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Psychometric Theory

Basic Concepts of Variance, 
Covariance and Correlation



Basic statistics 

• Central tendency
– multiple measures, multiple ways of measuring

• Measures of dispersion
– Single variables
– composite variables

• Measures of relationship
– Bivariate
– Multivariate



Estimates of Central Tendency
• Consider a set of observations X = {x1,x2…xn}
• What is the best way to characterize this set

– Mode: most frequent observation
– Median: middle of ranked observations

Mean:

Arithmetic = X   =∑
1

n
(Xi)/N 

Geometric = 
n
∏
1

n
(Xi) 

Harmonic = 
N

∑
1

n
(1/Xi)

 



Alternative expressions of mean

• Arithmetic mean = ∑ xi/N

• Alternatives are anti transformed means of 
transformed numbers

• Geometric mean = exp(∑ ln(xi)/N)
– (anti log of average log)

• Harmonic Mean = reciprocal of average 
reciprocal
– 1/(∑ (1/xi)/N)



Why all the fuss?

• Consider 1,2,4,8,16,32,64
• Median = 8
• Arithmetic mean = 18.1
• Geometric = 8
• Harmonic = 3.5
• Which of these best captures the “average” 

value?



Summary stats ( R code) 
> x<-c(1,2,4,8,16,32,64)  #enter the data
> summary(x)  # simple summary
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    3.00    8.00   18.14   24.00   64.00 
> boxplot(x)  #show five number summary
> stripchart(x,vertical=T,add=T)  #add in the points
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Consider two sets, which is more?
subject Set 1 Set 2

1 1 10
2 2 11
3 4 12
4 8 13
5 16 14
6 32 15
7 64 16

median 8 13
arithmetic 18.1 13.0
geometric 8.0 12.8
harmonic 3.5 12.7



Summary stats (R code)
> x <- c(1,2,4,8,16,32,64)  #enter the data

> y <- seq(10,16)   #sequence of numbers from 10 to 16
> xy.df <- data.frame(x,y)  #create a "data frame"

> xy.df      #show the data
   x  y
1  1 10
2  2 11
3  4 12
4  8 13
5 16 14
6 32 15
7 64 16

> summary(xy.df)   #basic descriptive stats
       x               y       

 Min.   : 1.00   Min.   :10.0  
 1st Qu.: 3.00   1st Qu.:11.5  
 Median : 8.00   Median :13.0  
 Mean   :18.14   Mean   :13.0  
 3rd Qu.:24.00   3rd Qu.:14.5  
 Max.   :64.00   Max.   :16.0  



Box Plot (R)
boxplot(xy.df)  #show five number summary

stripchart(xy.df,vertical=T,add=T)  #add in the 
points
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The effect of log transforms
Which group is “more”?

X Y Log X Log Y
1 10 0.0 2.3
2 11 0.7 2.4
4 12 1.4 2.5
8 13 2.1 2.6

16 14 2.8 2.9
32 15 3.5 2.7
64 16 4.2 2.8



Raw and log transformed
which group is “bigger”?

X Y Log(X) Log(Y)
Min 1 10 0 2.30

1st Q. 3 11.5 1.04 2.44
Median 8 13 2.08 2.57
Mean 18.1 13 2.08 2.26
3rd Q. 24 14.5 3.12 2.67
Max 64 16 4.16 2.77



The effect of a transform on means and medians
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Estimating central tendencies

• Although it seems easy to find a mean (or 
even a median) of a distribution, it is 
necessary to consider what is the 
distribution of interest.

• Consider the problems of the average 
length of psychotherapy, the average size of 
a class at NU, the average velocity of cars 
on a highway, or the average time of day at 
which people are most alert.



Estimating the mean time of therapy

• A therapist has 20 patients, 19 of whom have been in 
therapy for 26-104 weeks (median, 52 weeks), 1 of 
whom has just had their first appointment.  Assuming 
this is her typical load, what is the average time patients 
are in therapy?

• Is this the average for this therapist the same as the 
average for the patients seeking therapy? 



Estimating the mean time of therapy

• 19 with average of 52 weeks, 1 for 1 week
– Therapists average is (19*52+1*1)/20 = 49.5 

weeks
– Median is 52

• But therapist sees 19 for 52 weeks and 52 for 
one week so the average length is 
– ((19*52)+(52*1))/(19+52) = 14.6 weeks
– Median is 1



Estimating Class size

Faculty
member

100
fr

200
so-jr

300
jr-sr

400
grad

average

1 10 20 10 10 12.5

2 10 20 10 10 12.5

3 10 20 10 10 12.5

4 100 20 20 10 37.5

5 400 100 100 100 175
department 106 36 30 28 50

5 faculty members teach 20 courses with the following 
distribution: What is the average class size?



Estimating class size
• What is the average class size?
• If each student takes 4 courses, what is the average class 

size from the students’ point of view?
• Department point of view: average is 50 students/class

N Size
10 10
5 20
4 100
1 400



Estimating Class size
Faculty
member

A B C D average

1 10 20 10 10 12.5

2 10 20 10 10 12.5

3 10 20 10 10 12.5

4 100 20 20 10 37.5

5 400 100 100 100 175
department 106 36 30 28 50



Estimating Class size 
(student weighted)

Faculty
member

A B C D average

1 10 20 10 10 14

2 10 20 10 10 14

3 10 20 10 10 14

4 100 20 20 10 73

5 400 100 100 100 271
Student 321 64 71 74 203



Estimating class size
Department perspective:
	
 20 courses, 1000 students => average = 50
Student perspective:  1000 students enroll in 

classes with an average size of 203! 
Faculty perspective: chair tells prospective faculty 

members that median faculty course size is 12.5, 
tells the dean that the average is 50 and tells 
parents that most upper division courses are 
small. 



Traffic Flow 

• Three lanes of traffic, uniformly distributed
– one lane is traveling at 10 mph
– one lane is travelling at 20 mph
– one lane is traveling at 30 mph

• What is the average velocity of cars?
• What is the median velocity?



