$$
\begin{array}{ll}
\text { I. Measures of } \begin{array}{c}
\text { Variance \& Covariance } \\
\text { Mode: } \\
\text { Median: }
\end{array} \begin{array}{c}
\text { Central Tendency } \\
\text { Most frequent observation } \\
\text { Middle of rank ordered } \mathrm{X}_{\mathrm{i}}
\end{array} \\
\text { Mean: } & \text { Arithmetic }=\overline{\mathrm{X}}=\stackrel{n}{\square_{1}\left(\mathrm{X}_{\mathrm{i}}\right) / \mathrm{N}}
\end{array}
$$

II. Measures of Dispersion

Range: maximum - minimum
Interquartile range 75\%-25\% average absolute deviation from median deviation score $=x=X-\bar{X}$ mean deviation $=\square_{1}^{n}\left(x_{i}\right) / N=$

$$
\square_{1}^{n}(x-\bar{X}) / N=\prod_{1}^{n}(X) / N-\bar{X}=0
$$

standard deviation $=\square x=$ root mean square deviation variance $=$ mean square deviation $=\square^{2}$

Standard Deviation $=\square x=$ root mean square deviation

$$
\square x=\sqrt{\square_{1}^{n}\left(x_{i} 2\right) / N!}
$$

Variance $=$ mean square deviation $=\square^{2}=\square_{1}^{n}\left(x_{i} 2\right) / N$ unbiased estimate of variance from a sample $=$ n $\square\left(\mathrm{xi}^{2}\right) /(\mathrm{N}-1)$ 1

Sensitivity to transformations:

$$
\begin{aligned}
& M(X+C)=M(X)+C \\
& V(X+C)=V(X) \\
& V(X C)=C^{2} V(X)
\end{aligned}
$$

Standard Score $=$ deviation score / standard deviation $\mathrm{z}=\mathrm{x} / \mathrm{S}_{\mathrm{x}}=(\mathrm{X}-\mathrm{M}) / \mathrm{S}_{\mathrm{x}}=(\mathrm{a}$ unit free index of dispersion $)$ $M_{z}=0 \quad V_{z}=1 \quad S_{z}=1$

Coefficient of variation $=S_{x} / M_{X}$ (=> ratio measurement)

Variance of Composites

$$
\begin{array}{r}
V(X+Y)=V(x+y)=\square_{1}^{n}\left(\left(x_{i}+y_{i}\right)^{2}\right) /(N-1)= \\
\frac{n}{\square_{1}\left(\left(x_{i}\right)^{2}\right)!+!\square_{1}^{n}\left(\left(y_{i}\right)^{2}\right)!+!2!\square_{1}^{n}\left(\left(x_{i} *!y_{i}\right)\right)} \\
(N-1) \\
V(X+Y)=V_{x}+V_{y}+2 \operatorname{Cov} y
\end{array}
$$

Covariance of x and $y=$

$$
V(x+y) \quad a \text { visual representation }
$$

Variance of Composites: an example Standard deviation of GRE Verbal $=100$
Standard deviation of GRE Quant $=100$
Variance of Verbal $=100 * 100=10,000$
Variance of Quant $=100 * 100=10,000$
Covariance of GRE Q and $V=6,000$
Variance of GRE $(V+Q)=V_{v}+V_{q}+2 C_{v q}$
Verbal
Quantitative

Verbal	Quantitative
10,000	6,000
6,000	10,000

$V(V+Q)=32,000==>S D(V+Q)=179$
Generalization of Variance of Composites to N variables:

$$
\begin{aligned}
& V\left(x_{1}+x_{2}+\ldots x_{n}\right)= \\
& V x_{1}+V x_{2}+\ldots V x_{n}+2\left(C x 1 x_{2}+C x 1 x_{3}+\ldots+C x_{i} x_{j}+\ldots\right. \\
&) \quad(n \text { terms })
\end{aligned}
$$

Variance of N variables: (figural representation)

A total of n variance terms on the diagonal and n * $(n-1)=$ $n^{2}-n$ covariance terms off the diagonal.

The variance of the composite of n variables $=$ the sum of the n variances and the $\mathrm{n}^{*}(\mathrm{n}-1)$ covariances.

