Psychometric Theory

Psychology 405:
Psychometric Theory
William Revelle
Northwestern University

Spring, 2003
http://pmc.psych.nwu.edu/revelle/syllabi/405.html

Psychometric Theory: Goals

1. To acquire the fundamental vocabulary and logic of psychometric theory.
2. To develop your capacity for critical judgment of the adequacy of measures purported to assess psychological constructs.
3. To acquaint you with some of the relevant literature in personality assessment, psychometric theory and practice, and methods of observing and measuring affect, behavior, cognition and motivation.

Psychometric Theory: Goals II

4. To instill an appreciation of and an interest in the principles and methods of psychometric theory.
5. This course is not designed to make you into an accomplished psychometist (one who gives tests) nor is it designed to make you a skilled psychometrician (one who constructs tests), nor will it give you "hands on" experience with psychometric computer programs.

Psychometric Theory:
 Requirements

- Objective Midterm exam
- Objective Final exam
- Final paper applying principles from the course to a problem of interest to you.
- Sporadic applied homework and data sets

Text and Syllabus

- Nunnally, Jum \& Bernstein, Ira (1994)

Psychometric Theory New York:
McGraw Hill, 3rd ed.(required: available at Norris)

- Loehlin, John (1998) Latent Variable Models: an introduction to factor, path, and structural analysis . Hillsdale, N.J.: LEA. (recommended)

Syllabus: Overview
I. Individual Differences and Experimental Psychology
II. Models of measurement
III. Test theory
A. Reliability
B. Validity (predictive and construct)
C. Structural Models
D. Test Construction
IV. Assessment of traits
V. Methods of observation of behavior

Theory development and testing

- Theories as organizations of observables
- Constructs, latent variables and observables
- Observables
- Multiple levels of description and abstraction
- Multiple levels of inference about observables
- Latent Variables
- Latent variables as the common theme of a set of observables
- Central tendency across time, space, people, situations
- Constructs as organizations of latent variables and observed variables

Theory as organization of constructs

Theories as metaphors and analogies-1

- Physics
- Planetary motion
- Ptolemy
- Galileo
- Einstein
- Springs, pendulums, and electrical circuits
- The Bohr atom
- Biology
- Evolutionary theory
- Genetic transmission

Theories as metaphors and analogies-2

- Business competition and evolutionary theory
- Business niche
- Adaptation to change in niches
- Learning, memory, and cognitive psychology
- Telephone as an example of wiring of connections
- Digital computer as information processor
- Parallel processes as distributed information processor

Examples of psychological constructs and

 their operationalization as observables- Anxiety
- Trait
- State
- Love
- Conformity
- Intelligence
- Learning and memory
- Procedural - memory for how
- Episodic -- memory for what
- Implicit
- explicit
Models and theory
- Formal models
- Mathematical models
- Dynamic models - simulations
Conceptual models
- As guides to new research
- As ways of telling a story
• Organizational devices
• Shared set of assumptions

	Observables/measured variables
X1	
	Y 1
X2	
X3	
	Y3
X4	
X5	
	Y5
X6	
	Y6
X 7 Y 7	
X8	Y8
X9	

	Variance, Covariance, and Correlation	
X 1	Simple correlation	
X 2	Simple regression	
X 4	Multiple correlation/regression	
X 5		Y 3
X 6		Y 6
X 7	Partial correlation	Y 7
X 8		Y 8
X 9		

Types of Validity: What are we measuring

The data box: measurement across time, situations, items, and people

Syllabus: Overview

I. Individual Differences and Experimental Psychology
A. Two historic approaches to the study of psychology
B. Individual differences and general laws
C. The two disciplines reconsidered
II. Models of measurement
A. Theory of Data
B. Issues in scaling
C. Variance, Covariance, and Correlation
III. Test theory
A. Reliability
B. Validity (predictive and construct)
C. Structural Models
D. Test Construction
IV. Assessment of traits
V. Methods of observation of behavior

Psychometric Theory: A conceptual Syllabus

Two Disciplines of Psychological Research

$\mathrm{B}=\mathrm{f}($ Personality)	$\mathrm{B}=\mathrm{f}(\mathrm{P} * \mathrm{E})$	$\mathrm{B}=\mathrm{f}($ Environment $)$	
	Darwin		
Galton		Weber, Fechner	
Binet, Terman		Watson, Thorndike	
Allport, Burt	Lewin	Hull, Tolman	
Cattell	Atkinson, Eysenck	Spence, Skinner	
Epstein			

Theory and Theory Testing I:
Theory

Theory and Theory Testing II: Experimental manipulation

Theory and Theory Testing III: Correlational inference

Psychometric Theory: A conceptual Syllabus


```
A Theory of Data: What can be measured
X1
    What is measured?
        Individuals
        Objects
    What kind of measures are taken?
        proximity
        order
            Comparisons are made on:
                Single Dyads or Pairs of Dyads
```