Traffic Flow: 
But officer, I wasn’t speeding

• Three lanes of traffic, uniformly distributed
– one lane is traveling at 10 mph
– one lane is travelling at 20 mph
– one lane is traveling at 30 mph

• Assume cars are spaced a mile apart
– Average = 30*30 +20*20 +10 *10 = 1400/60 =

• 23.3
– Median is 50th percentile -- mid point between 

20 and 30 = 25



Average Velocity

• On a 100 mile trip from Chicago to 
Milwaukee, you drive the first 50 miles at 
30 miles/hour and the second half at 60 
miles/hour.  What is your average velocity?

• A race car driver has to average 90 miles an 
hour for two laps of a one mile track.  He 
does the first lap at 45 mph.  How fast must 
he drive the second lap?



Velocity leads to time weighting

• A trip to Milwaukee:
– 50 miles at 30 mph = 1.66 hours
– 50 miles at 60 mph = .833 hours.
– Average is (1.66* 30 + .833 * 60)/2.5 = 40 mph

• Race car driver
– First lap at 45 =>  1.33 minutes
– Total time allowed = 120 secs/90  =1.33 

minutes
– driver can not average 90! 



Circular Statistics: Averaging 
over time

x̄circular = tan

�1

✓P
cos(x)/nP
sin(x)/n

◆

For x in radians then the circular mean is 

To convert x in hours to radians:

x

radians

=
X

hours

24
2⇡



Circular statistics, yet another 
way of thinking of data

62 3 The problem of scale

Table 3.8 Hypothetical mood data from six subjects for four mood variables. The values reflect the
time of day that each scale achieves its maximum value for each subject. Each mood variable is just
the previous one shifted by 5 hours. Note how this structure is preserved for the circular mean but not
for the arithmetic mean.

Subject Energetic Arousal Positive A�ect Tense Arousal Negative A�ect
1 9 14 19 24
2 11 16 21 2
3 13 18 23 4
4 15 20 1 6
5 17 22 3 8
6 19 24 5 10

Arithmetic Mean 14 19 12 9
Circular Mean 14 19 24 5

3.5 Whose mean? The problem of point of view

Even if the arithmetic average is used, finding the central tendency is not as easy as just
adding up the observations and dividing by the total number of observations (Equation 3.1).
For it is important to think about what is being averaged. Incorrectly finding an average can
lead to very serious inferential mistakes. Consider two examples, the first is how long people
are in psychotherapy, the second is what is the average class size in particular department.

3.5.1 Average length of time in psychotherapy

A psychotherapist is asked what is the average length of time that a patient is in therapy.
This seems to be an easy question, for of the 20 patients, 19 have been in therapy for between
6 and 18 months (with a median of 12) and one has just started. Thus, the median client is
in therapy for 52 weeks with an average (in weeks) (1 * 1 + 19 * 52)/20 or 49.4.

However, a more careful analysis examines the case load over a year and discovers that
indeed, 19 patients have a median time in treatment of 52 weeks, but that each week the
therapist is also seeing a new client for just one session. That is, over the year, the therapist
sees 52 patients for 1 week and 19 for a median of 52 weeks. Thus, the median client is in
therapy for 1 week and the average client is in therapy of ( 52 * 1 + 19 * 52 )/(52+19) =
14.6 weeks.

A similar problem of taking cross sectional statistics to estimate long term duration have
been shown in measuring the average length of time people are on welfare (a social worker’s
case load at any one time reflects mainly long term clients, but most clients are on welfare for
only a short period of time). Situations where the participants are self weighted lead to this
problem. The average velocity of tortoises and hares passing by an observer will be weighted
towards the velocity of hares as more of those pass by, even though the overall velocity of
both tortoises and hares is much less.

Hypothetical mood data from six subjects for four mood 
variables. The values reflect the time of day that each 
scale achieves its maximum value for each subject. 
Each mood variable is just the previous one shifted by 
for the arithmetic mean.



Measures of dispersion

• Range (maximum - minimum)
• Interquartile range (75% - 25%)
• Deviation score xi = Xi-Mean
• Median absolute deviation from median
• Variance = ∑xi

2/(N-1)  = mean square
• Standard deviation sqrt (variance ) 

=sqrt(∑xi
2/(N-1))



Robust measures of dispersion

• The 5-7 numbers of a box 
plot

• Max
• Top Whisker 
• Top quartile (hinge)
• Median
• Bottom Quartile (hinge)
• Bottom Whisker  
• Minimum
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Raw scores, deviation scores and 
Standard Scores

• Raw score for ith individual Xi

• Deviation score xi=Xi-Mean X
• Standard score = xi/sx

• Variance of standard scores = 1
• Mean of standard scores = 0
• Standard scores are unit free index



Transformations of scores

• Mean of (X+C) = Mean(X) + C
• Variance (X+C) = Variance(X)
• Variance (X*C) = Variance(X) *C2

• Coefficient of variation = sd/mean



Typical transformations
Mean Standard Deviation

Raw data X. = ∑X/n Sqrt(∑(X-X.) 2 )/(n-1)= 
sx =Sqrt(∑x2)/(n-1)

deviation score 0 sx

Standard score 0 1

“IQ” 100 15

“SAT” 500 100

“T-Score” 50 10

“stanine” 5 2
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Variance of Composite

X Y

X Variance X Covariance XY

Y Covariance XY Variance Y

Variance (X+Y) = Var X +  Var Y + 2 Cov XY



Variance of Composite

X Y

X ∑ xi
2/(N-1) ∑xiyi /(N-1)

Y ∑xiyi /(N-1) ∑ yi 2/(N-1)

Var (X+Y) = ∑(xi+yi)2/(N-1) =∑ xi
2/(N-1) + ∑ yi 

2/(N-1)
+ 2 ∑xiyi /(N-1)



Consider the following problem

• If you have a GRE V of 700 and a GRE Q 
of 700, how many standard deviations are 
you above the mean GRE (V+Q)?

• Need to know the Mean and Variance of V, 
Q, and V+Q



GRE V GRE 
Q

GRE V+Q

Mean 500 500 1000

SD 100 100 ?



