1 Introduction

A standard problem in psychology is to predict a dependent variable as a function of multiple independent variables. This is, of course, the problem of multiple regression. R does this as one case of the standard linear model.
model = Y \sim X

or

\hat{Y} = \beta_{y,x}X + \epsilon

Both Y and X can be matrices, in which case as many multiple regressions will be done as the number of variables in Y.

Consider the following (artificial) data set of ability tests, motivation tests, and performance measures. The Ability tests are (simulated) GRE Verbal, Quantitative, and Advanced, the motivation tests measure Need for Achievement and Anxiety, the Performance measures are graduate GPA, rated performance on the Prelims, and quality of the Masters Thesis.

2 Getting the data

The data are read from a remote file and stored in a data.frame called dataset. The first variable in dataset is the ID number. This column can be dropped for all columns of the dataset.

Although we would like to do this directly from R unfortunately R does not read https files. Thus, we need get the data by opening the file (https://personality-project.org/r/datasets/psychometrics.prob2.txt in our browser, copying the file to the clipboard and then reading the clipboard.

```
#this would be the preferred way if we could read https files
datafilename = "https://personality-project.org/r/datasets/psychometrics.prob2.txt"
dataset = read.table(datafilename, header=TRUE)  #read the data file

#so instead
library(psych)
dataset <- read.clipboard()
names(dataset)  #what are the variables?
dataset = dataset[, -1]  #get rid of the ID

names(dataset)  #check the names again
```

```
> names(dataset)
[1] "ID"  "GREV"  "GREQ"  "GREA"  "Ach"  "Anx"  "Prelim"  "GPA"  "MA"
> names(dataset) #we drooped variable 1
[1] "GREV"  "GREQ"  "GREA"  "Ach"  "Anx"  "Prelim"  "GPA"  "MA"
```

3 Descriptive statistics including graphic displays

It is important when doing regressions to actually look at the data. First we can find the correlations and display them two different ways.

```
> describe(dataset)  #get the basic descriptive statistics
```
vars n mean sd median trimmed mad min max range skew kurtosis se
GREV 1 1000 499.77 106.11 497.50 498.75 106.01 138.0 735.00 735.00 0.09 -0.07 3.36
GREQ 2 1000 500.53 103.85 498.00 498.51 105.26 191.0 914.00 723.00 0.22 0.08 3.28
GREA 3 1000 498.13 100.45 495.00 498.67 99.33 207.0 848.00 641.00 -0.02 -0.06 3.18
Ach 4 1000 49.93 9.84 50.00 49.88 10.38 16.0 79.00 63.00 0.00 0.02 0.31
Anx 5 1000 50.32 9.91 50.00 50.43 10.38 14.0 78.00 64.00 -0.14 0.14 0.31
Prelim 6 1000 10.03 1.06 10.00 10.02 1.48 7.0 13.00 6.00 -0.02 -0.01 0.03
GPA 7 1000 4.00 0.49 4.00 4.01 0.49 2.5 5.38 2.88 -0.07 -0.29 0.02
MA 8 1000 3.00 0.49 3.00 3.00 0.49 1.4 4.50 3.10 -0.07 -0.09 0.02

