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Appendix: A Review of Matrices

Much of psychometrics in particular, and psychological data analysis in general consists of operations on vectors
and matrices. This appendix offers a quick review of matrix operations with a particular emphasis upon how to do
matrix operations in R.

D.1 Vectors

A vector is a one dimensional array of n numbers. Basic operations on a vector are addition and subtraction.
Multiplication is somewhat more complicated, for the order in which two vectors are multiplied changes the result.
That is AB != BA.

Consider V1 = the first 10 integers, and V2 = the next 10 integers:

> V1 <- as.vector(seq(1, 10))

[1] 1 2 3 4 5 6 7 8 9 10

> V2 <- as.vector(seq(11, 20))

[1] 11 12 13 14 15 16 17 18 19 20

We can add a constant to each element in a vector

> V4 <- V1 + 20

[1] 21 22 23 24 25 26 27 28 29 30

or we can add each element of the first vector to the corresponding element of the second vector

> V3 <- V1 + V2

[1] 12 14 16 18 20 22 24 26 28 30

Strangely enough, a vector in R is dimensionless, but it has a length. If we want to multiply two vectors, we
first need to think of the vector either as row or as a column. A column vector can be made into a row vector
(and vice versa) by the transpose operation. While a vector has no dimensions, the transpose of a vector is two
dimensional! It is a matrix with with 1 row and n columns. (Although the dim command will return no dimensions,
in terms of multiplication, a vector is a matrix of n rows and 1 column.)

Consider the following:

> dim(V1)
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NULL

> length(V1)

[1] 10

> dim(t(V1))

[1] 1 10

> dim(t(t(V1)))

[1] 10 1

> TV <- t(V1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10

> t(TV)

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10

D.1.1 Vector multiplication

Just as we can add a number to every element in a vector, so can we multiply a number (a“scaler”) by every element
in a vector.

> V2 <- 4 * V1

[1] 4 8 12 16 20 24 28 32 36 40

There are three types of multiplication of vectors in R. Simple multiplication (each term in one vector is multiplied
by its corresponding term in the other vector), as well as the inner and outer products of two vectors.

Simple multiplication requires that each vector be of the same length. Using the V1 and V2 vectors from before,
we can find the 10 products of their elements:

> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 4 8 12 16 20 24 28 32 36 40

> V1 * V2

[1] 4 16 36 64 100 144 196 256 324 400
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The “outer product” of a n * 1 element vector with a 1 * m element vector will result in a n * m element matrix.
(The dimension of the resulting product is the outer dimensions of the two vectors in the multiplication). The
vector multiply operator is %*%. In the following equation, the subscripts refer to the dimensions of the variable.

nX1 ∗1 Ym =n (XY )m (D.1)

> V1 <- seq(1, 10)
> V2 <- seq(1, 4)
> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 1 2 3 4

> outer.prod <- V1 %*% t(V2)
> outer.prod

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16
[5,] 5 10 15 20
[6,] 6 12 18 24
[7,] 7 14 21 28
[8,] 8 16 24 32
[9,] 9 18 27 36
[10,] 10 20 30 40

The outer product of the first ten integers is, of course, the multiplication table known to all elementary school
students:

> outer.prod <- V1 %*% t(V1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10
[2,] 2 4 6 8 10 12 14 16 18 20
[3,] 3 6 9 12 15 18 21 24 27 30
[4,] 4 8 12 16 20 24 28 32 36 40
[5,] 5 10 15 20 25 30 35 40 45 50
[6,] 6 12 18 24 30 36 42 48 54 60
[7,] 7 14 21 28 35 42 49 56 63 70
[8,] 8 16 24 32 40 48 56 64 72 80
[9,] 9 18 27 36 45 54 63 72 81 90
[10,] 10 20 30 40 50 60 70 80 90 100

The “inner product” is perhaps a more useful operation, for it not only multiplies each corresponding element
of two vectors, but also sums the resulting product:

inner.product =
N∑

i=1

V 1i ∗ V 2i (D.2)
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> V1 <- seq(1, 10)
> V2 <- seq(11, 20)
> V1

[1] 1 2 3 4 5 6 7 8 9 10

> V2

[1] 11 12 13 14 15 16 17 18 19 20

> in.prod <- t(V1) %*% V2
> in.prod

[,1]
[1,] 935

Note that the inner product of two vectors is of length =1 but is a matrix with 1 row and 1 column. (This is the
dimension of the inner dimensions (1) of the two vectors.)

