
Chapter 10

Reliability + Validity = Structural Equation
Models

10.1 Generating simulated data structures

10.2 Measures of fit

As has been seen in the previous sections, the use of fit statistics does not guarantee mean-
ingful models. If we do not specify the model correctly, either because we do not include the
correct variables or because we fail to use the appropriate measurement model, we will lead
to incorrect conclusions. Widaman and Thompson (2003) MacCallum et al. (2006) Marsh
et al. (2005)

Even if we have a very good fit, we are unable to determine causal structure from the
model, even if we bother to add time into the model.

10.2.1 c2

As we saw in the previous chapter, c2 is very sensitive to many sources of error in our
model specification. c2 is sensitive to failures of our distributional assumptions (continuous,
multivariate normal) as well as to our failures to correctly specify the structure.

273



274 10 Reliability + Validity = Structural Equation Models

10.2.2 GFI, NFI, ...

10.2.3 RMSEA

10.3 Reliability (Measurement) models

10.3.1 One factor — congeneric measurement model

10.3.1.1 Generating congeneric data structures

10.3.1.2 Testing for Tau equivalent and congeneric structures

10.3.2 Two (perhaps correlated) factors

10.3.2.1 Generating multiple factorial data

10.3.2.2 Confirmatory factoring using sem

10.3.3 Hierarchical measurement models

10.3.3.1 Generating the data for three correlated factors

10.3.3.2 Testing hierarchical models

10.4 Reliability + Validity = Structural Equation Models

10.4.1 Factorial invariance

10.4.2 Multiple group models

10.5 Evaluating goodness of fit

10.5.1 Model misspecification: Item quality

10.5.1.1 Continuous, ordinal, and dichotomous data

Most advice on the use of latent variable models discusses the assumption of multivariate
normality in the data. Further discussions include the need for continuous measures of the
observed variables. But how does this relate to the frequent use of SEM techniques in analysis
of personality or social psychological items rather than scales? In this chapter we consider
typical problems in personality where we are interested in the structure of self reports of
personality, emotion, or attitude. Using simulation techniques, we consider the e↵ects of
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normally distributed items, ordinal items with 6 or 4 or 2 levels, and then the e↵ect of skew
on these results. We use simulations to show the results more clearly. For a discussion of real
data with some of these problems, see Rafaeli and Revelle (2006).

10.5.1.2 Simple structure versus circumplex structure

Most personality scales are created to have “simple structure” where items load on one and
only one factor Revelle and Rocklin (1979); Thurstone (1947). The conventional estimate
for the reliability and general factor saturation of such a test is Cronbach’s coe�cient a
(Cronbach, 1951) Variations of this model include hierarchical structures where all items
load on a general factor, g, and then groups of items load on separate, group, factors Carroll
(1993); Jensen and Weng (1994). Estimates of the amount of general factor saturation for
such hierarchical structures may be found using the w coe�cient discussed by (McDonald,
1999) and (Zinbarg et al., 2005).

An alternative structure, particularly popular in the study of a↵ect as well as studies
of interpersonal behavior is a “circumplex structure” where items are thought to be more
complex and to load on at most two factors.

“A number of elementary requirements can be teased out of the idea of circumplex structure.
First, circumplex structure implies minimally that variables are interrelated; random noise does
not a circumplex make. Second, circumplex structure implies that the domain in question is
optimally represented by two and only two dimensions. Third, circumplex structure implies that
variables do not group or clump along the two axes, as in simple structure, but rather that there
are always interstitial variables between any orthogonal pair of axes Saucier (1992). In the ideal
case, this quality will be reflected in equal spacing of variables along the circumference of the
circle Gurtman (1994)(Gurtman, 1994; Wiggins, Steiger, & Gaelick, 1981). Fourth, circumplex
structure implies that variables have a constant radius from the center of the circle, which
implies that all variables have equal communality on the two circumplex dimensions (Fisher,
1997; Gurtman, 1994). Fifth, circumplex structure implies that all rotations are equally good
representations of the domain (Conte & Plutchik, 1981; Larsen & Diener, 1992).” (Acton and
Revelle, 2004).

Variations of this model in personality assessment include the case where items load on two
factors but the entire space is made up of more factors. The Abridged Big Five Circumplex
Structure (AB5C) of (Hofstee et al., 1992b) is an example of such a structure. That is, the
AB5C items are of complexity one or two but are embedded in a five dimensional space.

10.5.2 Model misspecification: failure to include variables

10.5.3 Model misspecification: incorrect structure

10.6 What does it mean to fit a model





Chapter 11

Testing alternative models of data

In this chapter we consider how to test nested alternative models of some basic data types.
Using the simulation tools introduced in the previous chapter, we generate a data set from a
congeneric reliability model with unequal true score loadings and fit three alternative models
to the data. Then we simulate a two factor data structure and consider a set of alternative
models. Finally, we consider ways of representing (and modeling) hierarchical data structures.

For these examples, as well as the other ones, we need to load the psych and sem packages.

> library(sem)
> library(psych)

11.1 One factor — congeneric data model

The classic test theory structure of 4 observed variables V1 . . . V4 all loading on a single
factor, q , (Figure 11.1 may be analyzed in multiple ways. The most restrictive model considers
all the loadings to be fixed values (perhaps .7). A more reasonable model is to consider the
four variables to be parallel, that is to say, that they have equal loadings on the latent variable
and equal error variances. A less restrictive models would be tau equivalence where the paths
are equal but the errors can be unequal, and then the least restrictive model is known as the
“congeneric” model where all paths are allowed to vary.

We can generate data under a congeneric model and then test it with progressively more
restricted models (i.e.,start with the most unrestricted model, the congeneric model, fix some
parameters for the tau equivalent model, add equality constraints for the parallel test model,
and then fit arbitrarily fixed parameters). To do this, we first create a function, sim.sem,
which we apply to make our data.

11.1.1 Generating the data

We create a function, sim.sem, to simulate data with a variety of possible structures. Al-
though the function defaults to four variables with specific loadings on one factor, we can
vary both the number of variables as well as the loadings and the number of factors. The
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X1 X2 X3 X4

X

a b c d

e1 e2 e3 e4

Fig. 11.1 The basic congeneric model is one latent (true score) factor accounting for the correlations
of multiple observed scores. If there are at least 4 observed variables, the model is identified. For fewer
variables, assumptions need to be made (i.e., for two parallel tests, the path coe�cients are all equal.)

function returns the pattern matrix used to generate the data and the implied structure
matrix, or just the simulated raw data.

> sim.sem <- function(N = 1000, loads = c(0.8, 0.7, 0.6, 0.5), phi = NULL,
+ obs = TRUE) {
+ if (!is.matrix(loads)) {
+ loading <- matrix(loads, ncol = 1)
+ }
+ else {
+ loading <- loads
+ }
+ nv <- dim(loading)[1]
+ nf <- dim(loading)[2]
+ error <- diag(1, nrow = nv)
+ diag(error) <- sqrt(1 - diag(loading %*% t(loading)))
+ if (is.null(phi))
+ phi <- diag(1, nrow = nf)
+ pattern <- cbind(loading, error)
+ colnames(pattern) <- c(paste("theta", seq(1:nf), sep = ""),
+ paste("e", seq(1:nv), sep = ""))
+ rownames(pattern) <- c(paste("V", seq(1:nv), sep = ""))
+ temp <- diag(1, nv + nf)
+ temp[1:nf, 1:nf] <- phi
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+ phi <- temp
+ colnames(phi) <- c(paste("theta", seq(1:nf), sep = ""), paste("e",
+ seq(1:nv), sep = ""))
+ structure <- pattern %*% phi
+ latent <- matrix(rnorm(N * (nf + nv)), ncol = (nf + nv))
+ if (nf > 1) {
+ for (i in 1:nf) {
+ for (j in i + 1:nf) {
+ phi[i, j] <- 0
+ }
+ }
+ }
+ observed <- latent %*% t(pattern %*% phi)
+ if (obs) {
+ return(observed)
+ }
+ else {
+ ps <- list(pattern = pattern, structure = structure, phi)
+ return(ps)
+ }
+ }

Specifying a particular factor pattern, we can use the sim.sem function to show the ex-
tended pattern matrix, the implied population correlation matrix, and then take a sample
of 1000 from that population. Note that even with 1000 simulated subjects the sample cor-
relation matrix is not the same as the population matrix. As we develop our theory testing
skills, it is useful to remember that we are trying to make inferences about the population
based upon parameter estimates derived from the sample.

> N <- 1000
> sim <- sim.sem(obs = FALSE)
> round(sim$pattern, 2)

theta1 e1 e2 e3 e4
V1 0.8 0.6 0.00 0.0 0.00
V2 0.7 0.0 0.71 0.0 0.00
V3 0.6 0.0 0.00 0.8 0.00
V4 0.5 0.0 0.00 0.0 0.87

> population <- (sim$pattern %*% t(sim$pattern))
> population

V1 V2 V3 V4
V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00

> set.seed(42)
> data.f1 <- sim.sem()
> round(cor(data.f1), 2)
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V1 V2 V3 V4
V1 1.00 0.54 0.52 0.41
V2 0.54 1.00 0.41 0.32
V3 0.52 0.41 1.00 0.32
V4 0.41 0.32 0.32 1.00

11.1.2 Estimate a congeneric model

Using the simulated data generated above, we find the covariance matrix from the sample
data and apply sem to the data. (The sem package needs to be loaded first.) Examine the
statistics of fit as well as the residual matrix.

> S.congeneric <- cov(data.f1)
> model.congeneric <- matrix(c("theta -> V1", "a", NA, "theta -> V2",
+ "b", NA, "theta -> V3", "c", NA, "theta -> V4", "d", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4",
+ "x", NA, "theta <-> theta", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.congeneric) <- c("path", "label", "initial estimate")
> model.congeneric

path label initial estimate
[1,] "theta -> V1" "a" NA
[2,] "theta -> V2" "b" NA
[3,] "theta -> V3" "c" NA
[4,] "theta -> V4" "d" NA
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "v" NA
[7,] "V3 <-> V3" "w" NA
[8,] "V4 <-> V4" "x" NA
[9,] "theta <-> theta" NA "1"

> sem.congeneric = sem(model.congeneric, S.congeneric, N)
> summary(sem.congeneric, digits = 3)

Model Chisquare = 0.46 Df = 2 Pr(>Chisq) = 0.795
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 0.999
RMSEA index = 0 90% CI: (NA, 0.0398)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.01
Bentler CFI = 1
BIC = -13.4

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.177000 -0.032200 -0.000271 0.010600 0.017000 0.319000
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Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.829 0.0320 25.90 0 V1 <--- theta
b 0.657 0.0325 20.23 0 V2 <--- theta
c 0.632 0.0325 19.43 0 V3 <--- theta
d 0.503 0.0340 14.80 0 V4 <--- theta
u 0.316 0.0346 9.12 0 V1 <--> V1
v 0.580 0.0334 17.35 0 V2 <--> V2
w 0.604 0.0337 17.94 0 V3 <--> V3
x 0.776 0.0382 20.31 0 V4 <--> V4

Iterations = 13

> round(residuals(sem.congeneric), 2)

V1 V2 V3 V4
V1 0 0.00 0.00 0.00
V2 0 0.00 -0.01 0.00
V3 0 -0.01 0.00 0.01
V4 0 0.00 0.01 0.00

11.1.3 Estimate a tau equivalent model with equal true score and
unequal error loadings

A more constrained model, “Tau equivalence”, assumes that the theta paths in Figure 11.1
are equal but allows the error variances to be unequal.

> S.congeneric <- cov(data.f1)
> model.tau <- matrix(c("theta -> V1", "a", NA, "theta -> V2", "a",
+ NA, "theta -> V3", "a", NA, "theta -> V4", "a", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4",
+ "x", NA, "theta <-> theta", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.tau) <- c("path", "label", "initial estimate")
> model.tau

path label initial estimate
[1,] "theta -> V1" "a" NA
[2,] "theta -> V2" "a" NA
[3,] "theta -> V3" "a" NA
[4,] "theta -> V4" "a" NA
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "v" NA
[7,] "V3 <-> V3" "w" NA
[8,] "V4 <-> V4" "x" NA
[9,] "theta <-> theta" NA "1"

> sem.tau = sem(model.tau, S.congeneric, N)
> summary(sem.tau, digits = 3)
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Model Chisquare = 56.1 Df = 5 Pr(>Chisq) = 7.64e-11
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 0.974
Adjusted goodness-of-fit index = 0.947
RMSEA index = 0.101 90% CI: (0.0783, 0.126)
Bentler-Bonnett NFI = 0.938
Tucker-Lewis NNFI = 0.932
Bentler CFI = 0.943
BIC = 21.6

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.160 -2.890 -0.967 -0.418 2.290 3.000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.668 0.0202 33.2 0 V1 <--- theta
u 0.448 0.0270 16.6 0 V1 <--> V1
v 0.565 0.0315 18.0 0 V2 <--> V2
w 0.576 0.0319 18.1 0 V3 <--> V3
x 0.730 0.0386 18.9 0 V4 <--> V4

Iterations = 10

> round(residuals(sem.tau), 2)

V1 V2 V3 V4
V1 0.11 0.10 0.08 -0.03
V2 0.10 0.00 -0.04 -0.12
V3 0.08 -0.04 -0.02 -0.12
V4 -0.03 -0.12 -0.12 -0.15

Note that this model has a much worse fit (as it should), with a very large change in the
c2 that far exceeds the benefit of greater parsimony (the change in degrees of freedom from
2 to 5). However, note that some traditional measures of fit (e.g., the GFI) seem reasonable.
The RMSEA and NFI suggest a poor fit, as do the residuals.

11.1.4 Estimate a parallel test model with equal true score and
equal error loadings

An even more unrealistic model would a model of parallel tests where the true score variances
are the same for all tests, as are the error variances.

> model.parallel <- matrix(c("theta -> V1", "a", NA, "theta -> V2",
+ "a", NA, "theta -> V3", "a", NA, "theta -> V4", "a", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "u", NA, "V3 <-> V3", "u", NA, "V4 <-> V4",
+ "u", NA, "theta <-> theta", NA, 1), ncol = 3, byrow = TRUE)
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> colnames(model.parallel) <- c("path", "label", "initial estimate")
> model.parallel

path label initial estimate
[1,] "theta -> V1" "a" NA
[2,] "theta -> V2" "a" NA
[3,] "theta -> V3" "a" NA
[4,] "theta -> V4" "a" NA
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "u" NA
[7,] "V3 <-> V3" "u" NA
[8,] "V4 <-> V4" "u" NA
[9,] "theta <-> theta" NA "1"

> sem.parallel = sem(model.parallel, S.congeneric, N)
> summary(sem.parallel, digits = 3)

Model Chisquare = 91.2 Df = 8 Pr(>Chisq) = 2.22e-16
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 0.959
Adjusted goodness-of-fit index = 0.949
RMSEA index = 0.102 90% CI: (0.0838, 0.121)
Bentler-Bonnett NFI = 0.9
Tucker-Lewis NNFI = 0.931
Bentler CFI = 0.908
BIC = 36.0

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.78e+00 -1.04e+00 -2.74e-01 7.11e-07 9.99e-01 3.51e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.652 0.0198 32.9 0 V1 <--- theta
u 0.586 0.0152 38.7 0 V1 <--> V1

Iterations = 11

> round(residuals(sem.parallel), 2)

V1 V2 V3 V4
V1 -0.01 0.12 0.10 -0.01
V2 0.12 0.00 -0.02 -0.09
V3 0.10 -0.02 -0.01 -0.10
V4 -0.01 -0.09 -0.10 0.02
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11.1.5 Estimate a parallel test model with fixed loadings

The most restrictive model estimates the fewest parameters and considers the case where all
loadings are fixed at a particular value. (This is truely a stupid model). Notice how large the
residuals are.

> model.fixed <- matrix(c("theta -> V1", NA, 0.6, "theta -> V2",
+ NA, 0.6, "theta -> V3", NA, 0.6, "theta -> V4", NA, 0.6, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "u", NA, "V3 <-> V3", "u", NA, "V4 <-> V4",
+ "u", NA, "theta <-> theta", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.fixed) <- c("path", "label", "initial estimate")
> model.fixed

path label initial estimate
[1,] "theta -> V1" NA "0.6"
[2,] "theta -> V2" NA "0.6"
[3,] "theta -> V3" NA "0.6"
[4,] "theta -> V4" NA "0.6"
[5,] "V1 <-> V1" "u" NA
[6,] "V2 <-> V2" "u" NA
[7,] "V3 <-> V3" "u" NA
[8,] "V4 <-> V4" "u" NA
[9,] "theta <-> theta" NA "1"

> sem.fixed = sem(model.fixed, S.congeneric, N)
> summary(sem.fixed, digits = 3)

Model Chisquare = 98.6 Df = 9 Pr(>Chisq) = 0
Chisquare (null model) = 910 Df = 6
Goodness-of-fit index = 0.957
Adjusted goodness-of-fit index = 0.952
RMSEA index = 0.0998 90% CI: (0.0826, 0.118)
Bentler-Bonnett NFI = 0.892
Tucker-Lewis NNFI = 0.934
Bentler CFI = 0.9
BIC = 36.4

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.980 0.633 1.510 1.850 2.590 5.790

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

u 0.594 0.0153 38.9 0 V1 <--> V1

Iterations = 8

> round(residuals(sem.fixed), 2)

V1 V2 V3 V4
V1 0.05 0.19 0.16 0.05
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V2 0.19 0.06 0.05 -0.03
V3 0.16 0.05 0.05 -0.03
V4 0.05 -0.03 -0.03 0.08

11.1.6 Comparison of models

We can examine the degrees of freedom in each of previous analyses and compare them to the
goodness of fit. The di↵erence in c2 of a nested model is itself a c2 with degrees of freedom =
the di↵erence of the two di↵erent degrees of freedom. We form a list of the di↵erent analyses,
and then show the summary statistics.

> summary.list <- list()
> summary.list[[1]] <- summary(sem.congeneric)[1:2]
> summary.list[[2]] <- summary(sem.tau)[1:2]
> summary.list[[3]] <- summary(sem.parallel)[1:2]
> summary.list[[4]] <- summary(sem.fixed)[1:2]
> summary.data <- matrix(unlist(summary.list), nrow = 4, byrow = TRUE)
> rownames(summary.data) <- c("congeneric", "tau", "parallel", "fixed")
> colnames(summary.data) <- c("chisq", "df")
> summary.data

chisq df
congeneric 0.4597646 2
tau 56.1290414 5
parallel 91.2250565 8
fixed 98.5734749 9

A simple conclusion is that although the congeneric model has estimated the most param-
eters, the c2 di↵erence between congeneric and tau equivalence models justifies rejecting tau
equivalence in favor of the less restrictive congeneric model.

11.2 Two (perhaps correlated) factors

We now consider more interesting problems. The case of two correlated factors sometimes
appears as a classic prediction problem (multiple measures of X, multiple measures of Y,
what is the correlation between the two latent constructs) and sometimes as a measurement
problem (multiple subfactors of X). The generation structure is similar.

11.2.1 Generating the data

We use the sim.sem function from before, and specify a two factor, uncorrelated structure.
Figure 11.2 shows the general case where the two factors could be correlated. By specifying
the path between the two latent variables to be 0, we make them uncorrelated.
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X1 X2 X3 Y1 Y2 Y3

X

a b c

Y

g

d e f

e1 e2 e3 e4 e5 e6

Fig. 11.2 Six variables with two factors. This notation shows the error of measurement in the observed
and latent variables. If g >0, then the two factors are correlated.

> set.seed(42)
> N <- 1000
> pattern <- matrix(c(0.9, 0, 0.8, 0, 0.7, 0, 0, 0.8, 0, 0.7, 0,
+ 0.6), ncol = 2, byrow = TRUE)
> phi <- matrix(c(1, 0, 0, 1), ncol = 2)
> population <- sim.sem(loads = pattern, phi = phi, obs = FALSE)
> round(population$pattern, 2)

theta1 theta2 e1 e2 e3 e4 e5 e6
V1 0.9 0.0 0.44 0.0 0.00 0.0 0.00 0.0
V2 0.8 0.0 0.00 0.6 0.00 0.0 0.00 0.0
V3 0.7 0.0 0.00 0.0 0.71 0.0 0.00 0.0
V4 0.0 0.8 0.00 0.0 0.00 0.6 0.00 0.0
V5 0.0 0.7 0.00 0.0 0.00 0.0 0.71 0.0
V6 0.0 0.6 0.00 0.0 0.00 0.0 0.00 0.8

> pop.cor <- round(population$structure %*% t(population$pattern),
+ 2)
> pop.cor

V1 V2 V3 V4 V5 V6
V1 1.00 0.72 0.63 0.00 0.00 0.00
V2 0.72 1.00 0.56 0.00 0.00 0.00
V3 0.63 0.56 1.00 0.00 0.00 0.00
V4 0.00 0.00 0.00 1.00 0.56 0.48
V5 0.00 0.00 0.00 0.56 1.00 0.42
V6 0.00 0.00 0.00 0.48 0.42 1.00

> data.f2 <- sim.sem(loads = pattern, phi = phi)

The SPLOM suggests two separate factors in the data.
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> pairs.panels(data.f2)
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Fig. 11.3 A ScatterPlot Matrix, SPLOM, of the six variables.

11.2.2 Exploratory Factor analysis of the data

This structure may be analyzed in a variety of di↵erent ways, including exploratory factor
analysis. A“scree”plot of the eigen values of the matrix suggests a two factor solution. Based
upon this “prior” hypotheses, we extract two factors using the factanal function.

> f2 <- factanal(data.f2, 2)
> f2

Call:
factanal(x = data.f2, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6

0.201 0.374 0.491 0.329 0.496 0.626

Loadings:
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> VSS.scree(cor(data.f2))
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Fig. 11.4 A scree plot of the eigen values of the simulated data suggests that two factors are the best
representation of the data. Compare this to the two correlated factor problem, Figure 11.6, and the
three correlated factor problem, Figure 11.9

Factor1 Factor2
V1 0.894
V2 0.791
V3 0.713
V4 0.819
V5 0.709
V6 0.611

Factor1 Factor2
SS loadings 1.934 1.548
Proportion Var 0.322 0.258
Cumulative Var 0.322 0.580

Test of the hypothesis that 2 factors are sufficient.
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The chi square statistic is 3.97 on 4 degrees of freedom.
The p-value is 0.41

The factor loadings nicely capture the population values specified in section 11.2.1.

11.2.3 Confirmatory analysis with a predicted structure

We can also analyze these data taking a confirmatory, proposing that the first 3 variables
load on one factor, and the second 3 variables load on a second factor.

> S.f2 <- cov(data.f2)
> model.two <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2",
+ "b", NA, "theta1 -> V3", "c", NA, "theta2 -> V4", "d", NA,
+ "theta2 -> V5", "e", NA, "theta2 -> V6", "f", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4",
+ "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1",
+ NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.two) <- c("path", "label", "initial estimate")
> model.two

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.two = sem(model.two, S.f2, N)
> summary(sem.two, digits = 3)

Model Chisquare = 4.91 Df = 9 Pr(>Chisq) = 0.842
Chisquare (null model) = 2004 Df = 15
Goodness-of-fit index = 0.998
Adjusted goodness-of-fit index = 0.996
RMSEA index = 0 90% CI: (NA, 0.0205)
Bentler-Bonnett NFI = 0.998
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -57.3
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Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.02e-01 -4.43e-02 -7.84e-06 -8.03e-02 2.63e-05 3.51e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.898 0.0283 31.66 0.00e+00 V1 <--- theta1
b 0.770 0.0282 27.31 0.00e+00 V2 <--- theta1
c 0.727 0.0301 24.18 0.00e+00 V3 <--- theta1
d 0.817 0.0340 24.03 0.00e+00 V4 <--- theta2
e 0.731 0.0345 21.19 0.00e+00 V5 <--- theta2
f 0.644 0.0348 18.50 0.00e+00 V6 <--- theta2
u 0.204 0.0267 7.64 2.22e-14 V1 <--> V1
v 0.354 0.0244 14.53 0.00e+00 V2 <--> V2
w 0.510 0.0282 18.11 0.00e+00 V3 <--> V3
x 0.327 0.0391 8.36 0.00e+00 V4 <--> V4
y 0.527 0.0375 14.06 0.00e+00 V5 <--> V5
z 0.696 0.0385 18.09 0.00e+00 V6 <--> V6

Iterations = 22

> round(residuals(sem.two), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.01 -0.02 0.00
V2 0.00 0.00 0.00 0.00 0.00 0.01
V3 0.00 0.00 0.00 -0.01 -0.01 -0.03
V4 0.01 0.00 -0.01 0.00 0.00 0.00
V5 -0.02 0.00 -0.01 0.00 0.00 0.00
V6 0.00 0.01 -0.03 0.00 0.00 0.00

> std.coef(sem.two)

Std. Estimate
a a 0.89320 V1 <--- theta1
b b 0.79150 V2 <--- theta1
c c 0.71341 V3 <--- theta1
d d 0.81904 V4 <--- theta2
e e 0.70975 V5 <--- theta2
f f 0.61113 V6 <--- theta2

It is useful to compare these “confirmatory” factor loadings with the factor loadings ob-
tained by the exploratory factor analysis in section 11.2.2. Although the unstandardized
loadings di↵er, the standardized loadings are identical to 3 decimals.
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11.2.4 Confirmatory factor analysis with two independent factors
with equal loadings within factors

The previous model allowed the factor loadings (and hence the quality of measurement of
the variables) to di↵er. A more restrictive model (e.g., tau equivalence) forces the true score
loadings to be equal within each factor. Note that although the c2 suggests that the model
is not adequate, the more standard measures of adequacy of fit (e.g., RMSEA and the NFI)
incorrectly show a good fit.

> model.twotau <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2",
+ "a", NA, "theta1 -> V3", "a", NA, "theta2 -> V4", "d", NA,
+ "theta2 -> V5", "d", NA, "theta2 -> V6", "d", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4",
+ "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1",
+ NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.twotau) <- c("path", "label", "initial estimate")
> model.twotau

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "a" NA
[3,] "theta1 -> V3" "a" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "d" NA
[6,] "theta2 -> V6" "d" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.twotau = sem(model.twotau, S.f2, N)
> summary(sem.twotau, digits = 3)

Model Chisquare = 46.1 Df = 13 Pr(>Chisq) = 1.38e-05
Chisquare (null model) = 2004 Df = 15
Goodness-of-fit index = 0.985
Adjusted goodness-of-fit index = 0.976
RMSEA index = 0.0505 90% CI: (0.0352, 0.0666)
Bentler-Bonnett NFI = 0.977
Tucker-Lewis NNFI = 0.98
Bentler CFI = 0.983
BIC = -43.7

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
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-2.3600 -0.7210 -0.0444 -0.2320 0.2160 1.8500

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.808 0.0215 37.5 0 V1 <--- theta1
d 0.739 0.0221 33.5 0 V4 <--- theta2
u 0.280 0.0198 14.2 0 V1 <--> V1
v 0.321 0.0212 15.1 0 V2 <--> V2
w 0.480 0.0275 17.5 0 V3 <--> V3
x 0.400 0.0270 14.8 0 V4 <--> V4
y 0.510 0.0309 16.5 0 V5 <--> V5
z 0.648 0.0366 17.7 0 V6 <--> V6

Iterations = 15

> round(residuals(sem.twotau), 2)

V1 V2 V3 V4 V5 V6
V1 0.08 0.04 0.00 0.01 -0.02 0.00
V2 0.04 -0.03 -0.09 0.00 0.00 0.01
V3 0.00 -0.09 -0.09 -0.01 -0.01 -0.03
V4 0.01 0.00 -0.01 0.05 0.05 -0.02
V5 -0.02 0.00 -0.01 0.05 0.01 -0.08
V6 0.00 0.01 -0.03 -0.02 -0.08 -0.08

> std.coef(sem.twotau)

Std. Estimate
1 a 0.83640 V1 <--- theta1
2 a 0.81881 V2 <--- theta1
3 a 0.75897 V3 <--- theta1
4 d 0.75999 V4 <--- theta2
5 d 0.71919 V5 <--- theta2
6 d 0.67637 V6 <--- theta2

11.2.5 Structure invariance, part I— unequal loadings within
factors - matched across factors

Are the two factors measured the same way? That is, are the loadings for the first factor the
same as those for the second factor? We can test the model that the ordered loadings are the
same across the two factors. We allow the errors to di↵er.

> model.two.invar <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2",
+ "b", NA, "theta1 -> V3", "c", NA, "theta2 -> V4", "a", NA,
+ "theta2 -> V5", "b", NA, "theta2 -> V6", "c", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4",
+ "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1",
+ NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)
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> colnames(model.two.invar) <- c("path", "label", "initial estimate")
> model.two.invar

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "a" NA
[5,] "theta2 -> V5" "b" NA
[6,] "theta2 -> V6" "c" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.two.invar = sem(model.two.invar, S.f2, N)
> summary(sem.two.invar, digits = 3)

Model Chisquare = 10.7 Df = 12 Pr(>Chisq) = 0.557
Chisquare (null model) = 2004 Df = 15
Goodness-of-fit index = 0.996
Adjusted goodness-of-fit index = 0.994
RMSEA index = 0 90% CI: (NA, 0.0293)
Bentler-Bonnett NFI = 0.995
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -72.2

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.7400 -0.8010 -0.0444 -0.0818 0.4770 1.6000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.862 0.0214 40.26 0 V1 <--- theta1
b 0.750 0.0215 34.91 0 V2 <--- theta1
c 0.690 0.0225 30.67 0 V3 <--- theta1
u 0.211 0.0249 8.48 0 V1 <--> V1
v 0.350 0.0235 14.86 0 V2 <--> V2
w 0.513 0.0277 18.53 0 V3 <--> V3
x 0.312 0.0315 9.89 0 V4 <--> V4
y 0.536 0.0330 16.24 0 V5 <--> V5
z 0.692 0.0371 18.66 0 V6 <--> V6

Iterations = 18
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> round(residuals(sem.two.invar), 2)

V1 V2 V3 V4 V5 V6
V1 0.06 0.04 0.06 0.01 -0.02 0.00
V2 0.04 0.03 0.04 0.00 0.00 0.01
V3 0.06 0.04 0.05 -0.01 -0.01 -0.03
V4 0.01 0.00 -0.01 -0.06 -0.05 -0.07
V5 -0.02 0.00 -0.01 -0.05 -0.04 -0.05
V6 0.00 0.01 -0.03 -0.07 -0.05 -0.06

> std.coef(sem.two.invar)

Std. Estimate
1 a 0.88236 V1 <--- theta1
2 b 0.78527 V2 <--- theta1
3 c 0.69405 V3 <--- theta1
4 a 0.83927 V4 <--- theta2
5 b 0.71551 V5 <--- theta2
6 c 0.63875 V6 <--- theta2

What is both interesting and disappointing from this example is that although the true
loadings (refer back to 11.2.1) are not matched across the two factors, estimating a model
that they are equivalent across factors can not be rejected, even with 1000 subjects. In
addition, the correct population values are not included in the normal confidence intervals
of the estimated values of a,b, and c.