> round(cor(dataset),2) #find the correlation matrix, round to 2 decimals

<table>
<thead>
<tr>
<th></th>
<th>GREV</th>
<th>GREQ</th>
<th>GREA</th>
<th>Ach</th>
<th>Anx</th>
<th>Prelim</th>
<th>GPA</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREV</td>
<td>1.00</td>
<td>0.73</td>
<td>0.64</td>
<td>0.01</td>
<td>0.01</td>
<td>0.43</td>
<td>0.42</td>
<td>0.32</td>
</tr>
<tr>
<td>GREQ</td>
<td>0.73</td>
<td>1.00</td>
<td>0.60</td>
<td>0.01</td>
<td>0.01</td>
<td>0.38</td>
<td>0.37</td>
<td>0.29</td>
</tr>
<tr>
<td>GREA</td>
<td>0.64</td>
<td>0.60</td>
<td>1.00</td>
<td>-0.39</td>
<td>0.57</td>
<td>0.52</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Ach</td>
<td>0.01</td>
<td>0.01</td>
<td>0.45</td>
<td>1.00</td>
<td>-0.56</td>
<td>0.30</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>Anx</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.39</td>
<td>-0.56</td>
<td>1.00</td>
<td>-0.23</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>Prelim</td>
<td>0.43</td>
<td>0.38</td>
<td>0.57</td>
<td>0.30</td>
<td>-0.23</td>
<td>1.00</td>
<td>0.42</td>
<td>0.36</td>
</tr>
<tr>
<td>GPA</td>
<td>0.42</td>
<td>0.37</td>
<td>0.52</td>
<td>0.28</td>
<td>-0.22</td>
<td>0.42</td>
<td>1.00</td>
<td>0.31</td>
</tr>
<tr>
<td>MA</td>
<td>0.32</td>
<td>0.29</td>
<td>0.45</td>
<td>0.26</td>
<td>-0.22</td>
<td>0.36</td>
<td>0.31</td>
<td>1.00</td>
</tr>
</tbody>
</table>

> z.data=scale(dataset) #convert to standardized scores
> z.df=data.frame(z.data) #convert to a data.frame

We can also use the lowerCor function from the psych package to find
the correlations, round to 2 decimals, and show it in lower triangular form.
We do this on the standardized data just to make the point that correlations
are just standardized covariances and do not vary with a transformation such
as standardization.

> lowerCor(z.df)

<table>
<thead>
<tr>
<th></th>
<th>GREV</th>
<th>GREQ</th>
<th>GREA</th>
<th>Ach</th>
<th>Anx</th>
<th>Prelim</th>
<th>GPA</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREV</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREQ</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREA</td>
<td>0.64</td>
<td>0.60</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ach</td>
<td>0.01</td>
<td>0.01</td>
<td>0.45</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anx</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.39</td>
<td>-0.56</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prelim</td>
<td>0.43</td>
<td>0.38</td>
<td>0.57</td>
<td>0.30</td>
<td>-0.23</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA</td>
<td>0.42</td>
<td>0.37</td>
<td>0.52</td>
<td>0.28</td>
<td>-0.22</td>
<td>0.42</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>0.32</td>
<td>0.29</td>
<td>0.45</td>
<td>0.26</td>
<td>-0.22</td>
<td>0.36</td>
<td>0.31</td>
<td>1.00</td>
</tr>
</tbody>
</table>

3.1 Graph the scatter plots

Scatter Plot matrices are very useful ways of showing many relations at once
(Figure 1).
Figure 1: A pairs panels graphic. Because we have many cases, it is better to use a very small (.) plot character (pch='.')
4 Regressions from the raw data

There are a number of analyses that can be done. The most basic is to note from the correlation matrix that the first 3 variables seem to be good predictors of the prelim performance.

What is the multiple correlation of Prelim performance on these three measures of ability? We test this by using the `lm` (linear model) function and then asking for summary statistics.

At the data level, we can work with the raw data matrix X, or convert these to deviation scores (X.dev) by subtracting the means from all elements of X. At the raw data level we have

\[
m\hat{Y}_1 = mX_{nn}\beta_1 + m\epsilon_1
\]

and we can solve for \(n\beta_1\) by pre multiplying by \(nX'_m\) (thus making the matrix on the right side of the equation into a square matrix so that we can multiply through by an inverse.)

\[
nX'_m\hat{Y}_1 = nX'_mX_{nn}\beta_1 + m\epsilon_1
\]

and then solving for beta by pre multiplying both sides of the equation by \((XX')^{-1}\)

\[
\beta = (XX')^{-1}X'Y
\]