Variance of GRE (V+Q)

GRE V GRE Q

GRE V 10,000 6,000

GRE Q 6,000 10,000

Variance of composite = 32,000    => s.d. composite = 179



Variance of GRE (V+Q)

GRE V GRE Q GRE V+Q

Mean 500 500 1000

SD 100 100 179



Standard score on composite

GRE V GRE Q GRE V+Q

mean 500 500 1000

sd 100 100 179

raw score 700 700 1400

z score 2 2 2.23

percentile 97.7 97.7 98.7



Variance of composite of n variables: 
generalization of variance of x+y

X1 X2 … Xi Xj … Xn

X1 Vx1

x2 Cx1x2 Vx2

… …
Xi Cx1xi Cx2xi Vxi

Xj Cx1xj Cx2xj Cxixi Vxj

… …
Xn Cx1xn Cx2xn Cxix

n

Cxjx
n

Vxn
Variance of composite of n items has n variances and n*(n-1) covariances



Variance, Covariance, and Correlation
• Given two variables, X and Y, can we 

summarize how they interrelate?
• Given a score xi, what does this tell us about yi

• What is the amount of uncertainty in Y that is 
reduced if we know something about X.

• Example:  the effect of daily temperature upon 
amount of energy consumed per day

• Example: the relationship between anxiety and 
depression



Distributions of two variables
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Joint distribution of X and Y
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The problem of summarizing 
several bivariate relationships
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Predicting Y from X

• First order approximation: predict mean Y 
for all y

• Second order approximation: predict yi 
deviates from mean Y as linear function of 
deviations of xi from mean  X 

• Yi = Y. + bxy(Xi-X.) or yi = bxy(xi)
• What is the best value of bxy?  
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Predicting Y from X
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The problem of predicting y from x:
• Linear prediction       y=bx +c                 Y=b(X-Mx) + My

• error in prediction = predicted y - observed y 
• problem is to minimize the squared error of prediction
• minimize the error variance = Ve = [∑(yp-yo)2 ]/(N-1)
• Ve=V(bx-y) =  ∑ (bx-y)2 /(N-1)=
• ∑(b2x2-2bxy+y2) /(N-1)= 
• b2∑x2/(N-1)-2b∑xy/(N-1)+∑y2/(N-1)==>
• Ve = b2Vx-2bCxy+Vy

• Ve is minimized when the first derivative (w.r.t. b) = 0 ==>
• when 2bVx -2Cxy=0 ==>
•  by.x=Cxy/Vx



Measures of relationship

• Regression   y = bx + c
– by.x = Covxy /Var x 	
 	
 bx.y = Covxy /Var y

• Correlation
– rxy = Covxy/sqrt(Vx * Vy)
– Pearson Product moment correlation

• Spearman  (ppmc on ranks)
• Point biserial (x is dichotomous, y continuous)
• Phi (x, y both dichotomous)



Correlation and Regression

• Regression slope is in units of DV and IV
– regression implies IV -> DV

• (gas consumption as function of outside temp)

• Correlation is unit free index of relationship
– (geometric) average of two regression slopes
– slope of standardized IV regression on 

standardized DV => unit free index
– a measure of goodness of fit of regression



Gas Consumption by degree day (daily data)
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Beck Depresion x Trait Anxiety (raw)

traitanx
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BDI x Trait Anx (raw)
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Regression lines depend upon scale
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Beck Depression * Trait Anxiety z score

traitanx

-1 0 1 2 3

-1
0

1
2

3

0.65

/Users/Bill

-1 0 1 2 3

-1
0

1
2

3

/Users/Bill

bdi



Transforming can help
epiNeur
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Alternative forms of r
r=covxy/Sqrt(Vx*Vy) = 
(∑xy/N)/(sqrt(∑x2/N*∑y2/N)= (∑xy)/(sqrt(∑x2*∑y2)

Correlation X Y
Pearson Continuous Continuous
Spearman Ranks ranks
Point biserial Dichotomous Continuous
Phi Dichotomous Dichotomous
Biserial Dichotomous 

(assumed normal)
Continuous

Tetrachoric Dichotomous 
(assumed normal)

Dichotomous 
(assumed normal

Polychoric categorical
(assumed normal)

categorical
(assumed normal)



Correlation Matrix: GRE V, Q, GPA

PEARSON CORRELATION MATRIX
                   GREV         GREQ       GPA4

      GREV            1.00
      GREQ            0.61      1.00
      GPA4            0.27      0.25      1.00

NUMBER OF OBSERVATIONS:  163



SPLOM of GRE V, Q, GPA
G R E V

G R E Q

G P A 4



The effect of restriction of range
on regression slopes vs. correlations
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Caution with correlation

and Standard deviations

 x1  x2  x3  x4  y1  y2  y3  y4 
9.0 9.0 9.0 9.0 7.5 7.5 7.5 7.5 

Consider 8 variables with means:

 x1   x2   x3   x4   y1   y2   y3   y4 
3.32 3.32 3.32 3.32 2.03 2.03 2.03 2.03 

 and correlations between xi and yi of

0.82 0.82 0.82 0.82



Caution with Correlation



Correlation: Alternative meanings
1) Slope of regression (bxy = Cxy/Vx) reflects units of x and y 

but the correlation {r = Cxy/(SxSy)} is unit free.

2) Geometrically, r = cosine (angle between test vectors)

3) Correlation as prediction: 
     Let yp = predicted deviation score of y = predicted Y - M

  yp = bxyx  and bxy = Cxy/Vx = rSy/Sx ==> yp/Sy = r(x/Sx)==>
  

 predicted z score of y (zyp ) = rxy * observed z score of x  (zx)
 

predicted z score of x (zxp ) = rxy * observed z score of y  (zy)
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Correlation as goodness of fit
Amount of error variance (residual or unexplained 

variance) in y given x and r

Ve = ∑e2/N = ∑y-bx)2/N = ∑{y-(r*Sy*x/Sx)}2 =

Vy+ Vy * r2 - 2(r * Sy * Cxy)/Sx  

  "" " (but Sy * Cxy/Sx    = Vy * r  ) 
Vy+ Vy * r2 - 2(r2  * Vy) = Vy(1-r2)  ==>
Ve = Vy(1-r2)       <==>           Vyp = Vy(r2)

Residual Variance = Original Variance * (1-r2) 

Variance of predicted scores = original variance * r2



Basic relationships

X Y Yp Residual

Variance Vx Vy Vy(r2) Vy(1-r2)

Correl with 
X

1 rxy 1 0

Correl with Y rxy 1 rxy √(1-r2)



Phi coefficient of correlation

VP

FP

FN

VN

HR

1-HR

SR1-SR

Hit Rate = Valid Positive + False Negative

Selection Ratio = Valid Positive + False Positive

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)



Correlation size ≠ causal importance

Pregnant Not 
Pregnant

Total

Intercourse 2 1,041 1,043

No 
intercourse

0 6,257 6,257

Total 2 7,298 7,300



Correlation size ≠ causal importance
Pregnant Not 

Pregnant
Total

Intercourse 0.0003 0.1426 0.1429

No 
intercourse

0.0000 0.8571 0.8571

Total 0.0003 0.9997 1.0000

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)= .04 polychoric 
rho  = .53   tetrachoric r = .45 (with correction), .95 uncorrected  



Tetrachoric r
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Sex discrimination?

