTools::epiR,select=Imp)
print(imp.analysis,short=FALSE)

Test Retest reliability
Call: testRetest(t1 = psychTools::epiR, select = Imp)
Number of subjects = 474 Number of items = 9
Correlation of scale scores over time 0.7
Alpha reliability statistics for time 1 and time 2

raw G3 std G3 G6 av.r S/N se lower upper var.r
Time 1 0.51 0.52 0.52 0.11 1.08 0.52 0.25 0.99 0.01
Time 2 0.51 0.52 0.52 0.11 1.07 0.51 0.25 0.99 0.01
Mean between person, across item reliability = 0.52
Mean within person, across item reliability = 0.58

with standard deviation of 0.3
Mean within person, across item d2 = 0.2

R1F = 0.73 Reliability of average of all items for one time (Random time effects)
RkF = 0.85 Reliability of average of all items and both times (Fixed time effects)
R1R = 0.71 Generalizability of a single time point across all items (Random time effects)
Rc = 0.12 Generalizability of change (fixed time points, fixed items)
Multilevel components of variance

variance Percent
ID 0.02 0.08
Time 0.00 0.00
Items 0.04 0.18
ID x time 0.00 0.01
ID x items 0.09 0.35
time x items 0.00 0.00
Residual 0.10 0.39
Total 0.25 1.00

95 / 139



Intraclass correlations ICC of judges Kappa

Item statistics show the items are stable

With Item statistics
rii PC1 PC2 mean1 mean2 keys

V1 0.47 0.21 0.18 1.30 1.24 1
V3 0.53 0.51 0.46 1.40 1.44 1
V8 0.49 0.57 0.63 1.67 1.65 1
V10 0.52 0.51 0.46 1.85 1.90 1
V13 0.55 0.70 0.69 1.41 1.42 1
V22 0.56 0.26 0.24 1.43 1.44 1
V39 0.57 0.58 0.52 1.45 1.43 1
V5 0.33 -0.54 -0.60 1.18 1.18 -1
V41 0.62 0.05 0.17 1.70 1.76 1

1. The items are surprisingly stable

2. Although not necessarily related to total score.
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Reliability of judges

• When raters (judges) rate targets, there are multiple sources
of variance

• Between targets
• Between judges
• Interaction of judges and targets

• The intraclass correlation is an analysis of variance
decomposition of these components

• Different ICC’s depending upon what is important to consider
• Absolute scores: each target gets just one judge, and judges

differ
• Relative scores: each judge rates multiple targets, and the

mean for the judge is removed
• Each judge rates multiple targets, judge and target effects

removed
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Ratings of judges

What is the reliability of ratings of different judges across ratees? It
depends. Depends upon the pairing of judges, depends upon the
targets. ICC does an Anova decomposition.

> Ratings
J1 J2 J3 J4 J5 J6

1 1 1 6 2 3 6
2 2 2 7 4 1 2
3 3 3 8 6 5 10
4 4 4 9 8 2 4
5 5 5 10 10 6 12
6 6 6 11 12 4 8

> describe(Ratings,skew=FALSE)

var n mean sd median trimmed mad min max range se
J1 1 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76
J2 2 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76
J3 3 6 8.5 1.87 8.5 8.5 2.22 6 11 5 0.76
J4 4 6 7.0 3.74 7.0 7.0 4.45 2 12 10 1.53
J5 5 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76
J6 6 6 7.0 3.74 7.0 7.0 4.45 2 12 10 1.53
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Sources of variances and the Intraclass Correlation Coefficient

Table: Sources of variances and the Intraclass Correlation Coefficient.