These beta weights will be the weights with no intercept. Compare this solution to the one using the `lm` function with the intercept removed.

```r
> mod.1 <- lm(Prelim ~ GREV + GREQ + GREA, data=dataset)
Call:
lm(formula = Prelim ~ GREV + GREQ + GREA, data = dataset)

Coefficients:
(Intercept) GREV GREQ GREA
6.8398644 0.0009607 0.0001318 0.0052978

> summary(mod.1)
Call:
lm(formula = Prelim ~ GREV + GREQ + GREA, data = dataset)
```
Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.95824</td>
<td>-0.59584</td>
<td>-0.00721</td>
<td>0.56142</td>
<td>2.99086</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------|-----------|------------|---------|----------|
| (Intercept) | 6.8398644 | 0.1539609 | 44.426 | <2e-16 *** |
| GREV | 0.0009607 | 0.0004063 | 2.364 | 0.0182 * |
| GREQ | 0.0001318 | 0.0003969 | 0.332 | 0.7399 |
| GREA | 0.0052978 | 0.0003661 | 14.470 | <2e-16 *** |

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y .^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1

Residual standard error: 0.8647 on 996 degrees of freedom
Multiple R-squared: 0.3341, Adjusted R-squared: 0.3321
F-statistic: 166.6 on 3 and 996 DF, p-value: < 2.2e-16

```r
> mod.2 <- lm(MA ~ GREV + GREQ + GREA, data=dataset)
Call:
  lm(formula = MA ~ GREV + GREQ + GREA, data = dataset)

Coefficients:
             Estimate  Std. Error  t value  Pr(>|t|)
(Intercept)  1.844e+00  2.555e-04   72.014   <2e-16 ***
GREV         -1.986e-05  2.076e-03  -0.964   0.3390
GREQ         2.076e-03   2.076e-03   1.005   0.3136
GREA         2.076e-03   2.076e-03   1.005   0.3136
```

What about looking at how long it takes to get a MA? Use the `lm` function again.

```r
> mod.2 <- lm(Prelim ~ GREV + GREQ + GREA, data=dataset)
Call:
  lm(formula = Prelim ~ GREV + GREQ + GREA, data = dataset)

Coefficients:
             Estimate  Std. Error  t value  Pr(>|t|)
(Intercept)  6.8398644  0.0009607   71.105   <2e-16 ***
GREV         0.0009607  0.0004063   2.364   0.0182 *
GREQ         0.0001318  0.0003969   0.332   0.7399
GREA         0.0052978  0.0003661  14.470   <2e-16 ***
```

> summary(mod.1)
Call:
\(\text{lm(formula = Prelim ~ GREV + GREQ + GREA, data = dataset)} \)

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-2.95824</td>
<td>-0.59584</td>
<td>-0.00721</td>
<td>0.56142</td>
<td>2.99086</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|----------|------------|---------|---------|
| (Intercept) | 6.8398644 | 0.1539609 | 44.426 | <2e-16 *** |
| GREV | 0.0009607 | 0.0004063 | 2.364 | 0.0182 * |
| GREQ | 0.0001318 | 0.0003969 | 0.332 | 0.7399 |
| GREA | 0.0052978 | 0.0003661 | 14.470 | <2e-16 *** |

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y ^ a˘A´Z 1

Residual standard error: 0.8647 on 996 degrees of freedom
Multiple R-squared: 0.3341, Adjusted R-squared: 0.3321
F-statistic: 166.6 on 3 and 996 DF, p-value: < 2.2e-16

5 Forming sets of variables, and then doing linear regression

Given that there are many different predictors that seem to work, we could work our way through with all of them, or we could find sets variables of ability, motivation, and performance and examine how these sets work. We use the with to do this operation.