11.2.6 Estimate two correlated factors

This next example is a bit more subtle, in that we generate data with a particular causal
structure. The matrix of intercorrelations of the two factors leads to correlations between the
variables, but reflects the idea of a path coe�cent from the first latent variable to the second
one. 1

> set.seed(42)
> N <- 1000
> pattern <- matrix(c(0.9, 0, 0.8, 0, 0.7, 0, 0, 0.8, 0, 0.7, 0,
+ 0.6), ncol = 2, byrow = TRUE)
> phi <- matrix(c(1, 0.4, 0.4, 1), ncol = 2)
> population <- sim.sem(loads = pattern, phi = phi, obs = FALSE)
> round(population$pattern, 2)

theta1 theta2 e1 e2 e3 e4 e5 e6
V1 0.9 0.0 0.44 0.0 0.00 0.0 0.00 0.0
V2 0.8 0.0 0.00 0.6 0.00 0.0 0.00 0.0
V3 0.7 0.0 0.00 0.0 0.71 0.0 0.00 0.0
V4 0.0 0.8 0.00 0.0 0.00 0.6 0.00 0.0

1 Once again, we set the seed for the random number generator to a particular value in order to have
reproducible results.
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V5 0.0 0.7 0.00 0.0 0.00 0.0 0.71 0.0
V6 0.0 0.6 0.00 0.0 0.00 0.0 0.00 0.8

> round(population$structure, 2)

theta1 theta2 e1 e2 e3 e4 e5 e6
V1 0.90 0.36 0.44 0.0 0.00 0.0 0.00 0.0
V2 0.80 0.32 0.00 0.6 0.00 0.0 0.00 0.0
V3 0.70 0.28 0.00 0.0 0.71 0.0 0.00 0.0
V4 0.32 0.80 0.00 0.0 0.00 0.6 0.00 0.0
V5 0.28 0.70 0.00 0.0 0.00 0.0 0.71 0.0
V6 0.24 0.60 0.00 0.0 0.00 0.0 0.00 0.8

> pop.cor <- population$structure %*% t(population$pattern)
> round(pop.cor, 2)

V1 V2 V3 V4 V5 V6
V1 1.00 0.72 0.63 0.29 0.25 0.22
V2 0.72 1.00 0.56 0.26 0.22 0.19
V3 0.63 0.56 1.00 0.22 0.20 0.17
V4 0.29 0.26 0.22 1.00 0.56 0.48
V5 0.25 0.22 0.20 0.56 1.00 0.42
V6 0.22 0.19 0.17 0.48 0.42 1.00

> data.f2 <- sim.sem(loads = pattern, phi = phi)

The scree test for this problem also suggests two factors, although not as clearly as in
example 11.2.1. We first conduct an exploratory factor analysis of the data. Rather than
accepting the default value of a VARIMAX rotation, we examine the unrotated solution.
For comparisons to a confirmatory factor analysis, we repeat the exploratory analysis with a
VARIMAX rotation to simple structure.

> f2 <- factanal(data.f2, 2, rotation = "none")
> f2

Call:
factanal(x = data.f2, factors = 2, rotation = "none")

Uniquenesses:
V1 V2 V3 V4 V5 V6

0.201 0.374 0.491 0.295 0.463 0.600

Loadings:
Factor1 Factor2

V1 0.845 -0.291
V2 0.749 -0.256
V3 0.667 -0.254
V4 0.552 0.633
V5 0.463 0.568
V6 0.404 0.487
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> pairs.panels(data.f2)
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Fig. 11.5 Six variables loading on 2 correlated factors

Factor1 Factor2
SS loadings 2.401 1.175
Proportion Var 0.400 0.196
Cumulative Var 0.400 0.596

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 3.99 on 4 degrees of freedom.
The p-value is 0.407

> f2v <- factanal(data.f2, 2)
> f2v

Call:
factanal(x = data.f2, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6
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> VSS.scree(cor(data.f2))
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Fig. 11.6 Scree plot of two correlated factors. Compare to Figure 11.4
.

0.201 0.374 0.491 0.295 0.463 0.600

Loadings:
Factor1 Factor2

V1 0.888
V2 0.786
V3 0.711
V4 0.226 0.809
V5 0.174 0.711
V6 0.156 0.613

Factor1 Factor2
SS loadings 2.018 1.558
Proportion Var 0.336 0.260
Cumulative Var 0.336 0.596
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Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 3.99 on 4 degrees of freedom.
The p-value is 0.407

The sem for uncorrelated factors does not fit very well (as it should not!)

> S.f2 <- cov(data.f2)
> model.two <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2",
+ "b", NA, "theta1 -> V3", "c", NA, "theta2 -> V4", "d", NA,
+ "theta2 -> V5", "e", NA, "theta2 -> V6", "f", NA, "V1 <-> V1",
+ "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4",
+ "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1",
+ NA, 1, "theta2 <-> theta2", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.two) <- c("path", "label", "initial estimate")
> model.two

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "V1 <-> V1" "u" NA
[8,] "V2 <-> V2" "v" NA
[9,] "V3 <-> V3" "w" NA
[10,] "V4 <-> V4" "x" NA
[11,] "V5 <-> V5" "y" NA
[12,] "V6 <-> V6" "z" NA
[13,] "theta1 <-> theta1" NA "1"
[14,] "theta2 <-> theta2" NA "1"

> sem.two = sem(model.two, S.f2, N)
> summary(sem.two, digits = 3)

Model Chisquare = 101 Df = 9 Pr(>Chisq) = 0
Chisquare (null model) = 2206 Df = 15
Goodness-of-fit index = 0.969
Adjusted goodness-of-fit index = 0.927
RMSEA index = 0.101 90% CI: (0.0838, 0.119)
Bentler-Bonnett NFI = 0.954
Tucker-Lewis NNFI = 0.93
Bentler CFI = 0.958
BIC = 38.5

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.56e-05 -3.80e-06 2.10e+00 3.26e+00 6.43e+00 9.05e+00

Parameter Estimates
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Estimate Std Error z value Pr(>|z|)
a 0.898 0.0283 31.66 0.00e+00 V1 <--- theta1
b 0.770 0.0282 27.31 0.00e+00 V2 <--- theta1
c 0.727 0.0301 24.18 0.00e+00 V3 <--- theta1
d 0.883 0.0341 25.88 0.00e+00 V4 <--- theta2
e 0.782 0.0344 22.74 0.00e+00 V5 <--- theta2
f 0.682 0.0346 19.72 0.00e+00 V6 <--- theta2
u 0.204 0.0267 7.64 2.22e-14 V1 <--> V1
v 0.354 0.0244 14.53 0.00e+00 V2 <--> V2
w 0.510 0.0282 18.11 0.00e+00 V3 <--> V3
x 0.328 0.0401 8.18 2.22e-16 V4 <--> V4
y 0.527 0.0376 14.02 0.00e+00 V5 <--> V5
z 0.696 0.0383 18.19 0.00e+00 V6 <--> V6

Iterations = 22

> std.coef(sem.two)

Std. Estimate
a a 0.89320 V1 <--- theta1
b b 0.79150 V2 <--- theta1
c c 0.71341 V3 <--- theta1
d d 0.83905 V4 <--- theta2
e e 0.73296 V5 <--- theta2
f f 0.63266 V6 <--- theta2

> round(residuals(sem.two), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.30 0.23 0.22
V2 0.00 0.00 0.00 0.25 0.22 0.19
V3 0.00 0.00 0.00 0.22 0.20 0.15
V4 0.30 0.25 0.22 0.00 0.00 0.00
V5 0.23 0.22 0.20 0.00 0.00 0.00
V6 0.22 0.19 0.15 0.00 0.00 0.00

and so we allow the two factors to be correlated.

> S.f2 <- cov(data.f2)
> model.two <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2",
+ "b", NA, "theta1 -> V3", "c", NA, "theta2 -> V4", "d", NA,
+ "theta2 -> V5", "e", NA, "theta2 -> V6", "f", NA, "theta1 <-> theta2",
+ "g", NA, "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3",
+ "w", NA, "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6",
+ "z", NA, "theta1 <-> theta1", NA, 1, "theta2 <-> theta2", NA,
+ 1), ncol = 3, byrow = TRUE)
> colnames(model.two) <- c("path", "label", "initial estimate")
> model.two

path label initial estimate
[1,] "theta1 -> V1" "a" NA
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[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "theta1 <-> theta2" "g" NA
[8,] "V1 <-> V1" "u" NA
[9,] "V2 <-> V2" "v" NA
[10,] "V3 <-> V3" "w" NA
[11,] "V4 <-> V4" "x" NA
[12,] "V5 <-> V5" "y" NA
[13,] "V6 <-> V6" "z" NA
[14,] "theta1 <-> theta1" NA "1"
[15,] "theta2 <-> theta2" NA "1"

> sem.two = sem(model.two, S.f2, N)
> summary(sem.two, digits = 3)

Model Chisquare = 5.39 Df = 8 Pr(>Chisq) = 0.715
Chisquare (null model) = 2206 Df = 15
Goodness-of-fit index = 0.998
Adjusted goodness-of-fit index = 0.995
RMSEA index = 0 90% CI: (NA, 0.0278)
Bentler-Bonnett NFI = 0.998
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -49.9

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.888000 -0.057500 -0.000009 -0.062200 0.086200 0.443000

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.899 0.0280 32.10 0e+00 V1 <--- theta1
b 0.770 0.0280 27.46 0e+00 V2 <--- theta1
c 0.726 0.0300 24.20 0e+00 V3 <--- theta1
d 0.890 0.0332 26.84 0e+00 V4 <--- theta2
e 0.776 0.0338 22.98 0e+00 V5 <--- theta2
f 0.679 0.0344 19.74 0e+00 V6 <--- theta2
g 0.359 0.0337 10.65 0e+00 theta2 <--> theta1
u 0.201 0.0256 7.86 4e-15 V1 <--> V1
v 0.354 0.0239 14.83 0e+00 V2 <--> V2
w 0.513 0.0280 18.34 0e+00 V3 <--> V3
x 0.315 0.0378 8.34 0e+00 V4 <--> V4
y 0.536 0.0361 14.82 0e+00 V5 <--> V5
z 0.700 0.0380 18.42 0e+00 V6 <--> V6

Iterations = 22
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> std.coef(sem.two)

Std. Estimate
a a 0.89472 V1 <--- theta1
b b 0.79114 V2 <--- theta1
c c 0.71163 V3 <--- theta1
d d 0.84578 V4 <--- theta2
e e 0.72766 V5 <--- theta2
f f 0.63007 V6 <--- theta2

> round(residuals(sem.two), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.02 -0.02 0.00
V2 0.00 0.00 0.00 0.00 0.00 0.01
V3 0.00 0.00 0.00 -0.01 -0.01 -0.03
V4 0.02 0.00 -0.01 0.00 0.00 0.00
V5 -0.02 0.00 -0.01 0.00 0.00 0.01
V6 0.00 0.01 -0.03 0.00 0.01 0.00

11.3 Hierarchical models

The two correlated factors of section 11.2.1 may be thought of as representing two lower level
factors each of which loads on a higher level factor. With just two lower level factors, the
loadings on the higher level factor are not unique (one correlation, r, between the two factors
may be represented in an infinite number of ways as the product of loadings ga and gb).

There are several ways of representing hierarchical models, including correlated level one
factors with a g factor and uncorrelated lower level factors with a g factor (a bifactor solution).
The latter may be estimated directly from the data, or may be found by using the Schmid-
Leiman transformation of the correlated factors.

11.3.1 Two Correlated factors with a g factor

The hierarchical model of a g factor is underidentified unless we specify one of the g paths.
Here we set it to 1 and then estimate the rest of the model.

> S.g2 <- cov(data.f2)
> model.g2 <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2",
+ "b", NA, "theta1 -> V3", "c", NA, "theta2 -> V4", "d", NA,
+ "theta2 -> V5", "e", NA, "theta2 -> V6", "f", NA, "g -> theta1",
+ NA, 1, "g -> theta2", "g2", NA, "V1 <-> V1", "u", NA, "V2 <-> V2",
+ "v", NA, "V3 <-> V3", "w", NA, "V4 <-> V4", "x", NA, "V5 <-> V5",
+ "y", NA, "V6 <-> V6", "z", NA, "theta1 <-> theta1", NA, 1,
+ "theta2 <-> theta2", NA, 1, "g <-> g", NA, 1), ncol = 3, byrow = TRUE)
> colnames(model.g2) <- c("path", "label", "initial estimate")
> model.g2
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X1 X2 X3 Y1 Y2 Y3

X

a b c

Y

d e f

g

gx gy

e1 e2 e3 e4 e5 e6

Fig. 11.7 The correlation between two factors may be modeled by a g, general, factor. This represen-
tation shows all the errors that need to be estimated.

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "g -> theta1" NA "1"
[8,] "g -> theta2" "g2" NA
[9,] "V1 <-> V1" "u" NA
[10,] "V2 <-> V2" "v" NA
[11,] "V3 <-> V3" "w" NA
[12,] "V4 <-> V4" "x" NA
[13,] "V5 <-> V5" "y" NA
[14,] "V6 <-> V6" "z" NA
[15,] "theta1 <-> theta1" NA "1"
[16,] "theta2 <-> theta2" NA "1"
[17,] "g <-> g" NA "1"

> sem.g2 = sem(model.g2, S.g2, N)
> summary(sem.g2, digits = 3)

Model Chisquare = 5.39 Df = 8 Pr(>Chisq) = 0.715
Chisquare (null model) = 2206 Df = 15
Goodness-of-fit index = 0.998
Adjusted goodness-of-fit index = 0.995
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RMSEA index = 0 90% CI: (NA, 0.0278)
Bentler-Bonnett NFI = 0.998
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -49.9

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.88e-01 -5.75e-02 6.72e-07 -6.22e-02 8.61e-02 4.43e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.636 0.0198 32.10 0.00e+00 V1 <--- theta1
b 0.544 0.0198 27.46 0.00e+00 V2 <--- theta1
c 0.513 0.0212 24.20 0.00e+00 V3 <--- theta1
d 0.767 0.0361 21.21 0.00e+00 V4 <--- theta2
e 0.669 0.0345 19.36 0.00e+00 V5 <--- theta2
f 0.585 0.0337 17.33 0.00e+00 V6 <--- theta2
g2 0.590 0.0747 7.90 2.89e-15 theta2 <--- g
u 0.201 0.0256 7.86 4.00e-15 V1 <--> V1
v 0.354 0.0239 14.83 0.00e+00 V2 <--> V2
w 0.513 0.0280 18.34 0.00e+00 V3 <--> V3
x 0.315 0.0378 8.34 0.00e+00 V4 <--> V4
y 0.536 0.0361 14.82 0.00e+00 V5 <--> V5
z 0.700 0.0380 18.42 0.00e+00 V6 <--> V6

Iterations = 26

> std.coef(sem.g2)

Std. Estimate
a a 0.89472 V1 <--- theta1
b b 0.79114 V2 <--- theta1
c c 0.71163 V3 <--- theta1
d d 0.84578 V4 <--- theta2
e e 0.72766 V5 <--- theta2
f f 0.63007 V6 <--- theta2

0.70711 theta1 <--- g
g2 g2 0.50800 theta2 <--- g

> round(residuals(sem.g2), 2)

V1 V2 V3 V4 V5 V6
V1 0.00 0.00 0.00 0.02 -0.02 0.00
V2 0.00 0.00 0.00 0.00 0.00 0.01
V3 0.00 0.00 0.00 -0.01 -0.01 -0.03
V4 0.02 0.00 -0.01 0.00 0.00 0.00
V5 -0.02 0.00 -0.01 0.00 0.00 0.01
V6 0.00 0.01 -0.03 0.00 0.01 0.00
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X1 X2 X3 Y1 Y2 Y3
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Fig. 11.8 The correlation between two factors may be modeled by a g, general, factor. This represen-
tation is somewhat more compact than the previous figure (11.7.)

11.3.2 Generating the data for 3 correlated factors

We have two demonstrations: the first is the two correlated factor data from section 11.2.1,
the second is a three correlated factors. To create the later we use the sim.sem function with
three latent variables.

> pattern <- matrix(c(0.9, 0.8, 0.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8,
+ 0.7, 0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 0.5, 0.4), ncol = 3)
> colnames(pattern) <- c("F1", "F2", "F3")
> rownames(pattern) <- paste("V", 1:dim(pattern)[1], sep = "")
> pattern

F1 F2 F3
V1 0.9 0.0 0.0
V2 0.8 0.0 0.0
V3 0.7 0.0 0.0
V4 0.0 0.8 0.0
V5 0.0 0.7 0.0
V6 0.0 0.6 0.0
V7 0.0 0.0 0.6
V8 0.0 0.0 0.5
V9 0.0 0.0 0.4

> phi <- matrix(c(1, 0, 0, 0.5, 1, 0, 0.4, 0.4, 1), ncol = 3, byrow = TRUE)
> phi

[,1] [,2] [,3]
[1,] 1.0 0.0 0
[2,] 0.5 1.0 0
[3,] 0.4 0.4 1

> data.f3 <- sim.sem(loads = pattern, phi = phi)



11.3 Hierarchical models 305

> VSS.scree(cor(data.f3))
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Fig. 11.9 Scree plot of three correlated factors. Compare to the two uncorrelated factors, Figure 11.4,
and the two correlated factors, ??
.

11.3.3 Exploratory factor analysis with 3 factors

As a first approximation to these data, we can do a three factor exploratory analysis to try
to understand the structure of the data.

> f3 <- factanal(data.f3, 3, rotation = "none")
> f3

Call:
factanal(x = data.f3, factors = 3, rotation = "none")

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9

0.203 0.357 0.516 0.319 0.412 0.622 0.485 0.746 0.839

Loadings:
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Factor1 Factor2 Factor3
V1 0.835 -0.316
V2 0.745 -0.297
V3 0.659 -0.221
V4 0.648 0.497 -0.121
V5 0.572 0.486 -0.154
V6 0.459 0.399
V7 0.322 0.188 0.613
V8 0.226 0.196 0.406
V9 0.196 0.148 0.317

Factor1 Factor2 Factor3
SS loadings 2.837 0.974 0.688
Proportion Var 0.315 0.108 0.076
Cumulative Var 0.315 0.424 0.500

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 11.91 on 12 degrees of freedom.
The p-value is 0.453

theta1 theta2 theta3
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Fig. 11.10 The correlation between three factors may be modeled by a g, general, factor.

11.3.3.1 Orthogonal Rotation

The loadings from this factor analysis are not particularly easy to understand and can be
rotated to a more somewhat more understandable structure using the VARIMAX rotation
(which is actually the default for factanal). We use the GPArotaton package.

> library(GPArotation)
> f3v <- Varimax(loadings(f3))
> round(loadings(f3v), 2)

Factor1 Factor2 Factor3
V1 0.87 0.20 0.07
V2 0.78 0.17 0.05
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V3 0.67 0.17 0.09
V4 0.26 0.77 0.12
V5 0.20 0.74 0.07
V6 0.16 0.59 0.09
V7 0.14 0.14 0.69
V8 0.06 0.16 0.48
V9 0.07 0.13 0.37

The structure is more easy to understand than the original one, but still is somewhat hard
to understand.

11.3.3.2 Oblique Rotation

By allowing the factors to be correlated, we are able to find a more simple representation of
the factor pattern. However, we need to report both the factor loadings as well as the factor
intercorrelations.

> f3o <- oblimin(loadings(f3))
> round(loadings(f3o), 2)

Factor1 Factor2 Factor3
V1 0.89 0.00 0.00
V2 0.81 -0.01 -0.01
V3 0.68 0.02 0.03
V4 0.03 0.80 0.02
V5 -0.01 0.78 -0.03
V6 -0.02 0.62 0.01
V7 0.02 -0.02 0.72
V8 -0.04 0.06 0.49
V9 -0.02 0.05 0.38

The alternatives to exploratory factor analysis is to apply a confirmatory model specifying
the “expected” structure. We do this with both a hierarchical g factor model as well as a
bifactor model.

11.3.4 Three correlated factors with a g factor

> S.g3 <- cov(data.f3)
> model.g3 <- matrix(c("theta1 -> V1", "a", NA, "theta1 -> V2", "b",
+ NA, "theta1 -> V3", "c", NA, "theta2 -> V4", "d", NA, "theta2 -> V5",
+ "e", NA, "theta2 -> V6", "f", NA, "theta3 -> V7", "g", NA,
+ "theta3 -> V8", "h", NA, "theta3 -> V9", "i", NA, "g -> theta1",
+ "g1", NA, "g -> theta2", "g2", NA, "g -> theta3", "g3", NA,
+ "V1 <-> V1", "u", NA, "V2 <-> V2", "v", NA, "V3 <-> V3", "w",
+ NA, "V4 <-> V4", "x", NA, "V5 <-> V5", "y", NA, "V6 <-> V6",
+ "z", NA, "V7 <-> V7", "s", NA, "V8 <-> V8", "t", NA, "V9 <-> V9",
+ "r", NA, "theta1 <-> theta1", NA, 1, "theta2 <-> theta2", NA,
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+ 1, "theta3 <-> theta3", NA, 1, "g <-> g", NA, 1), ncol = 3,
+ byrow = TRUE)
> colnames(model.g3) <- c("path", "label", "initial estimate")
> model.g3

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "theta3 -> V7" "g" NA
[8,] "theta3 -> V8" "h" NA
[9,] "theta3 -> V9" "i" NA
[10,] "g -> theta1" "g1" NA
[11,] "g -> theta2" "g2" NA
[12,] "g -> theta3" "g3" NA
[13,] "V1 <-> V1" "u" NA
[14,] "V2 <-> V2" "v" NA
[15,] "V3 <-> V3" "w" NA
[16,] "V4 <-> V4" "x" NA
[17,] "V5 <-> V5" "y" NA
[18,] "V6 <-> V6" "z" NA
[19,] "V7 <-> V7" "s" NA
[20,] "V8 <-> V8" "t" NA
[21,] "V9 <-> V9" "r" NA
[22,] "theta1 <-> theta1" NA "1"
[23,] "theta2 <-> theta2" NA "1"
[24,] "theta3 <-> theta3" NA "1"
[25,] "g <-> g" NA "1"

> sem.g3 = sem(model.g3, S.g3, N)
> summary(sem.g3, digits = 3)

Model Chisquare = 20.5 Df = 24 Pr(>Chisq) = 0.665
Chisquare (null model) = 2647 Df = 36
Goodness-of-fit index = 0.995
Adjusted goodness-of-fit index = 0.991
RMSEA index = 0 90% CI: (NA, 0.0211)
Bentler-Bonnett NFI = 0.992
Tucker-Lewis NNFI = 1.00
Bentler CFI = 1
BIC = -145

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.27e+00 -1.64e-01 1.63e-05 3.16e-02 3.43e-01 1.19e+00



11.3 Hierarchical models 309

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.699 0.0380 18.40 0.00e+00 V1 <--- theta1
b 0.642 0.0361 17.77 0.00e+00 V2 <--- theta1
c 0.542 0.0327 16.55 0.00e+00 V3 <--- theta1
d 0.543 0.0744 7.29 3.02e-13 V4 <--- theta2
e 0.482 0.0664 7.26 3.79e-13 V5 <--- theta2
f 0.379 0.0535 7.09 1.34e-12 V6 <--- theta2
g 0.618 0.0485 12.72 0.00e+00 V7 <--- theta3
h 0.461 0.0392 11.77 0.00e+00 V8 <--- theta3
i 0.377 0.0379 9.95 0.00e+00 V9 <--- theta3
g1 0.788 0.0985 8.00 1.11e-15 theta1 <--- g
g2 1.370 0.2804 4.89 1.02e-06 theta2 <--- g
g3 0.583 0.0758 7.69 1.47e-14 theta3 <--- g
u 0.204 0.0238 8.54 0.00e+00 V1 <--> V1
v 0.375 0.0251 14.92 0.00e+00 V2 <--> V2
w 0.503 0.0268 18.78 0.00e+00 V3 <--> V3
x 0.342 0.0364 9.39 0.00e+00 V4 <--> V4
y 0.524 0.0356 14.71 0.00e+00 V5 <--> V5
z 0.702 0.0365 19.21 0.00e+00 V6 <--> V6
s 0.575 0.0609 9.43 0.00e+00 V7 <--> V7
t 0.781 0.0475 16.44 0.00e+00 V8 <--> V8
r 0.925 0.0480 19.26 0.00e+00 V9 <--> V9

Iterations = 35

> std.coef(sem.g3)

Std. Estimate
a a 0.89200 V1 <--- theta1
b b 0.80019 V2 <--- theta1
c c 0.69736 V3 <--- theta1
d d 0.84402 V4 <--- theta2
e e 0.74887 V5 <--- theta2
f f 0.60882 V6 <--- theta2
g g 0.68604 V7 <--- theta3
h h 0.51711 V8 <--- theta3
i i 0.41359 V9 <--- theta3
g1 g1 0.61912 theta1 <--- g
g2 g2 0.80777 theta2 <--- g
g3 g3 0.50360 theta3 <--- g

11.3.5 Bifactor solutions

An alternative to the correlated lower level factors and a g factor is a “bifactor”model where
each item is represented by two factors, a lower level, group, factor and a higher level, g,
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theta1 theta2 theta3

g

V1

0.7

V2

0.64

V3

0.54

V4

0.54

V5

0.48

V6

0.38

V7

0.62

V8

0.46

V9

0.38

0.79 1.37 0.58

Fig. 11.11 A hierarchical solution to the three correlated factors problem.

factor. This may be found directly through sem - cfa, or may be done indirectly by using a
Schmid-Leiman transformation of the correlated factors. We use the same three factor data
set as in the two previous sections (11.3.2, 11.3.4)

path label initial estimate
[1,] "theta1 -> V1" "a" NA
[2,] "theta1 -> V2" "b" NA
[3,] "theta1 -> V3" "c" NA
[4,] "theta2 -> V4" "d" NA
[5,] "theta2 -> V5" "e" NA
[6,] "theta2 -> V6" "f" NA
[7,] "theta3 -> V7" "g" NA
[8,] "theta3 -> V8" "h" NA
[9,] "theta3 -> V9" "i" NA
[10,] "g -> V1" "g1" NA
[11,] "g -> V2" "g2" NA
[12,] "g -> V3" "g3" NA
[13,] "g -> V4" "g4" NA
[14,] "g -> V5" "g5" NA
[15,] "g -> V6" "g6" NA
[16,] "g -> V7" "g7" NA
[17,] "g -> V8" "g8" NA
[18,] "g -> V9" "g9" NA
[19,] "V1 <-> V1" "u" NA
[20,] "V2 <-> V2" "v" NA
[21,] "V3 <-> V3" "w" NA
[22,] "V4 <-> V4" "x" NA
[23,] "V5 <-> V5" "y" NA
[24,] "V6 <-> V6" "z" NA
[25,] "V7 <-> V7" "s" NA
[26,] "V8 <-> V8" "t" NA
[27,] "V9 <-> V9" "r" NA
[28,] "theta1 <-> theta1" NA "1"
[29,] "theta2 <-> theta2" NA "1"
[30,] "theta3 <-> theta3" NA "1"
[31,] "g <-> g" NA "1"
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Model Chisquare = 16.8 Df = 18 Pr(>Chisq) = 0.536
Chisquare (null model) = 2647 Df = 36
Goodness-of-fit index = 0.996
Adjusted goodness-of-fit index = 0.99
RMSEA index = 0 90% CI: (NA, 0.0263)
Bentler-Bonnett NFI = 0.994
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -108

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.92e-01 -5.80e-02 -1.59e-05 1.55e-02 1.22e-01 8.96e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.697 0.0412 16.91 0.00e+00 V1 <--- theta1
b 0.658 0.0406 16.21 0.00e+00 V2 <--- theta1
c 0.517 0.0416 12.44 0.00e+00 V3 <--- theta1
d 0.501 0.0842 5.95 2.63e-09 V4 <--- theta2
e 0.533 0.0755 7.06 1.69e-12 V5 <--- theta2
f 0.409 0.0710 5.77 8.14e-09 V6 <--- theta2
g 0.642 0.0745 8.62 0.00e+00 V7 <--- theta3
h 0.451 0.0579 7.78 7.33e-15 V8 <--- theta3
i 0.355 0.0512 6.94 4.06e-12 V9 <--- theta3
g1 0.552 0.0477 11.57 0.00e+00 V1 <--- g
g2 0.490 0.0474 10.34 0.00e+00 V2 <--- g
g3 0.455 0.0466 9.77 0.00e+00 V3 <--- g
g4 0.758 0.0603 12.56 0.00e+00 V4 <--- g
g5 0.639 0.0591 10.81 0.00e+00 V5 <--- g
g6 0.503 0.0560 8.98 0.00e+00 V6 <--- g
g7 0.356 0.0426 8.37 0.00e+00 V7 <--- g
g8 0.268 0.0411 6.53 6.37e-11 V8 <--- g
g9 0.237 0.0423 5.60 2.15e-08 V9 <--- g
u 0.206 0.0272 7.57 3.84e-14 V1 <--> V1
v 0.369 0.0283 13.06 0.00e+00 V2 <--> V2
w 0.504 0.0267 18.87 0.00e+00 V3 <--> V3
x 0.364 0.0370 9.84 0.00e+00 V4 <--> V4
y 0.500 0.0431 11.60 0.00e+00 V5 <--> V5
z 0.695 0.0378 18.37 0.00e+00 V6 <--> V6
s 0.546 0.0898 6.09 1.15e-09 V7 <--> V7
t 0.791 0.0553 14.30 0.00e+00 V8 <--> V8
r 0.933 0.0494 18.88 0.00e+00 V9 <--> V9

Iterations = 54

Std. Estimate
a a 0.69823 V1 <--- theta1
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b b 0.64468 V2 <--- theta1
c c 0.52288 V3 <--- theta1
d d 0.45929 V4 <--- theta2
e e 0.48816 V5 <--- theta2
f f 0.38775 V6 <--- theta2
g g 0.61642 V7 <--- theta3
h h 0.43658 V8 <--- theta3
i i 0.33635 V9 <--- theta3
g1 g1 0.55298 V1 <--- g
g2 g2 0.47981 V2 <--- g
g3 g3 0.45993 V3 <--- g
g4 g4 0.69494 V4 <--- g
g5 g5 0.58531 V5 <--- g
g6 g6 0.47594 V6 <--- g
g7 g7 0.34180 V7 <--- g
g8 g8 0.25990 V8 <--- g
g9 g9 0.22427 V9 <--- g

theta1 theta2 theta3

g

V1

0.7

V2

0.66

V3

0.52

V4

0.5

V5

0.53

V6

0.41

V7

0.64

V8

0.45

V9

0.36

0.55 0.49 0.45 0.76 0.64 0.5 0.36 0.27 0.24

Fig. 11.12 A bifactor solution to the three correlated factors problem.