(J1, J2) (J3, J4) (J5, J6) (J1, J3) (J1, J5) (J1 ... J3) (J1 ... J4) (J1 ... J6)
Variance estimates

MSb 7 15.75 15.75 7.0 5.2 10.50 21.88 28.33
MSw 0 2.58 7.58 12.5 1.5 8.33 7.12 7.38
MSj 0 6.75 36.75 75.0 0.0 50.00 38.38 30.60
MSe 0 1.75 1.75 0.0 1.8 0.00 .88 2.73

Intraclass correlations
ICC(1,1) 1.00 .72 .35 -.28 .55 .08 .34 .32
ICC(2,1) 1.00 .73 .48 .22 .53 .30 .42 .37
ICC(3,1) 1.00 .80 .80 1.00 .49 1.00 .86 .61
ICC(1,k) 1.00 .84 .52 -.79 .71 .21 .67 .74
ICC(2,k) 1.00 .85 .65 .36 .69 .56 .75 .78
ICC(3,k) 1.00 .89 .89 1.00 .65 1.00 .96 .90
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ICC is done by calling anova

aov . x <− aov ( values ~ subs + ind , data = x . df )
s . aov <− summary ( aov . x )
s t a t s <− matrix ( un l is t ( s . aov ) , ncol = 3 , byrow = TRUE)
MSB <− s t a t s [3 , 1 ]
MSW <− ( s t a t s [ 2 , 2 ] + s t a t s [ 2 , 3 ] ) / ( s t a t s [ 1 , 2 ] + s t a t s [ 1 ,

3 ] )
MSJ <− s t a t s [3 , 2 ]
MSE <− s t a t s [3 , 3 ]
ICC1 <− (MSB − MSW) / (MSB + ( n j − 1) * MSW)
ICC2 <− (MSB − MSE) / (MSB + ( n j − 1) * MSE + n j * (MSJ − MSE) / n . obs )
ICC3 <− (MSB − MSE) / (MSB + ( n j − 1) * MSE)
ICC12 <− (MSB − MSW) / (MSB)
ICC22 <− (MSB − MSE) / (MSB + (MSJ − MSE) / n . obs )
ICC32 <− (MSB − MSE) /MSB
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Intraclass Correlations using the ICC function
> pr in t ( ICC ( Rat ings ) , a l l =TRUE) #get more output than normal
$ r e s u l t s

type ICC F df1 df2 p lower bound upper bound
Sing le_ r a t e r s _absolu te ICC1 0.32 3.84 5 30 0.01 0.04 0.79
Sing le_random_ r a t e r s ICC2 0.37 10.37 5 25 0.00 0.09 0.80
Sing le_ f i x e d _ r a t e r s ICC3 0.61 10.37 5 25 0.00 0.28 0.91
Average_ r a t e r s _absolu te ICC1k 0.74 3.84 5 30 0.01 0.21 0.96
Average_random_ r a t e r s ICC2k 0.78 10.37 5 25 0.00 0.38 0.96
Average_ f i x e d _ r a t e r s ICC3k 0.90 10.37 5 25 0.00 0.70 0.98

$summary
Df Sum Sq Mean Sq F value Pr ( >F)

subs 5 141.667 28.3333 10.366 1.801e−05 * * *
i nd 5 153.000 30.6000 11.195 9.644e−06 * * *
Residuals 25 68.333 2.7333
−−−

$ s t a t s
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 5.000000e+00 5.000000e+00 25.000000
[ 2 , ] 1.416667e+02 1.530000e+02 68.333333
[ 3 , ] 2.833333e+01 3.060000e+01 2.733333
[ 4 , ] 1.036585e+01 1.119512e+01 NA
[ 5 , ] 1.800581e−05 9.644359e−06 NA

$MSW
[ 1 ] 7.377778

$Cal l
ICC ( x = Rat ings )

$n . obs
[ 1 ] 6

$n . judge
[ 1 ] 6
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Cohen’s kappa and weighted kappa

• When considering agreement in diagnostic categories,
without numerical values, it is useful to consider the kappa
coefficient.

• Emphasizes matches of ratings
• Doesn’t consider how far off disagreements are.