This forms three sets of variables and then finds the linear regression of each set of predictors with each of the set of criteria.

```r
> with(z.df, {
+   #This temporarily uses the standardized set
+   ability <- cbind(GREV,GREQ,GREA)  #form three different sets of variables
+   motivation <- cbind(Ach,Anx)
+   perform<- cbind(Prelim,GPA,MA)
+   comps.df <- data.frame(ability,motivation, perform)  #all together
+   #show the correlations
+   lowerCor(comps.df)
+   model.regress <- lm(perform~ability+motivation)
```
+ model.regress
 #show the resulting regression
+ print(model.regress,digits=3)
 #another way of showing the result
+ summary(model.regress)
 #yet another way of showing the output
+ #this shows each separate regression
+ }
 #this is the end of the expression in the with statement
+)
 #this is the end of the with function

<table>
<thead>
<tr>
<th></th>
<th>GREV</th>
<th>GREQ</th>
<th>GREA</th>
<th>Ach</th>
<th>Anx</th>
<th>Prelm</th>
<th>GPA</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREV</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREQ</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREA</td>
<td>0.64</td>
<td>0.60</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ach</td>
<td>0.01</td>
<td>0.01</td>
<td>0.45</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anx</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.39</td>
<td>-0.56</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prelm</td>
<td>0.43</td>
<td>0.38</td>
<td>0.57</td>
<td>0.30</td>
<td>-0.23</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA</td>
<td>0.42</td>
<td>0.37</td>
<td>0.52</td>
<td>0.28</td>
<td>-0.22</td>
<td>0.42</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>0.32</td>
<td>0.29</td>
<td>0.45</td>
<td>0.26</td>
<td>-0.22</td>
<td>0.36</td>
<td>0.31</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Call:
lm(formula = perform ~ ability + motivation)

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Prelm</th>
<th>GPA</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-7.08e-16</td>
<td>-5.81e-17</td>
<td>-6.33e-16</td>
</tr>
<tr>
<td>abilityGREV</td>
<td>1.40e-01</td>
<td>1.99e-01</td>
<td>1.04e-01</td>
</tr>
<tr>
<td>abilityGREQ</td>
<td>3.94e-02</td>
<td>5.10e-02</td>
<td>2.56e-02</td>
</tr>
<tr>
<td>abilityGREA</td>
<td>4.04e-01</td>
<td>2.86e-01</td>
<td>3.11e-01</td>
</tr>
<tr>
<td>motivationAch</td>
<td>1.14e-01</td>
<td>1.19e-01</td>
<td>9.62e-02</td>
</tr>
<tr>
<td>motivationAnx</td>
<td>-8.50e-03</td>
<td>-4.70e-02</td>
<td>-4.57e-02</td>
</tr>
</tbody>
</table>

Response Prelim:

Call:
lm(formula = Prelim ~ ability + motivation)

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.85962</td>
<td>-0.55321</td>
<td>-0.00403</td>
<td>0.50350</td>
<td>2.71849</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------|----------|------------|---------|---------|

8
Response GPA:

Call:
```
lm(formula = GPA ~ ability + motivation)
```

Residuals:
```
    Min 1Q Median 3Q Max
-2.60408 -0.61369 0.02232 0.60416 2.53718
```

Coefficients:
```
      Estimate  Std. Error t value  Pr(>|t|)
(Intercept) -5.810e-17  2.665e-02  0.000  1.000000
abilityGREV  1.987e-01  4.418e-02  4.497  7.72e-06 ***
abilityGREQ  5.098e-02  4.101e-02  1.243  0.214094
abilityGREA  2.861e-01  4.708e-02  6.078  1.73e-09 ***
motivationAch 1.190e-01  3.569e-02  3.334  0.000886 ***
motivationAnx -4.703e-02  3.360e-02 -1.400  0.161883
```

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8126 on 994 degrees of freedom
Multiple R-squared: 0.3429, Adjusted R-squared: 0.3396
F-statistic: 103.8 on 5 and 994 DF, p-value: < 2.2e-16

Response MA:

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8429 on 994 degrees of freedom
Multiple R-squared: 0.2931, Adjusted R-squared: 0.2895
F-statistic: 82.43 on 5 and 994 DF, p-value: < 2.2e-16
Call:
\texttt{lm(formula = MA ~ ability + motivation)}