D.1.2 Simple statistics using vectors

Although there are built in functions in R to do most of our statistics, it is useful to understand how these operations
can be done using vector and matrix operations. Here we consider how to find the mean of a vector, remove it from
all the numbers, and then find the average squared deviation from the mean (the variance).

Consider the mean of all numbers in a vector. To find this we just need to add up the numbers (the inner
product of the vector with a vector of 1’s) and then divide by n (multiply by the scaler 1/n). First we create a
vector of 1s by using the repeat operation. We then show three different equations for the mean.V, all of which are
equivalent.

> V <- V1

[1] 1 2 3 4 5 6 7 8 9 10

> one <- rep(1, length(V))

[1] 1 1 1 1 1 1 1 1 1 1

> sum.V <- t(one) %*% V

[,1]
[1,] 55

> mean.V <- sum.V * (1/length(V))

[,1]
[1,] 5.5

> mean.V <- t(one) %*% V * (1/length(V))

[,1]
[1,] 5.5

> mean.V <- t(one) %*% V/length(V)

[,1]
[1,] 5.5
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The variance is the average squared deviation from the mean. To find the variance, we first find deviation scores
by subtracting the mean from each value of the vector. Then, to find the sum of the squared deviations take the
inner product of the result with itself. This Sum of Squares becomes a variance if we divide by the degrees of
freedom (n-1) to get an unbiased estimate of the population variance). First we find the mean centered vector:

> V - mean.V

[1] -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5

And then we find the variance as the mean square by taking the inner product:

> Var.V <- t(V - mean.V) %*% (V - mean.V) * (1/(length(V) - 1))

[,1]
[1,] 9.166667

Compare these results with the more typical scale, mean and var operations:

> scale(V, scale = FALSE)

[,1]
[1,] -4.5
[2,] -3.5
[3,] -2.5
[4,] -1.5
[5,] -0.5
[6,] 0.5
[7,] 1.5
[8,] 2.5
[9,] 3.5
[10,] 4.5
attr(,"scaled:center")
[1] 5.5

> mean(V)

[1] 5.5

> var(V)

[1] 9.166667

D.1.3 Combining vectors

We can form more complex data structures than vectors by combining the vectors, either by columns (cbind) or
by rows (rbind). The resulting data structure is a matrix.

> Xc <- cbind(V1, V2, V3)

V1 V2 V3
[1,] 1 11 12
[2,] 2 12 14
[3,] 3 13 16
[4,] 4 14 18
[5,] 5 15 20
[6,] 6 16 22
[7,] 7 17 24
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[8,] 8 18 26
[9,] 9 19 28
[10,] 10 20 30

> Xr <- rbind(V1, V2, V3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
V1 1 2 3 4 5 6 7 8 9 10
V2 11 12 13 14 15 16 17 18 19 20
V3 12 14 16 18 20 22 24 26 28 30

> dim(Xc)

[1] 10 3

> dim(Xr)

[1] 3 10

D.2 Matrices

A matrix is just a two dimensional (rectangular) organization of numbers. It is a vector of vectors. For data analysis,
the typical data matrix is organized with columns representing different variables and rows containing the responses
of a particular subject. Thus, a 10 x 4 data matrix (10 rows, 4 columns) would contain the data of 10 subjects
on 4 different variables. Note that the matrix operation has taken the numbers 1 through 40 and organized them
column wise. That is, a matrix is just a way (and a very convenient one at that) of organizing a vector.

R provides numeric row and column names (e.g., [1,] is the first row, [,4] is the fourth column, but it is useful
to label the rows and columns to make the rows (subjects) and columns (variables) distinction more obvious.