• Weighted kappa weights the off diagonal distance.
• Diagnostic categories: normal, neurotic, psychotic
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Cohen kappa and weighted kappa

> cohen
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0.44 0.07 0.09
[ 2 , ] 0.05 0.20 0.05
[ 3 , ] 0.01 0.03 0.06
> cohen . weights

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 1 3
[ 2 , ] 1 0 6
[ 3 , ] 3 6 0
> cohen . kappa ( cohen , cohen . weights )
Cal l : cohen . kappa1 ( x = x , w = w, n . obs = n . obs , alpha = alpha )

Cohen Kappa and Weighted Kappa c o r r e l a t i o n coef f ic ients and conf idence boundaries
lower est imate upper

unweighted kappa −0.92 0.49 1.9
weighted kappa −10.04 0.35 10.7

see the other examples in ?cohen.kappa
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Outline of Part III: the New Psychometrics

Two approaches

Various IRT models

Polytomous items
Ordered response categories
Differential Item Functioning

Factor analysis & IRT
Non-monotone Trace lines

(C) A T

Problems
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Classical Reliability

1. Classical model of reliability
• Observed = True + Error
• Reliability = 1 − σ2

error
σ2

observed

• Reliability = rxx = r2
xdomain

• Reliability as correlation of a test with a test just like it

2. Reliability requires variance in observed score
• As σ2

x decreases so will rxx = 1 − σ2
error

σ2
observed

3. Alternate estimates of reliability all share this need for
variance
3.1 Internal Consistency
3.2 Alternate Form
3.3 Test-retest
3.4 Between rater

4. Item difficulty is ignored, items assumed to be sampled at
random
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The “new psychometrics”

1. Model the person as well as the item
• People differ in some latent score
• Items differ in difficulty and discriminability

2. Original model is a model of ability tests
• p(correct |ability , difficulty , ...) = f (ability − difficulty)
• What is the appropriate function?

3. Extensions to polytomous items, particularly rating scale
models
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Classic Test Theory as 0 parameter IRT

Classic Test Theory considers all items to be random replicates of
each other and total (or average) score to be the appropriate
measure of the underlying attribute. Items are thought to be
endorsed (passed) with an increasing probability as a function of
the underlying trait. But if the trait is unbounded (just as there is
always the possibility of someone being higher than the highest
observed score, so is there a chance of someone being lower than
the lowest observed score), and the score is bounded (from p=0 to
p=1), then the relationship between the latent score and the
observed score must be non-linear. This leads to the most simple
of all models, one that has no parameters to estimate but is just a
non-linear mapping of latent to observed:

p(correctij |θi) =
1

1 + e−θi
. (32)
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Rasch model – All items equally discriminating, differ in difficulty

Slightly more complicated than the zero parameter model is to
assume that all items are equally good measures of the trait, but
differ only in their difficulty/location. The one parameter logistic
(1PL) Rasch model (Rasch, 1960) is the easiest to understand:

p(correctij |θi , δj) =
1

1 + eδj−θi
. (33)

That is, the probability of the i th person being correct on (or
endorsing) the j th item is a logistic function of the difference
between the person’s ability (latent trait) (θi ) and the item difficulty
(or location) (δj ). The more the person’s ability is greater than the
item difficulty, the more likely the person is to get the item correct.
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Estimating the model

The probability of missing an item, q, is just 1 - p(correct) and thus
the odds ratio of being correct for a person with ability, θi , on an
item with difficulty, δj is

ORij =
p

1 − p
=

p
q
=

1
1+eδj−θi

1 − 1
1+eδj−θi

=

1
1+eδj−θi

eδj−θi

1+eδj−θi

=
1

eδj−θi
= eθi−δj .

(34)
That is, the odds ratio will be a exponential function of the
difference between a person’s ability and the task difficulty. The
odds of a particular pattern of rights and wrongs over n items will
be the product of n odds ratios

ORi1ORi2 . . .ORin =
n∏

j=1

eθi−δj = enθi e−
∑n

j=1 δj . (35)
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Estimating parameters

Substituting P for the pattern of correct responses and Q for the
pattern of incorrect responses, and taking the logarithm of both
sides of equation 35 leads to a much simpler form:

ln
P
Q

= nθi +
n∑

j=1

δj = n(θi − δ̄). (36)

That is, the log of the pattern of correct/incorrect for the i th

individual is a function of the number of items * (θi - the average
difficulty). Specifying the average difficulty of an item as δ̄ = 0 to
set the scale, then θi is just the logarithm of P/Q divided by n or,
conceptually, the average logarithm of the p/q

θi =
ln P

Q

n
. (37)
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Difficulty is just a function of probability correct
Similarly, the pattern of the odds of correct and incorrect responses
across people for a particular item with difficulty δj will be