11.3.6 Schmid Leiman transformations to orthogonalize the
factors

An alternative to a confirmatory hierarchical analysis or bifactor solution is to extract at least
3 factors from a correlation matrix, transform them obliquely to a simple pattern soltion,
and then extract the first factor from the correlations of these factors. From the resulting
matrices, it is possible to find the g loading for each of the original variables (based upon the
product of the g loadings of the factors and the loadings of the variables on these factors.
Functionally, this is an alternative way of estimating a bifactor solution.

The schmid function found in the psych package finds the g factor and group factor
loadings by doing a Schmid Leiman transfortion. Here we show the Schmid Leiman analysis
applied to the 3 correlated factors problem of section 11.3.4.

$sl
g factor Factor1 Factor2 Factor3 h2 u2
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V1 0.56 0.692 0.0016 0.0031 0.80 0.20
V2 0.50 0.629 0.0053 0.0122 0.66 0.34
V3 0.46 0.525 0.0098 0.0290 0.46 0.54
V4 0.66 0.022 0.5005 0.0161 0.65 0.35
V5 0.59 0.011 0.4874 0.0226 0.61 0.39
V6 0.48 0.017 0.3859 0.0129 0.38 0.62
V7 0.34 0.014 0.0150 0.6298 0.52 0.48
V8 0.26 0.034 0.0376 0.4296 0.25 0.75
V9 0.22 0.012 0.0308 0.3361 0.15 0.85

$orthog
Factor1 Factor2 Factor3

V1 0.892 0.0025 -0.0035
V2 0.810 -0.0085 -0.0139
V3 0.677 0.0157 0.0332
V4 0.028 0.8039 0.0185
V5 -0.014 0.7829 -0.0258
V6 -0.022 0.6198 0.0148
V7 0.018 -0.0240 0.7207
V8 -0.044 0.0603 0.4916
V9 -0.016 0.0495 0.3846

$fcor
[,1] [,2] [,3]

[1,] 1.00 0.49 0.31
[2,] 0.49 1.00 0.38
[3,] 0.31 0.38 1.00

$gloading

Loadings:
Factor1

[1,] 0.631
[2,] 0.783
[3,] 0.486

Factor1
SS loadings 1.247
Proportion Var 0.416

Although not identical to the results of the bifactor solution, the results agree to two
decimal places. Why are these estimates not the same? Because in the case of the confirmatory
model, the loadings of the variables on one factor on other factors are set to 0, while in the
Schmid Leiman case, they are allowed to be non-zero.

The loadings on the general factor are used to calculate the wh coe�cient discussed by
Zinbarg et al. 2006.
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11.3.7 Omega as an estimate of reliability

Many scales are assumed by their developers and users to be primarily a measure of one
latent variable. When it is also assumed that the scale conforms to the e↵ect indicator model
of measurement (as is almost always the case in psychological assessment), it is important to
support such an interpretation with evidence regarding the internal structure of that scale.
In particular, it is important to examine two related properties pertaining to the internal
structure of such a scale. The first property relates to whether all the indicators forming the
scale measure a latent variable in common.

The second internal structural property pertains to the proportion of variance in the
scale scores (derived from summing or averaging the indicators) accounted for by this latent
variable that is common to all the indicators (Cronbach, 1951; McDonald, 1999; Revelle,
1979). That is, if an e↵ect indicator scale is primarily a measure of one latent variable
common to all the indicators forming the scale, then that latent variable should account for
the majority of the variance in the scale scores. Put di↵erently, this variance ratio provides
important information about the sampling fluctuations when estimating individuals’ standing
on a latent variable common to all the indicators arising from the sampling of indicators (i.e.,
when dealing with either Type 2 or Type 12 sampling, to use the terminology of Lord, 1956).
That is, this variance proportion can be interpreted as the square of the correlation between
the scale score and the latent variable common to all the indicators in the infinite universe of
indicators of which the scale indicators are a subset. Put yet another way, this variance ratio
is important both as reliability and a validity coe�cient. This is a reliability issue as the larger
this variance ratio is, the more accurately one can predict an individual’s relative standing
on the latent variable common to all the scale’s indicators based on his or her observed scale
score. At the same time, this variance ratio also bears on the construct validity of the scale
given that construct validity encompasses the internal structure of a scale.” (Zinbarg, Yovel,
Revelle, and McDonald, 2006). McDonald has proposed coe�cient omega as an estimate
of the general factor saturation of a test. Zinbarg, Revelle, Yovel and Li (2005) compare
McDonald’s Omega to Cronbach’s alpha and Revelle’s beta. They conclude that omega is
the best estimate. (See also Zinbarg et al., 2006)

One way to find omega is to do a factor analysis of the original data set, rotate the factors
obliquely, do a Schmid-Leiman (schmid) transformation, and then find omega. The psych
package function omega does that.
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sem in R and in LISREL

There are many programs that allow one to analyze latent variable models. Almost all sta-
tistical packages will include the ability to do exploratory factor analysis and many allow for
confirmatory analysis. Commerically available sem programs include AMOS, EQS, LISREL,
MPlus, and SAS. Open source programs include R and Mx. The Loehlin text gives sample
code for many problems in LISREL and EQS syntax, Raykov and Marcoulides (2006) give
examples in EQS, LISREL and Mplus. In this chapter we compare the set up and output of
the sem package in R with the unix version of LISREL for several problems.

12.1 Example data set 1: 9 cognitive variables (from Rakov and
Marcoulides)

Tenko Raykov and George Marcoulides, in their textbook on SEM (Rakov and Marcoulides,
2006), present a data set based upon 220 high school students on 9 cognitive measures.
They report three measures of Induction taken in the junior year, three measures of Figural
Relations in the junior year, and three measures of figural relations in the senior year.

Induction Figural Fig2

Induction1 Induction2 Induction3 Figural1 Figural2 Figural3 Fig2_1 Fig2_2 Fig2_3

Fig. 12.1 9 cognitive variables (adapted from Raykov and Marcoulides, 2006)

They present the data set as a lower triangular covariance matrix which we can read this
into R using the scan function embedded in a function to convert the data to a rectangular
matrix. This function has been written so that it should work on both Macs and PCs:

> lower.triangle <- function(nrow = 2, data = NULL) {
+ if (is.null(data)) {
+ MAC <- Sys.info()[1] == "Darwin"

315
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+ if (!MAC) {
+ data <- scan(file("clipboard"))
+ }
+ else data <- scan(pipe("pbpaste"))
+ }
+ mat <- diag(0, nrow)
+ k <- 1
+ for (i in 1:nrow) {
+ for (j in 1:i) {
+ mat[i, j] <- data[k]
+ k <- k + 1
+ }
+ }
+ mat <- mat + t(mat)
+ diag(mat) <- diag(mat)/2
+ return(mat)
+ }

p5.in <- scan("")
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35

prob5 <- lower.triangle(9,p5.in)

> colnames(prob5) <- rownames(prob5) <- c("Induct1", "Induct2", "Induct3",
+ "Figural1", "Figural2", "Figural3", "Fig2.1", "Fig2.2", "Fig2.3")
> prob5

Induct1 Induct2 Induct3 Figural1 Figural2 Figural3 Fig2.1 Fig2.2 Fig2.3
Induct1 56.21 31.55 23.27 24.48 22.51 22.65 33.24 32.56 30.32
Induct2 31.55 75.55 28.30 32.24 29.54 27.56 46.49 40.37 40.44
Induct3 23.27 28.30 44.45 22.56 20.61 15.33 31.44 25.58 27.69
Figural1 24.48 32.24 22.56 84.64 57.61 53.57 67.81 55.82 54.78
Figural2 22.51 29.54 20.61 57.61 78.93 49.27 54.76 52.33 53.44
Figural3 22.65 27.56 15.33 53.57 49.27 73.76 54.58 47.74 59.52
Fig2.1 33.24 46.49 31.44 67.81 54.76 54.58 141.77 98.62 96.95
Fig2.2 32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33 84.87
Fig2.3 30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
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12.2 Using R to analyze the data set

The model proposed for this is that Induction in year1 predicts Figural Ability in Year 1 and
Year 2 and that Figural Ability in Year 1 predicts Figural Ability in Year 2.

12.2.1 An initial formulation is empirically underidentified

The R code for doing the basic analysis is straightforward:

path label initial estimate
[1,] "Induction -> Induct1" NA "1"
[2,] "Induction -> Induct2" "2" NA
[3,] "Induction -> Induct3" "3" NA
[4,] "Figural -> Figural1" NA "1"
[5,] "Figural -> Figural2" "5" NA
[6,] "Figural -> Figural3" "6" NA
[7,] "Figural.time2 -> Fig2.1" NA "1"
[8,] "Figural.time2 -> Fig2.2" "8" NA
[9,] "Figural.time2 -> Fig2.3" "9" NA
[10,] "Induction -> Figural" "i" NA
[11,] "Induction -> Figural.time2" "j" NA
[12,] "Figural -> Figural.time2" "k" NA
[13,] "Induct1 <-> Induct1" "u" NA
[14,] "Induct2 <-> Induct2" "v" NA
[15,] "Induct3 <-> Induct3" "w" NA
[16,] "Figural1 <-> Figural1" "x" NA
[17,] "Figural2 <-> Figural2" "y" NA
[18,] "Figural3 <-> Figural3" "z" NA
[19,] "Fig2.1 <-> Fig2.1" "q" NA
[20,] "Fig2.2 <-> Fig2.2" "r" NA
[21,] "Fig2.3 <-> Fig2.3" "s" NA
[22,] "Induction <-> Induction" "A" "1"
[23,] "Figural <-> Figural" "B" "1"
[24,] "Figural.time2 <-> Figural.time2" "C" "1"

Model Chisquare = 124 Df = 24 Pr(>Chisq) = 2.1e-15
Chisquare (null model) = 1177 Df = 36
Goodness-of-fit index = 0.88
Adjusted goodness-of-fit index = 0.78
RMSEA index = 0.14 90% CI: (0.11, 0.16)
Bentler-Bonnett NFI = 0.9
Tucker-Lewis NNFI = 0.87
Bentler CFI = 0.91
BIC = -5.7

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
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-1.6e+00 -4.7e-01 6.3e-05 1.4e-01 5.5e-01 3.2e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 1.3e+00 0.118 10.6 0.0e+00 Induct2 <--- Induction
3 8.5e-01 0.100 8.5 0.0e+00 Induct3 <--- Induction
5 9.3e-01 0.027 34.6 0.0e+00 Figural2 <--- Figural
6 8.8e-01 0.022 40.6 0.0e+00 Figural3 <--- Figural
8 8.8e-01 0.039 22.3 0.0e+00 Fig2.2 <--- Figural.time2
9 8.8e-01 0.028 31.6 0.0e+00 Fig2.3 <--- Figural.time2
i 2.0e+00 NaN NaN NaN Figural <--- Induction
j -2.0e+03 NaN NaN NaN Figural.time2 <--- Induction
k 1.0e+03 NaN NaN NaN Figural.time2 <--- Figural
u 4.2e+01 4.208 10.0 0.0e+00 Induct1 <--> Induct1
v 5.3e+01 5.347 9.9 0.0e+00 Induct2 <--> Induct2
w 3.4e+01 3.391 10.0 0.0e+00 Induct3 <--> Induct3
x 2.6e+01 3.045 8.5 0.0e+00 Figural1 <--> Figural1
y 2.9e+01 3.535 8.2 2.2e-16 Figural2 <--> Figural2
z 2.8e+01 3.382 8.3 0.0e+00 Figural3 <--> Figural3
q 3.2e+01 4.234 7.5 8.8e-14 Fig2.1 <--> Fig2.1
r 3.2e+01 4.058 8.0 1.8e-15 Fig2.2 <--> Fig2.2
s 2.0e+01 3.051 6.6 3.7e-11 Fig2.3 <--> Fig2.3
A 1.4e+01 NaN NaN NaN Induction <--> Induction
B -7.0e-04 NaN NaN NaN Figural <--> Figural
C 7.5e+02 NaN NaN NaN Figural.time2 <--> Figural.time2

Iterations = 500

Aliased parameters: i j k A B C

12.2.2 Adjusting to model to converge

Unfortunately, the estimation in 12.2.1 does not converge and failed after 500 iterations.
This is not an unusual problem in estimation. By specifying start values for the Induction
-> Figural.time2 path, we can get a satsifactory solution:

path label initial estimate
[1,] "Induction -> Induct1" NA "1"
[2,] "Induction -> Induct2" "2" NA
[3,] "Induction -> Induct3" "3" NA
[4,] "Figural -> Figural1" NA "1"
[5,] "Figural -> Figural2" "5" NA
[6,] "Figural -> Figural3" "6" NA
[7,] "Figural.time2 -> Fig2.1" NA "1"
[8,] "Figural.time2 -> Fig2.2" "8" NA
[9,] "Figural.time2 -> Fig2.3" "9" NA
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[10,] "Induction -> Figural" "i" NA
[11,] "Induction -> Figural.time2" "j" NA
[12,] "Figural -> Figural.time2" "k" "0.75"
[13,] "Induct1 <-> Induct1" "u" NA
[14,] "Induct2 <-> Induct2" "v" NA
[15,] "Induct3 <-> Induct3" "w" NA
[16,] "Figural1 <-> Figural1" "x" NA
[17,] "Figural2 <-> Figural2" "y" NA
[18,] "Figural3 <-> Figural3" "z" NA
[19,] "Fig2.1 <-> Fig2.1" "q" NA
[20,] "Fig2.2 <-> Fig2.2" "r" NA
[21,] "Fig2.3 <-> Fig2.3" "s" NA
[22,] "Induction <-> Induction" "A" "1"
[23,] "Figural <-> Figural" "B" "1"
[24,] "Figural.time2 <-> Figural.time2" "C" "1"

Model Chisquare = 52 Df = 24 Pr(>Chisq) = 0.00076
Chisquare (null model) = 1177 Df = 36
Goodness-of-fit index = 0.95
Adjusted goodness-of-fit index = 0.91
RMSEA index = 0.073 90% CI: (0.046, 0.1)
Bentler-Bonnett NFI = 0.96
Tucker-Lewis NNFI = 0.96
Bentler CFI = 0.98
BIC = -77

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.5e-01 -8.9e-02 -7.3e-05 -1.2e-02 1.4e-01 1.3e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 1.27 0.159 8.0 1.3e-15 Induct2 <--- Induction
3 0.89 0.114 7.8 7.1e-15 Induct3 <--- Induction
5 0.92 0.066 13.9 0.0e+00 Figural2 <--- Figural
6 0.88 0.066 13.4 0.0e+00 Figural3 <--- Figural
8 0.88 0.052 16.9 0.0e+00 Fig2.2 <--- Figural.time2
9 0.88 0.048 18.2 0.0e+00 Fig2.3 <--- Figural.time2
i 0.98 0.147 6.6 3.6e-11 Figural <--- Induction
j 0.60 0.178 3.4 7.2e-04 Figural.time2 <--- Induction
k 0.81 0.110 7.4 1.5e-13 Figural.time2 <--- Figural
u 30.90 3.891 7.9 2.0e-15 Induct1 <--> Induct1
v 34.83 5.067 6.9 6.2e-12 Induct2 <--> Induct2
w 24.49 3.075 8.0 1.8e-15 Induct3 <--> Induct3
x 22.83 3.450 6.6 3.7e-11 Figural1 <--> Figural1
y 26.87 3.459 7.8 8.0e-15 Figural2 <--> Figural2
z 26.33 3.353 7.9 4.0e-15 Figural3 <--> Figural3
q 31.31 4.451 7.0 2.0e-12 Fig2.1 <--> Fig2.1
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r 32.17 4.043 8.0 1.8e-15 Fig2.2 <--> Fig2.2
s 20.44 3.213 6.4 2.0e-10 Fig2.3 <--> Fig2.3
A 25.31 5.156 4.9 9.1e-07 Induction <--> Induction
B 37.70 6.085 6.2 5.8e-10 Figural <--> Figural
C 36.00 6.017 6.0 2.2e-09 Figural.time2 <--> Figural.time2

Iterations = 168

Std. Estimate
1 0.67105 Induct1 <--- Induction
2 2 0.73412 Induct2 <--- Induction
3 3 0.67018 Induct3 <--- Induction
4 0.85457 Figural1 <--- Figural
5 5 0.81215 Figural2 <--- Figural
6 6 0.80191 Figural3 <--- Figural
7 0.88269 Fig2.1 <--- Figural.time2
8 8 0.85197 Fig2.2 <--- Figural.time2
9 9 0.89877 Fig2.3 <--- Figural.time2
10 i 0.62464 Figural <--- Induction
11 j 0.28886 Figural.time2 <--- Induction
12 k 0.60902 Figural.time2 <--- Figural

Induct1 Induct2 Induct3 Figural1 Figural2 Figural3 Fig2.1 Fig2.2 Fig2.3
Induct1 0.00 -0.55 0.79 -0.23 -0.17 1.01 -2.15 1.49 -0.89
Induct2 -0.55 0.00 -0.21 0.90 0.78 0.11 1.61 0.96 0.86
Induct3 0.79 -0.21 0.00 0.62 0.47 -3.89 0.01 -2.02 -0.03
Figural1 -0.23 0.90 0.62 0.00 0.88 -0.58 2.58 -1.46 -2.75
Figural2 -0.17 0.78 0.47 0.88 0.00 -0.42 -5.11 -0.24 0.64
Figural3 1.01 0.11 -3.89 -0.58 -0.42 0.00 -2.56 -2.43 9.13
Fig2.1 -2.15 1.61 0.01 2.58 -5.11 -2.56 0.00 1.63 -0.46
Fig2.2 1.49 0.96 -2.02 -1.46 -0.24 -2.43 1.63 0.00 -0.67
Fig2.3 -0.89 0.86 -0.03 -2.75 0.64 9.13 -0.46 -0.67 0.00

12.2.3 Modifying the model to improve the fit

We see from the residuals (and Rakov and Marcoulides) that the fit is not very good and that
we should allow for correlated errors for Figural3 in the junior year with Fig2.3 in the senior
year. We adjust the model (and thus are no longer strictly doing a confirmatory analysis) to
allow for these correlated errors.

path label initial estimate
[1,] "Induction -> Induct1" NA "1"
[2,] "Induction -> Induct2" "2" NA
[3,] "Induction -> Induct3" "3" NA
[4,] "Figural -> Figural1" NA "1"
[5,] "Figural -> Figural2" "5" NA
[6,] "Figural -> Figural3" "6" NA
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[7,] "Figural.time2 -> Fig2.1" NA "1"
[8,] "Figural.time2 -> Fig2.2" "8" NA
[9,] "Figural.time2 -> Fig2.3" "9" NA
[10,] "Induction -> Figural" "i" NA
[11,] "Induction -> Figural.time2" "j" NA
[12,] "Figural -> Figural.time2" "k" NA
[13,] "Figural3 <-> Fig2.3" "10" NA
[14,] "Induct1 <-> Induct1" "u" NA
[15,] "Induct2 <-> Induct2" "v" NA
[16,] "Induct3 <-> Induct3" "w" NA
[17,] "Figural1 <-> Figural1" "x" NA
[18,] "Figural2 <-> Figural2" "y" NA
[19,] "Figural3 <-> Figural3" "z" NA
[20,] "Fig2.1 <-> Fig2.1" "q" NA
[21,] "Fig2.2 <-> Fig2.2" "r" NA
[22,] "Fig2.3 <-> Fig2.3" "s" NA
[23,] "Induction <-> Induction" "A" "1"
[24,] "Figural <-> Figural" "B" "1"
[25,] "Figural.time2 <-> Figural.time2" "C" "1"

Model Chisquare = 21 Df = 23 Pr(>Chisq) = 0.61
Chisquare (null model) = 1177 Df = 36
Goodness-of-fit index = 0.98
Adjusted goodness-of-fit index = 0.96
RMSEA index = 0 90% CI: (NA, 0.049)
Bentler-Bonnett NFI = 0.98
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -104

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.3e-01 -8.4e-02 1.6e-04 -9.5e-05 1.5e-01 4.5e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 1.27 0.159 8.0 1.1e-15 Induct2 <--- Induction
3 0.89 0.115 7.8 6.9e-15 Induct3 <--- Induction
5 0.89 0.064 13.8 0.0e+00 Figural2 <--- Figural
6 0.83 0.062 13.4 0.0e+00 Figural3 <--- Figural
8 0.87 0.051 17.2 0.0e+00 Fig2.2 <--- Figural.time2
9 0.86 0.047 18.3 0.0e+00 Fig2.3 <--- Figural.time2
i 1.00 0.150 6.7 2.6e-11 Figural <--- Induction
j 0.67 0.181 3.7 2.1e-04 Figural.time2 <--- Induction
k 0.75 0.106 7.1 1.5e-12 Figural.time2 <--- Figural
10 12.27 2.488 4.9 8.2e-07 Fig2.3 <--> Figural3
u 31.04 3.891 8.0 1.6e-15 Induct1 <--> Induct1
v 34.91 5.060 6.9 5.2e-12 Induct2 <--> Induct2
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w 24.32 3.068 7.9 2.2e-15 Induct3 <--> Induct3
x 19.67 3.398 5.8 7.1e-09 Figural1 <--> Figural1
y 27.71 3.554 7.8 6.4e-15 Figural2 <--> Figural2
z 28.54 3.484 8.2 2.2e-16 Figural3 <--> Figural3
q 29.40 4.300 6.8 8.1e-12 Fig2.1 <--> Fig2.1
r 31.34 3.954 7.9 2.2e-15 Fig2.2 <--> Fig2.2
s 22.50 3.296 6.8 8.6e-12 Fig2.3 <--> Fig2.3
A 25.17 5.140 4.9 9.8e-07 Induction <--> Induction
B 39.88 6.286 6.3 2.2e-10 Figural <--> Figural
C 39.37 6.072 6.5 9.0e-11 Figural.time2 <--> Figural.time2

Iterations = 154

Std. Estimate
1 0.66912 Induct1 <--- Induction
2 2 0.73342 Induct2 <--- Induction
3 3 0.67292 Induct3 <--- Induction
4 0.87615 Figural1 <--- Figural
5 5 0.80558 Figural2 <--- Figural
6 6 0.78263 Figural3 <--- Figural
7 0.89029 Fig2.1 <--- Figural.time2
8 8 0.85607 Fig2.2 <--- Figural.time2
9 9 0.88792 Fig2.3 <--- Figural.time2
10 i 0.62144 Figural <--- Induction
11 j 0.31746 Figural.time2 <--- Induction
12 k 0.56941 Figural.time2 <--- Figural

Induct1 Induct2 Induct3 Figural1 Figural2 Figural3 Fig2.1 Fig2.2 Fig2.3
Induct1 0.00 -0.43 0.76 -0.65 0.20 1.71 -2.46 1.33 -0.52
Induct2 -0.43 0.00 -0.30 0.31 1.19 0.95 1.13 0.69 1.26
Induct3 0.76 -0.30 0.00 0.09 0.66 -3.40 -0.49 -2.35 0.11
Figural1 -0.65 0.31 0.09 0.00 -0.08 -0.57 2.30 -1.49 -1.81
Figural2 0.20 1.19 0.66 -0.08 0.00 1.20 -3.41 1.45 3.20
Figural3 1.71 0.95 -3.40 -0.57 1.20 0.10 -0.01 -0.01 0.10
Fig2.1 -2.46 1.13 -0.49 2.30 -3.41 -0.01 0.00 0.32 -0.11
Fig2.2 1.33 0.69 -2.35 -1.49 1.45 -0.01 0.32 0.00 -0.04
Fig2.3 -0.52 1.26 0.11 -1.81 3.20 0.10 -0.11 -0.04 0.01

12.2.4 Changing from a regression model to a correlation model

For theoretical reasons, the meaning of a regression model (X predicts Y or in the case of
latent variables, latent X predicts latent Y) is very di↵erent than a simple correlation model.
Both models fit the data equally well, but the path coe�cients are very di↵erent. Compared
the results from 12.2.3 with the results from a model that assumes just correlated latent
variables:

path label initial estimate
[1,] "Induction -> Induct1" NA "1"
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[2,] "Induction -> Induct2" "2" NA
[3,] "Induction -> Induct3" "3" NA
[4,] "Figural -> Figural1" NA "1"
[5,] "Figural -> Figural2" "5" NA
[6,] "Figural -> Figural3" "6" NA
[7,] "Figural.time2 -> Fig2.1" NA "1"
[8,] "Figural.time2 -> Fig2.2" "8" NA
[9,] "Figural.time2 -> Fig2.3" "9" NA
[10,] "Induction <-> Figural" "i" NA
[11,] "Induction <-> Figural.time2" "j" NA
[12,] "Figural <-> Figural.time2" "k" NA
[13,] "Figural3 <-> Fig2.3" "10" NA
[14,] "Induct1 <-> Induct1" "u" NA
[15,] "Induct2 <-> Induct2" "v" NA
[16,] "Induct3 <-> Induct3" "w" NA
[17,] "Figural1 <-> Figural1" "x" NA
[18,] "Figural2 <-> Figural2" "y" NA
[19,] "Figural3 <-> Figural3" "z" NA
[20,] "Fig2.1 <-> Fig2.1" "q" NA
[21,] "Fig2.2 <-> Fig2.2" "r" NA
[22,] "Fig2.3 <-> Fig2.3" "s" NA
[23,] "Induction <-> Induction" "A" "1"
[24,] "Figural <-> Figural" "B" "1"
[25,] "Figural.time2 <-> Figural.time2" "C" "1"

Model Chisquare = 21 Df = 23 Pr(>Chisq) = 0.61
Chisquare (null model) = 1177 Df = 36
Goodness-of-fit index = 0.98
Adjusted goodness-of-fit index = 0.96
RMSEA index = 0 90% CI: (NA, 0.049)
Bentler-Bonnett NFI = 0.98
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -104

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.3e-01 -8.4e-02 2.3e-04 -3.9e-05 1.6e-01 4.5e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 1.27 0.159 8.0 1.3e-15 Induct2 <--- Induction
3 0.89 0.115 7.8 6.9e-15 Induct3 <--- Induction
5 0.89 0.064 13.8 0.0e+00 Figural2 <--- Figural
6 0.83 0.062 13.4 0.0e+00 Figural3 <--- Figural
8 0.87 0.051 17.2 0.0e+00 Fig2.2 <--- Figural.time2
9 0.86 0.047 18.3 0.0e+00 Fig2.3 <--- Figural.time2
i 25.13 4.361 5.8 8.3e-09 Figural <--> Induction



324 12 sem in R and in LISREL

j 35.70 5.801 6.2 7.6e-10 Figural.time2 <--> Induction
k 65.51 8.340 7.9 4.0e-15 Figural.time2 <--> Figural
10 12.26 2.488 4.9 8.2e-07 Fig2.3 <--> Figural3
u 31.04 3.891 8.0 1.6e-15 Induct1 <--> Induct1
v 34.91 5.060 6.9 5.2e-12 Induct2 <--> Induct2
w 24.32 3.068 7.9 2.2e-15 Induct3 <--> Induct3
x 19.67 3.398 5.8 7.1e-09 Figural1 <--> Figural1
y 27.71 3.555 7.8 6.4e-15 Figural2 <--> Figural2
z 28.54 3.483 8.2 2.2e-16 Figural3 <--> Figural3
q 29.40 4.300 6.8 8.1e-12 Fig2.1 <--> Fig2.1
r 31.34 3.954 7.9 2.2e-15 Fig2.2 <--> Fig2.2
s 22.50 3.295 6.8 8.6e-12 Fig2.3 <--> Fig2.3
A 25.16 5.143 4.9 9.9e-07 Induction <--> Induction
B 64.97 8.369 7.8 8.2e-15 Figural <--> Figural
C 112.37 13.662 8.2 2.2e-16 Figural.time2 <--> Figural.time2

Iterations = 215

Std. Estimate
1 0.66911 Induct1 <--- Induction
2 2 0.73340 Induct2 <--- Induction
3 3 0.67292 Induct3 <--- Induction
4 0.87615 Figural1 <--- Figural
5 5 0.80555 Figural2 <--- Figural
6 6 0.78266 Figural3 <--- Figural
7 0.89029 Fig2.1 <--- Figural.time2
8 8 0.85608 Fig2.2 <--- Figural.time2
9 9 0.88793 Fig2.3 <--- Figural.time2

Induct1 Induct2 Induct3 Figural1 Figural2 Figural3 Fig2.1 Fig2.2 Fig2.3
Induct1 0.00 -0.43 0.76 -0.65 0.20 1.71 -2.46 1.33 -0.52
Induct2 -0.43 0.00 -0.30 0.31 1.19 0.95 1.13 0.69 1.26
Induct3 0.76 -0.30 0.00 0.09 0.66 -3.40 -0.49 -2.35 0.11
Figural1 -0.65 0.31 0.09 0.00 -0.08 -0.57 2.30 -1.49 -1.81
Figural2 0.20 1.19 0.66 -0.08 0.00 1.20 -3.40 1.45 3.20
Figural3 1.71 0.95 -3.40 -0.57 1.20 0.10 -0.01 -0.02 0.10
Fig2.1 -2.46 1.13 -0.49 2.30 -3.40 -0.01 0.00 0.32 -0.11
Fig2.2 1.33 0.69 -2.35 -1.49 1.45 -0.02 0.32 0.00 -0.04
Fig2.3 -0.52 1.26 0.11 -1.81 3.20 0.10 -0.11 -0.04 0.01

Note that the coe�cients i,j, and k are now covariances rather than beta weights.

12.3 Using LISREL to analyze the data set

The commerical computer package LISREL, developed by Karl Joreskog, was the first com-
merical program to do Linear Structural RELations. Although seemingly complicated than
other packages, LISREL uses a matrix formulation that clearly shows the di↵erence between
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observed and latent variables, the errors associated with each, and distinguishes between the
predictor set of variables and the criterion set of variables.
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Fig. 12.2 The Linear Structural Relations (LISREL) model integrates two measurement models with
one regression model. How well are the X’s represented by the latent variables (factors) Xi, and how
well are the Y variables represented by the factors etas.

The matrices are:

1. X variables (the observed variables)
2. Lambda X (LX:the factor loadings for the X variables on the eta factors)
3. Beta (BE:the beta weights linking the eta to the psi latent variables
4. Lambda Y (LY: the factor loadings for the Y variables on the psi factors)
5. Psi (PS: the dependent latent factor variances and covariances)
6. Theta and Epsilon (TE: the error variances and covariances for the X and Y variables).