Correlation and Regression
The problem of predicting y from x :
Linear prediction $\quad y=b x+c \quad Y=b\left(X-M_{x}\right)$
$+\mathrm{My}$
error in prediction $=$ predicted y - observed y
problem is to minimize the squared error of prediction
minimize the error variance $=\left[\bullet\left(y_{p}-y_{o}\right)^{2}\right] /(N-1)$

$$
\begin{gathered}
\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{(\mathrm{bx}-\mathrm{y})}=\bullet(\mathrm{bx}-\mathrm{y})^{2} /(\mathrm{N}-1)= \\
\cdot\left(\mathrm{b}^{2} \mathrm{x}^{2}-2 \mathrm{bxy}+\mathrm{y}^{2}\right) /(\mathrm{N}-1)= \\
\mathrm{b}^{2} \bullet \mathrm{x}^{2} /(\mathrm{N}-1)-2 \mathrm{~b} \bullet \mathrm{xy} /(\mathrm{N}-1)+\bullet \mathrm{y}^{2} /(\mathrm{N}-1)==> \\
\mathrm{V}_{\mathrm{e}}=\mathrm{b}^{2} \mathrm{~V}_{\mathrm{x}}-2 \mathrm{~b} C_{\mathrm{x}}+\mathrm{V}_{\mathrm{y}}
\end{gathered}
$$

V_{e} is minimized when the first derivative (w.r.t. b) $=0==$ $>$

$$
\begin{gathered}
\text { when } 2 b V_{x}-2 C_{x y}=0==> \\
b_{y . x}=C_{x y} / V_{x}
\end{gathered}
$$

Similarly, the best $b_{x . y}$ is $C_{x y} / V_{y}$
The Pearson Product Moment Correlation Coefficient (PPMC C) is the geometric mean of these two slopes:

$$
r_{x y}=\frac{C_{x y}}{\sqrt{v_{x} V_{y}}}=\frac{C_{x y}}{S_{x} S_{y!}}
$$

$r_{x y}=$

Error!

$$
r_{x y}=\frac{C_{x y}}{\sqrt{v_{x} V_{y}}}=\frac{C_{x y}}{S_{x} S_{y!}}=r_{x y}=\frac{\sum x y}{\sqrt{\sum x^{2} \sum y^{2}}}
$$

1) If x and y are continuous variables, then $r=$ Pearson r
2) if x and y are rank orders, then
$r=$ Spearman r
3) if x is continuous and y is dichotomous $r=$ point biserial
4) if x and y are both dichotomous, then $r=p h i=\sqrt{\frac{\text { chi! square }}{N}}$
5)Tetrachoric correlation is an estimate of continuous (Pearson) b ased upon dichotomous data. This assumes bivariate normality.
5) Biserial correlation estimates continuous based upon one dic hotomous and one continuous. It also assumes normality.

Calculating fomulae:

$$
\begin{aligned}
& r_{x y}=\frac{\sum x y}{\sqrt{\sum x^{2} \sum y^{2}}} \\
& \text { Covariance } \mathrm{xy}=(\bullet \mathrm{XY}-\bullet \mathrm{X} \cdot \mathrm{Y} / \mathrm{N}) /(\mathrm{N}-1) \\
& \text { Variance } X=\left(\bullet X^{2}-(\bullet X)^{2} / N\right) /(N-1) \\
& \text { Variance } Y=\left(\bullet Y^{2}-(\bullet Y)^{2} / \mathrm{N}\right) /(\mathrm{N}-1) \\
& \text { Correlation }=\frac{\text { Covariance! }}{\sqrt{(\text { Variance! } X)(\text { Variance! Y) }}}= \\
& (\bullet X Y-\bullet X \bullet Y / N) /(N-1) \\
& \sqrt{\left[\left(\Sigma X^{2}!-(\Sigma X)^{2} / \mathrm{N}\right) /(\mathrm{N}-1)\right]\left[\left(\sum^{2}-(\Sigma \mathrm{Y})^{2} / \mathrm{N}\right) /(\mathrm{N}-1)\right]} \\
& r_{x y}=\frac{\left(\sum X Y!-\sum X \sum Y / N\right)}{\sqrt{\sum X^{2}!-(\Sigma X)^{2 / N}!!\sqrt{\sum Y^{2}-\left(\sum Y\right)^{2} / N!}}}
\end{aligned}
$$

Correlation

1) Slope of regression ($b_{x y}=C_{x y} / V_{x}$) reflects units of x and y but the correlation $\left\{r=C_{x y} /\left(\mathrm{S}_{x} \mathrm{~S}_{y}\right)\right\}$ is unit free.
2) Geometrically, $r=$ cosine (angle between test vectors)
3) Correlation as prediction:

Let $y_{p}=$ predicted deviation score of $y=$ predicted $Y-M$
$y_{p}=b_{x y}$ and $b_{x y}=C_{x y} / V_{x}=r S_{y} / S_{x}==>y_{p} / S_{y}=r\left(x / S_{x}\right)==>$ predicted z score of $y\left(z_{y p}\right)=r_{x y}$ * observed z score of $x\left(z_{x}\right)$ predicted z score of $x\left(z_{x p}\right)=r_{x y}$ * observed z score of $y\left(z_{y}\right)$
4) Amount of error variance (residual or unexplained variance) in y given x and r

$$
\begin{aligned}
& V_{e}=\bullet e^{2} / N=\bullet(y-b x)^{2} / N=\bullet\left\{y-\left(r^{*} S_{y}{ }^{*} x / S_{x}\right)\right\}^{2} \\
& V_{y}+V_{y}{ }^{*} r^{2}-2\left(r^{*} S_{y}{ }^{*} C_{x y}\right) / S_{x}
\end{aligned}
$$

(but $S_{y}{ }^{*} C_{x y} / S_{x}=V_{y} * r$)
$V_{y}+V_{y} * r^{2}-2\left(r^{2} * V_{y}\right)=V_{y}\left(1-r^{2}\right)==>$
$V_{e}=V_{y}\left(1-r^{2}\right) \quad<==>\quad V_{y_{p}}=V_{y}\left(r^{2}\right)$
Residual Variance $=$ Original Variance * $\left(1-r^{2}\right)$
Variance of predicted scores $=$ original variance * r^{2}
5) Correlation of x with predicted $y=C_{x}(b x) /\left(S_{x} * S_{y_{p}}\right)$ but $C_{x}(b x)=b V_{x}=V_{x}{ }^{*} r^{*} S_{y} / S_{x}$ and $S_{y p}=r S_{y}$ and therefore $r(x$ with predicted $y)=1$

Variance

Correlation with x
Correlation with y

x
V_{x} V_{y} $V_{p}\left(r^{2}\right)$ residual 1 $r_{x y}\left(1-r^{2}\right)$ $r_{x y}$ 1 1 0
Multiple Correlation

$$
r_{x y}=\frac{c_{x y}}{\sqrt{v_{x} v_{y}}}
$$

The problem of predicting y from $\mathrm{x}_{1}, \mathrm{x}_{2}$:
Linear prediction

$$
y=b_{1} x_{1}+b_{2} x_{2}+c
$$

Just as the optimal b weights in regression are $b_{y . x}=C_{x y} / V_{x}$, so are the optimal b weights in multiple regression, however, they ar e corrected for the effect of the other variables:

In the two variable case the b weights (betas) are:

$$
\begin{array}{cc}
b_{1}=\frac{C y x_{1} \cdot x_{2}}{\nabla x_{1} \cdot x_{2}} & b_{2}=\frac{C y x_{2} \cdot x_{1}}{\nabla x_{2} \cdot x_{1}} \\
b_{1}=\frac{r x_{1} y!-!r x_{1} x_{2}!*!r x_{2} y}{1-r^{2} x_{1} x_{2}} & b_{2}=\frac{r x_{2} y!-!r x_{1} x_{2}!*!r x_{1} y}{1-r^{2} x_{1} x_{2}}
\end{array}
$$

The amount of variance accounted for by the model is the sum of t he product of the betas and the zero order correlations:

$$
R^{2}=\bullet \text { beta }_{\mathrm{j}} * \mathrm{r}_{\mathrm{x}_{\mathrm{i}} \mathrm{y}}
$$

Consider the following example:
extraversion with leadership $r=.56 \quad r^{2}=.31$
dominance with leadership $\quad r=.42 \quad r^{2}=.18$
extraversion with dominance $r=.48 \quad r^{2}=.23$

$$
\begin{aligned}
& \text { beta } 1=\frac{.56!-1.42!* 1.48}{1-.48^{2}}=.47 \quad \text { beta } 2=\frac{.42-.56!* .48}{1-.48^{2}}=.20 \\
& \mathrm{R}^{2}=\text { beta } 1 * r^{*} 1 \mathrm{y}+\text { beta } 2^{*} r_{\times 2 y}=.47^{*} .56+.20 * .42=.35 \\
& \text { Multiple Correlation as weighted linear composites }
\end{aligned}
$$

$$
r_{x y}=\frac{C_{x y}}{\sqrt{V_{x} V_{y}}}
$$

The problem is to find the Covariance of ($\mathrm{x}_{1} \mathrm{x}_{2}$) with y

	x_{1}	x_{2}	y
x_{1}	$\mathrm{~V}_{1}$	C_{12}	$\mathrm{C}_{1 \mathrm{y}}$
x_{2}	C_{21}	$\mathrm{~V}_{2}$	$\mathrm{C}_{2 \mathrm{y}}$
y	$\mathrm{C}_{\mathrm{y} 1}$	$\mathrm{C}_{\mathrm{y} 2}$	$\mathrm{~V}_{\mathrm{y}}$