OR1jOR2j . . .ORnj =
P
Q

=
N∏

i=1

eθi−δj = e
∑N

i=1(θi)−Nδj (38)

and taking logs of both sides leads to

ln
P
Q

=
N∑

i=1

(θi)− Nδj . (39)

Letting the average ability θ̄ = 0 leads to the conclusion that the
difficulty of an item for all subjects, δj , is the logarithm of Q/P
divided by the number of subjects, N,

δj =
ln Q

P

N
. (40)
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Rasch model in words

That is, the estimate of ability (Equation 37) for items with an
average difficulty of 0 does not require knowing the difficulty of any
particular item, but is just a function of the pattern of corrects and
incorrects for a subject across all items.
Similarly, the estimate of item difficulty across people ranging in
ability, but with an average ability of 0 (Equation 40) is a function of
the response pattern of all the subjects on that one item and does
not depend upon knowing any one person’s ability. The
assumptions that average difficulty and average ability are 0 are
merely to fix the scales. Replacing the average values with a
non-zero value just adds a constant to the estimates.
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Rasch as a high jump

The independence of ability from difficulty implied in equations 37
and 40 makes estimation of both values very straightforward.
These two equations also have the important implication that the
number correct (np̄ for a subject, Np̄ for an item) is monotonically,
but not linearly related to ability or to difficulty.
That the estimated ability is independent of the pattern of rights
and wrongs but just depends upon the total number correct is seen
as both a strength and a weakness of the Rasch model. From the
perspective of fundamental measurement, Rasch scoring provides
an additive interval scale: for all people and items, if θi < θj and
δk < δl then p(x |θi , δk) < p(x |θj , δl). But this very additivity treats
all patterns of scores with the same number correct as equal and
ignores potential information in the pattern of responses.
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Rasch estimates from ltm
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The LSAT example from ltm

data ( bock )
> ord <− order ( colMeans ( l s a t 6 ) , decreasing=TRUE)
> l s a t 6 . sor ted <− l s a t 6 [ , ord ]
> descr ibe ( l s a t 6 . sor ted )
> Tau <− round( −qnorm ( colMeans ( l s a t 6 . sor ted ) ) , 2 ) #tau = estimates of threshold
> rasch ( l s a t 6 . sorted , c o n s t r a i n t =cbind ( ncol ( l s a t 6 . sor ted )+1 ,1 .702) )

var n mean sd median trimmed mad min max range skew k u r t o s i s se
Q1 1 1000 0.92 0.27 1 1.00 0 0 1 1 −3.20 8.22 0.01
Q5 2 1000 0.87 0.34 1 0.96 0 0 1 1 −2.20 2.83 0.01
Q4 3 1000 0.76 0.43 1 0.83 0 0 1 1 −1.24 −0.48 0.01
Q2 4 1000 0.71 0.45 1 0.76 0 0 1 1 −0.92 −1.16 0.01
Q3 5 1000 0.55 0.50 1 0.57 0 0 1 1 −0.21 −1.96 0.02

> Tau
Q1 Q5 Q4 Q2 Q3

−1.43 −1.13 −0.72 −0.55 −0.13

Cal l :
rasch ( data = l s a t 6 . sorted , c o n s t r a i n t = cbind ( ncol ( l s a t 6 . sor ted ) +

1 , 1 .702) )

C o e f f i c i e n t s :
D f f c l t .Q1 D f f c l t .Q5 D f f c l t .Q4 D f f c l t .Q2 D f f c l t .Q3 Dscrmn

−1.927 −1.507 −0.960 −0.742 −0.195 1.702
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Item information

When forming a test and evaluating the items within a test, the
most useful items are the ones that give the most information
about a person’s score. In classic test theory, item information is
the reciprocal of the squared standard error for the item or for a
one factor test, the ratio of the item communality to its uniqueness:

Ij =
1
σ2

ej

=
h2

j

1 − h2
j
.