Admit Reject Total

Male 40 10 50

Female 10 40 50

Total 50 50 100

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)= -.60
polychoric rho  = -.81



Sex discrimination? 
Department 1 Department 2
Admit Reject Total Admit Reject Total

Male 40 5 45 0 5 5
Female 5 0 5 5 40 45
Total 45 5 50 5 45 50
Phi 0.11 0.11

Pooled phi -0.6



Within group vs Between Group 
correlation

Group 1

Group 2 

X 

Y

Group 3 

Group 4 



Problem Set 2

• Artificial data generated using the r-
programming language

• 1000 cases with a particular structure
• First we do some simple descriptive statistics 
• http://personality-project.org/revelle/syllabi/

405/probset2.html



Phi vs. r  the effect of cutpoints



Phi vs. r the effect of cutpoints (2)



Phi vs. r:  extreme cutpoints



Continuous and dichotomous scales

 	
 GREV  V2  V2l GREQ   Q2  Q2h GREA  GPA   MA
GREV 1.00 0.80 0.34 0.73 0.57 0.30 0.64 0.42 0.32
V2   0.80 1.00 0.15 0.58 0.50 0.18 0.51 0.37 0.23
V2l  0.34 0.15 1.00 0.21 0.15 0.03 0.19 0.15 0.12
GREQ 0.73 0.58 0.21 1.00 0.80 0.42 0.60 0.37 0.29
Q2   0.57 0.50 0.15 0.80 1.00 0.18 0.45 0.29 0.21
Q2h  0.30 0.18 0.03 0.42 0.18 1.00 0.23 0.12 0.10
GREA 0.64 0.51 0.19 0.60 0.45 0.23 1.00 0.52 0.45
GPA  0.42 0.37 0.15 0.37 0.29 0.12 0.52 1.00 0.31
MA   0.32 0.23 0.12 0.29 0.21 0.10 0.45 0.31 1.00

V2, Q2 are cut at 500
V2l is cut at 300
Q2h is cut at 700



Variance, Covariance, and Correlation
X1

X2

X3

X4

X5

X6

X7

X8

X9

Y5

Y6

Y7

Y8

Simple correlation

Multiple correlation/regression

Partial correlation

Y3
Simple regression



Measures of relationships with 
more than 2 variables

• Partial correlation 
– The relationship between x and y with z held 

constant (z removed)
• Multiple correlation

– The relationship of x1 + x2 with y
– Weight each variable by its independent 

contribution 



Partial and Multiple Correlation

A B

C
D

E

F

G

X 1 X2

Y

The conceptual problem



Variance, Covariance and  Correlation

V1 = A + B + C + D V2 = E + B + C + FC12 = B + C

V1.2 = A + D V2.1 = E + F

A B

C
D

E

F

X 1 X2

r = C12/sqrt(V1V2) V1.2 = V1(1-r2) V2.1 = V2(1-r2)



Multiple Correlation
Independent Predictors

A

D

E
F

G

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

C(12)Y = D + C + F

V1.2 = A + D V2.1 = E + F

X 1 

X2

Y



Partial and Multiple Correlation

A B

C
D

E

F

G

X 1 X2

Y

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

C(12)Y = D + C + F

V1.2 = A + D V2.1 = E + F



Partial and Multiple Correlation:
Partial Correlations

A B

C
D

E

F

G

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

V1.2 = A + D V2.1 = E + F

X 1 X2

Y

r1Y.2 =  __(r1y-r12*r2Y)____
        sqrt((1-r12

2)*(1- ry2
2))



Partial and Multiple Correlation: 
Multiple Correlation-correlated predictors

A B

C
D

E

F

G

X 1 X2

Y

Y = b1X1 + b2X2
b1 = (rx1y - r12*r2y)/(1-r12

2)

b2 = (rx2y - r12*r1y)/(1-r12
2)

R2 = b1r1+b2r2



Multiple Correlation: 

A
B D

E
F

V1 = A + B + C + D
V2 = E + B + C + F

VY = D + C + F + G

C12 = B + C

C1Y = C + D
C2Y = C + F

C1Y.2 = D
C2Y.1 = F

C(12)Y = D + C + F

V1.2 = A + D V2.1 = E + F

X 1 

X2 Y



Regression as path model

X
1

X
2

Y

r
1y

r
2y

r
12

b
1y

b
2y

r1y = b1y + r12b2y  = direct effect + indirect effect
r2y = b2y + r12b1y  = direct effect + indirect effect



The basic multiple R
X1 X2 Y

X1 1 r12 r1y

X2 r12 1 r2y

Y r1y r2y 1
b1y = C1y.2/V1.2 = (r1y-r12r2y)/(1-r122)
b2y = C2y.1/V2.1 = (r2y-r12r1y)/(1-r122)
R2 = b1y r1y + b2y r2y 



Multiple R:independent
X1 X2 Y

X1 1 0 0.7

X2 0 1 0.4

Y 0.7 0.4 1
b1y = C1y.2/V1.2 = (.7-.0*.4)/(1-.02)= .7
b2y = C2y.1/V2.1 = (.4-.0*.7)/(1-.02)= .4 
R2 = b1y r1y + b2y r2y = .7*.7 + .4*.4 =.65



The basic multiple R
X1 X2 Y

X1 1 0.5 0.7

X2 0.5 1 0.4

Y 0.7 0.4 1
b1y = C1y.2/V1.2 = (.7-.5*.4)/(1-.52)= .667
b2y = C2y.1/V2.1 = (.4-.5*.7)/(1-.52)= .067 