> Xij <- matrix(seq(1:40), ncol = 4)
> rownames(Xij) <- paste("S", seq(1, dim(Xij)[1]), sep = "")
> colnames(Xij) <- paste("V", seq(1, dim(Xij)[2]), sep = "")
> Xij

V1 V2 V3 V4
S1 1 11 21 31
S2 2 12 22 32
S3 3 13 23 33
S4 4 14 24 34
S5 5 15 25 35
S6 6 16 26 36
S7 7 17 27 37
S8 8 18 28 38
S9 9 19 29 39
S10 10 20 30 40

Just as the transpose of a vector makes a column vector into a row vector, so does the transpose of a matrix
swap the rows for the columns. Note that now the subjects are columns and the variables are the rows.

> t(Xij)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
V1 1 2 3 4 5 6 7 8 9 10
V2 11 12 13 14 15 16 17 18 19 20
V3 21 22 23 24 25 26 27 28 29 30
V4 31 32 33 34 35 36 37 38 39 40
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D.2.1 Matrix addition

The previous matrix is rather uninteresting, in that all the columns are simple products of the first column. A more
typical matrix might be formed by sampling from the digits 0-9. For the purpose of this demonstration, we will set
the random number seed to a memorable number so that it will yield the same answer each time.

> set.seed(42)
> Xij <- matrix(sample(seq(0, 9), 40, replace = TRUE), ncol = 4)
> rownames(Xij) <- paste("S", seq(1, dim(Xij)[1]), sep = "")
> colnames(Xij) <- paste("V", seq(1, dim(Xij)[2]), sep = "")
> print(Xij)

V1 V2 V3 V4
S1 9 4 9 7
S2 9 7 1 8
S3 2 9 9 3
S4 8 2 9 6
S5 6 4 0 0
S6 5 9 5 8
S7 7 9 3 0
S8 1 1 9 2
S9 6 4 4 9
S10 7 5 8 6

Just as we could with vectors, we can add, subtract, muliply or divide the matrix by a scaler (a number with
out a dimension).

> Xij + 4

V1 V2 V3 V4
S1 13 8 13 11
S2 13 11 5 12
S3 6 13 13 7
S4 12 6 13 10
S5 10 8 4 4
S6 9 13 9 12
S7 11 13 7 4
S8 5 5 13 6
S9 10 8 8 13
S10 11 9 12 10

> round((Xij + 4)/3, 2)

V1 V2 V3 V4
S1 4.33 2.67 4.33 3.67
S2 4.33 3.67 1.67 4.00
S3 2.00 4.33 4.33 2.33
S4 4.00 2.00 4.33 3.33
S5 3.33 2.67 1.33 1.33
S6 3.00 4.33 3.00 4.00
S7 3.67 4.33 2.33 1.33
S8 1.67 1.67 4.33 2.00
S9 3.33 2.67 2.67 4.33
S10 3.67 3.00 4.00 3.33
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We can also multiply each row (or column, depending upon order) by a vector.

> V

[1] 1 2 3 4 5 6 7 8 9 10

> Xij * V

V1 V2 V3 V4
S1 9 4 9 7
S2 18 14 2 16
S3 6 27 27 9
S4 32 8 36 24
S5 30 20 0 0
S6 30 54 30 48
S7 49 63 21 0
S8 8 8 72 16
S9 54 36 36 81
S10 70 50 80 60

D.2.2 Matrix multiplication

Matrix multiplication is a combination of multiplication and addition. For a matrix mXn of dimensions m*n and
nYp of dimension n * p, the product, mXYp is a m * p matrix where each element is the sum of the products of
the rows of the first and the columns of the second. That is, the matrix mXYp has elements xyij where each

xyij =
n∑

k=1

xik ∗ yjk (D.3)

Consider our matrix Xij with 10 rows of 4 columns. Call an individual element in this matrix xij . We can find the
sums for each column of the matrix by multiplying the matrix by our “one” vector with Xij. That is, we can find∑N

i=1 Xij for the j columns, and then divide by the number (n) of rows. (Note that we can get the same result by
finding colMeans(Xij).

We can use the dim function to find out how many cases (the number of rows) or the number of variables
(number of columns). dim has two elements: dim(Xij)[1] = number of rows, dim(Xij)[2] is the number of columns.