When estimating ability using IRT, the information for an item is a
function of the first derivative of the likelihood function and is
maximized at the inflection point of the icc.
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Estimating item information
The information function for an item is

I(f , xj) =
[P ′

j (f )]
2

Pj(f )Qj(f )
(41)

For the 1PL model, P ′, the first derivative of the probability function
Pj(f ) = 1

1+eδ−θ is

P ′ =
eδ−θ

(1 + eδ−θ)2 (42)

which is just PjQj and thus the information for an item is

Ij = PjQj . (43)

That is, information is maximized when the probability of getting an
item correct is the same as getting it wrong, or, in other words, the
best estimate for an item’s difficulty is that value where half of the
subjects pass the item.
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Elaborations of Rasch

1. Logistic or cumulative normal function
• Logistic treats any pattern of responses the same
• Cumulative normal weights extreme scores more

2. Rasch and 1PN models treat all items as equally
discriminating

• But some items are better than others
• Thus, the two parameter model

p(correctij |θi , αj , δj) =
1

1 + eαi (δj−θi )
(44)
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2PL and 2PN models

p(correctij |θi , αj , δj) =
1

1 + eαi(δj−θi)
(45)

while in the two parameter normal ogive (2PN) model this is

p(correct |θ, αj , δ) =
1√
2π

∫ α(θ−δ)

− inf
e− u2

2 du (46)

where u = α(θ − δ).
The information function for a two parameter model reflects the
item discrimination parameter, α,

Ij = α2PjQj (47)

which, for a 2PL model is

Ij = α2
j PjQj =

α2
j

(1 + eαj(δj−θj))2
. (48)
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The problem of non-parallel trace lines
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Parameter explosion – better fit but at what cost

The 3 parameter model adds a guessing parameter.

p(correctij |θi , αj , δj , γj) = γj +
1 − γj

1 + eαi(δj−θi)
(49)

And the four parameter model adds an asymtotic parameter

P(x |θi , α, δj , γj , ζj) = γj +
ζj − γj

1 + eαj(δj−θi)
. (50)
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A four parameter model
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Personality items with monotone trace lines

A typical personality item might ask “How much do you enjoy a
lively party" with a five point response scale ranging from “1: not at
all" to “5: a great deal" with a neutral category at 3. An alternative
response scale for this kind of item is to not have a neutral
category but rather have an even number of responses. Thus a six
point scale could range from “1: very inaccurate" to “6: very
accurate” with no neutral category
The assumption is that the more sociable one is, the higher the
response alternative chosen. The probability of endorsing a 1 will
increase monotonically the less sociable one is, the probability of
endorsing a 5 will increase monotonically the more sociable one is.
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Threshold models

For the 1PL or 2PL logistic model the probability of endorsing the
k th response is a function of ability, item thresholds, and the
discrimination parameter and is

P(r = k|θi , δk , δk−1, αk ) = P(r|θi , δk−1, αk ) − P(r|θi , δk , αk ) =
1

1 + eαk (δk−1−θi )
−

1

1 + eαsk (δk −θi )

(51)

where all bk are set to bk = 1 in the 1PL Rasch case.
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Responses to a multiple choice polytomous item
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Differences in the response shape of mulitple choice items
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Differential Item Functioning
1. Use of IRT to analyze item quality

• Find IRT difficulty and discrimination parameters for different
groups

• Compare response patterns
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FA and IRT
If the correlations of all of the items reflect one underlying latent
variable, then factor analysis of the matrix of tetrachoric
correlations should allow for the identification of the regression
slopes (α) of the items on the latent variable. These regressions
are, of course just the factor loadings. Item difficulty, δj and item
discrimination, αj may be found from factor analysis of the
tetrachoric correlations where λj is just the factor loading on the
first factor and τj is the normal threshold reported by the
tetrachoric function (McDonald, 1999; Lord and Novick, 1968;
Takane and de Leeuw, 1987).