R2 = b1y r1y + b2y r2y = .667*.7 + .067*.4 =.493



Multiple R:suppression
X1 X2 Y

X1 1 0.5 0

X2 0.5 1 0.4

Y 0 0.4 1
b1y = C1y.2/V1.2 = (.0-.5*.4)/(1-.52)= -.267
b2y = C2y.1/V2.1 = (.4-.5*.0)/(1-.52)= .533

R2 = b1y r1y + b2y r2y = -.267*.0 + .533*.4 =.21



Multiple Correlation as an 
unweighted composite

X1 X2
Y

X1

X2

Y

Vx1

Vx2

Vy

Cx1x2

Cx1x2

Cx1y

Cx1y

Cx2y

Cx2y

Vx1x2 = Vx1 + Vx2 + 2Cx1x2

C(x1x2)y=Cx1y + Cx2y
R(x1x2)y =        C(x1x2)y

Sqrt(Vx1x2)*Vy



Multiple Correlation as a 
weighted composite

b1X1 b2X2
Y

b1X1

b2X2

Y

b1
2Vx1

b2
2Vx2

Vy

b1b2Cx1x2

b1Cx1y

b1Cx1y

b2Cx2y

b2Cx2y

Vb1x1b2x2 = b1
2Vx1 + b2

2Vx2 + 2C b1b2Cx1x2

C(b1x1b2x2)y=b1Cx1y + b2Cx2y

R(b1x1b2x2)y =
 
C(b1x1b2x2)

Sqrt(Vb1x1b2x2)*Vy

b1b2Cx1x2



Multiple Correlation as a 
weighted composite

R(b1x1b2x2)y = C(b1x1b2x2)

Sqrt(Vb1x1b2x2)*Vy

b1X1 b2X2
Y

b1X1

b2X2

Y

b1
2Vx1

b2
2Vx2

Vy

b1b2Cx1x2

b1Cx1y

b1Cx1y

b2Cx2y

b2Cx2y

b1b2Cx1x2

Problem: Find b1, b2 to
maximize R

b1 = (rx1y - r12*r2y)/(1-r12
2) b2 = (rx2y - r12*r1y)/(1-r12

2)



Multiple regression: Matrix approach

Y
1Y
2...
Y
i...

Y
n

1 x1

1

x2

1

... xk

11 x1

2

x2

2

... xk

21 ... ... ... ...
1 x1i x2i ... xki

1 ... ... ... ...
1 x1

n

x2

n

... xk

n

...

...
en

b0

b1

b2

...
bk

Y X eb
e1

e2

ei
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Matrix Algebra: a review
• Matrix algebra as a convenient notation for statistics
• Consider a matrix nXm with n rows and m columns 

and elements xij  
• Then X’ (read X transpose) has m rows and n 

columns:  mX’n and elements xij’ = xji

• mSm = mX’n nXm  is a m * m matrix of the sums 
(over n) of products with elements = sij = ∑xki*xkj

• Note that if the number of columns = 1, then X is a 
vector with n rows.  Then X’X = sum squares of x 
and XX’ is a matrix of the products of x



Matrix Algebra: a review (2)
• The identity matrix, nIn has 1’s on the diagonal 

and 0 elsewhere.  
IX = XI = X

• Matrix multiplication is associative but not 
commutative:

(XY)Z = X(YZ) but  XY ≠ YX  
• For a square matrix, X, the inverse, X-1 is that 

matrix, which when multiplied by X is I:
X-1 X = X X-1 = I 



Matrix Algebra: a review (3)
• Finding the inverse X-1 of X
• X = IX
• multiply both sides by a transformation 

with the goal of converting the left side to 
the Identity matrix:
– T1X = T1IX
– T2T1X = T2T1IX   until 
– Tn ... T2T1X = I =   Tn ... T2T1IX then
– (Tn ... T2T1)X = I  <=>  (Tn ... T2T1) = X-1



 finding the inverse 

1 r

r 1

1 0

0 1

1 r

r 1
=

1-r2 0

r 1
1 -r

0 1

1 r

r 1
=

1 0

r 1
=

1/(1-r2) -r/(1-r2)

0 1

1 r

r 1

1 0

0 1
=

1/(1-r2) -r/(1-r2)

-r/(1-r2) 1/(1-r2)

1 r

r 1



Multiple regression: Matrix approach

•Y = X * b + e   (Y a vector, X a matrix)
•X’Y = X’X b + X’e
•Covxy = Rxxb + Covxe   (for standardized X, Y)
•Find that value of b that minimizes ||e||
•b =(X’X)-1 * X’Y 
•b = R-1X’Y
•If X is a vector, then this is what we have already 
found: b = Covxy/Varx

•The multivariate case is thus just a generalization of 
the univariate case



Multiple regression with 
matrix algebra (2)

b=R-1X’Y

1 rxz

rxz 1
ryx

ryz

X’Y = X’X b + X’e bxy.z

bzy.x
=

ryx

ryz

bxy.z

bzy.x
=

1/(1-rxz 2) -rxz/(1-rxz 2)

-rxz/(1-rxz 2) 1/(1-rxz 2)

bxy.z

bzy.x
=

(ryx-ryz rxz )/(1-rxz 2)

(ryz-ryx rxz )/(1-rxz 2)
Compare this to the solution derived earlier



Correlation and Regression as  
path models or matrix models

I. Path notation shows Pattern of relationships

A. path arithmetic 

1. no loops

2. one curved arrow/path

3. no forward and then back

II. Matrix notation of paths can show Pattern, Structure, 
and represent data (and allow for calculation)

112



Regression: Modeling the 
variance 

X1 X2

X1 1 ß

X2 ß ß2+e2

X1 E

X1 1 0

X2 ß e

Pattern

X1 X2

E

ß
1

e

PP’



Correlation or regression: 
which way is the direction 

X1 X2

X1 ß2+e2 ß

X2 ß 1

X2 E

X1 ß e

X2 1 0

Pattern PP’
X1 X2

E

ß
1

e



Multiple regression
X1 Y

E

ß
1

e

X2

ß
2

r
12

X1 X2 E

X1 1 0 0

X2 0 1 0

Y ß1 ß2 e

Pattern

X1 X2 E

X1 1 r12 0

X2 r12 1 0

E 0 0 1

X1 X2 Y

X1 1 r12 0

X2 r12 1 0

Y ß1+ß2r ß1r+ß2 e

Pr Structure



Multiple Regression as a set 
of simultaneous equations

Appendix–2: More on Matrices

William Revelle
Northwestern University

1 Multiple regression as a system of simultaneous equations

Many problems in data analysis require solving a system of simultaneous equations. For instance, in
multiple regression with two predictors and one criterion with a set of correlations of:

⇧
 

⌥

rx1x1 rx1x2 rx1y

rx1x2 rx2x2 rx2y

rx1y rx2y ryy

⌃
⌦

� (1)

we want to find the find weights, �i, that when multiplied by x1 and x2 maximize the correlations with
y. That is, we want to solve the two simultaneous equations

⇤
rx1x1�1 + rx1x2�2 = rx1y

rx1x2�1 + rx2x2�2 = rx2y

⌅
. (2)

We can directly solve these two equations by adding and subtracting terms to the two such that we end
up with a solution to the first in terms of �1 and to the second in terms of �2:

⇤
�1 + rx1x2�2/rx1x1 = rx1y/rx1x1

rx1x2�1/rx2x2 + �2 = rx2y/rx2x2

⌅

which becomes ⇤
�1 = (rx1y � rx1x2�2)/rx1x1

�2 = (rx2y � rx1x2�1)/rx2x2

⌅
(3)

Substituting the second row of (3) into the first row, and vice versa we find
⇤

�1 = (rx1y � rx1x2(rx2y � rx1x2�1)/rx2x2)/rx1x1

�2 = (rx2y � rx1x2(rx1y � rx1x2�2)/rx1x1)/rx2x2

⌅

Collecting terms, we find:
⇤

�1rx1x1rx2x2 = (rx1yrx2x2 � rx1x2(rx2y � rx1x2�1))
�2rx2x2rx1x1 = (rx2yrx1x1 � rx1x2(rx1y � rx1x2�2)

⌅

1
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⇤

�1rx1x1rx2x2 = (rx1yrx2x2 � rx1x2(rx2y � rx1x2�1))
�2rx2x2rx1x1 = (rx2yrx1x1 � rx1x2(rx1y � rx1x2�2)

⌅

1

and rearranging once again:
⇤

�1rx1x1rx2x2 � r2
x1x2�1 = (rx1yrx2x2 � rx1x2(rx2y)

�2rx1x1rx2x2 � r2
x1x2�2 = (rx2yrx1x1 � rx1x2(rx1y

⌅

Struggling on:

⇤
�1(rx1x1rx2x2 � r2

x1x2) = rx1yrx2x2 � rx1x2rx2y

�2(rx1x1rx2x2 � r2
x1x2) = rx2yrx1x1 � rx1x2rx1y

⌅

And finally: ⇤
�1 = (rx1yrx2x2 � rx1x2rx2y)/(rx1x1rx2x2 � r2

x1x2)
�2 = (rx2yrx1x1 � rx1x2rx1y)/(rx1x1rx2x2 � r2

x1x2)

⌅

2 Matrix representation of simultaneous equation

Alternatively, these two equations (2) may be represented as the product of a vector of unknowns (the
�s ) and a matrix of coe⇥cients of the predictors (the rxi’s) and a matrix of coe⇥cients for the criterion
(rxiy): 1

(�1�2)
�

rx1x1 rx1x2

rx1x2 rx2x2

⇥
= (rx1y rx2x2) (4)

If we let � = (�1�2), R =
�

rx1x1 rx1x2

rx1x2 rx2x2

⇥
and rxy = (rx1y rx2x2) then equation (4) becomes

�R = rxy (5)

and we can solve (5) for � by multiplying both sides by the inverse of R.

� = �RR�1 = rxyR
�1

2.1 Finding the inverse of a 2 x 2 matrix

But, how do we find the inverse (R�1)? As an example we solve the inverse of a 2 x2 matrix, but the
technique may be applied to a matrix of any size. First, define the identity matrix, I, as

I =
�

1 0
0 1

⇥

1See Appendix -1 for a detailed discussion of how this is done in practice with some “real” data using the statistical
program, R. In R, the inverse of a square matrix, X, is found by the solve function: X.inv <- solve(X)

2
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Finding the inverseand then the equation
R = IR

may be represented as �
rx1x1 rx1x2

rx1x2 rx2x2

⇥
=

�
1 0
0 1

⇥ �
rx1x1 rx1x2

rx1x2 rx2x2

⇥

Dropping the x subscript (for notational simplicity) we have
�

r11 r12

r12 r22

⇥
=

�
1 0
0 1

⇥ �
r11 r12

r12 r22

⇥
(6)

We may multiply both sides of equation (6) by a simple transformation matrix (T) without changing
the equality. If we do this repeatedly until the left hand side of equation (6) is the identity matrix, then
the first matrix on the right hand side will be the inverse of R. We do this in several steps to show the
process.

Let

T1 =
� 1

r11
0

0 1
r22

⇥

then we multiply both sides of equation (6) by T1 and we have
�

1 r12
r11

r12
r22

1

⇥
=

� 1
r11

0
0 1

r22

⇥ �
r11 r12

r12 r22

⇥
(7)

Then, by letting

T2 =
�

1 0
� r12

r22
1

⇥

and multiplying T2 times both sides of equation (7) we have

⇧
1 r12

r11

0 � r2
12

r11r22

⌃
=

� 1
r11

0
� r12

r11r22

1
r22

⇥ �
r11 r12

r12 r22

⇥
(8)

Then, we let

T3 =
�

1 � r12
r11

0 1

⇥

and multiplying T3 times both sides of equation (8) we have

⇧
1 0
0 � r2

12
r11r22

⌃
=

� 1
r11

0
� r12

r11r22

1
r22

⇥ �
r11 r12

r12 r22

⇥
(9)

The previous example was drawn out to be easier to follow, but it would be possible to combine several
steps together and define the T1 matrix as the product of T1T2T3 =

T1 =
� 1

r11
0

0 1
r11

⇥
(10)
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process.