> dim(Xij)

[1] 10 4

> n <- dim(Xij)[1]

[1] 10

> one <- rep(1, n)

[1] 1 1 1 1 1 1 1 1 1 1

> X.means <- t(one) %*% Xij/n

V1 V2 V3 V4
[1,] 6 5.4 5.7 4.9

A built in function to find the means of the columns is colMeans. (See rowMeans for the equivalent for rows.)

> colMeans(Xij)
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V1 V2 V3 V4
6.0 5.4 5.7 4.9

Variances and covariances are measures of dispersion around the mean. We find these by first subtracting the
means from all the observations. This means centered matrix is the original matrix minus a matrix of means. To
make them have the same dimensions we premultiply the means vector by a vector of ones and subtract this from
the data matrix.

> X.diff <- Xij - one %*% X.means

V1 V2 V3 V4
S1 3 -1.4 3.3 2.1
S2 3 1.6 -4.7 3.1
S3 -4 3.6 3.3 -1.9
S4 2 -3.4 3.3 1.1
S5 0 -1.4 -5.7 -4.9
S6 -1 3.6 -0.7 3.1
S7 1 3.6 -2.7 -4.9
S8 -5 -4.4 3.3 -2.9
S9 0 -1.4 -1.7 4.1
S10 1 -0.4 2.3 1.1

To find the variance/covariance matrix, we can first find the the inner product of the means centered matrix
X.diff = Xij - X.means t(Xij-X.means) with itself and divide by n-1. We can compare this result to the result of
the cov function (the normal way to find covariances).

> X.cov <- t(X.diff) %*% X.diff/(n - 1)
> round(X.cov, 2)

V1 V2 V3 V4
V1 7.33 0.11 -3.00 3.67
V2 0.11 8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68 1.63
V4 3.67 -0.18 1.63 11.43

> round(cov(Xij), 2)

V1 V2 V3 V4
V1 7.33 0.11 -3.00 3.67
V2 0.11 8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68 1.63
V4 3.67 -0.18 1.63 11.43

D.2.3 Finding and using the diagonal

Some operations need to find just the diagonal. For instance, the diagonal of the matrix X.cov (found above)
contains the variances of the items. To extract just the diagonal, or create a matrix with a particular diagonal
we use the diag command. We can convert the covariance matrix X.cov to a correlation matrix X.cor by pre and
post multiplying the covariance matrix with a diagonal matrix containing the reciprocal of the standard deviations
(square roots of the variances). Remember that the correlation, rxy, is merely the covariancexy/

√
VxVy. Compare

this to the standard command for finding correlations cor.

> round(X.cov, 2)
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V1 V2 V3 V4
V1 7.33 0.11 -3.00 3.67
V2 0.11 8.71 -3.20 -0.18
V3 -3.00 -3.20 12.68 1.63
V4 3.67 -0.18 1.63 11.43

> round(diag(X.cov), 2)

V1 V2 V3 V4
7.33 8.71 12.68 11.43

> sdi <- diag(1/sqrt(diag(X.cov)))
> rownames(sdi) <- colnames(sdi) <- colnames(X.cov)
> round(sdi, 2)

V1 V2 V3 V4
V1 0.37 0.00 0.00 0.0
V2 0.00 0.34 0.00 0.0
V3 0.00 0.00 0.28 0.0
V4 0.00 0.00 0.00 0.3

> X.cor <- sdi %*% X.cov %*% sdi
> rownames(X.cor) <- colnames(X.cor) <- colnames(X.cov)
> round(X.cor, 2)

V1 V2 V3 V4
V1 1.00 0.01 -0.31 0.40
V2 0.01 1.00 -0.30 -0.02
V3 -0.31 -0.30 1.00 0.14
V4 0.40 -0.02 0.14 1.00

> round(cor(Xij), 2)

V1 V2 V3 V4
V1 1.00 0.01 -0.31 0.40
V2 0.01 1.00 -0.30 -0.02
V3 -0.31 -0.30 1.00 0.14
V4 0.40 -0.02 0.14 1.00

D.2.4 The Identity Matrix

The identity matrix is merely that matrix, which when multiplied by another matrix, yields the other matrix. (The
equivalent of 1 in normal arithmetic.) It is a diagonal matrix with 1 on the diagonal
I <- diag(1,nrow=dim(X.cov)[1],ncol=dim(X.cov)[2])

D.2.5 Matrix Inversion

The inverse of a square matrix is the matrix equivalent of dividing by that matrix. That is, either pre or post
multiplying a matrix by its inverse yields the identity matrix. The inverse is particularly important in multiple
regression, for it allows is to solve for the beta weights.