Covariance (($\left.\left.x_{1} x_{2}\right) y\right)=C_{y 1}+C_{y}$
Variance $\left(x_{1} x_{2}\right)=V_{1}+C_{12}+C_{21}+V_{2}$
Variance (y) $=\mathrm{V}_{\mathrm{y}}$

	Standardized		solution:
	z_{1}	z_{2}	z_{y}
z_{1}	1	r_{12}	$\mathrm{r}_{1 \mathrm{y}}$
z_{2}	r_{21}	1	$\mathrm{r}_{2 \mathrm{y}}$
z_{y}	$\mathrm{r}_{\mathrm{y} 1}$	$\mathrm{r}_{\mathrm{y} 2}$	1

Covariance $\left(\left(x_{1} x_{2}\right) y\right)=r_{y_{1}}+r_{y_{2}}$
Variance $\left(x_{1} x_{2}\right)=1+r_{12}+r_{21}+1$
Variance (y) =1

Multiple Correlation is optimally weighted composite:

$$
r_{x y}=\frac{C_{x y}}{\sqrt{V_{x} V_{y}}}
$$

	$b_{1} z_{1}$	$b_{2} z_{2}$	z_{y}	
$b_{1} z_{1}$	$b_{1}{ }^{2}$	$b_{1} b_{2} r_{12}$	$b_{1} r_{1 y}$	
$b_{2} z_{2}$	$b_{1} b_{2} r_{21}$	$b_{2}{ }^{2}$	$b_{2} r_{2 y}$	
z_{y}	$b_{1} r_{y 1}$	$b_{2} r_{y 2}$	1	

Covariance ($\left.\left(x_{1} x_{2}\right) y\right)=b_{1} r_{y 1}+b_{2} r_{y_{2}}$
Variance $\left(x_{1} x_{2}\right)=b_{1}{ }^{2}+b_{1} b_{2} r_{21}+b_{1} b_{2} r_{21}+b_{2}{ }^{2}$
Variance (y) $=1$

$$
\begin{gathered}
b_{1}=\frac{r_{1 y}!-!r_{12!}!r_{2 y}}{1-r^{2} 12} \quad b_{2}=\frac{!r_{2 y}!-!r_{12}!*!r_{1 y}}{1-r^{2} 12} \\
C_{12, y}=\frac{\left(r_{1 y}-r_{12} * r_{2 y}\right)^{*} r_{1 y!}+!\left(r_{2 y}-r_{12} * r_{1 y}\right) * r_{2 y}}{1-r^{2} 12}
\end{gathered}
$$

$\mathrm{V}_{12}=$

$$
\left[\left(r_{1 y}-r_{12}{ }^{*} r_{2 y}\right)^{2}+2^{*}\left(r_{1 y^{-}} r_{12}{ }^{*} r_{2 y}\right) *\left(r_{2 y^{-}} r_{12} r_{1 y}\right)^{*} r_{12}+\left(r_{2 y}-r_{12}{ }^{*} r_{1 y}\right)^{2}\right.
$$

$$
\left(1-r^{2}{ }_{12}\right)\left(1-r^{2}{ }_{12}\right)
$$

expand and collect terms ==>

$$
V_{12}=\operatorname{Cov}=R^{2}{ }_{12, y}=\frac{r^{2}{ }_{1 y}+r^{2} 2 y!-2^{*} r_{11}{ }^{*} r_{12}{ }^{*} r_{2 y}}{1-r^{2}{ }_{12}}
$$

$$
\text { if } r_{12}=0 \text { then notice that } \quad R^{2}{ }_{12, y}=r_{1 y^{2}}+r_{2 y^{2}}
$$

Unit Weights versus Multiple R

Multiple Correlation is optimally weighted composite:

$$
r_{x y}=\frac{C_{x y}}{\sqrt{V_{x} V_{y}}}
$$

But consider what happens if we equal (unit) weights rath er than optimal weights