Let

T1 =
� 1

r11
0

0 1
r22

⇥

then we multiply both sides of equation (6) by T1 and we have
�

1 r12
r11

r12
r22

1

⇥
=

� 1
r11

0
0 1

r22

⇥ �
r11 r12

r12 r22

⇥
(7)

Then, by letting

T2 =
�

1 0
� r12

r22
1

⇥

and multiplying T2 times both sides of equation (7) we have

⇧
1 r12

r11

0 � r2
12

r11r22

⌃
=

� 1
r11

0
� r12

r11r22

1
r22

⇥ �
r11 r12

r12 r22

⇥
(8)

Then, we let

T3 =
�

1 � r12
r11

0 1

⇥

and multiplying T3 times both sides of equation (8) we have

⇧
1 0
0 � r2

12
r11r22

⌃
=

� 1
r11

0
� r12

r11r22

1
r22

⇥ �
r11 r12

r12 r22

⇥
(9)

The previous example was drawn out to be easier to follow, but it would be possible to combine several
steps together and define the T1 matrix as the product of T1T2T3 =

T1 =
� 1

r11
0

0 1
r11

⇥
(10)

3



The inverse of a matrix
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R = IR
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the equality. If we do this repeatedly until the left hand side of equation (6) is the identity matrix, then
the first matrix on the right hand side will be the inverse of R. We do this in several steps to show the
process.
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then we multiply both sides of equation (6) by T1 and we have
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⇥ �
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3

...

The previous example was drawn out to be easier to follow, but it would be possible to combine several
steps together and define the T1 matrix as the product of T1T2T3 =

T1 =
� 1

r11
0

0 1
r11

⇥
(11)

T3T2T1R = T3T2T1IR (12)

or, in other words
T3T2T1R = I = R�1R (13)

T3T2T1I = R�1 (14)
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The inverse of a 2 x 2
> R2

     x1   x2
x1 1.00 0.56
x2 0.56 1.00

> round(solve(R2),2)

      x1    x2
x1  1.46 -0.82
x2 -0.82  1.46



The inverse of a 3 x 3
> R

     x1   x2   x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

> round(solve(R),2)

      x1    x2    x3
x1  1.63 -0.71 -0.48
x2 -0.71  1.52 -0.30
x3 -0.48 -0.30  1.36



Unit weights versus optimal weights -      
“It don’t make no nevermind”

rx1x2	
  rx1y	
 rx2y	
 	
  beta 1	
     beta 2	
          R	
            R2	
 	
 Unit Wt    UW2

0.0 	
	
 0.5	
 	
 0.5	
 	
 0.50	
 	
 0.50	
 	
 0.71	
 	
 0.50	
 	
 0.71	
 0.50
0.3	
 	
 0.5	
 	
 0.5	
 	
 0.38	
 	
 0.38	
 	
 0.62	
 	
 0.38	
 	
 0.62	
 0.38
0.5	
 	
 0.5	
 	
 0.5	
 	
 0.33	
 	
 0.33	
 	
 0.58	
 	
 0.33	
 	
 0.58	
 0.33
0.7	
 	
 0.5	
 	
 0.5	
 	
 0.29	
 	
 0.29	
 	
 0.54	
 	
 0.29	
 	
 0.54	
 0.29
0.3	
 	
 0.5	
 	
 0	
 	
 0.55	
      -0.16	
 	
 0.52	
 	
 0.27	
 	
 0.31	
 0.10
0.3	
 	
 0.5	
 	
 0.3	
 	
 0.45	
 	
 0.16	
 	
 0.52	
 	
 0.27	
 	
 0.50	
 0.25

If X1 and X2 are both positively correlated with Y, then the 
effect of unit weighting versus optimal (beta) weighting is 
negligible.  But, if one variable is not very good or zero,then 
unit weighting will not be as effective.



Fungible weights

Sales Profits Employment Pay

Sales 1.0000 0.9202 0.9228 0.6758

Profits 0.9202 1.0000 0.8622 0.6979

Employ 0.9228 0.8622 1.0000 0.6823



Fungible weights - the correlations

Fungible weights

x1

x2

x3

X1

0.676

0.698

0.682

0.9202

0.9228

0.8622



Maximally dissimilar weights



Maximally similar weights



Multiple regresssion

I. At data level

A. Y = Xß + ∂

B. ß = (X’X)-1 X’Y

II. At structure level

A. ß = R-1rxy
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Multiple Regression:
y = xb  => bxy = R-1rxy  

     y
x1 0.8
x2 0.7
x3 0.6

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

     y
x1 0.8
x2 0.7
x3 0.6

R rxy

R-1 R-1 rxy
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Multiple Regression:
y = xb  -> bxy = R-1rxy 
     x1   x2   x3

x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

     y
x1 0.8
x2 0.7
x3 0.6

R rxy

R-1

      x1    x2    x3
x1  1.63 -0.71 -0.48
x2 -0.71  1.52 -0.30
x3 -0.48 -0.30  1.36

      y
x1 0.52
x2 0.32
x3 0.22

R-1 rxy
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Multiple Regression:
y = xb  -> bxy = R-1rxy 

     y
x1 0.8
x2 0.7
x3 0.6

R rxy

R-1 R-1 rxy

    x1  x2  x3
x1 1.0 0.8 0.8
x2 0.8 1.0 0.8
x3 0.8 0.8 1.0

      x1    x2    x3
x1  3.46 -1.54 -1.54
x2 -1.54  3.46 -1.54
x3 -1.54 -1.54  3.46

      y
x1  0.77
x2  0.27
x3 -0.23
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Solution space is 
relatively flat as f(beta) 

I. Although the optimal beta weights may be 
found precisely by multiple regression, the 
solution space is relatively flat and many 
alternative solutions are almost as good.

