Psychometric Theory

Homework 3: Regression answers

Problems

Assume

	Verbal	Quant	GPA
Verbal	1.0		
Quant	.6	1.0	
GPA	.3	.2	1.0
Mean	500	550	3.0
Sigma	120	100	.5

I) For a student with a GRE Verbal of 700, what is her expected GRE Quantscore?
2) For a student with a GRE Quant of 750, what is the expected GPA?
3) What is the correlation ofVerbal with GPA holding Quant constant?
4) What is the multiple correlation ofVerbal + Quant with GPA?
5) For a student with a Verbal of 700 and a Quant of 700 , what is the expectedGPA?

Simple prediction

I) For a student with a GREVerbal of 700, what is her expected GRE Quantscore?

$$
Z_{y p r e d i c t e d}=r_{x y} z_{x}
$$

$z_{\text {quant predicted }}=.6 *(700-500) / 120=1.0$
$\mathrm{Q}_{\text {uant predicted }}=\mathrm{z}_{\text {quant predicted }}{ }^{*} \mathbf{s d}_{\text {quant }}+$ mean $_{\text {quant }}$
$Q_{\text {uant predicted }}=1.0 * 100+550=650$

simple prediction

2) For a student with a GRE Quant of 750 , what is the expected GPA?

$$
\begin{aligned}
& \mathrm{z}_{y \text { predicted }}=\mathrm{r}_{\mathrm{xy}} \mathrm{z}_{\mathrm{x}} \\
& \mathrm{z}_{\text {gpa predicted }}=.2 *(750-550) / 100=.4 \\
& \text { GPA }_{\text {predicted }}=\mathrm{z}_{\text {gpa predicted }} * \mathrm{sd}_{\mathrm{gpa}}+\text { mean }_{\mathrm{gpa}} \\
& \text { GPA }_{\text {predicted }}=.4^{*} .5+3.0=3.2
\end{aligned}
$$

Partial correlation

- 3) What is the correlation of Verbal with GPA holding Quant constant?
- partial $r_{x y . z}=$
- $\left(r_{x y}-r_{x z}{ }^{*} r_{y x}\right) / \operatorname{sqrt}\left(\left(1-r_{x z}^{2}\right)^{*}\left(1-r_{y z}^{2}\right)\right)$
- $\left(.3-.2^{*} .6\right) / \operatorname{sqrt}\left(\left(1-.6^{2}\right)^{*}\left(1-.2^{2}\right)\right)=.2296397$

Multiple R

- 4) What is the multiple correlation ofVerbal + Quant with GPA?
- $r_{\text {GRE } V, \text { gpa }}=.3 \quad r_{\text {GRE } \mathrm{Q}, \mathrm{gpa}}=.2 r_{\text {GRE } V, \mathrm{Q}}=.6$
- beta $\mathrm{y} \cdot \mathrm{x}=\left(\mathrm{r}_{\mathrm{xy}}-\mathrm{r}_{\mathrm{xz}} * \mathrm{r}_{\mathrm{yz}}\right) /\left(1-\mathrm{r}_{\mathrm{xz}}^{2}\right)$
- beta GRE $\mathrm{v}, \mathrm{gpa}=\left(.3-.6^{*} .2\right) /\left(1-.6^{2}\right)=.28125$
- beta ${ }_{\text {GRE }}$, gpa $=\left(.2-.6^{*} .3\right) /\left(1-.6^{2}\right)=.03125$
- $\mathrm{R}^{2}=$ beta $_{\mathrm{y} . \mathrm{x}} * \mathrm{r}_{\mathrm{xy}}+\operatorname{beta}_{\mathrm{y} . \mathrm{z}} * \mathrm{r}_{\mathrm{yz}} \ldots$
$\bullet \mathrm{R}^{2}=$ beta $_{\text {GRE } \mathrm{Q}, \mathrm{gpa}} * \mathrm{r}_{\text {GRE } \mathrm{Q}, \text { gpa }}+$ beta $_{\text {GRE } \mathrm{V}, \mathrm{gpa}} * \mathrm{r}_{\text {GRE } \mathrm{V}, \mathrm{gpa}}$
=
$\bullet \mathrm{R}^{2}=.28125 * .3+.03125 * .2=.090625$
$\bullet \mathrm{R}=.3010399$

Multiple correlation: prediction

-5) For a student with a Verbal of 700 and a Quant of 700, what is the expectedGPA?

- Note that the betas found in problem 4 were standardized betas. So, in this case

- $r_{\text {GRE } V, g p a}=.3 \quad r_{\text {GRE }, \text { gpa }}=.2 r_{\text {GRE } V, Q}=.6$
- beta $\mathrm{y} \cdot \mathrm{x}=\left(\mathrm{r}_{\mathrm{xy}}-\mathrm{r}_{\mathrm{xz}} * \mathrm{r}_{\mathrm{yz}}\right) /\left(1-\mathrm{r}_{\mathrm{xz}}^{2}\right)$
- beta GRE $\mathrm{V}, \mathrm{gpa}=\left(.3-.6^{*} .2\right) /\left(1-.6^{2}\right)=.28125$
\bullet beta GREQ, gpa $=\left(.2-.6^{*} .3\right) /\left(1-.6^{2}\right)=.03125$
- z gpa predicted given verbal and quant $=$
$\bullet .28 *(700-500) / I 20+.03 *(700-550) / I 00=.5 I 5625$
- GPA $_{\text {predicted }}=z_{\text {gpa predicted }} * \mathbf{s d}_{\text {gpa }}+$ mean $_{\text {gpa }}=$
- $.5 \mathrm{I} 5625^{*} .5+3.0=3.258$