LISRELis available for PCs as an add on to SPSS, but is also available as a stand alone
package at the Northwestern Social Science Computing Cluster. To use LISREL at the SSCC
it is necessary to have an account and then to log in as a remote user.
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12.3.1 Instructions for using the SSCC

1. Log on to the system using SSH (see the “how to” for doing this)
2. upload the appropriate batch command file using a sftp connection.

The file we will submit is taken from Raykov and Marcoulides (2006):

STRUCTURAL REGRESSION MODEL
DA NI=9 NO=220
CM
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
LA
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23
MO NY=9 NE=3 PS=SY,FI TE=DI,FR LY=FU,FI BE=FU,FI
LE
INDUCTN FIGREL1 FIGREL2
FR LY(2, 1) LY(3, 1)
FR LY(5, 2) LY(6, 2)
FR LY(8, 3) LY(9, 3)
VA 1 LY(1, 1) LY(4, 2) LY(7, 3)
FR BE(2, 1) BE(3, 1) BE(3, 2)
FR PS(1, 1) PS(2, 2) PS(3, 3)
OU

This file is created (or in this case copied) and saved on the Mac/PC with a meaningful
name, rm5.txt, and then uploaded to the SSCC using a sftp operation. (From my Mac I
use Interarchy as my sftp client.)

3. submit the lisrel job by invoking lisrel8:

[revelle@hardin ~]$ lisrel8 rm5.txt rm5.out

+----------------------------------+
| |
| L I S R E L 8.72 |
| |
| by |
| |
| Karl G. Joreskog and Dag Sorbom |
|Available Workspace 16941056 bytes|
+----------------------------------+
This program is published exclusively by
Scientific Software International, Inc.
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7383 N.Lincoln Avenue - Suite 100
Lincolnwood, IL 60712-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-2005
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com
Revision LISREL872_03/28/2005
Input file [INPUT] :
Input file [INPUT] :
rm5.txt
Output file [OUTPUT]:
Output file [OUTPUT]:
rm5.out
Reading input from file rm5.txt

STRUCTURAL REGRESSION MODEL
Computing Initial Estimates
Computing Information Matrix
Inverting Information Matrix
Iteration 1 for LISREL Estimates
Iteration 2 for LISREL Estimates
Iteration 3 for LISREL Estimates
Iteration 4 for LISREL Estimates
Iteration 5 for LISREL Estimates
Iteration 6 for LISREL Estimates
Computing Information Matrix
Inverting Information Matrix
Computing Goodness of Fit Statistics

[revelle@hardin ~]$

4. Transfer the output file (in this case “rm5.out”) back to your host machine (using sftp).
5. Examine the output

DATE: 2/12/2007
TIME: 11:14

L I S R E L 8.72

BY

Karl G. J~Aoreskog & Dag S~Aorbom

This program is published exclusively by
Scientific Software International, Inc.
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7383 N. Lincoln Avenue, Suite 100
Lincolnwood, IL 60712, U.S.A.

Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-2005
Use of this program is subject to the terms specified in the

Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file rm5.txt:

STRUCTURAL REGRESSION MODEL
DA NI=9 NO=220
CM
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
LA
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23
MO NY=9 NE=3 PS=SY,FI TE=DI,FR LY=FU,FI BE=FU,FI
LE
INDUCTN FIGREL1 FIGREL2
FR LY(2, 1) LY(3, 1)
FR LY(5, 2) LY(6, 2)
FR LY(8, 3) LY(9, 3)
VA 1 LY(1, 1) LY(4, 2) LY(7, 3)
FR BE(2, 1) BE(3, 1) BE(3, 2)
FR PS(1, 1) PS(2, 2) PS(3, 3)
OU

STRUCTURAL REGRESSION MODEL

Number of Input Variables 9
Number of Y - Variables 9
Number of X - Variables 0
Number of ETA - Variables 3
Number of KSI - Variables 0
Number of Observations 220

STRUCTURAL REGRESSION MODEL

Covariance Matrix
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IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

IND1 56.21
IND2 31.55 75.55
IND3 23.27 28.30 44.45
FR11 24.48 32.24 22.56 84.64
FR12 22.51 29.54 20.61 57.61 78.93
FR13 22.65 27.56 15.33 53.57 49.27 73.76
FR21 33.24 46.49 31.44 67.81 54.76 54.58
FR22 32.56 40.37 25.58 55.82 52.33 47.74
FR23 30.32 40.44 27.69 54.78 53.44 59.52

Covariance Matrix

FR21 FR22 FR23
-------- -------- --------

FR21 141.77
FR22 98.62 117.33
FR23 96.95 84.87 106.35

STRUCTURAL REGRESSION MODEL

Parameter Specifications

LAMBDA-Y

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

IND1 0 0 0
IND2 1 0 0
IND3 2 0 0
FR11 0 0 0
FR12 0 3 0
FR13 0 4 0
FR21 0 0 0
FR22 0 0 5
FR23 0 0 6

BETA

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

INDUCTN 0 0 0
FIGREL1 7 0 0
FIGREL2 8 9 0

PSI
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INDUCTN FIGREL1 FIGREL2
-------- -------- --------

10 11 12

THETA-EPS

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

13 14 15 16 17 18

THETA-EPS

FR21 FR22 FR23
-------- -------- --------

19 20 21

STRUCTURAL REGRESSION MODEL

Number of Iterations = 5

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

IND1 1.00 - - - -

IND2 1.27 - - - -
(0.16)
8.08

IND3 0.89 - - - -
(0.12)
7.70

FR11 - - 1.00 - -

FR12 - - 0.92 - -
(0.07)
13.76

FR13 - - 0.88 - -
(0.06)
13.54
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FR21 - - - - 1.00

FR22 - - - - 0.88
(0.05)
16.79

FR23 - - - - 0.88
(0.05)
18.39

BETA

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

INDUCTN - - - - - -

FIGREL1 0.98 - - - -
(0.15)
6.64

FIGREL2 0.60 0.81 - -
(0.18) (0.11)
3.41 7.40

Covariance Matrix of ETA

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

INDUCTN 25.31
FIGREL1 24.71 61.81
FIGREL2 35.39 65.23 110.46

PSI
Note: This matrix is diagonal.

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

25.31 37.69 36.00
(5.14) (6.10) (5.92)
4.92 6.18 6.08

Squared Multiple Correlations for Structural Equations

INDUCTN FIGREL1 FIGREL2
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-------- -------- --------
- - 0.39 0.67

THETA-EPS

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

30.90 34.84 24.49 22.83 26.87 26.33
(3.88) (5.06) (3.07) (3.42) (3.47) (3.31)
7.97 6.89 7.98 6.67 7.75 7.95

THETA-EPS

FR21 FR22 FR23
-------- -------- --------

31.31 32.17 20.44
(4.40) (4.02) (3.15)
7.12 7.99 6.50

Squared Multiple Correlations for Y - Variables

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

0.45 0.54 0.45 0.73 0.66 0.64

Squared Multiple Correlations for Y - Variables

FR21 FR22 FR23
-------- -------- --------

0.78 0.73 0.81

Goodness of Fit Statistics

Degrees of Freedom = 24
Minimum Fit Function Chi-Square = 52.10 (P = 0.00076)

Normal Theory Weighted Least Squares Chi-Square = 48.28 (P = 0.0023)
Estimated Non-centrality Parameter (NCP) = 24.28

90 Percent Confidence Interval for NCP = (8.23 ; 48.09)

Minimum Fit Function Value = 0.24
Population Discrepancy Function Value (F0) = 0.11

90 Percent Confidence Interval for F0 = (0.038 ; 0.22)
Root Mean Square Error of Approximation (RMSEA) = 0.068
90 Percent Confidence Interval for RMSEA = (0.040 ; 0.096)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.14
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Expected Cross-Validation Index (ECVI) = 0.41
90 Percent Confidence Interval for ECVI = (0.34 ; 0.52)

ECVI for Saturated Model = 0.41
ECVI for Independence Model = 9.49

Chi-Square for Independence Model with 36 Degrees of Freedom = 2060.02
Independence AIC = 2078.02

Model AIC = 90.28
Saturated AIC = 90.00

Independence CAIC = 2117.56
Model CAIC = 182.54

Saturated CAIC = 287.71

Normed Fit Index (NFI) = 0.97
Non-Normed Fit Index (NNFI) = 0.98

Parsimony Normed Fit Index (PNFI) = 0.65
Comparative Fit Index (CFI) = 0.99
Incremental Fit Index (IFI) = 0.99
Relative Fit Index (RFI) = 0.96

Critical N (CN) = 181.68

Root Mean Square Residual (RMR) = 1.99
Standardized RMR = 0.023

Goodness of Fit Index (GFI) = 0.95
Adjusted Goodness of Fit Index (AGFI) = 0.91
Parsimony Goodness of Fit Index (PGFI) = 0.51

12.3.2 Modify the model to allow for correlated errors

Just as we did for the sem using R, an examination of the residuals suggests that we need to
modify the model to allow for correlated errors for the Figural3 at time 1 and time 2. This
leads to the following LISREL commands:

STRUCTURAL REGRESSION MODEL
DA NI=9 NO=220
CM
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
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33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
LA
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23
MO NY=9 NE=3 PS=SY,FI TE=SY,FI LY=FU,FI BE=FU,FI
LE
INDUCTN FIGREL1 FIGREL2
FR LY(2, 1) LY(3, 1)
FR LY(5, 2) LY(6, 2)
FR LY(8, 3) LY(9, 3)
VA 1 LY(1, 1) LY(4, 2) LY(7, 3)
FR BE(2, 1) BE(3, 1) BE(3, 2)
FR PS(1, 1) PS(2, 2) PS(3, 3)
FR TE(1,1) TE (2,2) TE(3,3) TE(4,4) TE(5,5) TE(6,6) TE(7,7) TE(8,8) TE(9,9) TE(9,6)
OU

Compare this set of commands to the previous set. What we have done is added a line to
specify the errors in the “theta” matrix and specified that the 6th error correlates with the
9th error.

Uploading this revised command file to the SSCC and running it leads to the following
output:

DATE: 2/12/2007
TIME: 11:37

L I S R E L 8.72

BY

Karl G. J~Aoreskog & Dag S~Aorbom

This program is published exclusively by
Scientific Software International, Inc.

7383 N. Lincoln Avenue, Suite 100
Lincolnwood, IL 60712, U.S.A.

Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-2005
Use of this program is subject to the terms specified in the

Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file rm5a.txt:

STRUCTURAL REGRESSION MODEL
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DA NI=9 NO=220
CM
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
LA
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23
MO NY=9 NE=3 PS=SY,FI TE=SY,FI LY=FU,FI BE=FU,FI
LE
INDUCTN FIGREL1 FIGREL2
FR LY(2, 1) LY(3, 1)
FR LY(5, 2) LY(6, 2)
FR LY(8, 3) LY(9, 3)
VA 1 LY(1, 1) LY(4, 2) LY(7, 3)
FR BE(2, 1) BE(3, 1) BE(3, 2)
FR PS(1, 1) PS(2, 2) PS(3, 3)
FR TE(1,1) TE (2,2) TE(3,3) TE(4,4) TE(5,5) TE(6,6) TE(7,7) TE(8,8) TE(9,9) TE(9,6)
OU

STRUCTURAL REGRESSION MODEL

Number of Input Variables 9
Number of Y - Variables 9
Number of X - Variables 0
Number of ETA - Variables 3
Number of KSI - Variables 0
Number of Observations 220

STRUCTURAL REGRESSION MODEL

Covariance Matrix

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

IND1 56.21
IND2 31.55 75.55
IND3 23.27 28.30 44.45
FR11 24.48 32.24 22.56 84.64
FR12 22.51 29.54 20.61 57.61 78.93
FR13 22.65 27.56 15.33 53.57 49.27 73.76
FR21 33.24 46.49 31.44 67.81 54.76 54.58
FR22 32.56 40.37 25.58 55.82 52.33 47.74
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FR23 30.32 40.44 27.69 54.78 53.44 59.52

Covariance Matrix

FR21 FR22 FR23
-------- -------- --------

FR21 141.77
FR22 98.62 117.33
FR23 96.95 84.87 106.35

STRUCTURAL REGRESSION MODEL

Parameter Specifications

LAMBDA-Y

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

IND1 0 0 0
IND2 1 0 0
IND3 2 0 0
FR11 0 0 0
FR12 0 3 0
FR13 0 4 0
FR21 0 0 0
FR22 0 0 5
FR23 0 0 6

BETA

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

INDUCTN 0 0 0
FIGREL1 7 0 0
FIGREL2 8 9 0

PSI

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

10 11 12

THETA-EPS

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

IND1 13
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IND2 0 14
IND3 0 0 15
FR11 0 0 0 16
FR12 0 0 0 0 17
FR13 0 0 0 0 0 18
FR21 0 0 0 0 0 0
FR22 0 0 0 0 0 0
FR23 0 0 0 0 0 21

THETA-EPS

FR21 FR22 FR23
-------- -------- --------

FR21 19
FR22 0 20
FR23 0 0 22

STRUCTURAL REGRESSION MODEL

Number of Iterations = 5

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

IND1 1.00 - - - -

IND2 1.27 - - - -
(0.16)
8.07

IND3 0.89 - - - -
(0.12)
7.71

FR11 - - 1.00 - -

FR12 - - 0.89 - -
(0.06)
13.89

FR13 - - 0.83 - -
(0.06)
13.46
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FR21 - - - - 1.00

FR22 - - - - 0.87
(0.05)
17.20

FR23 - - - - 0.86
(0.05)
18.39

BETA

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

INDUCTN - - - - - -

FIGREL1 1.00 - - - -
(0.15)
6.68

FIGREL2 0.67 0.75 - -
(0.18) (0.11)
3.74 7.10

Covariance Matrix of ETA

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

INDUCTN 25.17
FIGREL1 25.13 64.97
FIGREL2 35.70 65.51 112.37

PSI
Note: This matrix is diagonal.

INDUCTN FIGREL1 FIGREL2
-------- -------- --------

25.17 39.88 39.37
(5.13) (6.26) (6.05)
4.91 6.37 6.51

Squared Multiple Correlations for Structural Equations

INDUCTN FIGREL1 FIGREL2
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-------- -------- --------
- - 0.39 0.65

THETA-EPS

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

IND1 31.04
(3.88)
8.00

IND2 - - 34.91
(5.05)
6.91

IND3 - - - - 24.32
(3.06)
7.95

FR11 - - - - - - 19.67
(3.35)
5.87

FR12 - - - - - - - - 27.71
(3.53)
7.84

FR13 - - - - - - - - - - 28.54
(3.46)
8.24

FR21 - - - - - - - - - - - -

FR22 - - - - - - - - - - - -

FR23 - - - - - - - - - - 12.26
(2.46)
4.99

THETA-EPS

FR21 FR22 FR23
-------- -------- --------

FR21 29.40
(4.28)
6.87
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FR22 - - 31.34
(3.95)
7.93

FR23 - - - - 22.50
(3.28)
6.86

Squared Multiple Correlations for Y - Variables

IND1 IND2 IND3 FR11 FR12 FR13
-------- -------- -------- -------- -------- --------

0.45 0.54 0.45 0.77 0.65 0.61

Squared Multiple Correlations for Y - Variables

FR21 FR22 FR23
-------- -------- --------

0.79 0.73 0.79

Goodness of Fit Statistics

Degrees of Freedom = 23
Minimum Fit Function Chi-Square = 20.55 (P = 0.61)

Normal Theory Weighted Least Squares Chi-Square = 20.01 (P = 0.64)
Estimated Non-centrality Parameter (NCP) = 0.0

90 Percent Confidence Interval for NCP = (0.0 ; 11.11)

Minimum Fit Function Value = 0.094
Population Discrepancy Function Value (F0) = 0.0

90 Percent Confidence Interval for F0 = (0.0 ; 0.051)
Root Mean Square Error of Approximation (RMSEA) = 0.0
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.047)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.96

Expected Cross-Validation Index (ECVI) = 0.31
90 Percent Confidence Interval for ECVI = (0.31 ; 0.36)

ECVI for Saturated Model = 0.41
ECVI for Independence Model = 9.49

Chi-Square for Independence Model with 36 Degrees of Freedom = 2060.02
Independence AIC = 2078.02

Model AIC = 64.01
Saturated AIC = 90.00

Independence CAIC = 2117.56
Model CAIC = 160.67
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Saturated CAIC = 287.71

Normed Fit Index (NFI) = 0.99
Non-Normed Fit Index (NNFI) = 1.00

Parsimony Normed Fit Index (PNFI) = 0.63
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.98

Critical N (CN) = 444.69

Root Mean Square Residual (RMR) = 1.27
Standardized RMR = 0.016

Goodness of Fit Index (GFI) = 0.98
Adjusted Goodness of Fit Index (AGFI) = 0.96
Parsimony Goodness of Fit Index (PGFI) = 0.50

12.4 Comparing the R and LISREL output

Each sem author has his or her own preferences about how to organize the output. Com-
pare the LISREL output 12.3.2 with the R output for the prediction model 12.2.3 and the
correlation model 12.2.4.

As one would hope, the chi square values and df are equal between the two programs.
LISREL gives far more goodness of fit statistics and also has a more detailed output than
sem.

12.5 Testing for factorial invariance

The models tested above measured Figural Relations in the Junior and Senior year. Were
these tests measuring the same concept? If they were, then we would expect the factor
loadings to be the same in both years. We can test this by constraining the equivalent
loadings to be identical and comparing the di↵erences in c2 for the two models. (The first
model is discussed in section12.2.3

path label initial estimate
[1,] "Induction -> Induct1" NA "1"
[2,] "Induction -> Induct2" "2" NA
[3,] "Induction -> Induct3" "3" NA
[4,] "Figural -> Figural1" NA "1"
[5,] "Figural -> Figural2" "5" NA
[6,] "Figural -> Figural3" "6" NA
[7,] "Figural.time2 -> Fig2.1" NA "1"
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[8,] "Figural.time2 -> Fig2.2" "5" NA
[9,] "Figural.time2 -> Fig2.3" "6" NA
[10,] "Induction -> Figural" "i" NA
[11,] "Induction -> Figural.time2" "j" NA
[12,] "Figural -> Figural.time2" "k" NA
[13,] "Figural3 <-> Fig2.3" "10" NA
[14,] "Induct1 <-> Induct1" "u" NA
[15,] "Induct2 <-> Induct2" "v" NA
[16,] "Induct3 <-> Induct3" "w" NA
[17,] "Figural1 <-> Figural1" "x" NA
[18,] "Figural2 <-> Figural2" "y" NA
[19,] "Figural3 <-> Figural3" "z" NA
[20,] "Fig2.1 <-> Fig2.1" "q" NA
[21,] "Fig2.2 <-> Fig2.2" "r" NA
[22,] "Fig2.3 <-> Fig2.3" "s" NA
[23,] "Induction <-> Induction" "A" "1"
[24,] "Figural <-> Figural" "B" "1"
[25,] "Figural.time2 <-> Figural.time2" "C" "1"

Model Chisquare = 21 Df = 25 Pr(>Chisq) = 0.7
Chisquare (null model) = 1177 Df = 36
Goodness-of-fit index = 0.98
Adjusted goodness-of-fit index = 0.96
RMSEA index = 0 90% CI: (NA, 0.043)
Bentler-Bonnett NFI = 0.98
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -114

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.1e-01 -1.1e-01 4.9e-05 -1.1e-02 1.7e-01 6.0e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 1.27 0.159 8.0 1.1e-15 Induct2 <--- Induction
3 0.89 0.115 7.8 6.9e-15 Induct3 <--- Induction
5 0.88 0.040 21.8 0.0e+00 Figural2 <--- Figural
6 0.86 0.042 20.5 0.0e+00 Figural3 <--- Figural
i 0.99 0.147 6.8 1.3e-11 Figural <--- Induction
j 0.67 0.181 3.7 2.0e-04 Figural.time2 <--- Induction
k 0.76 0.100 7.6 2.7e-14 Figural.time2 <--- Figural
10 12.23 2.481 4.9 8.3e-07 Fig2.3 <--> Figural3
u 31.03 3.891 8.0 1.6e-15 Induct1 <--> Induct1
v 34.90 5.060 6.9 5.3e-12 Induct2 <--> Induct2
w 24.34 3.069 7.9 2.2e-15 Induct3 <--> Induct3
x 19.85 3.234 6.1 8.3e-10 Figural1 <--> Figural1
y 28.00 3.461 8.1 6.7e-16 Figural2 <--> Figural2
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z 28.19 3.417 8.2 2.2e-16 Figural3 <--> Figural3
q 29.21 4.243 6.9 5.9e-12 Fig2.1 <--> Fig2.1
r 31.14 3.917 8.0 1.8e-15 Fig2.2 <--> Fig2.2
s 22.74 3.275 6.9 3.8e-12 Fig2.3 <--> Fig2.3
A 25.18 5.141 4.9 9.7e-07 Induction <--> Induction
B 39.43 5.833 6.8 1.4e-11 Figural <--> Figural
C 39.62 5.962 6.6 3.0e-11 Figural.time2 <--> Figural.time2

Iterations = 162

Std. Estimate
1 0.66928 Induct1 <--- Induction
2 2 0.73353 Induct2 <--- Induction
3 3 0.67263 Induct3 <--- Induction
4 0.87392 Figural1 <--- Figural
5 5 0.79947 Figural2 <--- Figural
6 6 0.79051 Figural3 <--- Figural
7 0.89178 Fig2.1 <--- Figural.time2
8 5 0.85900 Fig2.2 <--- Figural.time2
9 6 0.88599 Fig2.3 <--- Figural.time2
10 i 0.62103 Figural <--- Induction
11 j 0.31730 Figural.time2 <--- Induction
12 k 0.57035 Figural.time2 <--- Figural

Induct1 Induct2 Induct3 Figural1 Figural2 Figural3 Fig2.1 Fig2.2 Fig2.3
Induct1 0.00 -0.44 0.77 -0.48 0.56 1.29 -2.65 1.01 -0.38
Induct2 -0.44 0.00 -0.29 0.52 1.66 0.42 0.89 0.28 1.43
Induct3 0.77 -0.29 0.00 0.25 1.00 -3.76 -0.64 -2.62 0.25
Figural1 -0.48 0.52 0.25 0.61 1.19 -1.33 2.33 -1.74 -1.24
Figural2 0.56 1.66 1.00 1.19 1.33 1.01 -2.80 1.73 4.20
Figural3 1.29 0.42 -3.76 -1.33 1.01 -1.40 -1.44 -1.50 -0.62
Fig2.1 -2.65 0.89 -0.64 2.33 -2.80 -1.44 -0.89 -1.11 -0.10
Fig2.2 1.01 0.28 -2.62 -1.74 1.73 -1.50 -1.11 -1.49 -0.45
Fig2.3 -0.38 1.43 0.25 -1.24 4.20 -0.62 -0.10 -0.45 0.58

The di↵erence in c2 is trivial and we have gained two degrees of freedom. This suggests
that the two measures are factorially equivalent.

12.5.1 Testing for factorial equivalence in multiple groups

Not shown in this chapter is how to test for equivalence of measurement across di↵erent
groups. This involves best fitting the model for multiple groups simultaneously and will be
discussed in the next section (as yet unwritten).





Chapter 13

Further issues: Item quality

13.1 Continuous, ordinal, and dichotomous data

Most advice on the use of latent variable models discusses the assumption of multivariate
normality in the data. Further discussions include the need for continuous measures of the
observed variables. But how does this relate to the frequent use of SEM techniques in analysis
of personality or social psychological items rather than scales? In this chapter we consider
typical problems in personality where we are interested in the structure of self reports of
personality, emotion, or attitude. Using simulation techniques, we consider the e↵ects of
normally distributed items, ordinal items with 6 or 4 or 2 levels, and then the e↵ect of skew
on these results. We use simulations to show the results more clearly. For a discussion of real
data with some of these problems, see Rafaeli and Revelle (2006).

13.2 Simple structure versus circumplex structure

Most personality scales are created to have “simple structure” where items load on one and
only one factor Revelle and Rocklin (1979); Thurstone (1947). The conventional estimate
for the reliability and general factor saturation of such a test is Cronbach’s coe�cient a
(Cronbach, 1951) Variations of this model include hierarchical structures where all items
load on a general factor, g, and then groups of items load on separate, group, factors Carroll
(1993); Jensen and Weng (1994). Estimates of the amount of general factor saturation for
such hierarchical structures may be found using the w coe�cient discussed by (McDonald,
1999) and (Zinbarg et al., 2005).

An alternative structure, particularly popular in the study of a↵ect as well as studies
of interpersonal behavior is a “circumplex structure” where items are thought to be more
complex and to load on at most two factors.

“A number of elementary requirements can be teased out of the idea of circumplex structure.
First, circumplex structure implies minimally that variables are interrelated; random noise does
not a circumplex make. Second, circumplex structure implies that the domain in question is
optimally represented by two and only two dimensions. Third, circumplex structure implies that
variables do not group or clump along the two axes, as in simple structure, but rather that there
are always interstitial variables between any orthogonal pair of axes Saucier (1992). In the ideal
case, this quality will be reflected in equal spacing of variables along the circumference of the
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circle Gurtman (1994)(Gurtman, 1994; Wiggins, Steiger, & Gaelick, 1981). Fourth, circumplex
structure implies that variables have a constant radius from the center of the circle, which
implies that all variables have equal communality on the two circumplex dimensions (Fisher,
1997; Gurtman, 1994). Fifth, circumplex structure implies that all rotations are equally good
representations of the domain (Conte & Plutchik, 1981; Larsen & Diener, 1992).” (Acton and
Revelle, 2004).

Variations of this model in personality assessment include the case where items load on two
factors but the entire space is made up of more factors. The Abridged Big Five Circumplex
Structure (AB5C) of (Hofstee et al., 1992b) is an example of such a structure. That is, the
AB5C items are of complexity one or two but are embedded in a five dimensional space.

13.3 Data generation using the circ.sim function

In investigations of circumplex versus simple structure, it is convenient to be able to generate
artificial data sets. The circ.sim and item.sim functions will generate either simple struc-
ture or circumplex structured items and can divide a continuously distributed item into a
categorial scale. In addition the function can generate a higher order, g, factor and introduce
skew into the items.

13.4 Simple structure - normal items

The first simulation is to generate 24 items with a two dimensional simple structure. Items
are assumed to be continuous. To allow for replicability of the simulation, we set the random
number seed to a memorable value (Adams, 1979). As can be seen in the loadings matrix
as well as Figure 13.4 the solution is clearly a simple structure. For the purpose of this first
simulation, we simulate 500 subjects.

> library(sem)
> library(psych)
> set.seed(42)
> nsub = 500
> ss.items <- circ.sim(nvar = 24, circum = FALSE, nsub)
> colnames(ss.items) <- paste("V", seq(1:24), sep = "")
> ss.cov <- cov(ss.items)
> fss <- factanal(ss.items, 2)
> print(fss, digits = 2, cutoff = 0)

Call:
factanal(x = ss.items, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

0.61 0.70 0.66 0.65 0.62 0.68 0.65 0.77 0.67 0.66 0.65 0.62 0.68 0.56 0.62
V16 V17 V18 V19 V20 V21 V22 V23 V24
0.70 0.68 0.65 0.58 0.60 0.67 0.68 0.62 0.67
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Loadings:
Factor1 Factor2

V1 -0.62 -0.01
V2 0.04 0.55
V3 0.59 0.03
V4 -0.06 -0.59
V5 -0.62 0.00
V6 -0.05 0.57
V7 0.59 -0.06
V8 -0.02 -0.47
V9 -0.57 0.05
V10 -0.03 0.58
V11 0.59 -0.01
V12 -0.01 -0.62
V13 -0.56 0.04
V14 -0.02 0.66
V15 0.62 0.00
V16 0.04 -0.55
V17 -0.56 0.04
V18 0.05 0.59
V19 0.65 0.01
V20 0.02 -0.63
V21 -0.57 -0.05
V22 0.02 0.56
V23 0.61 -0.01
V24 0.01 -0.57

Factor1 Factor2
SS loadings 4.29 4.06
Proportion Var 0.18 0.17
Cumulative Var 0.18 0.35

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 235.15 on 229 degrees of freedom.
The p-value is 0.376

We can compare the results of this exploratory factor analysis with a confirmatory factor
analysis using the sem package.To simplify the generation of our model matrix, we make a
small function, modelmat to do it for us, and then do use the sem program to test the
model. (modelmat uses the modulo operator %% to convert i to i modulo 2.) Note that the
confirmatory model has more degrees of freedom than the exploratory, because it is forcing
the small loadings to be exactly zero.

> modelmat <- function(n = 24) {
+ mat = matrix(rep(NA, 3 * (n * 2 + 2)), ncol = 3)
+ for (i in 1:n) {
+ mat[i, 1] <- paste("F", 2 - i%%2, "-> V", i, sep = "")
+ mat[i, 2] <- i
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Fig. 13.1 Determining the number of factors to extract from 24 variables generated with a simple
structure. The left hand panel shows the scree plot, the right hand panel a VSS plot. Notice the
inflection at two factors, suggesting a two factor solution

+ }
+ for (i in 1:n) {
+ mat[i + n, 1] <- paste("V", i, "<-> V", i, sep = "")
+ mat[i + n, 2] <- n + i
+ }
+ colnames(mat) <- c("path", "label", "initial estimate")
+ mat[n * 2 + 1, 1] <- "F1 <-> F1"
+ mat[n * 2 + 2, 1] <- "F2 <-> F2"
+ mat[n * 2 + 1, 3] <- 1
+ mat[n * 2 + 2, 3] <- 1
+ return(mat)
+ }
> model.ss <- modelmat(24)
> ss.cov <- cov(ss.items)
> sem.ss <- sem(model.ss, ss.cov, nsub)
> summary(sem.ss, digits = 2)
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Fig. 13.2 Factor loadings for 24 items on two dimensions.