Standardized solution			with unit
	z_{1}	z_{2}	z_{y}
z_{1}	1	r_{12}	$r_{1 y}$
z_{2}	r_{21}	1	$r_{2 y}$
z_{y}	$r_{y 1}$	$r_{y_{2}}$	1

Covariance ($\left.\left(x_{1} x_{2}\right) y\right)=r_{y_{1}}+r_{y_{2}}$
Variance $\left(x_{1} x_{2}\right)=1+r_{12}+r_{21}+1$
Variance (y) $=1$
$R=\frac{r_{y 1}+!r_{y 2}}{\sqrt{1+!r_{12!}+r_{21}+1}} \quad=\frac{r_{y 1}+!r_{y 2}}{\sqrt{2 *\left(1+!r_{12}\right)}}$

Consider several examples:

rx1x2	rx1y	rx2y	beta 1	beta 2	$R \quad$ R	R^{2}	Unit $W t$	UW2
0.0	0.5	0.5	0.50	0.50	0.71	0.50	0.71	0.50
0.3	0.5	0.5	0.38	0.38	0.62	0.38	0.62	0.38
0.5	0.5	0.5	0.33	0.33	0.58	0.33	0.58	0.33
0.7	0.5	0.5	0.29	0.29	0.54	0.29	0.54	0.29
0.3	0.5	0	0.55	-0.16	0.52	0.27	0.31	0.10
0.3	0.5	0.3	0.45	0.16	0.52	0.27	0.50	0.25

Partial Correlation

$$
r_{x y}=\frac{C_{x y}}{\sqrt{v_{x} v_{y}}}
$$

To find $r_{x y}$ with w held constant (partial $r=r_{x y} . w$) or Rxyw (multiple R), we need to find the Covariance and Vari ances.

Conceptual solution:
find residual x after predicting from w (x.w)
find residual y after predicting from w (y.w)
correlate these residual scores.
Variance of residual $=($ Variance of original $) *\left(1-r^{2}\right)$
Covariance of residuals =
original covariance - covariance with control
Zpredicted $=$ r*Zpredictor
$z_{\text {residual }}=z_{\text {original }}-r^{*} z$ predictor
$z_{x} . w^{\prime}=z_{x}{ }^{-} r_{x} w^{*} z_{w} \quad z_{y} . w^{\prime}=z_{y}{ }^{-} r_{y w}{ }^{*} z_{w}$
Covariance $\left(z_{x . w}, z_{y . w}\right)=\operatorname{Cov}\left(z_{x}, z_{y}\right)-r_{x} w^{*} r_{y w}$ since
Covariance $\left(z_{x}, w, z_{y . w}\right)=\bullet\left(z_{x}-r_{x} w^{*} z_{w}\right) *\left(z_{y}-r_{y} w^{*} z_{w}\right) / N=$

- $\left(z_{x}-r_{x} w^{*} z_{w}\right)^{*}\left(z_{y}-r_{y} w^{*} z_{w}\right) / N=$
$\bullet\left(z_{x}{ }^{*} z_{y}{ }^{-} r_{x} w^{*} z_{w}{ }^{*} z_{y}-z_{x}{ }^{*} r_{y w}{ }^{*} z_{w}+r_{x} w^{*} z_{w}{ }^{*} r_{y w}{ }^{*} z_{w}\right) / N=$
$\left\{\bullet\left(z_{x}{ }^{*} z_{y}\right)-r_{x} w^{*} \bullet\left(z_{w}{ }^{*} z_{y}\right)-r_{y w}{ }^{*} \bullet z_{x}{ }^{*} z_{w}+r_{x} w^{*} r_{y w} \bullet z_{w}{ }^{*} z_{w}\right\} / N$
$\operatorname{Cov}\left(z_{x}, z_{y}\right)-r_{x} w^{*} r_{w y}-r_{y w}{ }^{*} r_{x w}+r_{x} w^{*} r_{y w}{ }^{*} \operatorname{Var} z_{w}=$
$\operatorname{Cov}\left(z_{x}, z_{y}\right)-r_{x w}{ }^{*} r_{y w}$
Variance residual $=V_{x}{ }^{*}\left(1-r_{x} w^{2}\right)$

$$
\text { Partial } r_{x y \cdot w}=\frac{\operatorname{Cov}\left(z_{x}, z_{y}\right)!-!r_{x} w^{*} r_{y w}}{\sqrt{\left(1-r_{x} w^{2}\right)^{*}\left(1-r_{y} w^{2}\right)}}
$$