Given the equation
Y = bX + c (D.4)

we can solve for b by multiplying both sides of the equation by
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X−1orY X−1 = bXX−1 = b (D.5)

We can find the inverse by using the solve function. To show that XX−1 = X−1X = I, we do the multiplication.

> X.inv <- solve(X.cov)

V1 V2 V3 V4
V1 0.19638636 0.01817060 0.06024476 -0.07130491
V2 0.01817060 0.12828756 0.03787166 -0.00924279
V3 0.06024476 0.03787166 0.10707738 -0.03402838
V4 -0.07130491 -0.00924279 -0.03402838 0.11504850

> round(X.cov %*% X.inv, 2)

V1 V2 V3 V4
V1 1 0 0 0
V2 0 1 0 0
V3 0 0 1 0
V4 0 0 0 1

> round(X.inv %*% X.cov, 2)

V1 V2 V3 V4
V1 1 0 0 0
V2 0 1 0 0
V3 0 0 1 0
V4 0 0 0 1

There are multiple ways of finding the matrix inverse, solve is just one of them.

D.3 Matrix operations for data manipulation

Using the basic matrix operations of addition and multiplication allow for easy manipulation of data. In particular,
finding subsets of data, scoring multiple scales for one set of items, or finding correlations and reliabilities of
composite scales are all operations that are easy to do with matrix operations.

In the next example we consider 5 extraversion items for 200 subjects collected as part of the Synthetic Aperture
Personality Assessment project. The items are taken from the International Personality Item Pool (ipip.ori.org).
The data are stored at the personality-project.org web site and may be retrieved in R. Because the first column of
the data matrix is the subject identification number, we remove this before doing our calculations.

> datafilename = "http://personality-project.org/R/datasets/extraversion.items.txt"
> items = read.table(datafilename, header = TRUE)
> items <- items[, -1]
> dim(items)

[1] 200 5

We first use functions from the psych package to describe these data both numerically and graphically. (The
psych package may be downloaded from the personality-project.org web page as a source file.)

> library(psych)

[1] "psych" "stats" "graphics" "grDevices" "utils" "datasets" "methods" "base"
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> describe(items)

var n mean sd median min max range se
q_262 1 200 3.07 1.49 3 1 6 5 0.11
q_1480 2 200 2.88 1.38 3 0 6 6 0.10
q_819 3 200 4.57 1.23 5 0 6 6 0.09
q_1180 4 200 3.29 1.49 4 0 6 6 0.11
q_1742 5 200 4.38 1.44 5 0 6 6 0.10

> pairs.panels(items)

NULL

q_262
0 2 4 6

−0.26 0.41

0 2 4 6
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We can form two composite scales, one made up of the first 3 items, the other made up of the last 2 items. Note
that the second (q1480) and fourth (q1180) are negatively correlated with the remaining 3 items. This implies that
we should reverse these items before scoring.

To form the composite scales, reverse the items, and find the covariances and then correlations between the
scales may be done by matrix operations on either the items or on the covariances between the items. In either
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case, we want to define a “keys” matrix describing which items to combine on which scale. The correlations are, of
course, merely the covariances divided by the square root of the variances.