II. Iterative solutions can discover local minima 
that are far from the optimal solution
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Multiple regression 

x1/x3

-3

-2

-1

0

1

2

3

x
2
/x
3

-3

-2

-1

0

1

2

3

E
rro
r

0.0

0.5

~

Error as function of relative weights  min values at x1/x3 =  1.5  x2/x3 =  1.2

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

     y
x1 0.8
x2 0.7
x3 0.6
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Multiple regression 

   x1 x2 x3
x1  1  0  0
x2  0  1  0
x3  0  0  1

     y
x1 0.8
x2 0.7
x3 0.6

x1/x3

0

1

2

3

4

x
2
/x
3

0

1

2

3

4

E
rro
r

-0.4

-0.2

0.0

0.2

0.4

0.6

~

Error as function of relative weights  min values at x1/x3 =  1.4  x2/x3 =  1.2
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Multiple regression 

~

x1/x3

-1

0

1

2

3

x
2
/x
3

-1

0

1

2

3

E
rro
r

0.4

0.6

0.8

Error as function of relative weights  min values at x1/x3 =  2.4  x2/x3 =  1.4     x1   x2   x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

      y
x1 0.52
x2 0.32
x3 0.22

135



Multiple regression 

x1/x3

-3

-2

-1

0

1

2

3

x
2
/x
3

-3

-2

-1

0

1

2

3

E
rro
r

0.4

0.6

0.8

~

Error as function of relative weights  min values at x1/x3 =  -2.9  x2/x3 =  -1.1

    x1  x2  x3
x1 1.0 0.8 0.8
x2 0.8 1.0 0.8
x3 0.8 0.8 1.0

       y
x1  0.77
x2  0.27
x3 -0.23
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Regression diagnostics



Partial Correlation

1
Remove the e↵ect of a z variable from the relationship

between X and Y

Can show this for a single triple of variables or

As a matrix equation

2

r(x
i

.x
j

)(y .x
j

) =
r
x

i

y

� r
x

i

x

j

r
x

j

yq
(1� r2

x

i

x

j

)(1� r2
yx

j

)

(1)

3 X⇤
= X� R

xz

R�1
z

Z

4 C⇤
= (R� R

xz

R�1
z

)

5 R⇤
= (

p
diag(C⇤

)

�1
C⇤pdiag(C⇤

)

�1

3 / 5



Consider the following correlation matrix of Extraversion, 2 aspects
of extraversion, and 4 measures of mood

josh

b5.EXT b5.EASS b5.EENT swb.tot i.MP.PA i.SWL i.moodreg

b5.EXT 1.00 0.89 0.88 0.59 0.65 0.35 0.50

b5.EASS 0.89 1.00 0.55 0.40 0.58 0.25 0.35

b5.EENT 0.88 0.55 1.00 0.65 0.56 0.38 0.54

swb.tot 0.59 0.40 0.65 1.00 0.55 0.46 0.62

i.MP.PA 0.65 0.58 0.56 0.55 1.00 0.53 0.56

i.SWL 0.35 0.25 0.38 0.46 0.53 1.00 0.48

i.moodreg 0.50 0.35 0.54 0.62 0.56 0.48 1.00
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What is the relationship of the mood measures when removing
extraversion

> partial.r(m=josh,x=4:7,y=1)

partial correlations

swb.tot i.MP.PA i.SWL i.moodreg

swb.tot 1.00 0.27 0.34 0.46

i.MP.PA 0.27 1.00 0.42 0.36

i.SWL 0.34 0.42 1.00 0.38

i.moodreg 0.46 0.36 0.38 1.00
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Compare removing Assertiveness versus Enthusiasm

> partial.r(m=josh,x=4:7,y=3)

> partial.r(m=josh,x=4:7,y=2)

partial correlations

swb.tot i.MP.PA i.SWL i.moodreg

swb.tot 1.00 0.30 0.30 0.42

i.MP.PA 0.30 1.00 0.41 0.37

i.SWL 0.30 0.41 1.00 0.35

i.moodreg 0.42 0.37 0.35 1.00

partial correlations

swb.tot i.MP.PA i.SWL i.moodreg

swb.tot 1.00 0.43 0.41 0.56

i.MP.PA 0.43 1.00 0.49 0.47

i.SWL 0.41 0.49 1.00 0.43

i.moodreg 0.56 0.47 0.43 1.00
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Problems with correlations

• Simpson’s paradox and the problem of 
aggregating groups
– Within group relationships are not the same as 

between group or pooled relationships
• Phi coefficients and the problem of unequal 

marginal distributions
• Alternative interpretations of partial 

correlations



Partial correlation:
 conventional model

x1

x2

y

L1

L3

L2

1

1

1

rx1x2

rx1y

rx2y

px1x2

px1y

px2y



Partial correlation:
 Alternative model

x1

x2

y
rx1x2

rx1y

rx2y

L

px1L

px2L

pLy



Partial Correlation: classical model

X1 X2 Y

X1 1.00

X2 0.72 1.00

Y 0.63 0.56 1.00

Partial r =  (rx1y-rx1x2*rx2y)/sqrt((1-rx1x2
2)*(1-rx2y

2))

Rx1y.x2 = .33   (traditional model)   but = 0 with structural model



Find the correlations

round(cor(dataset),2)              #find the correlation matrix
           #round off to 2 decimals
      

 GREV GREQ  GREA   Ach   Anx Prelim   GPA    MA
GREV   1.00 0.73  0.64  0.01  0.01   0.43  0.42  0.32
GREQ   0.73 1.00  0.60  0.01  0.01   0.38  0.37  0.29
GREA   0.64 0.60  1.00  0.45 -0.39   0.57  0.52  0.45
Ach    0.01 0.01  0.45  1.00 -0.56   0.30  0.28  0.26
Anx    0.01 0.01 -0.39 -0.56  1.00  -0.23 -0.22 -0.22
Prelim 0.43 0.38  0.57  0.30 -0.23   1.00  0.42  0.36
GPA    0.42 0.37  0.52  0.28 -0.22   0.42  1.00  0.31
MA     0.32 0.29  0.45  0.26 -0.22   0.36  0.31  1.00





Psychometric Theory: A conceptual Syllabus
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Measures of relationship

• Regression   y = bx + c
– by.x = Covxy /Var x

• Correlation
– rxy = Covxy/sqrt(Vx * Vy)
– Pearson Product moment correlation

• Spearman  (ppmc on ranks)
• Point biserial (x is dichotomous, y continuous)
• Phi (x, y both dichotomous)



Variance, Covariance, and Correlation
X1
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Simple correlation

Multiple correlation/regression

Partial correlation

Y3
Simple regression



Measures of relationships with 
more than 2 variables

• Partial correlation 
– The relationship between x and y with z held 

constant (z removed)
• Multiple correlation

– The relationship of x1 + x2 with y
– Weight each variable by its independent 

contribution 



Problems with correlations

• Simpson’s paradox and the problem of 
aggregating groups
– Within group relationships are not the same as 

between group or pooled relationships
• Phi coefficients and the problem of unequal 

marginals
• Alternative interpretations of partial 

correlations