Model Chisquare = 257 Df = 252 Pr(>Chisq) = 0.4
Chisquare (null model) = 3380 Df = 276
Goodness-of-fit index = 0.96
Adjusted goodness-of-fit index = 0.95
RMSEA index = 0.0064 90% CI: (NA, 0.019)
Bentler-Bonnett NFI = 0.92
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -1309

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.2e+00 -4.3e-01 5.8e-05 8.7e-03 4.7e-01 2.1e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 -0.63 0.043 -15 0 V1 <--- F1
2 0.52 0.042 12 0 V2 <--- F2
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3 0.62 0.046 13 0 V3 <--- F1
4 -0.59 0.043 -14 0 V4 <--- F2
5 -0.61 0.042 -14 0 V5 <--- F1
6 0.59 0.046 13 0 V6 <--- F2
7 0.57 0.042 14 0 V7 <--- F1
8 -0.45 0.043 -10 0 V8 <--- F2
9 -0.60 0.045 -13 0 V9 <--- F1
10 0.56 0.042 13 0 V10 <--- F2
11 0.58 0.043 14 0 V11 <--- F1
12 -0.60 0.042 -14 0 V12 <--- F2
13 -0.56 0.044 -13 0 V13 <--- F1
14 0.67 0.043 16 0 V14 <--- F2
15 0.64 0.044 14 0 V15 <--- F1
16 -0.53 0.043 -12 0 V16 <--- F2
17 -0.55 0.043 -13 0 V17 <--- F1
18 0.60 0.044 14 0 V18 <--- F2
19 0.67 0.044 15 0 V19 <--- F1
20 -0.62 0.042 -15 0 V20 <--- F2
21 -0.58 0.044 -13 0 V21 <--- F1
22 0.56 0.044 13 0 V22 <--- F2
23 0.63 0.044 14 0 V23 <--- F1
24 -0.56 0.043 -13 0 V24 <--- F2
25 0.62 0.043 14 0 V1 <--> V1
26 0.62 0.043 15 0 V2 <--> V2
27 0.73 0.050 15 0 V3 <--> V3
28 0.64 0.044 14 0 V4 <--> V4
29 0.60 0.042 14 0 V5 <--> V5
30 0.73 0.050 15 0 V6 <--> V6
31 0.62 0.042 15 0 V7 <--> V7
32 0.71 0.047 15 0 V8 <--> V8
33 0.72 0.049 15 0 V9 <--> V9
34 0.61 0.042 14 0 V10 <--> V10
35 0.63 0.043 15 0 V11 <--> V11
36 0.58 0.041 14 0 V12 <--> V12
37 0.69 0.047 15 0 V13 <--> V13
38 0.58 0.042 14 0 V14 <--> V14
39 0.65 0.045 14 0 V15 <--> V15
40 0.67 0.045 15 0 V16 <--> V16
41 0.66 0.045 15 0 V17 <--> V17
42 0.67 0.047 14 0 V18 <--> V18
43 0.61 0.044 14 0 V19 <--> V19
44 0.59 0.042 14 0 V20 <--> V20
45 0.69 0.047 15 0 V21 <--> V21
46 0.67 0.046 15 0 V22 <--> V22
47 0.65 0.045 14 0 V23 <--> V23
48 0.65 0.045 15 0 V24 <--> V24

Iterations = 18
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13.4.1 5 categories of responses

Unfortunately, although we like to think of our items as continuous measures of the underlying
traits, items typically have 2-6 categories of response. What is the e↵ect of this on our
structural measures? Here we use the circ.sim function to break the continuous items down
to a five category items ( -2, -1, 0, 1, 2). We reset the seed to 42 so that our simulation
produces the same items as before.

We do an exploratory factor analysis of the data. The sem package converges only if we
specify two factor loadings to be one.

> set.seed(42)
> nsub = 500
> ss.items <- circ.sim(nvar = 24, circum = FALSE, nsub = nsub,
+ low = -2, high = 2, categorical = TRUE)
> colnames(ss.items) <- paste("V", seq(1:24), sep = "")
> fss <- factanal(ss.items, 2)
> print(fss, digits = 2, cutoff = 0)

Call:
factanal(x = ss.items, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

0.66 0.72 0.69 0.67 0.66 0.72 0.69 0.77 0.66 0.68 0.71 0.67 0.74 0.59 0.65
V16 V17 V18 V19 V20 V21 V22 V23 V24
0.71 0.67 0.70 0.65 0.65 0.70 0.68 0.68 0.70

Loadings:
Factor1 Factor2

V1 -0.58 0.01
V2 0.03 0.53
V3 0.55 0.03
V4 -0.03 -0.57
V5 -0.58 0.01
V6 -0.08 0.53
V7 0.55 -0.08
V8 -0.01 -0.47
V9 -0.58 0.06
V10 -0.04 0.56
V11 0.54 -0.02
V12 0.00 -0.58
V13 -0.51 0.03
V14 -0.01 0.64
V15 0.59 -0.01
V16 0.05 -0.53
V17 -0.57 0.05
V18 0.05 0.55
V19 0.59 0.03
V20 0.01 -0.60
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V21 -0.55 -0.04
V22 0.03 0.57
V23 0.57 0.00
V24 0.03 -0.55

Factor1 Factor2
SS loadings 3.82 3.74
Proportion Var 0.16 0.16
Cumulative Var 0.16 0.32

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 256.83 on 229 degrees of freedom.
The p-value is 0.0999

> ss.cov <- cov(ss.items)
> model.ss <- modelmat(24)
> model.ss[1, 2] <- NA
> model.ss[1, 3] <- 1
> model.ss[2, 2] <- NA
> model.ss[2, 3] <- 1
> ss.cov <- cov(ss.items)
> sem.ss5 <- sem(model.ss, ss.cov, nsub)
> summary(sem.ss5, digits = 2)

Model Chisquare = 451 Df = 254 Pr(>Chisq) = 3.5e-13
Chisquare (null model) = 2932 Df = 276
Goodness-of-fit index = 0.94
Adjusted goodness-of-fit index = 0.92
RMSEA index = 0.039 90% CI: (0.033, 0.045)
Bentler-Bonnett NFI = 0.85
Tucker-Lewis NNFI = 0.92
Bentler CFI = 0.93
BIC = -1128

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.380 -1.580 -0.082 0.037 1.460 6.190

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

3 -0.68 0.055 -12 0 V3 <--- F1
4 -0.68 0.052 -13 0 V4 <--- F2
5 0.67 0.049 14 0 V5 <--- F1
6 0.65 0.055 12 0 V6 <--- F2
7 -0.63 0.050 -12 0 V7 <--- F1
8 -0.55 0.053 -10 0 V8 <--- F2
9 0.70 0.053 13 0 V9 <--- F1
10 0.68 0.053 13 0 V10 <--- F2
11 -0.63 0.052 -12 0 V11 <--- F1
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12 -0.67 0.051 -13 0 V12 <--- F2
13 0.60 0.053 11 0 V13 <--- F1
14 0.78 0.052 15 0 V14 <--- F2
15 -0.71 0.052 -14 0 V15 <--- F1
16 -0.63 0.054 -12 0 V16 <--- F2
17 0.67 0.051 13 0 V17 <--- F1
18 0.64 0.052 12 0 V18 <--- F2
19 -0.71 0.053 -14 0 V19 <--- F1
20 -0.73 0.053 -14 0 V20 <--- F2
21 0.65 0.052 12 0 V21 <--- F1
22 0.68 0.053 13 0 V22 <--- F2
23 -0.69 0.053 -13 0 V23 <--- F1
24 -0.66 0.053 -12 0 V24 <--- F2
25 0.68 0.051 13 0 V1 <--> V1
26 0.69 0.052 13 0 V2 <--> V2
27 0.78 0.054 15 0 V3 <--> V3
28 0.64 0.045 14 0 V4 <--> V4
29 0.63 0.044 14 0 V5 <--> V5
30 0.74 0.050 15 0 V6 <--> V6
31 0.67 0.046 15 0 V7 <--> V7
32 0.71 0.047 15 0 V8 <--> V8
33 0.71 0.049 14 0 V9 <--> V9
34 0.68 0.047 15 0 V10 <--> V10
35 0.70 0.048 15 0 V11 <--> V11
36 0.62 0.043 14 0 V12 <--> V12
37 0.75 0.051 15 0 V13 <--> V13
38 0.59 0.043 14 0 V14 <--> V14
39 0.69 0.048 14 0 V15 <--> V15
40 0.70 0.048 15 0 V16 <--> V16
41 0.68 0.047 14 0 V17 <--> V17
42 0.67 0.046 15 0 V18 <--> V18
43 0.71 0.049 14 0 V19 <--> V19
44 0.66 0.046 14 0 V20 <--> V20
45 0.72 0.049 15 0 V21 <--> V21
46 0.65 0.045 14 0 V22 <--> V22
47 0.72 0.050 14 0 V23 <--> V23
48 0.69 0.047 15 0 V24 <--> V24

Iterations = 16

13.4.2 3 categories of responses

Try this for 3 categories of response. Help the solution along by giving it appropriate start
values.
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Fig. 13.3 Determining the number of factors to extract from 24 variables generated with a simple
structure with 5-point items. The left hand panel shows the scree plot, the right hand panel a VSS
plot. Compare with Figure 13.4

> set.seed(42)
> nsub = 500
> ss.items <- circ.sim(nvar = 24, circum = FALSE, nsub = nsub,
+ low = -1, high = 1, categorical = TRUE)
> colnames(ss.items) <- paste("V", seq(1:24), sep = "")
> fss <- factanal(ss.items, 2)
> print(fss, digits = 2, cutoff = 0)

Call:
factanal(x = ss.items, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

0.69 0.77 0.74 0.73 0.70 0.75 0.74 0.80 0.72 0.72 0.76 0.69 0.80 0.66 0.73
V16 V17 V18 V19 V20 V21 V22 V23 V24
0.75 0.70 0.72 0.71 0.70 0.73 0.70 0.70 0.78
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Fig. 13.4 24 variables loading on two factors for categorical items. Compare with Figure ??

Loadings:
Factor1 Factor2

V1 -0.56 0.01
V2 0.01 0.48
V3 0.51 0.04
V4 -0.03 -0.52
V5 -0.55 0.00
V6 -0.07 0.50
V7 0.50 -0.10
V8 0.00 -0.45
V9 -0.52 0.01
V10 -0.05 0.53
V11 0.49 -0.01
V12 0.01 -0.56
V13 -0.45 0.04
V14 -0.01 0.58
V15 0.52 0.01
V16 0.04 -0.50
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V17 -0.55 0.04
V18 0.05 0.53
V19 0.54 0.03
V20 0.05 -0.55
V21 -0.51 -0.05
V22 0.03 0.55
V23 0.55 0.04
V24 0.02 -0.47

Factor1 Factor2
SS loadings 3.29 3.25
Proportion Var 0.14 0.14
Cumulative Var 0.14 0.27

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 277.76 on 229 degrees of freedom.
The p-value is 0.0152

> ss.cov <- cov(ss.items)
> ss.cor <- cor(ss.items)
> print(model.ss, digits = 2)

path label initial estimate
[1,] "F1-> V1" NA "1"
[2,] "F2-> V2" NA "1"
[3,] "F1-> V3" "3" NA
[4,] "F2-> V4" "4" NA
[5,] "F1-> V5" "5" NA
[6,] "F2-> V6" "6" NA
[7,] "F1-> V7" "7" NA
[8,] "F2-> V8" "8" NA
[9,] "F1-> V9" "9" NA
[10,] "F2-> V10" "10" NA
[11,] "F1-> V11" "11" NA
[12,] "F2-> V12" "12" NA
[13,] "F1-> V13" "13" NA
[14,] "F2-> V14" "14" NA
[15,] "F1-> V15" "15" NA
[16,] "F2-> V16" "16" NA
[17,] "F1-> V17" "17" NA
[18,] "F2-> V18" "18" NA
[19,] "F1-> V19" "19" NA
[20,] "F2-> V20" "20" NA
[21,] "F1-> V21" "21" NA
[22,] "F2-> V22" "22" NA
[23,] "F1-> V23" "23" NA
[24,] "F2-> V24" "24" NA
[25,] "V1<-> V1" "25" NA
[26,] "V2<-> V2" "26" NA
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[27,] "V3<-> V3" "27" NA
[28,] "V4<-> V4" "28" NA
[29,] "V5<-> V5" "29" NA
[30,] "V6<-> V6" "30" NA
[31,] "V7<-> V7" "31" NA
[32,] "V8<-> V8" "32" NA
[33,] "V9<-> V9" "33" NA
[34,] "V10<-> V10" "34" NA
[35,] "V11<-> V11" "35" NA
[36,] "V12<-> V12" "36" NA
[37,] "V13<-> V13" "37" NA
[38,] "V14<-> V14" "38" NA
[39,] "V15<-> V15" "39" NA
[40,] "V16<-> V16" "40" NA
[41,] "V17<-> V17" "41" NA
[42,] "V18<-> V18" "42" NA
[43,] "V19<-> V19" "43" NA
[44,] "V20<-> V20" "44" NA
[45,] "V21<-> V21" "45" NA
[46,] "V22<-> V22" "46" NA
[47,] "V23<-> V23" "47" NA
[48,] "V24<-> V24" "48" NA
[49,] "F1 <-> F1" NA "1"
[50,] "F2 <-> F2" NA "1"

> sem.ss3 <- sem(model.ss, ss.cor, nsub)
> summary(sem.ss3, digits = 2)

Model Chisquare = 474 Df = 254 Pr(>Chisq) = 1.9e-15
Chisquare (null model) = 2400 Df = 276
Goodness-of-fit index = 0.93
Adjusted goodness-of-fit index = 0.92
RMSEA index = 0.042 90% CI: (0.036, 0.047)
Bentler-Bonnett NFI = 0.8
Tucker-Lewis NNFI = 0.89
Bentler CFI = 0.9
BIC = -1105

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.020 -1.320 -0.081 0.022 1.280 5.850

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

3 -0.59 0.054 -11.0 0 V3 <--- F1
4 -0.62 0.055 -11.3 0 V4 <--- F2
5 0.65 0.053 12.4 0 V5 <--- F1
6 0.60 0.055 10.9 0 V6 <--- F2
7 -0.59 0.054 -10.9 0 V7 <--- F1
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8 -0.54 0.056 -9.7 0 V8 <--- F2
9 0.61 0.054 11.3 0 V9 <--- F1
10 0.63 0.055 11.4 0 V10 <--- F2
11 -0.58 0.054 -10.7 0 V11 <--- F1
12 -0.66 0.054 -12.3 0 V12 <--- F2
13 0.53 0.055 9.6 0 V13 <--- F1
14 0.70 0.053 13.1 0 V14 <--- F2
15 -0.61 0.054 -11.4 0 V15 <--- F1
16 -0.59 0.055 -10.7 0 V16 <--- F2
17 0.65 0.053 12.2 0 V17 <--- F1
18 0.62 0.055 11.3 0 V18 <--- F2
19 -0.64 0.053 -12.0 0 V19 <--- F1
20 -0.66 0.054 -12.1 0 V20 <--- F2
21 0.61 0.054 11.3 0 V21 <--- F1
22 0.66 0.054 12.2 0 V22 <--- F2
23 -0.65 0.053 -12.3 0 V23 <--- F1
24 -0.57 0.055 -10.3 0 V24 <--- F2
25 0.69 0.053 12.8 0 V1 <--> V1
26 0.80 0.060 13.2 0 V2 <--> V2
27 0.75 0.051 14.7 0 V3 <--> V3
28 0.73 0.050 14.5 0 V4 <--> V4
29 0.70 0.049 14.3 0 V5 <--> V5
30 0.75 0.051 14.6 0 V6 <--> V6
31 0.75 0.051 14.7 0 V7 <--> V7
32 0.80 0.053 14.9 0 V8 <--> V8
33 0.74 0.051 14.6 0 V9 <--> V9
34 0.73 0.050 14.5 0 V10 <--> V10
35 0.76 0.052 14.7 0 V11 <--> V11
36 0.70 0.049 14.3 0 V12 <--> V12
37 0.80 0.054 15.0 0 V13 <--> V13
38 0.66 0.047 14.0 0 V14 <--> V14
39 0.74 0.051 14.6 0 V15 <--> V15
40 0.76 0.052 14.7 0 V16 <--> V16
41 0.70 0.049 14.4 0 V17 <--> V17
42 0.74 0.051 14.5 0 V18 <--> V18
43 0.71 0.049 14.4 0 V19 <--> V19
44 0.70 0.049 14.3 0 V20 <--> V20
45 0.74 0.051 14.6 0 V21 <--> V21
46 0.70 0.049 14.3 0 V22 <--> V22
47 0.70 0.049 14.3 0 V23 <--> V23
48 0.78 0.052 14.8 0 V24 <--> V24

Iterations = 13
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Fig. 13.5 24 variables, simple structure. Items are constrained to have 3 categories

13.4.3 dichotomous items

This is the worst case scenario, in which items are scored as either yes or no. I can not get
the sem of the covariance matrix to work, but I can for the correlation matrix.

> set.seed(42)
> nsub = 500
> model.ss[1, 2] <- NA
> model.ss[1, 3] <- 1
> model.ss[2, 2] <- NA
> model.ss[2, 3] <- 1
> ss.items <- circ.sim(nvar = 24, circum = FALSE, nsub = nsub,
+ low = 0, high = 1, categorical = TRUE)
> colnames(ss.items) <- paste("V", seq(1:24), sep = "")
> fss <- factanal(ss.items, 2)
> print(fss, digits = 2, cutoff = 0)
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Call:
factanal(x = ss.items, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

0.78 0.80 0.81 0.81 0.79 0.77 0.79 0.86 0.78 0.77 0.83 0.78 0.85 0.76 0.82
V16 V17 V18 V19 V20 V21 V22 V23 V24
0.83 0.79 0.83 0.79 0.77 0.81 0.79 0.82 0.82

Loadings:
Factor1 Factor2

V1 -0.02 0.47
V2 0.45 0.02
V3 0.05 -0.44
V4 -0.44 0.00
V5 0.02 0.45
V6 0.48 0.07
V7 -0.13 -0.43
V8 -0.37 -0.05
V9 -0.01 0.47
V10 0.48 0.02
V11 0.04 -0.41
V12 -0.47 -0.04
V13 0.05 0.39
V14 0.49 -0.03
V15 -0.02 -0.42
V16 -0.42 0.00
V17 0.05 0.45
V18 0.41 -0.02
V19 0.02 -0.46
V20 -0.48 0.00
V21 -0.01 0.43
V22 0.45 -0.05
V23 0.04 -0.42
V24 -0.43 -0.01

Factor1 Factor2
SS loadings 2.43 2.31
Proportion Var 0.10 0.10
Cumulative Var 0.10 0.20

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 245.65 on 229 degrees of freedom.
The p-value is 0.214

> ss.cor <- cor(ss.items)
> sem.ss2 <- sem(model.ss, ss.cor, nsub)
> summary(sem.ss2, digits = 2)
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Model Chisquare = 463 Df = 254 Pr(>Chisq) = 2.5e-14
Chisquare (null model) = 1519 Df = 276
Goodness-of-fit index = 0.93
Adjusted goodness-of-fit index = 0.92
RMSEA index = 0.041 90% CI: (0.035, 0.046)
Bentler-Bonnett NFI = 0.7
Tucker-Lewis NNFI = 0.82
Bentler CFI = 0.83
BIC = -1116

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.010 -0.902 -0.098 0.113 1.110 5.590

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

3 -0.50 0.059 -8.4 0.0e+00 V3 <--- F1
4 -0.53 0.058 -9.0 0.0e+00 V4 <--- F2
5 0.54 0.058 9.2 0.0e+00 V5 <--- F1
6 0.56 0.058 9.7 0.0e+00 V6 <--- F2
7 -0.52 0.059 -8.8 0.0e+00 V7 <--- F1
8 -0.45 0.059 -7.5 6.0e-14 V8 <--- F2
9 0.54 0.059 9.3 0.0e+00 V9 <--- F1
10 0.58 0.058 10.0 0.0e+00 V10 <--- F2
11 -0.47 0.059 -7.9 3.3e-15 V11 <--- F1
12 -0.55 0.058 -9.4 0.0e+00 V12 <--- F2
13 0.46 0.059 7.8 4.9e-15 V13 <--- F1
14 0.58 0.058 10.0 0.0e+00 V14 <--- F2
15 -0.49 0.059 -8.3 0.0e+00 V15 <--- F1
16 -0.48 0.059 -8.0 8.9e-16 V16 <--- F2
17 0.54 0.059 9.2 0.0e+00 V17 <--- F1
18 0.48 0.059 8.0 8.9e-16 V18 <--- F2
19 -0.53 0.059 -9.0 0.0e+00 V19 <--- F1
20 -0.56 0.058 -9.5 0.0e+00 V20 <--- F2
21 0.52 0.059 8.8 0.0e+00 V21 <--- F1
22 0.54 0.058 9.3 0.0e+00 V22 <--- F2
23 -0.49 0.059 -8.3 0.0e+00 V23 <--- F1
24 -0.50 0.059 -8.5 0.0e+00 V24 <--- F2
25 0.76 0.063 12.1 0.0e+00 V1 <--> V1
26 0.80 0.064 12.4 0.0e+00 V2 <--> V2
27 0.83 0.056 14.6 0.0e+00 V3 <--> V3
28 0.81 0.055 14.6 0.0e+00 V4 <--> V4
29 0.80 0.055 14.5 0.0e+00 V5 <--> V5
30 0.78 0.054 14.4 0.0e+00 V6 <--> V6
31 0.81 0.056 14.6 0.0e+00 V7 <--> V7
32 0.86 0.058 15.0 0.0e+00 V8 <--> V8
33 0.79 0.055 14.4 0.0e+00 V9 <--> V9
34 0.77 0.054 14.3 0.0e+00 V10 <--> V10
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35 0.85 0.057 14.8 0.0e+00 V11 <--> V11
36 0.79 0.055 14.5 0.0e+00 V12 <--> V12
37 0.85 0.057 14.9 0.0e+00 V13 <--> V13
38 0.77 0.054 14.3 0.0e+00 V14 <--> V14
39 0.83 0.056 14.7 0.0e+00 V15 <--> V15
40 0.84 0.057 14.8 0.0e+00 V16 <--> V16
41 0.80 0.055 14.5 0.0e+00 V17 <--> V17
42 0.84 0.057 14.9 0.0e+00 V18 <--> V18
43 0.80 0.056 14.5 0.0e+00 V19 <--> V19
44 0.79 0.055 14.4 0.0e+00 V20 <--> V20
45 0.81 0.056 14.6 0.0e+00 V21 <--> V21
46 0.80 0.055 14.5 0.0e+00 V22 <--> V22
47 0.83 0.057 14.7 0.0e+00 V23 <--> V23
48 0.83 0.056 14.7 0.0e+00 V24 <--> V24

Iterations = 10
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Fig. 13.6 Determining the number of factors to extract from 24 variables generated with a simple
structure for dichotomous items The left hand panel shows the scree plot, the right hand panel a VSS
plot. Compare with Figures 13.4 and 13.4.1
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Fig. 13.7 24 variables, simple structure. Items are constrained to be dichotomous.

13.5 Circumplex structure - normal items

We now repeat the data generation, EFA and CFA for circumplex data. Exploratory Factor
Analysis correctly suggests that we have a two dimensional structure and identifies the item
loadings quite well. As is discussed by Acton and Revelle (2004), a circumplex structure will
be relatively insensitive to rotation, e.g., the varimax criterion will not change as we rotate.
In fact, thisis one of the tests for circumplex structure versus simple structure suggested by
Acton and Revelle.

> set.seed(42)
> nsub = 500
> circ.items <- circ.sim(nvar = 24, circum = TRUE, nsub)
> colnames(circ.items) <- paste("V", seq(1:24), sep = "")
> fcs <- factanal(circ.items, 2)
> print(fcs, digits = 2, cutoff = 0)
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Call:
factanal(x = circ.items, factors = 2)

Uniquenesses:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

0.61 0.64 0.68 0.63 0.63 0.64 0.71 0.57 0.66 0.68 0.63 0.59 0.60 0.66 0.69
V16 V17 V18 V19 V20 V21 V22 V23 V24
0.63 0.66 0.70 0.69 0.64 0.63 0.67 0.64 0.64

Loadings:
Factor1 Factor2

V1 -0.62 0.05
V2 -0.57 0.16
V3 -0.45 0.34
V4 -0.41 0.45
V5 -0.26 0.55
V6 -0.12 0.59
V7 0.03 0.54
V8 0.23 0.62
V9 0.37 0.45
V10 0.44 0.35
V11 0.57 0.21
V12 0.63 0.09
V13 0.63 -0.07
V14 0.57 -0.14
V15 0.46 -0.31
V16 0.42 -0.44
V17 0.31 -0.50
V18 0.10 -0.54
V19 -0.03 -0.56
V20 -0.20 -0.57
V21 -0.33 -0.51
V22 -0.45 -0.37
V23 -0.57 -0.19
V24 -0.59 -0.08

Factor1 Factor2
SS loadings 4.52 3.96
Proportion Var 0.19 0.17
Cumulative Var 0.19 0.35

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 224.9 on 229 degrees of freedom.
The p-value is 0.564



13.5 Circumplex structure - normal items 365

●

●

●●●
●●●●●●●●●●●●●●●●●●●

5 10 15 20

1
2

3
4

5

scree plot

Index

pr
in

c$
va

lu
es

1

1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Factors

Ve
ry

 S
im

pl
e 

St
ru

ct
ur

e 
Fi

t

Very Simple Structure

2 2 2 2 2 2 2

3 3 3 3 3 34 4 4 4 4

Fig. 13.8 Determining the number of factors to extract from 24 variables generated with a circumplex
structure. The left hand panel shows the scree plot, the right hand panel a VSS plot. Notice the inflection
at two factors, suggesting a two factor solution

13.5.1 Fitting a circumplex data set with a simple structure model

We can compare the results of this exploratory factor analysis with a confirmatory factor
analysis using the sem package. As can be seen below, the model we used in the previous
examples fits very poorly ad should be revised. What is particularly interesting is that all of
the paths are very large, even thought the model is terrible.

> model.cs <- modelmat(24)
> cs.cov <- cov(circ.items)
> sem.cs <- sem(model.cs, cs.cov, nsub)
> summary(sem.cs, digits = 2)

Model Chisquare = 2297 Df = 252 Pr(>Chisq) = 0
Chisquare (null model) = 3449 Df = 276
Goodness-of-fit index = 0.55
Adjusted goodness-of-fit index = 0.47
RMSEA index = 0.13 90% CI: (NA, NA)



366 13 Further issues: Item quality

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Factor1

Fa
ct
or
2

Fig. 13.9 Factor loadings for 24 items on two dimensions. Given that the data were generated to reflect
uniform locations around a two dimensional space, the circular ordering of loadings is not surprising.

Bentler-Bonnett NFI = 0.33
Tucker-Lewis NNFI = 0.29
Bentler CFI = 0.36
BIC = 731

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.95 -3.42 -0.10 -0.15 3.57 9.50

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 -0.650 0.047 -13.78 0.0e+00 V1 <--- F1
2 -0.544 0.050 -10.92 0.0e+00 V2 <--- F2
3 -0.477 0.056 -8.53 0.0e+00 V3 <--- F1
4 -0.387 0.061 -6.36 2.1e-10 V4 <--- F2
5 -0.290 0.056 -5.16 2.4e-07 V5 <--- F1
6 -0.111 0.067 -1.66 9.7e-02 V6 <--- F2
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7 -0.027 0.057 -0.47 6.4e-01 V7 <--- F1
8 0.247 0.069 3.59 3.3e-04 V8 <--- F2
9 0.319 0.059 5.40 6.6e-08 V9 <--- F1
10 0.415 0.053 7.89 3.1e-15 V10 <--- F2
11 0.512 0.051 10.05 0.0e+00 V11 <--- F1
12 0.654 0.048 13.53 0.0e+00 V12 <--- F2
13 0.681 0.050 13.58 0.0e+00 V13 <--- F1
14 0.539 0.048 11.17 0.0e+00 V14 <--- F2
15 0.494 0.052 9.48 0.0e+00 V15 <--- F1
16 0.407 0.060 6.82 8.9e-12 V16 <--- F2
17 0.321 0.057 5.66 1.5e-08 V17 <--- F1
18 0.062 0.063 0.99 3.2e-01 V18 <--- F2
19 0.026 0.058 0.44 6.6e-01 V19 <--- F1
20 -0.186 0.061 -3.06 2.2e-03 V20 <--- F2
21 -0.270 0.061 -4.42 1.0e-05 V21 <--- F1
22 -0.418 0.057 -7.33 2.3e-13 V22 <--- F2
23 -0.520 0.052 -9.99 0.0e+00 V23 <--- F1
24 -0.602 0.047 -12.70 0.0e+00 V24 <--- F2
25 0.590 0.049 11.93 0.0e+00 V1 <--> V1
26 0.686 0.053 12.87 0.0e+00 V2 <--> V2
27 0.884 0.064 13.70 0.0e+00 V3 <--> V3
28 0.878 0.065 13.60 0.0e+00 V4 <--> V4
29 0.841 0.057 14.64 0.0e+00 V5 <--> V5
30 1.085 0.069 15.61 0.0e+00 V6 <--> V6
31 0.905 0.057 15.78 0.0e+00 V7 <--> V7
32 1.076 0.073 14.85 0.0e+00 V8 <--> V8
33 0.942 0.065 14.59 0.0e+00 V9 <--> V9
34 0.745 0.055 13.64 0.0e+00 V10 <--> V10
35 0.692 0.054 12.81 0.0e+00 V11 <--> V11
36 0.597 0.051 11.61 0.0e+00 V12 <--> V12
37 0.682 0.056 12.18 0.0e+00 V13 <--> V13
38 0.645 0.050 12.80 0.0e+00 V14 <--> V14
39 0.778 0.058 13.52 0.0e+00 V15 <--> V15
40 0.878 0.065 13.60 0.0e+00 V16 <--> V16
41 0.891 0.061 14.58 0.0e+00 V17 <--> V17
42 0.995 0.063 15.73 0.0e+00 V18 <--> V18
43 0.932 0.059 15.78 0.0e+00 V19 <--> V19
44 0.933 0.061 15.27 0.0e+00 V20 <--> V20
45 1.009 0.068 14.93 0.0e+00 V21 <--> V21
46 0.859 0.062 13.75 0.0e+00 V22 <--> V22
47 0.739 0.057 13.02 0.0e+00 V23 <--> V23
48 0.628 0.050 12.59 0.0e+00 V24 <--> V24

Iterations = 34
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13.5.2 An alternative model

An examination of the exploratory factor analysis suggests that a two factor model might
work, but with a very di↵erent pattern of loadings than seen before. It seems as if the items
can be grouped into four sets of 6, best represented by two dimensions: Such an alternative
model can be formed by creating a simple function, modelcirc, to save us the time in writing
out all 48 equations. but still does not provide an answer unless we specify one loading for
each factor to be 1.