D.3.1 Matrix operations on the raw data

> keys <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1), ncol = 2)
> X <- as.matrix(items)
> X.ij <- X %*% keys
> n <- dim(X.ij)[1]
> one <- rep(1, dim(X.ij)[1])
> X.means <- t(one) %*% X.ij/n
> X.cov <- t(X.ij - one %*% X.means) %*% (X.ij - one %*% X.means)/(n - 1)
> round(X.cov, 2)

[,1] [,2]
[1,] 10.45 6.09
[2,] 6.09 6.37

> X.sd <- diag(1/sqrt(diag(X.cov)))
> X.cor <- t(X.sd) %*% X.cov %*% (X.sd)
> round(X.cor, 2)

[,1] [,2]
[1,] 1.00 0.75
[2,] 0.75 1.00

D.3.2 Matrix operations on the correlation matrix

> keys <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1), ncol = 2)
> X.cor <- cor(X)
> round(X.cor, 2)

q_262 q_1480 q_819 q_1180 q_1742
q_262 1.00 -0.26 0.41 -0.51 0.48
q_1480 -0.26 1.00 -0.66 0.52 -0.47
q_819 0.41 -0.66 1.00 -0.41 0.65
q_1180 -0.51 0.52 -0.41 1.00 -0.49
q_1742 0.48 -0.47 0.65 -0.49 1.00

> X.cov <- t(keys) %*% X.cor %*% keys
> X.sd <- diag(1/sqrt(diag(X.cov)))
> X.cor <- t(X.sd) %*% X.cov %*% (X.sd)
> keys

[,1] [,2]
[1,] 1 0
[2,] -1 0
[3,] 1 0
[4,] 0 -1
[5,] 0 1

> round(X.cov, 2)
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[,1] [,2]
[1,] 5.66 3.05
[2,] 3.05 2.97

> round(X.cor, 2)

[,1] [,2]
[1,] 1.00 0.74
[2,] 0.74 1.00

D.3.3 Using matrices to find test reliability

The reliability of a test may be thought of as the correlation of the test with a test just like it. One conventional
estimate of reliability, based upon the concepts from domain sampling theory, is coefficient alpha (alpha). For a test
with just one factor, α is an estimate of the amount of the test variance due to that factor. However, if there are
multiple factors in the test, α neither estimates how much the variance of the test is due to one, general factor, nor
does it estimate the correlation of the test with another test just like it. (See Zinbarg et al., 2005 for a discussion
of alternative estimates of reliabiity.)

Given either a covariance or correlation matrix of items, α may be found by simple matrix operations:
1) V = the correlation or covariance matrix
2) Let Vt = the sum of all the items in the correlation matrix for that scale.
3) Let n = number of items in the scale
3) alpha = (Vt - diag(V) )/Vt * n/(n-1)
To demonstrate the use of matrices to find coefficient α, consider the five items measuring extraversion taken

from the International Personality Item Pool. Two of the items need to be weighted negatively (reverse scored).
Alpha may be found from either the correlation matrix (standardized alpha) or the covariance matrix (raw

alpha). In the case of standardized alpha, the diag(V) is the same as the number of items. Using a key matrix, we
can find the reliability of 3 different scales, the first is made up of the first 3 items, the second of the last 2, and
the third is made up of all the items.

> datafilename <- "http://personality-project.org/R/datasets/extraversion.items.txt"
> items = read.table(datafilename, header = TRUE)
> items <- items[, -1]
> key <- matrix(c(1, -1, 1, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, 1), ncol = 3)
> key

[,1] [,2] [,3]
[1,] 1 0 1
[2,] -1 0 -1
[3,] 1 0 1
[4,] 0 -1 -1
[5,] 0 1 1

> raw.r <- cor(items)
> V <- t(key) %*% raw.r %*% key
> rownames(V) <- colnames(V) <- c("V1-3", "V4-5", "V1-5")
> round(V, 2)

V1-3 V4-5 V1-5
V1-3 5.66 3.05 8.72
V4-5 3.05 2.97 6.03
V1-5 8.72 6.03 14.75
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> n <- diag(t(key) %*% key)
> alpha <- (diag(V) - n)/(diag(V)) * (n/(n - 1))
> round(alpha, 2)

V1-3 V4-5 V1-5
0.71 0.66 0.83

D.4 Multiple correlation

Given a set of n predictors of a criterion variable, what is the optimal weighting of the n predictors? This is, of
course, the problem of multiple correlation or multiple regression. Although we would normally use the linear
model (lm) function to solve this problem, we can also do it from the raw data or from a matrix of covariances
or correlations by using matrix operations and the solve function.