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>-2.66414</td>
<td>-0.61142</td>
<td>0.02422</td>
<td>0.61993</td>
<td>2.87736</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|--------------|------------|---------|----------|
| (Intercept) | -6.328e-16 | 2.804e-02 | 0.000 | 1.0000 |
| abilityGREV | 1.041e-01 | 4.648e-02 | 2.240 | 0.0253 * |
| abilityGREQ | 2.555e-02 | 4.314e-02 | 0.592 | 0.5537 |
| abilityGREA | 3.111e-01 | 4.952e-02 | 6.282 | 4.98e-10 *** |
| motivationAch| 9.621e-02 | 3.754e-02 | 2.563 | 0.0105 * |
| motivationAnx| -4.569e-02 | 3.534e-02 | -1.293 | 0.1964 |

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y ^ a˘A´Z 1

Residual standard error: 0.8867 on 994 degrees of freedom
Multiple R-squared: 0.2177, Adjusted R-squared: 0.2138
F-statistic: 55.32 on 5 and 994 DF, p-value: < 2.2e-16

5.1 Using set.cor

This can also be done using the \texttt{set.cor} function. We use the \texttt{summary} function to just give the important values.

```
> summary(set.cor(y=c("Prelim","GPA","MA"),x=c("GREV","GREQ","GREA","Ach","Anx"),data=z.df))

Multiple Regression from raw data
set.cor(y = c("Prelim", "GPA", "MA"), x = c("GREV", "GREQ", "GREA", "Ach", "Anx"), data = z.df)

Multiple Regression from matrix input

Beta weights

<table>
<thead>
<tr>
<th></th>
<th>Prelim</th>
<th>GPA</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREV</td>
<td>0.1399</td>
<td>0.199</td>
<td>0.104</td>
</tr>
<tr>
<td>GREQ</td>
<td>0.0394</td>
<td>0.051</td>
<td>0.026</td>
</tr>
<tr>
<td>GREA</td>
<td>0.4041</td>
<td>0.286</td>
<td>0.311</td>
</tr>
<tr>
<td>Ach</td>
<td>0.1143</td>
<td>0.119</td>
<td>0.096</td>
</tr>
<tr>
<td>Anx</td>
<td>-0.0085</td>
<td>-0.047</td>
<td>-0.046</td>
</tr>
</tbody>
</table>

Multiple R

<table>
<thead>
<tr>
<th></th>
<th>Prelim</th>
<th>GPA</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Forming Composites of variables, and then doing linear regression

Alternatively, we could find composites of the three sets of variables (linear sums) and then find their relationships.

```r
call <- within(z.df, {
 + ability <- cbind(GREV,GREQ,GREA) #form three different sets of variables
 + ability <- rowSums(ability)
 + motivation <- cbind(Ach,-Anx) #note that we reverse the sign of Anxiety
 + motivation <- rowSums(motivation)
 + perform <- cbind(Prelim,GPA,MA)
 + perform <- rowSums(performance)
 + }
 + composite.df <- data.frame(call[1:3])
 + lowerCor(composite.df)

 ablty mtvtn prfrm
 ability 1.00
 motivation 0.18 1.00
 perform 0.63 0.38 1.00

 #now do the linear regression
 > model.composite <- lm(performance~ability + motivation, data=composite.df)
 > summary(model.composite)

 Call:
 lm(formula = perform ~ ability + motivation, data = composite.df)
```
Residuals:

Min 1Q Median 3Q Max
-5.8496 -1.1433 -0.0521 1.1866 4.8591

Coefficients:

                            Estimate Std. Error t value Pr(>|t|)
(Intercept)               -9.726e-16  5.271e-02   0.00     1
ability                   4.984e-01  2.037e-02  24.47  <2e-16 ***
motivation                3.515e-01  3.039e-02  11.56  <2e-16 ***
---
Signif. codes:  0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y.^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1

Residual standard error: 1.667 on 997 degrees of freedom
Multiple R-squared:  0.4641,  Adjusted R-squared:  0.463
F-statistic: 431.7 on 2 and 997 DF,  p-value: < 2.2e-16

6.1 Unit weight the predictors vs optimal weight

Compare what happens if we find the linear sum of our five predictors to predict one outcome, versus the multiple R. Note that we sum the first four and then subtract Anx from the total. We believe that Anx should be negatively weighted.