Coombs: A theory of Data

- $\mathrm{O}=\{$ Stimulus Objects $\} \quad \mathrm{S}=\{$ Subjects $\}$
- $\mathrm{O}=\left\{\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{i}}, \ldots, \mathrm{o}_{\mathrm{n}}\right\}$
- $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{m}}\right\}$
- $\mathrm{S} \times \mathrm{O}=\left\{\left(\mathrm{s}_{1}, \mathrm{o}_{1}\right),\left(\mathrm{s}_{\mathrm{i}}, \mathrm{o}_{\mathrm{j}}\right), \ldots,\left(\mathrm{s}_{\mathrm{m}}, \mathrm{o}_{\mathrm{n}}\right)\right\}$
- $\mathrm{O} \times \mathrm{O}=\left\{\left(\mathrm{o}_{1}, \mathrm{o}_{1}\right),\left(\mathrm{o}_{\mathrm{i}}, \mathrm{o}_{\mathrm{j}}\right), \ldots,\left(\mathrm{o}_{\mathrm{n}}, \mathrm{o}_{\mathrm{n}}\right)\right\}$
- Types of Comparisons:
- Order $\quad \mathrm{s}_{\mathrm{i}}<\mathrm{o}_{\mathrm{j}} \quad$ (aptitudes or amounts)
- Proximities $\quad\left|s_{i}-o_{j}\right|<d$ (preferences)

Scaling of Stimuli ($\mathrm{O} * \mathrm{O}$)

- Finding a distance metric for a set of stimuli
- Sports teams (wins and losses)
- Severity of crimes (judgments of severity)
- Quality of merchandise (judgments)
- Political orientations of judges (history of decisions -- voting with or against majority)

Metric spaces and the axioms of a distance measure

- A metric space is a set of points with a distance function, D, which meets the following properties
- Distance is symmetric, positive definite, and satisfies the triangle inequality:
- D(X,Y)>=0
(non negativity)
$-D(X, Y)=0$ iff $X=Y$
($\mathrm{D}(\mathrm{X}, \mathrm{X})=0$ reflexive)
$-D(X, Y)=D(Y, X)$
(symmetric)
$-D(X, Y)+D(Y, Z)=>D(X, Z)$ (triangle inequality)

Thurstonian Scaling of Stimuli

- What is scale location of objects I and J on an attribute dimension D ?
- Assume that object I has mean value m_{i} with some variability.
- Assume that object J has a mean value m_{j}
- Assume equal and normal variability (Thurston case 5)
- Less restrictive assumptions are cases 1-4)
- Observe frequency of $\left(\mathrm{o}_{\mathrm{i}}<\mathrm{o}_{\mathrm{j}}\right)$
- Convert relative frequencies to normal equivalents
- Result is an interval scale with arbitrary 0 point

Preferential Choice and Unfolding

$$
(\mathrm{S} * \mathrm{O}) *(\mathrm{~S} * \mathrm{O})
$$

Comparison of the distance of subject to an item versus another subject to another item:

$$
\left|\mathrm{s}_{\mathrm{i}}-\mathrm{o}_{\mathrm{j}}\right|<\left|\mathrm{s}_{\mathrm{k}}-\mathrm{o}_{1}\right|
$$

Do you like broccoli more than I like spinach?
Or more typically: do you like broccoli more than you like spinach?

Preferential choice Unfolding $(\mathrm{S} * \mathrm{O})^{*}(\mathrm{~S} * \mathrm{O})$

Preferential Choice: I scales

- Question asked an individual:
- Do you prefer object j to object k ?
- Model of answer:
- Something is preferred to something else if if it "closer" in the attribute space or on a particular attribute dimension
- Individual has an "Ideal point" on the attribute.
- Objects have locations along the same attribute
$-\left|\mathrm{s}_{\mathrm{i}}-\mathrm{o}_{\mathrm{j}}\right|<\left|\mathrm{s}_{\mathrm{i}}-\mathrm{o}_{\mathrm{k}}\right|$
- The I scale is the individual's rank ordering of preferences

Preferential Choice: free choice

- If you had complete freedom of choice, how many children would you like to have? _X_
- If you could not have that many, what would your second choice be? _Y_
- Third choice? _Z_
- Fourth choice? -W-
- Fifth choice? _V_

Preferential Choice: J scales

- Individual preferences can give information about object to object distances that are true for multiple people
- Locate people in terms of their I scales along a common J scale.