Consider the data set, X, created in section D.2.1. If we want to predict V4 as a function of the first three
variables, we can do so three different ways, using the raw data, using deviation scores of the raw data, or with the
correlation matrix of the data.

For simplicity, lets relable V4 to be Y and V1 ... V3 to be X1 ...X3 and then define X as the first three columns
and Y as the last column:

X1 X2 X3
S1 9 4 9
S2 9 7 1
S3 2 9 9
S4 8 2 9
S5 6 4 0
S6 5 9 5
S7 7 9 3
S8 1 1 9
S9 6 4 4
S10 7 5 8

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
7 8 3 6 0 8 0 2 9 6

D.4.1 Data level analyses

At the data level, we can work with the raw data matrix X, or convert these to deviation scores (X.dev) by
subtracting the means from all elements of X. At the raw data level we have

mŶ1 =m Xnnβ1 +m ε1 (D.6)

and we can solve for nβ1 by pre multiplying by nX ′
m (thus making the matrix on the right side of the equation into

a square matrix so that we can multiply through by an inverse.)

nX ′
mmŶ1 =n X ′

mmXnnβ1 +m ε1 (D.7)

and then solving for beta by pre multiplying both sides of the equation by (XX ′)−1

β = (XX ′)−1X ′Y (D.8)

These beta weights will be the weights with no intercept. Compare this solution to the one using the lm function
with the intercept removed:
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> beta <- solve(t(X) %*% X) %*% (t(X) %*% Y)
> round(beta, 2)

[,1]
X1 0.56
X2 0.03
X3 0.25

> lm(Y ~ -1 + X)

Call:
lm(formula = Y ~ -1 + X)

Coefficients:
XX1 XX2 XX3

0.56002 0.03248 0.24723

If we want to find the intercept as well, we can add a column of 1’s to the X matrix.

> one <- rep(1, dim(X)[1])
> X <- cbind(one, X)
> print(X)

one X1 X2 X3
S1 1 9 4 9
S2 1 9 7 1
S3 1 2 9 9
S4 1 8 2 9
S5 1 6 4 0
S6 1 5 9 5
S7 1 7 9 3
S8 1 1 1 9
S9 1 6 4 4
S10 1 7 5 8

> beta <- solve(t(X) %*% X) %*% (t(X) %*% Y)
> round(beta, 2)

[,1]
one -0.94
X1 0.62
X2 0.08
X3 0.30

> lm(Y ~ X)

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept) Xone XX1 XX2 XX3

-0.93843 NA 0.61978 0.08034 0.29577

We can do the same analysis with deviation scores. Let X.dev be a matrix of deviation scores, then can write
the equation

Ŷ = Xβ + ε (D.9)
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and solve for
β = (X.devX.dev′)−1X.dev′Y (D.10)

. (We don’t need to worry about the sample size here because n cancels out of the equation).
At the structure level, the covariance matrix = XX’/(n-1) and X’Y/(n-1) may be replaced by correlation matrices

by pre and post multiplying by a diagonal matrix of 1/sds) with rxy and we then solve the equation

β = R−1rxy (D.11)

Consider the set of 3 variables with intercorrelations (R)

x1 x2 x3
x1 1.00 0.56 0.48
x2 0.56 1.00 0.42
x3 0.48 0.42 1.00

and correlations of x with y ( rxy)

x1 x2 x3
y 0.4 0.35 0.3

From the correlation matrix, we can use the solve function to find the optimal beta weights.

> R <- matrix(c(1, 0.56, 0.48, 0.56, 1, 0.42, 0.48, 0.42, 1), ncol = 3)
> rxy <- matrix(c(0.4, 0.35, 0.3), ncol = 1)
> colnames(R) <- rownames(R) <- c("x1", "x2", "x3")
> rownames(rxy) <- c("x1", "x2", "x3")
> colnames(rxy) <- "y"
> beta <- solve(R, rxy)
> round(beta, 2)

y
x1 0.26
x2 0.16
x3 0.11