```r
> all <- rowSums(z.df[1:4]) - z.df[,5]
> mod.all <- lm(z.df$Prelim ~ all)
> summary(mod.all)

Call:
 lm(formula = z.df$Prelim ~ all)

Residuals:

Min 1Q Median 3Q Max
-2.92331 -0.54784 -0.02613 0.54270 3.03636

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.950e-16 2.623e-02 0.00 1
all 1.633e-01 7.664e-03 21.31 <2e-16 ***

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y.^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1

12
Residual standard error: 0.8294 on 998 degrees of freedom
Multiple R-squared: 0.3128, Adjusted R-squared: 0.3121
F-statistic: 454.2 on 1 and 998 DF, p-value: < 2.2e-16

vs optimal linear model
mod.linear <- lm(Prelim ~ GREV + GREQ + GREA + Ach + Anx, data = z.df)
summary(mod.linear)

Call:
lm(formula = Prelim ~ GREV + GREQ + GREA + Ach + Anx, data = z.df)

Residuals:
Min 1Q Median 3Q Max
-2.85962 -0.55321 -0.00403 0.50350 2.71849

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.080e-16 2.570e-02 0.000 1.000000
GREV 1.399e-01 4.259e-02 3.283 0.001061 **
GREQ 3.944e-02 3.954e-02 0.998 0.318722
GREA 4.041e-01 4.539e-02 8.903 < 2e-16 ***
Ach 1.143e-01 3.441e-02 3.323 0.000925 ***
Anx -8.500e-03 3.239e-02 -0.262 0.793050

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8126 on 994 degrees of freedom
Multiple R-squared: 0.3429, Adjusted R-squared: 0.3396
F-statistic: 103.8 on 5 and 994 DF, p-value: < 2.2e-16

Note how both models fit almost equally well. What would happen if we took a random sample of the data, took the beta weights from the first sample, and applied them to the second sample?

6.2 Validating our model from one subsample to another
```r
mod.deriv <- z.m[s1,1:5] %*% coeff[-1] #the derivation sample
mod.valid <- z.m[-s1,1:5] %*% coeff[-1] #the validation sample
round( cor(mod.deriv,z.m[s1,]),2) #derivation

GREV GREQ GREA Ach Anx Prelim GPA MA
[1,] 0.74 0.66 0.97 0.47 -0.43 0.6 0.56 0.46

round(cor(mod.valid,z.m[-s1,]),2) #validation

GREV GREQ GREA Ach Anx Prelim GPA MA
[1,] 0.74 0.61 0.98 0.54 -0.4 0.57 0.52 0.47

Compare this to unit weighting the data

> #the first data set
> all <- rowSums(z.df[s1,1:4] ) - z.df[s1,5]
> mod.all <- lm(z.df[s1,]$Prelim ~ all)
> summary(mod.all)

Call:
lm(formula = z.df[s1, ]$Prelim ~ all)

Residuals:
  Min        1Q  Median        3Q       Max
-2.95245 -0.50845  0.00002  0.53840  2.38406

Coefficients:
            Estimate Std. Error t value  Pr(>|t|)
(Intercept)   0.02633    0.03724   0.707   0.48
all           0.17046    0.01098  15.530  <2e-16 ***

---
Signif. codes:  *** p < 0.001 ** p < 0.01 * p < 0.05 . p < 0.1

Residual standard error: 0.8324 on 498 degrees of freedom
Multiple R-squared: 0.3263,  Adjusted R-squared: 0.3249
F-statistic: 241.2 on 1 and 498 DF,  p-value: < 2.2e-16

> #the replication data set
> all <- rowSums(z.df[-s1,1:4] ) - z.df[-s1,5]
> mod.all <- lm(z.df[-s1,]$Prelim ~ all)
> summary(mod.all)

Call:
lm(formula = z.df[-s1, ]$Prelim ~ all)

Residuals:
  Min        1Q  Median        3Q       Max
-2.03455 -0.54645 -0.04724  0.53789  3.05249

Coefficients:
            Estimate Std. Error t value  Pr(>|t|)
(Intercept)  -0.02506    0.03698  -0.678   0.498
all           0.15684    0.01071  14.640  <2e-16 ***

---
Signif. codes:  *** p < 0.001 ** p < 0.01 * p < 0.05 . p < 0.1
```