Preferential Choice: forced choice

1. If you had complete freedom of choice, how many children would you like to have? _X
2. If you could not have X, would you rather have $\mathrm{X}+1$ or $\mathrm{X}-1$ (Y).
3. If could not have X or Y, would you rather have $(\min (\mathrm{X}, \mathrm{Y})-1)$ or $\max (\mathrm{X}, \mathrm{Y})+1$. (Z)
4. If you could have X, Y or Z, would you rather have $\min (X, Y, Z)-1$ or $\max (X, Y, Z)+1$
5. Repeat (4) until either 0 or 5

Preferential choice- underlying model

- On a scale from 0 to 100 , if 0 means having 0 children, and 100 means having 5 children, please assign the relative location of $1,2,3$, and 4 children.
- On this same scale, please give your preferences for having $0,1,2,3,4$, or 5 children.

I scales from the deaccelerating J scale

Unfolding of Preferences

- Consider the I scale 234105
- What information has this person given us?
- Unfold to give J scale
- Ideal point is closest to 2 , furthest from 5 .
- J scale of
- $0 \quad 1 \quad 2 \quad 3 \quad 45$
- Critical information: 213 occurs after $1 \mid 4$

I scales and midpoints example 1

I scales and Midpoints: Example 2

```
- Preference Orders:
    Individual Scales)
01234
10234
12034 01 02
21034 01 02 12
21304}00102\quad12 03 
23104 01 02 12 03
lllllllll
32104 01 02 12
```



```
34210
43210
```

From midpoints to partial orders

- Data example 1
- $013<112$ <=> (01) > (23)
- 014 < 112 <=> (01) > (24)
- $014<113 \ll>(01)>(34)$
- 014 < $213 \ll>(02)>(34)$
- 114 < 213 <=> (12) > (34)
- Partial Orders of distances
- $(04)>(03)>(02)>(12)>(34)$
- (04) $>(03)>(02)>(01)>(24)>(34)$
- (04) $>$ (03) $>$ (02) $>$ (01) $>$ (24) $>(23)$

Measurement: Objects and Subjects

Distance information from

midpoints

- Consider:
- $1 \quad 114 \quad 4$
- | 2 | 213 | 3 | vs |
| :--- | :--- | :--- | :--- |
- 22133
- Midpoint orders imply distance information
- If $2|3<1| 4$ then $(12)<(34)$
- If $2|3>1| 4$ then (12)> (34)

Measurement (S * O)

- Ordering of abilities: $\mathrm{s}_{\mathrm{i}}<\mathrm{o}_{\mathrm{j}}$
- Proximity of attitudes $\left|s_{\mathrm{i}}-\mathrm{o}_{\mathrm{j}}\right|<\mathrm{d}$

Latent and Observed Scores -The problem of scale

Much of our research is concerned with making inferences about latent (unobservable) scores based upon observed measures. Typically, the relationship between observed and latent scores is monotonic, but not necessarily (and probably rarely) linear. This leads to many problems of inference. The following examples are abstracted from real studies. The names have been changed to protect the guilty.

Quality of school affects writing

- A leading research team in motivational and educational psychology was interested in the effect that different teaching techniques at various colleges and universities have upon their students. They were particularly interested in the effect upon writing performance of attending a very selective university, a less selective university, or a two year junior college. A writing test was university, or a two year junior college. A writing test was
given to the entering students at three institutions in the given to the entering students at three institutions in the
Boston area. After one year, a similar writing test was Boston area. After one year, a similar writing test was
given again. Although there was some attrition from each given again. Although there was some attrition from eac
sample, the researchers report data only for those who sample, the researchers report data only for those who
finished one year. The pre and post test scores as well a the change scores were:

College and Writing			
	Pretest	Posttest	Change
Junior College	1	5	4
Non-selective university	5	27	22
Selective university	27	73	45

From these data, the researchers concluded that the quality of teaching at the very selective university was much better and that the students there learned a great deal more. They proposed to study the techniques used there in order to apply them to the other institutions.

Are their conclusions justified? Can you think of several reasons that their conclusions could be incorrect?

School Quality and Mathematics

- Another research team in motivational and educational psychology was interested in the effect that different eaching techniques at various colleges and universities have upon their students. They were particularly
interested in the effect upon mathematics performance of attending a very selective university, a less selective university, or a two year junior college. A math test was given to the entering students at three institutions in the Boston area. After one year, a similar math test was given again. Although there was some attrition from each sample, the researchers report data only for those who finished one year. The pre and post test scores as well as the change scores were

College Quality and Mathematics

	Pretest	Posttest	Change
Junior College	27	73	45
Non-selective university	73	95	22
Selective university	95	99	4

- From these data, the researchers concluded that the quality of teaching at the very selective university was much worse and that the students there learned a great deal less than the other
universities. They proposed to study the techniques used at these other institutions in order to apply them to the very selective university.
- Are their conclusions justified? Can you think of several reasons that their conclusions could be incorrect?