> modelcirc <- function(n = 24) {
+ mat = matrix(rep(NA, 3 * (n * 2 + 2)), ncol = 3)
+ for (i in 1:24) {
+ mat[i, 1] <- paste("F", 1 + trunc(i/6)%%2, "-> V",
+ i, sep = "")
+ mat[i, 2] <- i
+ }
+ for (i in 1:n) {
+ mat[i + n, 1] <- paste("V", i, "<-> V", i, sep = "")
+ mat[i + n, 2] <- n + i
+ }
+ colnames(mat) <- c("path", "label", "initial estimate")
+ mat[n * 2 + 1, 1] <- "F1 <-> F1"
+ mat[n * 2 + 2, 1] <- "F2 <-> F2"
+ mat[n * 2 + 1, 3] <- 1
+ mat[n * 2 + 2, 3] <- 1
+ return(mat)
+ }
> model.circ <- modelcirc(24)
> print(model.circ)

path label initial estimate
[1,] "F1-> V1" "1" NA
[2,] "F1-> V2" "2" NA
[3,] "F1-> V3" "3" NA
[4,] "F1-> V4" "4" NA
[5,] "F1-> V5" "5" NA
[6,] "F2-> V6" "6" NA
[7,] "F2-> V7" "7" NA
[8,] "F2-> V8" "8" NA
[9,] "F2-> V9" "9" NA
[10,] "F2-> V10" "10" NA
[11,] "F2-> V11" "11" NA
[12,] "F1-> V12" "12" NA
[13,] "F1-> V13" "13" NA
[14,] "F1-> V14" "14" NA
[15,] "F1-> V15" "15" NA
[16,] "F1-> V16" "16" NA
[17,] "F1-> V17" "17" NA
[18,] "F2-> V18" "18" NA
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[19,] "F2-> V19" "19" NA
[20,] "F2-> V20" "20" NA
[21,] "F2-> V21" "21" NA
[22,] "F2-> V22" "22" NA
[23,] "F2-> V23" "23" NA
[24,] "F1-> V24" "24" NA
[25,] "V1<-> V1" "25" NA
[26,] "V2<-> V2" "26" NA
[27,] "V3<-> V3" "27" NA
[28,] "V4<-> V4" "28" NA
[29,] "V5<-> V5" "29" NA
[30,] "V6<-> V6" "30" NA
[31,] "V7<-> V7" "31" NA
[32,] "V8<-> V8" "32" NA
[33,] "V9<-> V9" "33" NA
[34,] "V10<-> V10" "34" NA
[35,] "V11<-> V11" "35" NA
[36,] "V12<-> V12" "36" NA
[37,] "V13<-> V13" "37" NA
[38,] "V14<-> V14" "38" NA
[39,] "V15<-> V15" "39" NA
[40,] "V16<-> V16" "40" NA
[41,] "V17<-> V17" "41" NA
[42,] "V18<-> V18" "42" NA
[43,] "V19<-> V19" "43" NA
[44,] "V20<-> V20" "44" NA
[45,] "V21<-> V21" "45" NA
[46,] "V22<-> V22" "46" NA
[47,] "V23<-> V23" "47" NA
[48,] "V24<-> V24" "48" NA
[49,] "F1 <-> F1" NA "1"
[50,] "F2 <-> F2" NA "1"

> model.circ[1, 2] <- NA
> model.circ[1, 3] <- 1
> model.circ[7, 2] <- NA
> model.circ[7, 3] <- 1
> cs.cov <- cov(circ.items)
> sem.circ <- sem(model.circ, cs.cov, nsub)
> summary(sem.circ, digits = 2)

Model Chisquare = 1339 Df = 254 Pr(>Chisq) = 0
Chisquare (null model) = 3449 Df = 276
Goodness-of-fit index = 0.8
Adjusted goodness-of-fit index = 0.77
RMSEA index = 0.093 90% CI: (NA, NA)
Bentler-Bonnett NFI = 0.61
Tucker-Lewis NNFI = 0.63
Bentler CFI = 0.66
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BIC = -240

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.160 -2.650 -0.248 -0.021 2.720 8.070

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 0.67 0.051 13.2 0 V2 <--- F1
3 0.70 0.054 12.9 0 V3 <--- F1
4 0.65 0.053 12.2 0 V4 <--- F1
5 0.49 0.052 9.5 0 V5 <--- F1
6 0.59 0.060 9.8 0 V6 <--- F2
8 0.85 0.056 15.0 0 V8 <--- F2
9 0.71 0.056 12.7 0 V9 <--- F2
10 0.58 0.054 10.7 0 V10 <--- F2
11 0.50 0.057 8.9 0 V11 <--- F2
12 -0.64 0.053 -12.0 0 V12 <--- F1
13 -0.76 0.054 -14.1 0 V13 <--- F1
14 -0.67 0.049 -13.6 0 V14 <--- F1
15 -0.64 0.053 -12.0 0 V15 <--- F1
16 -0.67 0.053 -12.7 0 V16 <--- F1
17 -0.54 0.054 -10.0 0 V17 <--- F1
18 -0.53 0.057 -9.1 0 V18 <--- F2
19 -0.60 0.054 -11.2 0 V19 <--- F2
20 -0.73 0.053 -13.8 0 V20 <--- F2
21 -0.77 0.056 -13.8 0 V21 <--- F2
22 -0.66 0.057 -11.6 0 V22 <--- F2
23 -0.50 0.059 -8.5 0 V23 <--- F2
24 0.59 0.053 11.3 0 V24 <--- F1
25 0.66 0.051 13.0 0 V1 <--> V1
26 0.66 0.046 14.3 0 V2 <--> V2
27 0.76 0.053 14.4 0 V3 <--> V3
28 0.73 0.050 14.5 0 V4 <--> V4
29 0.75 0.050 15.0 0 V5 <--> V5
30 0.87 0.059 14.8 0 V6 <--> V6
31 0.74 0.056 13.1 0 V7 <--> V7
32 0.66 0.049 13.4 0 V8 <--> V8
33 0.71 0.050 14.2 0 V9 <--> V9
34 0.70 0.047 14.7 0 V10 <--> V10
35 0.79 0.052 15.0 0 V11 <--> V11
36 0.73 0.050 14.5 0 V12 <--> V12
37 0.73 0.052 14.0 0 V13 <--> V13
38 0.61 0.043 14.2 0 V14 <--> V14
39 0.73 0.050 14.6 0 V15 <--> V15
40 0.72 0.050 14.4 0 V16 <--> V16
41 0.78 0.052 14.9 0 V17 <--> V17
42 0.82 0.054 15.0 0 V18 <--> V18
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43 0.69 0.047 14.6 0 V19 <--> V19
44 0.61 0.044 13.9 0 V20 <--> V20
45 0.69 0.050 13.9 0 V21 <--> V21
46 0.75 0.052 14.5 0 V22 <--> V22
47 0.84 0.056 15.1 0 V23 <--> V23
48 0.74 0.050 14.7 0 V24 <--> V24

Iterations = 15

As would be expected, this is still not a very good fit, although it is much better than the fit
in 13.5.1 for we are fitting a simple structure model to a circumplex data set. Although we
are modeling each item as of complexity one, in reality some of the items are of complexity
two. One way to model this additional complexity is to allow for correlated errors between
those variables at the 45 and 135 degree locations.

13.6 Simple Structure - categorical and skewed items

A recurring debate in the emotion literature is the proper structure of a↵ect and whether
valence is indeed bipolar. Part of the controversy arises from the way a↵ect is measured, with
some using unipolar scales (not at all happy, somewhat happy , very happy) whereas others
use bipolar (Very sad, somewhat sad, somewhat happy, very happy.) It has been claimed that
by using unipolar scales we are introducing skew since any person who is feeling very sad, or
somewhat sad will give a 0 on the happiness scale. The example is measuring temperature
with a bipolar versus a unipolar scale.

This issue has been addressed very thoroughly by (Rafaeli and Revelle, 2006) who suggest
that happiness and sadness are not bipolar opposites. In particular, Rafaeli and Revelle
examine the e↵ect of skew. Here we use the circ.sim simulation function again, to introduce
serious skew into our data.

13.6.1 Two dimensions with 4 point scales, di↵ering in skew

circ.sim is used with four point scales, with any values less than 0 being cut to 0. This leads
to substantial skew for these items. (See Figure 13.6.1). Although the factor analysis loadigns
recover the structure very well (Figure 13.6.1

> skew.items <- circ.sim(nvar = 24, circum = FALSE, nsub = nsub,
+ truncate = TRUE, ybias = 1, categorical = TRUE)
> colnames(skew.items) <- paste("V", seq(1:24), sep = "")
> fcs <- factanal(skew.items, 2)
> print(fcs, digits = 2, cutoff = 0)

Call:
factanal(x = skew.items, factors = 2)

Uniquenesses:
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15
0.79 0.74 0.70 0.85 0.77 0.77 0.77 0.89 0.76 0.73 0.77 0.90 0.77 0.67 0.75
V16 V17 V18 V19 V20 V21 V22 V23 V24
0.85 0.78 0.76 0.75 0.92 0.78 0.65 0.79 0.88

Loadings:
Factor1 Factor2

V1 -0.45 0.04
V2 0.02 0.51
V3 0.55 -0.03
V4 -0.06 -0.38
V5 -0.48 0.03
V6 -0.07 0.48
V7 0.48 0.04
V8 -0.01 -0.33
V9 -0.49 -0.01
V10 0.03 0.52
V11 0.48 -0.05
V12 0.03 -0.32
V13 -0.48 0.03
V14 -0.03 0.57
V15 0.50 -0.06
V16 0.03 -0.38
V17 -0.46 0.01
V18 -0.04 0.48
V19 0.50 0.05
V20 0.09 -0.27
V21 -0.46 -0.10
V22 0.05 0.59
V23 0.45 -0.04
V24 -0.02 -0.34

Factor1 Factor2
SS loadings 2.83 2.39
Proportion Var 0.12 0.10
Cumulative Var 0.12 0.22

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 288.48 on 229 degrees of freedom.
The p-value is 0.00466

Using our simple structure model (from section 13.4.1) on the covariance matrix shows
the structure as well. We find that the c2 value for the null model is smaller than for the
non-skewed data and the fit is not nearly as good. The problem is that the di↵erences in
skew between the positive and negatively keyed items is creating the functional equivalent of
method or group factors. That is, items loading on the latent factors with the same sign are
much more highly correlated than those with an opposite sign.
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> pairs.panels(skew.items[, 1:6])
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Fig. 13.10 SPLOM of the first 6 variables showing the e↵ect of skew. Note how the correlations of
items with opposite skew are very attenuated.

> skew.cov <- cov(skew.items)
> sem.skew <- sem(model.ss, skew.cov, nsub)
> summary(sem.skew, digits = 2)

Model Chisquare = 703 Df = 254 Pr(>Chisq) = 0
Chisquare (null model) = 1786 Df = 276
Goodness-of-fit index = 0.91
Adjusted goodness-of-fit index = 0.9
RMSEA index = 0.06 90% CI: (0.054, 0.065)
Bentler-Bonnett NFI = 0.61
Tucker-Lewis NNFI = 0.68
Bentler CFI = 0.7
BIC = -876

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
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> plot(fcs$loadings)
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Fig. 13.11 The factor structure of very skewed items recovers the space quite well, at least in terms
of angular location. The loadings are less than they should be given the data generation algorithm.

-11.000 -1.010 0.098 0.170 1.440 8.710

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

3 -0.513 0.0441 -11.6 0.0e+00 V3 <--- F1
4 -0.126 0.0172 -7.3 2.6e-13 V4 <--- F2
5 0.444 0.0439 10.1 0.0e+00 V5 <--- F1
6 0.505 0.0514 9.8 0.0e+00 V6 <--- F2
7 -0.447 0.0452 -9.9 0.0e+00 V7 <--- F1
8 -0.100 0.0153 -6.5 6.1e-11 V8 <--- F2
9 0.446 0.0431 10.3 0.0e+00 V9 <--- F1
10 0.571 0.0523 10.9 0.0e+00 V10 <--- F2
11 -0.430 0.0440 -9.8 0.0e+00 V11 <--- F1
12 -0.106 0.0165 -6.4 1.3e-10 V12 <--- F2
13 0.411 0.0404 10.2 0.0e+00 V13 <--- F1



13.6 Simple Structure - categorical and skewed items 375

14 0.662 0.0547 12.1 0.0e+00 V14 <--- F2
15 -0.463 0.0447 -10.4 0.0e+00 V15 <--- F1
16 -0.134 0.0179 -7.5 7.1e-14 V16 <--- F2
17 0.420 0.0428 9.8 0.0e+00 V17 <--- F1
18 0.523 0.0534 9.8 0.0e+00 V18 <--- F2
19 -0.463 0.0438 -10.6 0.0e+00 V19 <--- F1
20 -0.078 0.0149 -5.2 1.8e-07 V20 <--- F2
21 0.416 0.0433 9.6 0.0e+00 V21 <--- F1
22 0.660 0.0518 12.7 0.0e+00 V22 <--- F2
23 -0.401 0.0438 -9.1 0.0e+00 V23 <--- F1
24 -0.120 0.0176 -6.8 8.5e-12 V24 <--- F2
25 0.419 0.0357 11.7 0.0e+00 V1 <--> V1
26 0.639 0.0536 11.9 0.0e+00 V2 <--> V2
27 0.296 0.0211 14.1 0.0e+00 V3 <--> V3
28 0.070 0.0046 15.0 0.0e+00 V4 <--> V4
29 0.309 0.0212 14.6 0.0e+00 V5 <--> V5
30 0.595 0.0412 14.4 0.0e+00 V6 <--> V6
31 0.329 0.0225 14.6 0.0e+00 V7 <--> V7
32 0.056 0.0037 15.2 0.0e+00 V8 <--> V8
33 0.295 0.0204 14.5 0.0e+00 V9 <--> V9
34 0.599 0.0425 14.1 0.0e+00 V10 <--> V10
35 0.313 0.0214 14.6 0.0e+00 V11 <--> V11
36 0.066 0.0044 15.2 0.0e+00 V12 <--> V12
37 0.261 0.0180 14.5 0.0e+00 V13 <--> V13
38 0.626 0.0461 13.6 0.0e+00 V14 <--> V14
39 0.316 0.0218 14.5 0.0e+00 V15 <--> V15
40 0.075 0.0050 15.0 0.0e+00 V16 <--> V16
41 0.296 0.0202 14.6 0.0e+00 V17 <--> V17
42 0.640 0.0443 14.4 0.0e+00 V18 <--> V18
43 0.303 0.0210 14.4 0.0e+00 V19 <--> V19
44 0.055 0.0036 15.4 0.0e+00 V20 <--> V20
45 0.305 0.0207 14.7 0.0e+00 V21 <--> V21
46 0.550 0.0414 13.3 0.0e+00 V22 <--> V22
47 0.316 0.0213 14.8 0.0e+00 V23 <--> V23
48 0.074 0.0049 15.1 0.0e+00 V24 <--> V24

Iterations = 74
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Fig. 13.12 A two dimensional solution does not fit very well.
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13.6.2 An alternative model of two bipolar dimensions

We can revise the model to take into account the bipolar nature of the data by modeling it
in terms of four factors grouped into two sets of two highly correlated factors. This solution
is very good (in terms of c2) and RMSEA). The loadings, however, look very small until
we realize that modeling covariances produces smaller path coe�cients than modeling the
correlations. Standardizing the loadings makes this point clearer.

> modelmat4 <- function(n = 24) {
+ mat = matrix(rep(NA, 3 * (n * 2 + 6)), ncol = 3)
+ for (i in 1:n) {
+ mat[i, 1] <- paste("F", i%%4 + 1, "-> V", i, sep = "")
+ mat[i, 2] <- i
+ }
+ for (i in 1:n) {
+ mat[i + n, 1] <- paste("V", i, "<-> V", i, sep = "")
+ mat[i + n, 2] <- n + i
+ }
+ colnames(mat) <- c("path", "label", "initial estimate")
+ mat[n * 2 + 1, 1] <- "F1 <-> F1"
+ mat[n * 2 + 2, 1] <- "F2 <-> F2"
+ mat[n * 2 + 3, 1] <- "F3 <-> F3"
+ mat[n * 2 + 4, 1] <- "F4 <-> F4"
+ mat[n * 2 + 5, 1] <- "F1 <-> F3"
+ mat[n * 2 + 6, 1] <- "F2 <-> F4"
+ mat[n * 2 + 1, 3] <- mat[n * 2 + 2, 3] <- mat[n * 2 + 3,
+ 3] <- mat[n * 2 + 4, 3] <- 1
+ mat[n * 2 + 5, 2] <- 2 * n + 1
+ mat[n * 2 + 6, 2] <- 2 * n + 2
+ return(mat)
+ }
> model.4 <- modelmat4()
> sem.skew4 <- sem(model.4, skew.cov, nsub)
> summary(sem.skew4, digits = 2)

Model Chisquare = 261 Df = 250 Pr(>Chisq) = 0.30
Chisquare (null model) = 1786 Df = 276
Goodness-of-fit index = 0.96
Adjusted goodness-of-fit index = 0.95
RMSEA index = 0.0094 90% CI: (NA, 0.021)
Bentler-Bonnett NFI = 0.85
Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -1293

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.8e+00 -6.1e-01 -1.3e-06 -2.7e-02 5.4e-01 3.3e+00
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Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.314 0.0325 9.7 0.0e+00 V1 <--- F2
2 0.488 0.0454 10.8 0.0e+00 V2 <--- F3
3 0.370 0.0309 12.0 0.0e+00 V3 <--- F4
4 0.138 0.0157 8.8 0.0e+00 V4 <--- F1
5 0.327 0.0310 10.5 0.0e+00 V5 <--- F2
6 0.416 0.0430 9.7 0.0e+00 V6 <--- F3
7 0.335 0.0316 10.6 0.0e+00 V7 <--- F4
8 0.098 0.0137 7.1 9.9e-13 V8 <--- F1
9 0.331 0.0304 10.9 0.0e+00 V9 <--- F2
10 0.474 0.0439 10.8 0.0e+00 V10 <--- F3
11 0.317 0.0307 10.3 0.0e+00 V11 <--- F4
12 0.093 0.0149 6.2 4.7e-10 V12 <--- F1
13 0.292 0.0286 10.2 0.0e+00 V13 <--- F2
14 0.565 0.0458 12.3 0.0e+00 V14 <--- F3
15 0.337 0.0313 10.8 0.0e+00 V15 <--- F4
16 0.146 0.0163 8.9 0.0e+00 V16 <--- F1
17 0.308 0.0302 10.2 0.0e+00 V17 <--- F2
18 0.444 0.0444 10.0 0.0e+00 V18 <--- F3
19 0.325 0.0308 10.5 0.0e+00 V19 <--- F4
20 0.073 0.0134 5.4 6.0e-08 V20 <--- F1
21 0.301 0.0306 9.8 0.0e+00 V21 <--- F2
22 0.557 0.0436 12.8 0.0e+00 V22 <--- F3
23 0.299 0.0306 9.8 0.0e+00 V23 <--- F4
24 0.113 0.0158 7.2 8.1e-13 V24 <--- F1
25 0.335 0.0237 14.1 0.0e+00 V1 <--> V1
26 0.633 0.0462 13.7 0.0e+00 V2 <--> V2
27 0.282 0.0214 13.2 0.0e+00 V3 <--> V3
28 0.061 0.0048 12.7 0.0e+00 V4 <--> V4
29 0.294 0.0214 13.7 0.0e+00 V5 <--> V5
30 0.591 0.0417 14.2 0.0e+00 V6 <--> V6
31 0.310 0.0224 13.8 0.0e+00 V7 <--> V7
32 0.053 0.0038 14.1 0.0e+00 V8 <--> V8
33 0.277 0.0206 13.5 0.0e+00 V9 <--> V9
34 0.590 0.0431 13.7 0.0e+00 V10 <--> V10
35 0.298 0.0213 14.0 0.0e+00 V11 <--> V11
36 0.065 0.0045 14.6 0.0e+00 V12 <--> V12
37 0.254 0.0183 13.9 0.0e+00 V13 <--> V13
38 0.598 0.0467 12.8 0.0e+00 V14 <--> V14
39 0.302 0.0220 13.7 0.0e+00 V15 <--> V15
40 0.066 0.0052 12.6 0.0e+00 V16 <--> V16
41 0.283 0.0204 13.9 0.0e+00 V17 <--> V17
42 0.624 0.0445 14.0 0.0e+00 V18 <--> V18
43 0.297 0.0214 13.8 0.0e+00 V19 <--> V19
44 0.053 0.0036 14.9 0.0e+00 V20 <--> V20
45 0.294 0.0210 14.0 0.0e+00 V21 <--> V21
46 0.529 0.0422 12.5 0.0e+00 V22 <--> V22
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47 0.301 0.0212 14.2 0.0e+00 V23 <--> V23
48 0.071 0.0050 14.2 0.0e+00 V24 <--> V24
49 -0.722 0.0550 -13.1 0.0e+00 F3 <--> F1
50 -0.810 0.0413 -19.6 0.0e+00 F4 <--> F2

Iterations = 93

> std.coef(sem.skew4)

Std. Estimate
1 1 0.47714 V1 <--- F2
2 2 0.52321 V2 <--- F3
3 3 0.57183 V3 <--- F4
4 4 0.48879 V4 <--- F1
5 5 0.51584 V5 <--- F2
6 6 0.47547 V6 <--- F3
7 7 0.51551 V7 <--- F4
8 8 0.39005 V8 <--- F1
9 9 0.53238 V9 <--- F2
10 10 0.52563 V10 <--- F3
11 11 0.50162 V11 <--- F4
12 12 0.34165 V12 <--- F1
13 13 0.50106 V13 <--- F2
14 14 0.59007 V14 <--- F3
15 15 0.52281 V15 <--- F4
16 16 0.49488 V16 <--- F1
17 17 0.50054 V17 <--- F2
18 18 0.48950 V18 <--- F3
19 19 0.51244 V19 <--- F4
20 20 0.29937 V20 <--- F1
21 21 0.48595 V21 <--- F2
22 22 0.60821 V22 <--- F3
23 23 0.47872 V23 <--- F4
24 24 0.39074 V24 <--- F1

Alternatively, we can repeat this analysis, modeling the correlations rather than the co-
variances. Examine how the goodness of fit for the four (correlated) factor model is identical
for the covariances or the correlations, but in either case, the fits are far better than the two
factor model

> skew.cor <- cor(skew.items)
> sem.skew4 <- sem(model.4, skew.cor, nsub)
> summary(sem.skew4, digits = 2)

Model Chisquare = 261 Df = 250 Pr(>Chisq) = 0.30
Chisquare (null model) = 1786 Df = 276
Goodness-of-fit index = 0.96
Adjusted goodness-of-fit index = 0.95
RMSEA index = 0.0094 90% CI: (NA, 0.021)
Bentler-Bonnett NFI = 0.85
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Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -1293

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.8e+00 -6.1e-01 -1.7e-05 -2.7e-02 5.4e-01 3.3e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.48 0.049 9.7 0.0e+00 V1 <--- F2
2 0.52 0.049 10.8 0.0e+00 V2 <--- F3
3 0.57 0.048 12.0 0.0e+00 V3 <--- F4
4 0.49 0.055 8.8 0.0e+00 V4 <--- F1
5 0.52 0.049 10.5 0.0e+00 V5 <--- F2
6 0.48 0.049 9.7 0.0e+00 V6 <--- F3
7 0.52 0.049 10.6 0.0e+00 V7 <--- F4
8 0.39 0.055 7.1 9.9e-13 V8 <--- F1
9 0.53 0.049 10.9 0.0e+00 V9 <--- F2
10 0.53 0.049 10.8 0.0e+00 V10 <--- F3
11 0.50 0.049 10.3 0.0e+00 V11 <--- F4
12 0.34 0.055 6.2 4.7e-10 V12 <--- F1
13 0.50 0.049 10.2 0.0e+00 V13 <--- F2
14 0.59 0.048 12.3 0.0e+00 V14 <--- F3
15 0.52 0.049 10.8 0.0e+00 V15 <--- F4
16 0.49 0.055 8.9 0.0e+00 V16 <--- F1
17 0.50 0.049 10.2 0.0e+00 V17 <--- F2
18 0.49 0.049 10.0 0.0e+00 V18 <--- F3
19 0.51 0.049 10.5 0.0e+00 V19 <--- F4
20 0.30 0.055 5.4 6.0e-08 V20 <--- F1
21 0.49 0.049 9.8 0.0e+00 V21 <--- F2
22 0.61 0.048 12.8 0.0e+00 V22 <--- F3
23 0.48 0.049 9.8 0.0e+00 V23 <--- F4
24 0.39 0.055 7.2 8.1e-13 V24 <--- F1
25 0.77 0.055 14.1 0.0e+00 V1 <--> V1
26 0.73 0.053 13.7 0.0e+00 V2 <--> V2
27 0.67 0.051 13.2 0.0e+00 V3 <--> V3
28 0.76 0.060 12.7 0.0e+00 V4 <--> V4
29 0.73 0.053 13.7 0.0e+00 V5 <--> V5
30 0.77 0.055 14.2 0.0e+00 V6 <--> V6
31 0.73 0.053 13.8 0.0e+00 V7 <--> V7
32 0.85 0.060 14.2 0.0e+00 V8 <--> V8
33 0.72 0.053 13.5 0.0e+00 V9 <--> V9
34 0.72 0.053 13.7 0.0e+00 V10 <--> V10
35 0.75 0.054 14.0 0.0e+00 V11 <--> V11
36 0.88 0.060 14.6 0.0e+00 V12 <--> V12
37 0.75 0.054 13.9 0.0e+00 V13 <--> V13
38 0.65 0.051 12.8 0.0e+00 V14 <--> V14
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39 0.73 0.053 13.7 0.0e+00 V15 <--> V15
40 0.76 0.060 12.7 0.0e+00 V16 <--> V16
41 0.75 0.054 13.9 0.0e+00 V17 <--> V17
42 0.76 0.054 14.0 0.0e+00 V18 <--> V18
43 0.74 0.053 13.8 0.0e+00 V19 <--> V19
44 0.91 0.061 14.9 0.0e+00 V20 <--> V20
45 0.76 0.055 14.0 0.0e+00 V21 <--> V21
46 0.63 0.050 12.5 0.0e+00 V22 <--> V22
47 0.77 0.054 14.2 0.0e+00 V23 <--> V23
48 0.85 0.060 14.2 0.0e+00 V24 <--> V24
49 -0.72 0.055 -13.1 0.0e+00 F3 <--> F1
50 -0.81 0.041 -19.6 0.0e+00 F4 <--> F2

Iterations = 11
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Fig. 13.13 A two dimensional solution does not fit very well, but a 4 factor model in two space
matches the generating function very well.
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13.7 Forming clusters or homogeneous item composites

An alternative treatment for the non-continuous nature of items is to group them into
“testlets” or “homogeneous item composites”, (HICs). This can be done by a set of trans-
formations, or by recognizing that forming such scales is the equivalent of multiplying a
“keys” matrix times the original data matrix. The psych package includes two functions,
cluster.cor and cluster.loadings that do this and finds the resulting correlation of the
scales.

The function requires us to first form a “keys” matrix composed of item weights of -1, 0,
and 1:

> make.keys <- function(nvar = 24, scales = 8) {
+ keys <- matrix(rep(0, scales * nvar), ncol = scales)
+ for (i in 1:nvar) {
+ keys[i, i%%scales + 1] <- 1
+ }
+ return(keys)
+ }
> keys <- make.keys()
> print(keys)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0 1 0 0 0 0 0 0
[2,] 0 0 1 0 0 0 0 0
[3,] 0 0 0 1 0 0 0 0
[4,] 0 0 0 0 1 0 0 0
[5,] 0 0 0 0 0 1 0 0
[6,] 0 0 0 0 0 0 1 0
[7,] 0 0 0 0 0 0 0 1
[8,] 1 0 0 0 0 0 0 0
[9,] 0 1 0 0 0 0 0 0
[10,] 0 0 1 0 0 0 0 0
[11,] 0 0 0 1 0 0 0 0
[12,] 0 0 0 0 1 0 0 0
[13,] 0 0 0 0 0 1 0 0
[14,] 0 0 0 0 0 0 1 0
[15,] 0 0 0 0 0 0 0 1
[16,] 1 0 0 0 0 0 0 0
[17,] 0 1 0 0 0 0 0 0
[18,] 0 0 1 0 0 0 0 0
[19,] 0 0 0 1 0 0 0 0
[20,] 0 0 0 0 1 0 0 0
[21,] 0 0 0 0 0 1 0 0
[22,] 0 0 0 0 0 0 1 0
[23,] 0 0 0 0 0 0 0 1
[24,] 1 0 0 0 0 0 0 0

> clusters <- cluster.loadings(keys, skew.cor)
> print(clusters, digits = 2)
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$loadings
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

V1 -0.05 0.33 0.00 -0.32 -0.02 0.34 0.06 -0.25
V2 -0.22 -0.03 0.37 0.00 -0.23 -0.01 0.41 -0.02
V3 0.06 -0.34 -0.03 0.43 0.04 -0.33 0.00 0.37
V4 0.37 0.01 -0.23 -0.03 0.18 0.06 -0.24 -0.05
V5 -0.01 0.37 0.02 -0.30 -0.03 0.37 0.04 -0.29
V6 -0.25 0.05 0.34 -0.10 -0.26 0.03 0.38 -0.03
V7 0.01 -0.27 0.04 0.36 0.03 -0.29 0.04 0.40
V8 0.20 -0.01 -0.22 0.01 0.25 0.02 -0.23 0.00
V9 0.03 0.36 0.03 -0.29 0.03 0.41 0.01 -0.29
V10 -0.27 -0.01 0.38 -0.01 -0.23 -0.05 0.39 -0.01
V11 -0.01 -0.28 -0.04 0.38 0.08 -0.30 -0.06 0.35
V12 0.22 -0.03 -0.24 0.04 0.16 -0.03 -0.20 0.02
V13 0.05 0.35 0.01 -0.32 -0.07 0.34 0.05 -0.29
V14 -0.26 0.04 0.43 0.02 -0.25 0.04 0.44 -0.06
V15 0.02 -0.28 -0.03 0.35 0.07 -0.32 -0.06 0.41
V16 0.27 -0.05 -0.23 0.02 0.34 0.00 -0.24 0.03
V17 0.00 0.35 -0.01 -0.30 -0.04 0.37 0.02 -0.27
V18 -0.24 0.06 0.33 -0.02 -0.24 0.02 0.38 -0.04
V19 0.00 -0.32 0.04 0.40 -0.06 -0.34 0.01 0.31
V20 0.22 0.00 -0.15 0.06 0.11 -0.10 -0.22 0.09
V21 0.00 0.39 -0.08 -0.31 0.02 0.29 -0.08 -0.25
V22 -0.29 0.01 0.45 0.03 -0.26 -0.06 0.43 0.02
V23 -0.02 -0.28 -0.08 0.32 -0.03 -0.24 -0.05 0.39
V24 0.22 0.04 -0.22 0.02 0.24 0.02 -0.25 -0.02

$cor
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.00 -0.01 -0.34 0.03 0.43 0.02 -0.36 0.01
[2,] -0.01 1.00 0.01 -0.43 -0.01 0.53 0.04 -0.38
[3,] -0.34 0.01 1.00 -0.01 -0.33 -0.02 0.56 -0.03
[4,] 0.03 -0.43 -0.01 1.00 0.03 -0.44 -0.02 0.47
[5,] 0.43 -0.01 -0.33 0.03 1.00 -0.04 -0.35 0.03
[6,] 0.02 0.53 -0.02 -0.44 -0.04 1.00 0.00 -0.39
[7,] -0.36 0.04 0.56 -0.02 -0.35 0.00 1.00 -0.03
[8,] 0.01 -0.38 -0.03 0.47 0.03 -0.39 -0.03 1.00

$corrected
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.35 -0.02 -0.81 0.06 1.48 0.05 -0.82 0.01
[2,] -0.01 0.49 0.02 -0.82 -0.04 1.09 0.08 -0.73
[3,] -0.34 0.01 0.51 -0.02 -0.94 -0.05 1.04 -0.06
[4,] 0.03 -0.43 -0.01 0.55 0.09 -0.86 -0.04 0.85
[5,] 0.43 -0.01 -0.33 0.03 0.24 -0.11 -0.95 0.08
[6,] 0.02 0.53 -0.02 -0.44 -0.04 0.48 0.01 -0.77
[7,] -0.36 0.04 0.56 -0.02 -0.35 0.00 0.57 -0.05
[8,] 0.01 -0.38 -0.03 0.47 0.03 -0.39 -0.03 0.55
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$sd
[1] 2.0 2.1 2.1 2.2 1.9 2.1 2.2 2.2

$alpha
[1] 0.35 0.49 0.51 0.55 0.24 0.48 0.57 0.55

$size
[1] 3 3 3 3 3 3 3 3

The function returns the item by cluster correlation (roughly equivalent to a factor loading,
the raw correlation matrix, and the correlation matrix corrected for unreliability. For our
purposes, we want to examine the raw correlation matrix of the composite scales. We create
a new structural model similar to the one created in section 13.6.2. Note how the fit is very
good and is very similar to the results from the more extensive analysis using all 24 variables.