14
6.3 Validating our model from one subsample to another.

Take a smaller sample

```r
> set.seed(17)
> s1 <- sample(1:1000,500)
> mod1 <- lm(Prelim ~ GREV + GREQ + GREA + Ach + Anx, data = z.df[s1[1:100],])
> z.m <- as.matrix(z.df)
> coeff <- as.matrix(mod1$coefficients)
> ss <- 200
> mod.deriv <- z.m[s1[1:ss],1:5] %*% coeff[-1] #the derivation sample
> mod.valid <- z.m[s1[(ss+1):(2*ss)],1:5] %*% coeff[-1] #the validation sample
> round( cor(mod.deriv,z.m[s1[1:ss],]),2) #derivation
GREV GREQ GREA Ach Anx Prelim GPA MA
[1,] 0.8 0.6 0.87 0.52 -0.16 0.47 0.48 0.32
> round(cor(mod.valid,z.m[s1[(ss+1):(2*ss)],]),2) #validation
GREV GREQ GREA Ach Anx Prelim GPA MA
[1,] 0.78 0.69 0.9 0.46 -0.13 0.51 0.5 0.4

Compare this to unit weighting the data. Although subtle, the unit
weighted actually has a higher cross validated multiple R when contrasted
with the multiple regression.

> #the first data set
> all <- rowSums(z.m[s1[1:ss],1:4] ) - z.df[s1[1:ss],5]
> mod.all <- lm(z.m[s1[1:ss],"Prelim"] ~ all)
> summary(mod.all)

Call: lm(formula = z.m[s1[1:ss], "Prelim"] ~ all)

Residuals:
     Min       1Q   Median       3Q      Max
-1.87949 -0.50561 -0.04541  0.48038  2.67093

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)   -0.01217   0.05641  -0.216  0.8299
all            0.12995   0.01805   7.200  1.22e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7976 on 198 degrees of freedom
Multiple R-squared:  0.2075, Adjusted R-squared:  0.2035
F-statistic: 51.85 on 1 and 198 DF,  p-value: 1.22e-11
```
> # the replication data set
> all <- rowSums(z.m[s1[(ss+1):(2*ss)],1:4]) - z.m[s1[(ss+1):(2*ss)],5]
> mod.all <- lm(z.m[s1[(ss+1):(2*ss)],'Prelim'] ~ all)
> summary(mod.all)

Call:
 lm(formula = z.m[s1[(ss + 1):(2 * ss)], "Prelim"] ~ all)

Residuals:
 Min 1Q Median 3Q Max
-2.39460 -0.57364 0.01889 0.55124 2.28768

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01239 0.06064 0.204 0.838
 all 0.14996 0.01793 8.364 1.07e-14 ***

Signif. codes: 0 ^ aY***^ aY**^ aY*^ aY ^ aY ^ aY ^ aY 1

Residual standard error: 0.8563 on 198 degrees of freedom
Multiple R-squared: 0.2611, Adjusted R-squared: 0.2573
F-statistic: 69.95 on 1 and 198 DF, p-value: 1.073e-14

>