δj =
Dτ√
1 − λ2

j

, αj =
λj√

1 − λ2
j

(52)

where D is a scaling factor used when converting to the
parameterization of logistic model and is 1.702 in that case and 1
in the case of the normal ogive model.
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FA and IRT

IRT parameters from FA

δj =
Dτ√
1 − λ2

j

, αj =
λj√

1 − λ2
j

(53)

FA parameters from IRT

λj =
αj√

1 + α2
j

, τj =
δj√

1 + α2
j

.
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the irt.fa function

> set . seed (17)
> i tems <− sim . npn (9 ,1000 , low = −2.5 , high =2.5)$ i tems
> p . fa <− i r t . fa ( i tems )

Summary in fo rma t i on by factor and i tem
Factor = 1

−3 −2 −1 0 1 2 3
V1 0.61 0.66 0.21 0.04 0.01 0.00 0.00
V2 0.31 0.71 0.45 0.12 0.02 0.00 0.00
V3 0.12 0.51 0.76 0.29 0.06 0.01 0.00
V4 0.05 0.26 0.71 0.54 0.14 0.03 0.00
V5 0.01 0.07 0.44 1.00 0.40 0.07 0.01
V6 0.00 0.03 0.16 0.59 0.72 0.24 0.05
V7 0.00 0.01 0.04 0.21 0.74 0.66 0.17
V8 0.00 0.00 0.02 0.11 0.45 0.73 0.32
V9 0.00 0.00 0.01 0.07 0.25 0.55 0.44
Test I n f o 1.11 2.25 2.80 2.97 2.79 2.28 0.99
SEM 0.95 0.67 0.60 0.58 0.60 0.66 1.01
R e l i a b i l i t y 0.10 0.55 0.64 0.66 0.64 0.56 −0.01
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Item Characteristic Curves from FA
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Item information from FA
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Test Information Curve
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Comparing three ways of estimating the parameters

set . seed (17)
i tems <− sim . npn (9 ,1000 , low = −2.5 , high =2.5)$ i tems
p . fa <− i r t . fa ( i tems ) $ coef f ic ients [ 1 : 2 ]
p . l tm <− l tm ( i tems~z1 ) $ coef f ic ients
p . ra <− rasch ( items , c o n s t r a i n t = cbind ( ncol ( i tems ) + 1 , 1 ) ) $ coef f ic ients
a <− seq ( −2 .5 ,2 .5 ,5 / 8)
p . df <− data . frame ( a , p . fa , p . l tm , p . ra )
round ( p . df , 2 )

a D i f f i c u l t y D i s c r i m i n a t i o n X. I n t e r c e p t . z1 beta . i beta
I tem 1 −2.50 −2.45 1.03 5.42 2.61 3.64 1
Item 2 −1.88 −1.84 1.00 3.35 1.88 2.70 1
Item 3 −1.25 −1.22 1.04 2.09 1.77 1.73 1
Item 4 −0.62 −0.69 1.03 1.17 1.71 0.98 1
Item 5 0.00 −0.03 1.18 0.04 1.94 0.03 1
Item 6 0.62 0.63 1.05 −1.05 1.68 −0.88 1
Item 7 1.25 1.43 1.10 −2.47 1.90 −1.97 1
Item 8 1.88 1.85 1.01 −3.75 2.27 −2.71 1
Item 9 2.50 2.31 0.90 −5.03 2.31 −3.66 1
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Attitudes might not have monotone trace lines

1. Abortion is unacceptable under any circumstances.
2. Even if one believes that there may be some

exceptions, abortions is still generally wrong.
3. There are some clear situations where abortion

should be legal, but it should not be permitted in all
situations.

4. Although abortion on demand seems quite extreme,
I generally favor a woman’s right to choose.

5. Abortion should be legal under any circumstances.
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Ideal point models of attitutude
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IRT and CTT don’t really differ except

1. Correlation of classic test scores and IRT scores > .98.

2. Test information for the person doesnt’t require people to vary
3. Possible to item bank with IRT

• Make up tests with parallel items based upon difficulty and
discrimination

• Detect poor items

4. Adaptive testing
• No need to give a person an item that they will almost certainly

pass (or fail)
• Can tailor the test to the person
• (Problem with anxiety and item failure)
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Consider two 5 item tests, A and B

1. average r within test A =.3

2. average r within test B =. 3

3. average r between the tests = .3

4. What is the variance of test A

5. What is the variance of test B

6. What is the covariance of A and B

7. What is the correlation of A and B?
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Consider two 10 item tests, A and B

1. average r within test A =.3

2. average r within test B =. 3

3. average r between the tests = .3

4. What is the variance of test A

5. What is the variance of test B

6. What is the covariance of A and B

7. What is the correlation of A and B?
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