> m8 <- modelmat4(8)
> sem8 <- sem(m8, clusters$cor, nsub)
> summary(sem8, digits = 2)

Model Chisquare = 5.2 Df = 18 Pr(>Chisq) = 1
Chisquare (null model) = 884 Df = 28
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.0
Bentler CFI = 1
BIC = -107

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.9e-01 -6.1e-02 -5.8e-06 9.6e-06 5.6e-03 8.9e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.67 0.055 12.1 0.0e+00 V1 <--- F2
2 0.72 0.048 15.0 0.0e+00 V2 <--- F3
3 0.73 0.051 14.2 0.0e+00 V3 <--- F4
4 0.73 0.050 14.6 0.0e+00 V4 <--- F1
5 0.65 0.054 11.9 0.0e+00 V5 <--- F2
6 0.74 0.048 15.4 0.0e+00 V6 <--- F3
7 0.77 0.052 14.8 0.0e+00 V7 <--- F4
8 0.64 0.049 13.2 0.0e+00 V8 <--- F1
9 0.56 0.062 9.0 0.0e+00 V1 <--> V1
10 0.48 0.051 9.5 0.0e+00 V2 <--> V2
11 0.47 0.058 8.2 2.2e-16 V3 <--> V3
12 0.47 0.055 8.5 0.0e+00 V4 <--> V4
13 0.58 0.060 9.6 0.0e+00 V5 <--> V5
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14 0.46 0.052 8.9 0.0e+00 V6 <--> V6
15 0.41 0.061 6.7 2.8e-11 V7 <--> V7
16 0.58 0.052 11.2 0.0e+00 V8 <--> V8
17 -0.82 0.046 -18.0 0.0e+00 F3 <--> F1
18 -0.70 0.052 -13.5 0.0e+00 F4 <--> F2

Iterations = 25

This last example has shown that there are multiple alternative methods for representing
sets of items. Forming “testlets” or “HICS” is one way for compenating for problems at the
item level. Another way of organizing the eight testlets is in terms of two ortogonal factors:

> m4 <- modelmat(8)
> sem4 <- sem(m4, clusters$cor, nsub)
> summary(sem4, digits = 2)

Model Chisquare = 53 Df = 20 Pr(>Chisq) = 9e-05
Chisquare (null model) = 884 Df = 28
Goodness-of-fit index = 0.97
Adjusted goodness-of-fit index = 0.95
RMSEA index = 0.057 90% CI: (0.039, 0.076)
Bentler-Bonnett NFI = 0.94
Tucker-Lewis NNFI = 0.95
Bentler CFI = 0.96
BIC = -72

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.894 -0.056 0.477 0.370 0.689 3.300

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 -0.53 0.050 -11 0 V1 <--- F1
2 0.69 0.046 15 0 V2 <--- F2
3 0.71 0.047 15 0 V3 <--- F1
4 -0.66 0.047 -14 0 V4 <--- F2
5 -0.52 0.050 -10 0 V5 <--- F1
6 0.70 0.046 15 0 V6 <--- F2
7 0.74 0.047 16 0 V7 <--- F1
8 -0.60 0.048 -13 0 V8 <--- F2
9 0.72 0.054 13 0 V1 <--> V1
10 0.52 0.048 11 0 V2 <--> V2
11 0.50 0.049 10 0 V3 <--> V3
12 0.56 0.049 11 0 V4 <--> V4
13 0.73 0.055 13 0 V5 <--> V5
14 0.50 0.048 11 0 V6 <--> V6
15 0.45 0.050 9 0 V7 <--> V7
16 0.64 0.051 13 0 V8 <--> V8

Iterations = 24
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Fig. 13.14 An alternative solution is to group the variables into “testlets” or “homogeneous item
composites” (HICs) and then to examine the structure of the HICs.

All of these techniques are meant to deal with the problem of real items that tend to be
categorical, of low reliability, and faced with problems of skew.





Chapter 14

Evaluating models

Evaluating model fit in SEM may be done by examining the various indices of fit and misfit
supplied by the programs used. The R sem package provides 8 indices which we will discuss
in this chapter. LISREL, EQS, and Mplus provide even more.

However, before considering the various indices of fit, it is important to consider the reasons
that models do not fit.

1. Errors in theory

a. Failure to include the appropriate variables
b. Failure to to model the appropriate relationships

2. Errors in assumptions

a. Problems in distributions
b. Methods or correlated error factors

14.1 Model misspecification: failure to include variables

A classic problem in statements of causal structure is the failure to include appropriate
variables. Such model misspecification is the bane of using correlations to infer anything about
causality, for there is always the lurking third variable that could explain the relationship.

In an attempt to demonstrate this e↵ect, consider the correlation between three variables
at time 1 as predictors of an important outcome at time 2. The measured variables at time
1 are Yellow Fingers, Yellow Teeth and Bad Breath. The outcome variable is probability of
Lung Cancer (rescored with a logistic trasformation to be a continous variable ranging from
-3 to 3.) 1

For the purposes of this demonstration, we create an artificial correlation matrix of these
four variables by defining a latent variable, q , with factor loadings theta. The product of
qq T is the observed correlation matrix:

> theta <- matrix(c(0.8, 0.7, 0.6, 0.5), nrow = 4)
> observed <- theta %*% t(theta)

1 As I hope is obvious, this is an artificial example. It was inspired, in part, by the webpage on causal
and statistical reasoning at Carnegie Mellon University (www.cmu.edu/CSR/index.html

387
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> diag(observed) <- 1
> rownames(observed) <- colnames(observed) <- c("breath", "teeth",
+ "fingers", "cancer")
> observed

breath teeth fingers cancer
breath 1.00 0.56 0.48 0.40
teeth 0.56 1.00 0.42 0.35
fingers 0.48 0.42 1.00 0.30
cancer 0.40 0.35 0.30 1.00

14.1.1 Misspecified Linear Regression

Using classical linear regression, we can predict cancer risk given 1, 2, or 3 predictors. To
do this from the observed correlation matrix, we can use the solve function in base R, or
alternatively the mat.regress function in the psych package. This latter function will take a
correlation matrix and then find the beta weights for a set of X predictors of Y variables. We
do this multiple times, first to regress smoking on yellow fingers, then upon yellow teeth and
yellow fingers, and then finally, on breath, yellow teeth and yellow fingers. Finally, compare
the mat.regress output with using the solve function.

Remember to load the psych package before running this analyis.

> library(psych)
> mat.regress(observed, 3, 4)

$beta
fingers

0.3

$R2
cancer
0.09

> mat.regress(observed, c(2, 3), 4)

$beta
teeth fingers
0.27 0.19

$R2
cancer
0.15

> mat.regress(observed, c(1:3), 4)

$beta
breath teeth fingers
0.26 0.16 0.11
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$R2
cancer
0.19

> beta <- solve(observed[1:3, 1:3], observed[4, 1:3])
> round(beta, 2)

breath teeth fingers
0.26 0.16 0.11

Note how the beta weight for yellow fingers decreases as we add more variables into the
model. The final model with all three predictors may be summarized as in Figure 14.1.

Cancer
Yellow 
Fingers

Yellow Teeth

Bad Breath

Time 1 Time 2

.16.42

.26.48

.56

.11

Fig. 14.1 The direct and indirect e↵ect of three predictors upon a criterion variable. The“real”, causal
variable is missing from the model.

14.1.2 Regression with the correct variables included

We can restate the q term in the generating model (14.1) as “smoking” and generate the
correlation matrix again, as well as the regressions. This time we add the “smoking” variable
with a loading of 1.0 on the latent variable.

> theta <- matrix(c(1, 0.8, 0.7, 0.6, 0.5), nrow = 5)
> observed <- theta %*% t(theta)
> diag(observed) <- 1
> rownames(observed) <- colnames(observed) <- c("smoking", "breath",
+ "teeth", "fingers", "cancer")
> observed
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smoking breath teeth fingers cancer
smoking 1.0 0.80 0.70 0.60 0.50
breath 0.8 1.00 0.56 0.48 0.40
teeth 0.7 0.56 1.00 0.42 0.35
fingers 0.6 0.48 0.42 1.00 0.30
cancer 0.5 0.40 0.35 0.30 1.00

> mat.regress(observed, 4, 5)

$beta
fingers

0.3

$R2
cancer
0.09

> mat.regress(observed, c(3, 4), 5)

$beta
teeth fingers
0.27 0.19

$R2
cancer
0.15

> mat.regress(observed, c(2:4), 5)

$beta
breath teeth fingers
0.26 0.16 0.11

$R2
cancer
0.19

> mat.regress(observed, c(1:4), 5)

$beta
smoking breath teeth fingers

0.5 0.0 0.0 0.0

$R2
cancer
0.25

Notice how if the model is correctly specified (i.e., the causal variable, smoking, is intro-
duced), the beta weights for the non-causal variables go to zero. This is understandable if we
consider the beta weights in the two predictor case:
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Cancer
Yellow 
Fingers

Yellow Teeth

Bad Breath

Smoking

Time 1 Time 2

.0.42

.0
.48

.56

.0

.5

.8

.7
.6

Fig. 14.2 .
The direct and indirect e↵ect of four predictors upon a criterion variable If the “correct” causal variable
is specified, the b weights of the remaining variables are reduced to zero. Compare the b weights with
those in Figure 14.1
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In the more general case,
bR = rxy (14.1)

and we can solve E.16 for b by multiplying both sides by the inverse of R.

b = bRR�1 = rxyR�1

In the two variable case (see Appendix 2), finding the inverse of a two by two matrix is
discussed and is shown to be
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14.1.3 Misspecified Structural Equation Models

The regression models in 14.1 are misspecified in that the“real”causal variable is not included
in the model. This same problem can arise in structural equations. That is, we can fit the
data very well with a model which is, in fact, incorrect. In parallel with the misspecification
of the linear regression, compare a series of structural equation models. The first one is fully
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saturated (has no degrees of freedom), and models the e↵ect of yellow fingers as leading to
cancer. Note how we are using a subset of the correlation matrix. Remember to load the sem
package before running this analyis.

14.1.3.1 one predictor

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "fingers <-> fingers" "5" NA
[3,] "cancer <-> cancer" "8" NA

Model Chisquare = -9.6e-15 Df = 0 Pr(>Chisq) = NA
Chisquare (null model) = 9.3 Df = 1
Goodness-of-fit index = 1
BIC = -9.6e-15

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.30 0.096 3.1 1.8e-03 cancer <--- fingers
5 1.00 0.142 7.0 2.0e-12 fingers <--> fingers
8 0.91 0.129 7.0 2.0e-12 cancer <--> cancer

Iterations = 0

Note how the path coe�ent for fingers -> cancer is identical to the beta weight found in the
regression model for one predictor variable (and is, in the one predictor case equal, of couse,
to the zero order correlation). Also note that the unexplained variance of cancer is equal to
1� r2.

Compaqre this result to the model that just models the correlation between yellow fingers
and cancer:

path parameter initial value
[1,] "fingers <-> cancer" "1" NA
[2,] "fingers <-> fingers" "5" NA
[3,] "cancer <-> cancer" "8" NA

Model Chisquare = -9.6e-15 Df = 0 Pr(>Chisq) = NA
Chisquare (null model) = 9.3 Df = 1
Goodness-of-fit index = 1
BIC = -9.6e-15

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0
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Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.3 0.10 2.9 4.2e-03 cancer <--> fingers
5 1.0 0.14 7.0 2.0e-12 fingers <--> fingers
8 1.0 0.14 7.0 2.0e-12 cancer <--> cancer

Iterations = 0

14.1.3.2 Two predictors, don’t model the correlation

A slightly more complicated model adds the e↵ects of having yellow teeth.

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "fingers <-> fingers" "5" NA
[4,] "teeth <-> teeth" "6" NA
[5,] "cancer <-> cancer" "8" NA

Model Chisquare = 19 Df = 1 Pr(>Chisq) = 1.2e-05
Chisquare (null model) = 35 Df = 3
Goodness-of-fit index = 0.9
Adjusted goodness-of-fit index = 0.37
RMSEA index = 0.43 90% CI: (0.28, 0.6)
Bentler-Bonnett NFI = 0.46
Tucker-Lewis NNFI = -0.69
Bentler CFI = 0.44
BIC = 15

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.31 0.76 1.39 1.14 4.18

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.19 0.10 1.8 6.9e-02 cancer <--- fingers
2 0.27 0.10 2.7 7.7e-03 cancer <--- teeth
5 1.00 0.14 7.0 2.0e-12 fingers <--> fingers
6 1.00 0.14 7.0 2.0e-12 teeth <--> teeth
8 0.85 0.12 7.0 2.0e-12 cancer <--> cancer

Iterations = 0

teeth fingers cancer
teeth 0.000 0.42 0.078
fingers 0.420 0.00 0.114
cancer 0.078 0.11 0.042
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Even with 100 subjects, the model does not fit in terms of c2 or any of the conventional
fit statistics. Although the path coe�cients predicting cancer exactly match the regression
betas, the failure to fit is due to the failure to model the correlations between the predictor
variables. That is, our measurement model is faulty (because we are not actually trying to
measure it.)

14.1.3.3 Two predictors, model the correlation

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "fingers <-> fingers" "5" NA
[4,] "teeth <-> teeth" "6" NA
[5,] "fingers <-> teeth" "7" NA
[6,] "cancer <-> cancer" "8" NA

Model Chisquare = 5.5e-15 Df = 0 Pr(>Chisq) = NA
Chisquare (null model) = 35 Df = 3
Goodness-of-fit index = 1
BIC = 5.5e-15

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.19 0.10 1.8 6.9e-02 cancer <--- fingers
2 0.27 0.10 2.7 7.7e-03 cancer <--- teeth
5 1.00 0.14 7.0 2.0e-12 fingers <--> fingers
6 1.00 0.14 7.0 2.0e-12 teeth <--> teeth
7 0.42 0.11 3.9 1.2e-04 teeth <--> fingers
8 0.85 0.12 7.0 2.0e-12 cancer <--> cancer

Iterations = 0

teeth fingers cancer
teeth 0 0 0
fingers 0 0 0
cancer 0 0 0

Fitting the correlation between fingers and teeth produces a fully saturated model (with no
degrees of freedom). The paths are the correct beta weights.
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14.1.4 Three predictors - alternative models

There are a variety of ways to model the e↵ect of three predictors on the outcome variable.
The model that is logically the equivalent of the regression model is to consider the three
predictors as independent. Alternatives to this consider various ways in which the predictors
could be related.

14.1.4.1 Three predictors, don’t model the correlations

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "breath -> cancer" "3" NA
[4,] "fingers <-> fingers" "5" NA
[5,] "teeth <-> teeth" "6" NA
[6,] "breath <-> breath" "7" NA
[7,] "cancer <-> cancer" "8" NA

Model Chisquare = 68 Df = 3 Pr(>Chisq) = 1.4e-14
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 0.74
Adjusted goodness-of-fit index = 0.12
RMSEA index = 0.47 90% CI: (0.37, 0.57)
Bentler-Bonnett NFI = 0.24
Tucker-Lewis NNFI = -0.56
Bentler CFI = 0.22
BIC = 54

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 1.2 2.0 2.5 4.3 5.6

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.11 0.11 1.0 3.0e-01 cancer <--- fingers
2 0.16 0.11 1.4 1.5e-01 cancer <--- teeth
3 0.26 0.12 2.2 2.5e-02 cancer <--- breath
5 1.00 0.14 7.0 2.0e-12 fingers <--> fingers
6 1.00 0.14 7.0 2.0e-12 teeth <--> teeth
7 1.00 0.14 7.0 2.0e-12 breath <--> breath
8 0.81 0.11 7.0 2.0e-12 cancer <--> cancer

Iterations = 0

breath teeth fingers cancer
breath 0.00 0.56 0.48 0.142
teeth 0.56 0.00 0.42 0.190
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fingers 0.48 0.42 0.00 0.191
cancer 0.14 0.19 0.19 0.088

As we saw before, although the prediction paths from the predictors to the criterion match
the beta weights, the model does not fit, because this model fails to model the correlation
between the predictors. Once again, our failure to have a measurement model is at fault.

We can fix the variance of the predictors to increase the degrees of freedom, but we are
still not modeling the covariances.

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "breath -> cancer" "3" NA
[4,] "fingers <-> fingers" NA "1"
[5,] "teeth <-> teeth" NA "1"
[6,] "breath <-> breath" NA "1"
[7,] "cancer <-> cancer" "8" NA

> summary(sem.4a, digits = 2)

Model Chisquare = 68 Df = 6 Pr(>Chisq) = 1.3e-12
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 0.74
Adjusted goodness-of-fit index = 0.56
RMSEA index = 0.32 90% CI: (0.26, 0.39)
Bentler-Bonnett NFI = 0.24
Tucker-Lewis NNFI = 0.26
Bentler CFI = 0.26
BIC = 40

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 1.2 2.0 2.5 4.3 5.6

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.11 0.11 1.0 3.0e-01 cancer <--- fingers
2 0.16 0.11 1.4 1.5e-01 cancer <--- teeth
3 0.26 0.12 2.2 2.5e-02 cancer <--- breath
8 0.81 0.11 7.0 2.0e-12 cancer <--> cancer

Iterations = 0

> print(standardized.residuals(sem.4a), digits = 2)

breath teeth fingers cancer
breath 0.00 0.56 0.48 0.142
teeth 0.56 0.00 0.42 0.190
fingers 0.48 0.42 0.00 0.191
cancer 0.14 0.19 0.19 0.088
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fingers

cancer

0.11

teeth 0.16

breath

0.26

Fig. 14.3 The direct e↵ect of three predictors upon a criterion variable. The “real”, causal variable
is missing from the model. Although the direct paths are correct (match the beta weights), the model
has a poor fit because the predictors are modeled as uncorrelated. That is, it is not possible to see the
indirect e↵ects from this model.

14.1.4.2 Three predictors, model the correlations, case 1

Revise the previous model to include a “yellow” latent variable. That is, we notice from the
residuals that yellow teeth and fingers seem to go together. Perhaps, with a bit of creativity,
we can explain this as due to the influence of yellowing agents which need to be controlled.

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "breath -> cancer" "3" NA
[4,] "fingers <-> fingers" "5" NA
[5,] "teeth <-> teeth" "6" NA
[6,] "breath <-> breath" "7" NA
[7,] "cancer <-> cancer" "8" NA
[8,] "yellow <-> yellow" NA "1"
[9,] "yellow -> fingers" "10" NA
[10,] "yellow -> teeth" NA "1"

Model Chisquare = 48 Df = 2 Pr(>Chisq) = 3.2e-11
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 0.84
Adjusted goodness-of-fit index = 0.19
RMSEA index = 0.48 90% CI: (0.37, 0.61)
Bentler-Bonnett NFI = 0.45
Tucker-Lewis NNFI = -0.68
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Bentler CFI = 0.44
BIC = 39

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0e+00 7.1e-06 1.3e+00 1.9e+00 2.3e+00 5.6e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 1.1e-01 0.11 1.0e+00 3.0e-01 cancer <--- fingers
2 1.6e-01 0.11 1.4e+00 1.5e-01 cancer <--- teeth
3 2.6e-01 0.12 2.2e+00 2.5e-02 cancer <--- breath
5 8.2e-01 0.12 6.9e+00 6.1e-12 fingers <--> fingers
6 -6.5e-07 0.14 -4.6e-06 1.0e+00 teeth <--> teeth
7 1.0e+00 0.14 7.0e+00 2.0e-12 breath <--> breath
8 8.1e-01 0.11 7.0e+00 2.0e-12 cancer <--> cancer
10 4.2e-01 0.11 3.9e+00 1.2e-04 fingers <--- yellow

Iterations = 14

breath teeth fingers cancer
breath 0.00 5.6e-01 4.8e-01 0.142
teeth 0.56 6.5e-07 7.8e-07 0.145
fingers 0.48 7.8e-07 4.0e-07 0.124
cancer 0.14 1.4e-01 1.2e-01 0.073

This model is significant improvement over the previous model, (examine the change in c2

for the one degree of freedom used), but still does not fit very well.

14.1.4.3 Three predictors, model the correlations, case 2

Looking at the residuals suggests perhaps we should model a latent mouth variable as well.
Perhaps the yellowing of the teeth have an additional component related to being in the
mouth.

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "breath -> cancer" "3" NA
[4,] "fingers <-> fingers" "5" NA
[5,] "teeth <-> teeth" "6" NA
[6,] "breath <-> breath" "7" NA
[7,] "cancer <-> cancer" "8" NA
[8,] "yellow <-> yellow" NA "1"
[9,] "yellow -> fingers" "10" NA
[10,] "yellow -> teeth" NA "1"
[11,] "mouth -> teeth" NA "1"
[12,] "mouth -> breath" "11" NA
[13,] "mouth <-> mouth" NA "1"
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Model Chisquare = 26 Df = 1 Pr(>Chisq) = 3.5e-07
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 0.9
Adjusted goodness-of-fit index = -0.033
RMSEA index = 0.5 90% CI: (0.35, 0.68)
Bentler-Bonnett NFI = 0.71
Tucker-Lewis NNFI = -0.81
Bentler CFI = 0.7
BIC = 21

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.9e-07 6.4e-01 7.8e-01 1.4e+00 1.8e+00 4.8e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.11 0.105 1.0 3.0e-01 cancer <--- fingers
2 0.16 0.111 1.4 1.5e-01 cancer <--- teeth
3 0.26 0.115 2.2 2.5e-02 cancer <--- breath
5 0.96 0.136 7.1 1.7e-12 fingers <--> fingers
6 -1.09 0.124 -8.7 0.0e+00 teeth <--> teeth
7 0.78 0.118 6.6 3.4e-11 breath <--> breath
8 0.81 0.115 7.0 2.0e-12 cancer <--> cancer
10 0.20 0.097 2.0 4.3e-02 fingers <--- yellow
11 0.47 0.114 4.1 4.4e-05 breath <--- mouth

Iterations = 21

breath teeth fingers cancer
breath 1.3e-07 0.094 4.8e-01 0.067
teeth 9.4e-02 0.088 2.2e-01 0.063
fingers 4.8e-01 0.224 -1.3e-07 0.160
cancer 6.7e-02 0.063 1.6e-01 0.045

This is a great improvement (once again, look at the change in c2 for the 1 degree of
freedom more complex model), but the model still does not fit at all well.

14.1.4.4 Three predictors, model the correlations, case 3

Alternatively, we could just allow all the predictors to correlate:

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "breath -> cancer" "3" NA
[4,] "fingers <-> fingers" "5" NA
[5,] "teeth <-> teeth" "6" NA
[6,] "breath <-> breath" "7" NA
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[7,] "cancer <-> cancer" "8" NA
[8,] "teeth <-> breath" "9" NA
[9,] "teeth <-> fingers" "10" NA
[10,] "fingers <-> breath" "11" NA

Model Chisquare = 2.2e-14 Df = 0 Pr(>Chisq) = NA
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 1
BIC = 2.2e-14

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0e+00 0.0e+00 0.0e+00 1.3e-16 1.3e-16 5.3e-16

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.11 0.11 1.0 3.0e-01 cancer <--- fingers
2 0.16 0.11 1.4 1.5e-01 cancer <--- teeth
3 0.26 0.12 2.2 2.5e-02 cancer <--- breath
5 1.00 0.14 7.0 2.0e-12 fingers <--> fingers
6 1.00 0.14 7.0 2.0e-12 teeth <--> teeth
7 1.00 0.14 7.0 2.0e-12 breath <--> breath
8 0.81 0.11 7.0 2.0e-12 cancer <--> cancer
9 0.56 0.12 4.9 1.2e-06 breath <--> teeth
10 0.42 0.11 3.9 1.2e-04 fingers <--> teeth
11 0.48 0.11 4.3 1.7e-05 breath <--> fingers

Iterations = 0

breath teeth fingers cancer
breath 0.0e+00 0 0.0e+00 5.6e-17
teeth 0.0e+00 0 0.0e+00 0.0e+00
fingers 0.0e+00 0 0.0e+00 5.6e-17
cancer 5.6e-17 0 5.6e-17 0.0e+00

This model is fully saturated, and thus the c2 statistic is meaningless. The b weights match
the regression model, and the modeled correlations match the data.

However, if we fix the variances of the three predictors to be 1, then we have gained 3
degrees of freedom and now the model looks great!

path parameter initial value
[1,] "fingers -> cancer" "1" NA
[2,] "teeth -> cancer" "2" NA
[3,] "breath -> cancer" "3" NA
[4,] "fingers <-> fingers" NA "1"
[5,] "teeth <-> teeth" NA "1"
[6,] "breath <-> breath" NA "1"
[7,] "cancer <-> cancer" "8" NA
[8,] "teeth <-> breath" "9" NA
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[9,] "teeth <-> fingers" "10" NA
[10,] "fingers <-> breath" "11" NA

Model Chisquare = 2.2e-14 Df = 3 Pr(>Chisq) = 1
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
BIC = -14

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0e+00 0.0e+00 0.0e+00 1.3e-16 1.3e-16 5.3e-16

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.11 0.105 1.0 3.0e-01 cancer <--- fingers
2 0.16 0.111 1.4 1.5e-01 cancer <--- teeth
3 0.26 0.115 2.2 2.5e-02 cancer <--- breath
8 0.81 0.115 7.0 2.0e-12 cancer <--> cancer
9 0.56 0.060 9.3 0.0e+00 breath <--> teeth
10 0.42 0.075 5.6 2.6e-08 fingers <--> teeth
11 0.48 0.069 6.9 4.6e-12 breath <--> fingers

Iterations = 0

breath teeth fingers cancer
breath 0.0e+00 0 0.0e+00 5.6e-17
teeth 0.0e+00 0 0.0e+00 0.0e+00
fingers 0.0e+00 0 0.0e+00 5.6e-17
cancer 5.6e-17 0 5.6e-17 0.0e+00

14.1.5 Three predictors, model the correlations with one latent
variable

An alternative model to that in Figure 14.4 is to note that the three predictors correlate and
to consider that perhaps they reflect an unknown, latent variable. Perhaps it is this latent
variable which leads to cancer.

path parameter initial value
[1,] "latent -> cancer" "1" NA
[2,] "latent -> breath" "2" NA
[3,] "latent -> fingers" "3" NA
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fingers cancer0.11

teeth

0.16

breath

0.26

0.42

0.48

.56

Fig. 14.4 The direct and indirect e↵ect of three predictors upon a criterion variable using sem. The
“real”, causal variable is missing from the model. The direct paths are correct (match the beta weights),
and the model has an excellent fit because the correlations between the predictors are modeled.

[4,] "latent -> teeth" "4" NA
[5,] "fingers <-> fingers" "5" NA
[6,] "teeth <-> teeth" "6" NA
[7,] "breath <-> breath" "7" NA
[8,] "cancer <-> cancer" "8" NA
[9,] "latent <-> latent" NA "1"

Model Chisquare = 1.9e-10 Df = 2 Pr(>Chisq) = 1
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
BIC = -9.2

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

9.4e-07 1.7e-06 3.0e-06 3.5e-06 4.7e-06 1.2e-05

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.50 0.11 4.7 2.8e-06 cancer <--- latent
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2 0.80 0.10 7.8 5.1e-15 breath <--- latent
3 0.60 0.10 5.8 8.2e-09 fingers <--- latent
4 0.70 0.10 6.8 9.8e-12 teeth <--- latent
5 0.64 0.11 5.9 4.8e-09 fingers <--> fingers
6 0.51 0.10 4.9 1.2e-06 teeth <--> teeth
7 0.36 0.11 3.3 9.1e-04 breath <--> breath
8 0.75 0.12 6.4 2.0e-10 cancer <--> cancer

Iterations = 13

breath teeth fingers cancer
breath 6.1e-07 5.4e-07 3.5e-07 5.2e-07
teeth 5.4e-07 2.8e-07 1.1e-07 2.9e-07
fingers 3.5e-07 1.1e-07 1.3e-07 1.8e-07
cancer 5.2e-07 2.9e-07 1.8e-07 1.7e-06

Ah, that did it. We now understand the “causal” structure (although our inference about
what is common between bad breath, yellow teeth and yellow fingers will probably ignore
the real cause). The secret to solving lung cancer is to use mouth freshners, visit your dentist,
and wear latex gloves! (See Figure 14.5)

latent cancer
0.5

breath
0.8

fingers
0.6

teeth

0.7

Fig. 14.5 Faulty inference can be the result of a misspecified model. Whatever is common to bad
breadth, yellow teeth, and yellow hands seems to lead to lung cancer. Thus, one should use mouth
freshners, visit your dentist, and wear latex gloves.

14.1.6 Three predictors with shared “error”

An alternative model is to consider the latent variable as accounting for the correlations
between the three observed variables, and then to have direct paths from yellow teeth, yellow
fingers, and bad breath to cancer. (This is functionally equivalent to the regression model.)



404 14 Evaluating models

Note how this model is conceptually very di↵erent from the previous one in which the latent
variable was seen as common to all four variables.

path parameter initial value
[1,] "breath -> cancer" "A" NA
[2,] "teeth -> cancer" "B" NA
[3,] "fingers -> cancer" "C" NA
[4,] "latent -> breath" "2" NA
[5,] "latent -> fingers" "3" NA
[6,] "latent -> teeth" "4" NA
[7,] "fingers <-> fingers" "5" NA
[8,] "teeth <-> teeth" "6" NA
[9,] "breath <-> breath" "7" NA
[10,] "cancer <-> cancer" "8" NA
[11,] "latent <-> latent" NA "1"

Model Chisquare = 1.5e-10 Df = 0 Pr(>Chisq) = NA
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 1
BIC = 1.5e-10

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.8e-06 -1.4e-06 -7.0e-07 -1.0e-06 -1.6e-07 1.5e-06

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

A 0.26 0.12 2.2 2.5e-02 cancer <--- breath
B 0.16 0.11 1.4 1.5e-01 cancer <--- teeth
C 0.11 0.11 1.0 3.0e-01 cancer <--- fingers
2 0.80 0.11 7.2 7.1e-13 breath <--- latent
3 0.60 0.11 5.6 1.9e-08 fingers <--- latent
4 0.70 0.11 6.4 1.3e-10 teeth <--- latent
5 0.64 0.11 5.7 1.5e-08 fingers <--> fingers
6 0.51 0.12 4.4 1.2e-05 teeth <--> teeth
7 0.36 0.13 2.8 5.5e-03 breath <--> breath
8 0.81 0.11 7.0 2.0e-12 cancer <--> cancer

Iterations = 15

breath teeth fingers cancer
breath 1.1e-07 -5.5e-07 -2.6e-07 -8.8e-08
teeth -5.5e-07 2.1e-07 -1.7e-08 -1.1e-07
fingers -2.6e-07 -1.7e-08 8.5e-08 -6.1e-08
cancer -8.8e-08 -1.1e-07 -6.1e-08 -4.7e-08

But the previous model is fully saturated. We can revise the model somewhat by forcing all
three paths with the latent variable to be equal. This frees up two degrees of freedom and
results in a very good fit.
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latent

breath

0.8

teeth
0.7

fingers

0.6

cancer

0.26

0.16

0.11

Fig. 14.6 Correlated errors not associated with the criterion. Alternatively, there is something in
common to yellow teeth, yellow fingers, and bad breath, but whatever it is that they do not share leads
to cancer.

> model.8b <- matrix(c("breath -> cancer", "A", NA, "teeth -> cancer",
+ "B", NA, "fingers -> cancer", "C", NA, "latent -> breath",
+ 2, NA, "latent -> fingers", 2, NA, "latent -> teeth", 2, NA,
+ "fingers <-> fingers", 5, NA, "teeth <-> teeth", 6, NA, "breath <-> breath",
+ 7, NA, "cancer <-> cancer", 8, NA, "latent <-> latent", NA,
+ 1), byrow = TRUE, ncol = 3)
> model.8b

[,1] [,2] [,3]
[1,] "breath -> cancer" "A" NA
[2,] "teeth -> cancer" "B" NA
[3,] "fingers -> cancer" "C" NA
[4,] "latent -> breath" "2" NA
[5,] "latent -> fingers" "2" NA
[6,] "latent -> teeth" "2" NA
[7,] "fingers <-> fingers" "5" NA
[8,] "teeth <-> teeth" "6" NA
[9,] "breath <-> breath" "7" NA
[10,] "cancer <-> cancer" "8" NA
[11,] "latent <-> latent" NA "1"

> sem.8b <- sem(model.8b, observed[2:5, 2:5], 100)
> summary(sem.8b, digits = 2)

Model Chisquare = 1.9 Df = 2 Pr(>Chisq) = 0.39
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 0.95
RMSEA index = 0 90% CI: (NA, 0.20)
Bentler-Bonnett NFI = 0.98
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Tucker-Lewis NNFI = 1
Bentler CFI = 1
BIC = -7.3

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.660 -0.233 0.039 -0.020 0.223 0.583

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

A 0.26 0.115 2.2 2.5e-02 cancer <--- breath
B 0.16 0.111 1.4 1.5e-01 cancer <--- teeth
C 0.11 0.105 1.0 3.0e-01 cancer <--- fingers
2 0.70 0.069 10.3 0.0e+00 breath <--- latent
5 0.59 0.108 5.4 5.3e-08 fingers <--> fingers
6 0.50 0.096 5.2 2.4e-07 teeth <--> teeth
7 0.45 0.091 4.9 8.2e-07 breath <--> breath
8 0.81 0.115 7.0 2.0e-12 cancer <--> cancer

Iterations = 10

> print(standardized.residuals(sem.8b), digits = 2)

breath teeth fingers cancer
breath 0.058 0.0637 -0.016 0.0232
teeth 0.064 0.0065 -0.076 0.0092
fingers -0.016 -0.0763 -0.083 -0.0255
cancer 0.023 0.0092 -0.025 0.0047

latent

breath

0.7

teeth
0.7

fingers

0.7

cancer

0.26

0.16

0.11

Fig. 14.7 Fixing the correlated errors paths. There is something in common to yellow teeth, yellow
fingers, and bad breath, but whatever it is that they do not share leads to cancer. By fixing the paths
to the latent variable to be the same the model has gained two degrees of freedom. The fit is very good.
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14.1.7 Reverse the causal paths

Yet another alternative model is to think of cancer as the cause of bad breath, yellow teeth
and yellow fingers. (That is to say, to reverse the causal arrows from the previous model.)
The paths from cancer to the former “predictors” are now longer b weights, but have become
the zero order correlation coe�cients.

> model.8c <- matrix(c("breath <- cancer", "A", NA, "teeth <- cancer",
+ "B", NA, "fingers <- cancer", "C", NA, "latent -> breath",
+ 1, NA, "latent -> fingers", 2, NA, "latent -> teeth", 3, NA,
+ "fingers <-> fingers", 5, NA, "teeth <-> teeth", 6, NA, "breath <-> breath",
+ 7, NA, "cancer <-> cancer", NA, 1, "latent <-> latent", NA,
+ 1), byrow = TRUE, ncol = 3)
> model.8c

[,1] [,2] [,3]
[1,] "breath <- cancer" "A" NA
[2,] "teeth <- cancer" "B" NA
[3,] "fingers <- cancer" "C" NA
[4,] "latent -> breath" "1" NA
[5,] "latent -> fingers" "2" NA
[6,] "latent -> teeth" "3" NA
[7,] "fingers <-> fingers" "5" NA
[8,] "teeth <-> teeth" "6" NA
[9,] "breath <-> breath" "7" NA
[10,] "cancer <-> cancer" NA "1"
[11,] "latent <-> latent" NA "1"

> sem.8c <- sem(model.8c, observed[2:5, 2:5], 100)
> summary(sem.8c, digits = 2)

Model Chisquare = 1.0e-10 Df = 1 Pr(>Chisq) = 1
Chisquare (null model) = 89 Df = 6
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
BIC = -4.6

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.5e-06 -4.7e-06 -4.0e-06 -3.2e-06 -1.5e-06 4.8e-08

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

A 0.40 0.092 4.3 1.4e-05 breath <--- cancer
B 0.35 0.094 3.7 2.0e-04 teeth <--- cancer
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C 0.30 0.096 3.1 1.8e-03 fingers <--- cancer
1 0.69 0.116 6.0 2.4e-09 breath <--- latent
2 0.52 0.110 4.7 2.1e-06 fingers <--- latent
3 0.61 0.113 5.4 7.3e-08 teeth <--- latent
5 0.64 0.113 5.7 1.5e-08 fingers <--> fingers
6 0.51 0.117 4.4 1.2e-05 teeth <--> teeth
7 0.36 0.130 2.8 5.5e-03 breath <--> breath

Iterations = 16

> print(standardized.residuals(sem.8c), digits = 2)

breath teeth fingers cancer
breath -6.1e-08 -5.5e-07 -2.1e-07 5.2e-09
teeth -5.5e-07 -6.6e-07 -4.4e-07 -6.9e-07
fingers -2.1e-07 -4.4e-07 -5.7e-07 -4.5e-07
cancer 5.2e-09 -6.9e-07 -4.5e-07 0.0e+00

latent

breath
0.69

teeth
0.61

fingers

0.52

cancer

0.4

0.35

0.3

Fig. 14.8 Changing the direction of causation. Perhaps cancer is the causal agent and breath, teeth,
and fingers are merely signs of the underlying disease. In addition, perhaps they have some shared
error.

14.2 Including the correct variables, but misspecifying the models

Based upon the previous model fitting in section 14.1 we have concluded that there is some
latent variable that ties our four variables together. We now examine what happens when we
add yet another variable to the mix.

We use the correlation matrix from section 14.1. Note that the correlation matrix is iden-
tical for the previous four variables, and that the smoking variable is equivalent to the latent
factor that generated the data.
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14.2.1 Including the correct variables in linear regression

Remember that if we include smoking into the linear regression, the e↵ect of the other
variables vanishes (Figure 14.2

> mat.regress(observed, c(2:4), 5)

$beta
breath teeth fingers
0.26 0.16 0.11

$R2
cancer
0.19

> mat.regress(observed, c(1:4), 5)

$beta
smoking breath teeth fingers

0.5 0.0 0.0 0.0

$R2
cancer
0.25

If, however, we were to make smoking an unreliable measure and thus not perfectly cor-
related with the latent factor, the other variables still seem to have an e↵ect. We show this
by making the latent path from q to smoking less than one. In the first case, we make the
path .9. This is the same as making the reliability of smoking .81. Call this new correlation
matrix observed1.

> theta <- matrix(c(0.9, 0.8, 0.7, 0.6, 0.5), nrow = 5)
> observed1 <- theta %*% t(theta)
> diag(observed1) <- 1
> rownames(observed1) <- colnames(observed1) <- c("smoking", "breath",
+ "teeth", "fingers", "cancer")
> observed1

smoking breath teeth fingers cancer
smoking 1.00 0.72 0.63 0.54 0.45
breath 0.72 1.00 0.56 0.48 0.40
teeth 0.63 0.56 1.00 0.42 0.35
fingers 0.54 0.48 0.42 1.00 0.30
cancer 0.45 0.40 0.35 0.30 1.00

> mat.regress(observed1, c(2:4), 5)

$beta
breath teeth fingers
0.26 0.16 0.11
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$R2
cancer
0.19

> mat.regress(observed1, c(1:4), 5)

$beta
smoking breath teeth fingers

0.28 0.13 0.08 0.05

$R2
cancer
0.22

Compare the regression weights for the two data sets (observed and observed1). Note how
the other variables still contribute to the regression unless smoking is measured perfectly
reliably.

To show it even more clearly, make the q to smoking path = .5 (This is the equivalent of
having a reliability of smoking of .25)

> theta <- matrix(c(0.5, 0.8, 0.7, 0.6, 0.5), nrow = 5)
> observed2 <- theta %*% t(theta)
> diag(observed2) <- 1
> rownames(observed2) <- colnames(observed2) <- c("smoking", "breath",
+ "teeth", "fingers", "cancer")
> observed2

smoking breath teeth fingers cancer
smoking 1.00 0.40 0.35 0.30 0.25
breath 0.40 1.00 0.56 0.48 0.40
teeth 0.35 0.56 1.00 0.42 0.35
fingers 0.30 0.48 0.42 1.00 0.30
cancer 0.25 0.40 0.35 0.30 1.00

> mat.regress(observed2, c(2:4), 5)

$beta
breath teeth fingers
0.26 0.16 0.11

$R2
cancer
0.19

> mat.regress(observed2, c(1:4), 5)

$beta
smoking breath teeth fingers

0.07 0.24 0.15 0.10

$R2
cancer

0.2
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Note that in this case, we completely over estimate the contribution of the other variables
and underestimate the contribution of smoking. In regression, there is no way to correct for
this, but structural equation modeling does allow for various ways of correcting this problem.

14.2.2 Including the correct variables in the Structural Equation

Here we apply the identical model to our three di↵erent correlation matrices.

> model.9 <- matrix(c("latent -> cancer", 1, NA, "latent -> breath",
+ 2, NA, "latent -> fingers", 3, NA, "latent -> teeth", 4, NA,
+ "latent -> smoking", 9, NA, "fingers <-> fingers", 5, NA, "teeth <-> teeth",
+ 6, NA, "breath <-> breath", 7, NA, "cancer <-> cancer", 8,
+ NA, "smoking <-> smoking", 10, NA, "latent <-> latent", NA,
+ 1), byrow = TRUE, ncol = 3)
> model.9

[,1] [,2] [,3]
[1,] "latent -> cancer" "1" NA
[2,] "latent -> breath" "2" NA
[3,] "latent -> fingers" "3" NA
[4,] "latent -> teeth" "4" NA
[5,] "latent -> smoking" "9" NA
[6,] "fingers <-> fingers" "5" NA
[7,] "teeth <-> teeth" "6" NA
[8,] "breath <-> breath" "7" NA
[9,] "cancer <-> cancer" "8" NA
[10,] "smoking <-> smoking" "10" NA
[11,] "latent <-> latent" NA "1"

> sem.9 <- sem(model.9, observed, 100)
> summary(sem.9, digits = 2)

Model Chisquare = 1.8e-11 Df = 5 Pr(>Chisq) = 1
Chisquare (null model) = 240 Df = 10
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.0
Bentler CFI = 1
BIC = -23

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.2e-07 -3.6e-07 5.1e-08 2.3e-07 8.5e-07 1.2e-06

Parameter Estimates
Estimate Std Error z value Pr(>|z|)
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1 5.0e-01 0.095 5.3e+00 1.3e-07 cancer <--- latent
2 8.0e-01 0.085 9.4e+00 0.0e+00 breath <--- latent
3 6.0e-01 0.092 6.5e+00 7.5e-11 fingers <--- latent
4 7.0e-01 0.089 7.9e+00 3.6e-15 teeth <--- latent
9 1.0e+00 0.075 1.3e+01 0.0e+00 smoking <--- latent
5 6.4e-01 0.093 6.9e+00 4.9e-12 fingers <--> fingers
6 5.1e-01 0.076 6.7e+00 2.3e-11 teeth <--> teeth
7 3.6e-01 0.060 6.0e+00 1.7e-09 breath <--> breath
8 7.5e-01 0.107 7.0e+00 2.8e-12 cancer <--> cancer
10 -7.1e-08 0.048 -1.5e-06 1.0e+00 smoking <--> smoking

Iterations = 15

> print(standardized.residuals(sem.9), digits = 2)

smoking breath teeth fingers cancer
smoking -1.9e-08 -3.1e-08 -1.0e-07 -2.4e-08 1.2e-07
breath -3.1e-08 9.0e-08 -5.1e-08 5.7e-09 1.2e-07
teeth -1.0e-07 -5.1e-08 -6.0e-08 -3.9e-08 6.7e-08
fingers -2.4e-08 5.7e-09 -3.9e-08 1.7e-07 8.9e-08
cancer 1.2e-07 1.2e-07 6.7e-08 8.9e-08 1.6e-07

Note that with the perfect data set, the estimate for the error variance of smoking is appro-
priately very small.

Repeat this analysis with the less than perfect reliability of smoking of the observed1 data
set:

> sem.10 <- sem(model.9, observed1, 100)
> summary(sem.10, digits = 2)

Model Chisquare = 1.1e-10 Df = 5 Pr(>Chisq) = 1
Chisquare (null model) = 188 Df = 10
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
BIC = -23

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.8e-06 -2.5e-06 3.1e-07 2.7e-07 2.7e-06 5.7e-06

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.50 0.099 5.0 5.0e-07 cancer <--- latent
2 0.80 0.088 9.1 0.0e+00 breath <--- latent
3 0.60 0.096 6.2 4.5e-10 fingers <--- latent
4 0.70 0.092 7.6 3.3e-14 teeth <--- latent
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9 0.90 0.084 10.7 0.0e+00 smoking <--- latent
5 0.64 0.098 6.5 7.7e-11 fingers <--> fingers
6 0.51 0.084 6.1 1.1e-09 teeth <--> teeth
7 0.36 0.070 5.1 3.0e-07 breath <--> breath
8 0.75 0.111 6.7 1.7e-11 cancer <--> cancer
10 0.19 0.064 3.0 2.8e-03 smoking <--> smoking

Iterations = 12

> print(standardized.residuals(sem.10), digits = 2)

smoking breath teeth fingers cancer
smoking 1.5e-07 8.2e-08 -1.8e-07 6.5e-07 -2.7e-07
breath 8.2e-08 4.4e-08 -2.2e-07 5.3e-07 -2.8e-07
teeth -1.8e-07 -2.2e-07 2.9e-09 3.0e-07 -3.9e-07
fingers 6.5e-07 5.3e-07 3.0e-07 5.1e-07 1.2e-07
cancer -2.7e-07 -2.8e-07 -3.9e-07 1.2e-07 -5.4e-07

Repeat this analysis with the even less reliability of smoking of the observed2 data set:

> sem.11 <- sem(model.9, observed2, 100)
> summary(sem.11, digits = 2)

Model Chisquare = 4.2e-10 Df = 5 Pr(>Chisq) = 1
Chisquare (null model) = 110 Df = 10
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
BIC = -23

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.0e-05 -2.4e-06 -1.1e-06 -5.4e-07 2.2e-06 5.5e-06

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.50 0.105 4.7 2.1e-06 cancer <--- latent
2 0.80 0.098 8.2 2.2e-16 breath <--- latent
3 0.60 0.102 5.9 4.6e-09 fingers <--- latent
4 0.70 0.100 7.0 2.3e-12 teeth <--- latent
9 0.50 0.105 4.7 2.1e-06 smoking <--- latent
5 0.64 0.107 6.0 2.2e-09 fingers <--> fingers
6 0.51 0.099 5.1 2.7e-07 teeth <--> teeth
7 0.36 0.097 3.7 2.1e-04 breath <--> breath
8 0.75 0.117 6.4 1.3e-10 cancer <--> cancer
10 0.75 0.117 6.4 1.3e-10 smoking <--> smoking

Iterations = 11
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> print(standardized.residuals(sem.11), digits = 2)

smoking breath teeth fingers cancer
smoking 7.7e-07 -2.4e-07 5.2e-07 -2.6e-07 2.3e-07
breath -2.4e-07 -6.2e-07 -1.4e-08 -1.1e-06 -2.4e-07
teeth 5.2e-07 -1.4e-08 -2.7e-07 -1.2e-07 5.2e-07
fingers -2.6e-07 -1.1e-06 -1.2e-07 -1.1e-07 -2.6e-07
cancer 2.3e-07 -2.4e-07 5.2e-07 -2.6e-07 7.7e-07

We now see the real power of the SEM approach. For by modeling the correlations between
the X predictor set, we are able to estimate how unreliable each variable is (the path from
a variable to itself reflects the unreliability) and see the structure of the data. But, the
conclusion is still wrong, because now we are forced to interpret that whatever it is that is
common to smoking, bad breath, yellow fingers and yellow teeth lead to cancer. Although
our latent modeling approach has helped and is able to reproduce the data perfectly, it has
not led to the correct conclusion as to causality. (See Figure ??).

14.2.3 Direct the causal path

What happens if we make smoking a causal variable that leads to the latent variable?

> model.12 <- matrix(c("latent -> cancer", 1, NA, "latent -> breath",
+ 2, NA, "latent -> fingers", 3, NA, "latent -> teeth", 4, NA,
+ "smoking -> latent", NA, 1, "fingers <-> fingers", 5, NA, "teeth <-> teeth",
+ 6, NA, "breath <-> breath", 7, NA, "cancer <-> cancer", 8,
+ NA, "smoking <-> smoking", NA, 1, "latent <-> latent", 12,
+ NA), byrow = TRUE, ncol = 3)
> sem.12 <- sem(model.12, observed, 100)
> summary(sem.12, digits = 2)

Model Chisquare = 4.9e-12 Df = 6 Pr(>Chisq) = 1
Chisquare (null model) = 240 Df = 10
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.0
Bentler CFI = 1
BIC = -28

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.8e-07 -1.0e-07 1.7e-07 3.1e-07 4.4e-07 1.2e-06

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 5.0e-01 0.087 5.7e+00 9.2e-09 cancer <--- latent
2 8.0e-01 0.060 1.3e+01 0.0e+00 breath <--- latent
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latent

cancer

0.5 breath

0.8

fingers0.6

teeth

0.7

smoking

0.5

Fig. 14.9 Good fit does not imply“causality”–the problem of incorrect inference. Whatever is common
to smoking, bad breadth, yellow teeth, and yellow hands also seems to lead to lung cancer. Thus, one
should use mouth freshners, visit your dentist, and wear latex gloves. It is unclear why the latent
variable leads to smoking.

3 6.0e-01 0.080 7.5e+00 8.5e-14 fingers <--- latent
4 7.0e-01 0.072 9.8e+00 0.0e+00 teeth <--- latent
5 6.4e-01 0.093 6.9e+00 4.9e-12 fingers <--> fingers
6 5.1e-01 0.076 6.7e+00 2.3e-11 teeth <--> teeth
7 3.6e-01 0.060 6.0e+00 1.7e-09 breath <--> breath
8 7.5e-01 0.107 7.0e+00 2.8e-12 cancer <--> cancer
12 9.7e-09 0.048 2.0e-07 1.0e+00 latent <--> latent

Iterations = 15



416 14 Evaluating models

> print(standardized.residuals(sem.12), digits = 2)

smoking breath teeth fingers cancer
smoking 0.0e+00 5.5e-08 1.0e-07 -1.4e-08 -1.2e-08
breath 5.5e-08 1.4e-07 1.2e-07 1.7e-08 1.5e-08
teeth 1.0e-07 1.2e-07 1.7e-07 4.8e-08 4.0e-08
fingers -1.4e-08 1.7e-08 4.8e-08 2.5e-08 -1.7e-08
cancer -1.2e-08 1.5e-08 4.0e-08 -1.7e-08 -8.2e-08

Repeat this analysis with noisy data from observed2. (Remember that in this case, smoking
is not measured reliably).

> sem.13 <- sem(model.12, observed2, 100)
> summary(sem.13, digits = 2)

Model Chisquare = 7.4e-11 Df = 6 Pr(>Chisq) = 1
Chisquare (null model) = 110 Df = 10
Goodness-of-fit index = 1
Adjusted goodness-of-fit index = 1
RMSEA index = 0 90% CI: (NA, NA)
Bentler-Bonnett NFI = 1
Tucker-Lewis NNFI = 1.1
Bentler CFI = 1
BIC = -28

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.1e-06 -2.7e-06 -2.4e-06 -2.3e-06 -1.1e-06 6.4e-07

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

1 0.25 0.070 3.6 3.6e-04 cancer <--- latent
2 0.40 0.087 4.6 4.0e-06 breath <--- latent
3 0.30 0.075 4.0 7.1e-05 fingers <--- latent
4 0.35 0.082 4.3 1.8e-05 teeth <--- latent
5 0.64 0.107 6.0 2.2e-09 fingers <--> fingers
6 0.51 0.099 5.1 2.7e-07 teeth <--> teeth
7 0.36 0.097 3.7 2.1e-04 breath <--> breath
8 0.75 0.117 6.4 1.3e-10 cancer <--> cancer
12 3.00 1.364 2.2 2.8e-02 latent <--> latent

Iterations = 18

> print(standardized.residuals(sem.13), digits = 2)

smoking breath teeth fingers cancer
smoking 0.0e+00 -3.0e-07 -1.2e-07 -1.2e-07 -2.4e-07
breath -3.0e-07 -7.3e-07 -3.1e-07 -2.9e-07 -4.8e-07
teeth -1.2e-07 -3.1e-07 9.1e-08 -8.8e-08 -2.8e-07
fingers -1.2e-07 -2.9e-07 -8.8e-08 -7.1e-07 -2.5e-07
cancer -2.4e-07 -4.8e-07 -2.8e-07 -2.5e-07 -2.8e-07
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We can also model smoking as a noisy variable, and then fix one path (in this case, the
latent to cancer) to estimate the model for pure, moderate, and very noisy smoking.

> model.14 <- matrix(c("latent -> cancer", NA, 1, "latent -> breath",
+ 2, NA, "latent -> fingers", 3, NA, "latent -> teeth", 4, NA,
+ "smoking -> latent", 11, NA, "fingers <-> fingers", 5, NA,
+ "teeth <-> teeth", 6, NA, "breath <-> breath", 7, NA, "cancer <-> cancer",
+ 8, NA, "smoking <-> smoking", 10, NA, "latent <-> latent",
+ NA, 1), byrow = TRUE, ncol = 3)
> sem.14 <- sem(model.14, observed, 100)
> summary(sem.14, digits = 2)

Model Chisquare = 111 Df = 6 Pr(>Chisq) = 0
Chisquare (null model) = 240 Df = 10
Goodness-of-fit index = 0.76
Adjusted goodness-of-fit index = 0.39
RMSEA index = 0.42 90% CI: (0.35, 0.49)
Bentler-Bonnett NFI = 0.54
Tucker-Lewis NNFI = 0.24
Bentler CFI = 0.55
BIC = 83

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.63 -3.38 -1.81 -1.68 0.00 0.81

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 0.73 0.082 8.9 0.0e+00 breath <--- latent
3 0.54 0.090 6.0 2.2e-09 fingers <--- latent
4 0.63 0.087 7.2 6.0e-13 teeth <--- latent
11 0.95 0.133 7.2 8.5e-13 latent <--- smoking
5 0.63 0.102 6.2 5.4e-10 fingers <--> fingers
6 0.50 0.091 5.5 3.5e-08 teeth <--> teeth
7 0.32 0.082 3.9 8.5e-05 breath <--> breath
8 1.02 0.208 4.9 9.7e-07 cancer <--> cancer
10 1.00 0.142 7.0 2.0e-12 smoking <--> smoking

Iterations = 13

> print(standardized.residuals(sem.14), digits = 2)

smoking breath teeth fingers cancer
smoking 0.00 0.10 0.10 0.09 -0.45
breath 0.10 -0.34 -0.31 -0.27 -0.99
teeth 0.10 -0.31 -0.25 -0.22 -0.84
fingers 0.09 -0.27 -0.22 -0.18 -0.72
cancer -0.45 -0.99 -0.84 -0.72 -1.92

> sem.15 <- sem(model.14, observed1, 100)
> summary(sem.15, digits = 2)
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Model Chisquare = 71 Df = 6 Pr(>Chisq) = 2.1e-13
Chisquare (null model) = 188 Df = 10
Goodness-of-fit index = 0.81
Adjusted goodness-of-fit index = 0.53
RMSEA index = 0.33 90% CI: (0.27, 0.4)
Bentler-Bonnett NFI = 0.62
Tucker-Lewis NNFI = 0.39
Bentler CFI = 0.63
BIC = 44

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.31 -3.26 -1.73 -1.61 0.00 0.72

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 0.77 0.088 8.7 0.0e+00 breath <--- latent
3 0.57 0.096 6.0 2.2e-09 fingers <--- latent
4 0.67 0.093 7.2 5.1e-13 teeth <--- latent
11 0.81 0.125 6.5 9.1e-11 latent <--- smoking
5 0.64 0.104 6.2 7.6e-10 fingers <--> fingers
6 0.51 0.093 5.5 4.6e-08 teeth <--> teeth
7 0.35 0.086 4.0 5.3e-05 breath <--> breath
8 0.92 0.181 5.1 3.6e-07 cancer <--> cancer
10 1.00 0.142 7.0 2.0e-12 smoking <--> smoking

Iterations = 13

> print(standardized.residuals(sem.15), digits = 2)

smoking breath teeth fingers cancer
smoking 0.000 0.095 0.087 0.075 -0.36
breath 0.095 -0.330 -0.295 -0.252 -0.88
teeth 0.087 -0.295 -0.249 -0.216 -0.76
fingers 0.075 -0.252 -0.216 -0.183 -0.65
cancer -0.362 -0.878 -0.760 -0.651 -1.58

> sem.16 <- sem(model.14, observed2, 100)
> summary(sem.16, digits = 2)

Model Chisquare = 26 Df = 6 Pr(>Chisq) = 0.00021
Chisquare (null model) = 110 Df = 10
Goodness-of-fit index = 0.92
Adjusted goodness-of-fit index = 0.8
RMSEA index = 0.18 90% CI: (0.12, 0.26)
Bentler-Bonnett NFI = 0.76
Tucker-Lewis NNFI = 0.67
Bentler CFI = 0.8
BIC = -1.5
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Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.4 -2.8 -1.4 -1.4 0.0 0.4

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

2 0.88 0.108 8.1 6.7e-16 breath <--- latent
3 0.67 0.114 5.9 4.4e-09 fingers <--- latent
4 0.78 0.110 7.1 1.6e-12 teeth <--- latent
11 0.40 0.113 3.6 3.7e-04 latent <--- smoking
5 0.64 0.107 6.0 1.9e-09 fingers <--> fingers
6 0.52 0.098 5.3 1.4e-07 teeth <--> teeth
7 0.39 0.096 4.1 4.5e-05 breath <--> breath
8 0.77 0.144 5.4 8.3e-08 cancer <--> cancer
10 1.00 0.142 7.0 2.0e-12 smoking <--> smoking

Iterations = 14

latent

cancer

0.25

breath
0.4

fingers

0.3

teeth

0.35

smoking
1

Fig. 14.10 The correct model does not necessarily fit better. Smoking seems to a↵ect something that
leads to bad breadth, yellow teeth, and yellow hands as well as lung cancer.
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14.3 Measures of fit

As has been seen in the previous sections, the use of fit statisics does not guarantee meaningful
models. If we do not specify the model correctly, either because we do not include the correct
variables or because we fail to use the appropriate measurement model, we will lead to
incorrect conclusions.

Even if we have a very good fit, we are unable to determine causal structure from the
model, even if we bother to add time into the model.

14.3.1 c2

As we saw in the previous chapter, c2 is very sensitive to many sources of error in our
model specification. c2 is sensitive to failures of our distributional assumptions (continuous,
multivariate normal) as well as to our failures to correctly specify the structure.

14.3.2 GFI, NFI, ...

14.3.3 RMSEA

14.4 What does it mean to fit a model

What should we do when the model does not fit? This is a recurring controversy, discussed,
for instance in the March, 2007 issue of Personality and Individual Di↵erences. It is also a
continuing source of debate on the SEM-net list serve. There are those who treat fit statistics
(particularly c2) as the definitive test and evidence for model adequacy. There are others
who do not take such an all or none approach, and are concerned with comparisons of models
to alternative models.



Chapter 15

Multidimensional Scaling and Multi-Mode
Methods

15.1 Basic models of Multidimensional Scaling

15.1.1 Metric models

15.1.2 Non-metric models

15.2 Measuring Individual Di↵erences in MDS

15.2.1 INDSCAL and ALSCAL

The Carroll and Chang (1970) algorithm has been implemented in the SensoMineR package.
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Part IV

The construction of tests and the analysis of
data




