# Psychology 405: Psychometric Theory Scale Construction 

William Revelle

Department of Psychology
Northwestern University
Evanston, Illinois USA

May, 2017

## Outline

Steps towards scale construction
The Problem
Preliminary steps
Data checking
Score the scales
Keying
Scoring using scoreltems
Determining how many constructs are in a set of items
Factor Analysis
Cluster Analysis
Scoring the alternative solutions
MultiTrait-MultiMethod validity
Multitrait-MultiMethod
Show the items
Factor analysis solution
Cluster analysis solution
Empirical scale construction

## Scale construction: A 10 steps program

1. Personality scales are not created in a theoretical vacuum. Perhaps the most important step in developing a new scale is a consideration of what is the construct of interest. What is it, what are manifestations of it, what is it not, and what should it not relate to.
2. Then, what is the population of interest? Are they young or old, highly literate, or somewhat challenged by literacy. Write items suitable for the population of interest.
3. Give the items to the participants. Make sure that they are engaged in the task.

## Scale construction: A 10 steps program (continued)

4. To analyze the data, it is necessary to enter the data into a machine readable form.

- This is a source of error. Double check for data entry errors.
- Double entry (two different people enter the data and then the two files are automatically compared) is recommended.
- Even better is automatic data entry (but then you need to check and double check the program).
- my.data <- read.file() \#go find the file on your computer
- my.data <- read.file(myfile) \#if you have the file name some
- my.data <- read.clipboard() \#if you have already copied the data to the clipboard

5. Run basic descriptive statistics to do one more check for errors. Graphically check as well.

- describe(my.data)
- pairs.panels(my.data)

6. Form the variance/covariance matrix from the items and examine the dimensionality of the resulting space.

## Scale construction: A 10 steps program (continued)

7. Apply various data reduction techniques (factor analysis, principal components analysis, cluster analysis).

- fa
- irt.fa \# if you have polytomous or dichotomous items
- principal
- iclust

8. Form composite scales of the selected items. Check these scales for various measures of internal consistency.

- make.keys
- scoreItems
- bestScales (For empirical scale construction)

9. Discriminant validity requires that the scales not correlate with other, unrelated traits.
10. Convergent validity requires that the scale do correlate with other, alternative measures of the same trait.

## Basic item development

As a demonstration of scale construction and validation, consider the following problem. N self report items are given to a number of people. This inventory has is composed of subsets of items that measure believed to measure different traits. In addition, each subject is rated by a friend on those same traits. There are several questions we can ask of these data:

1. Do the items form reliable scales?
2. What are the correlations of these scales?
3. Do the scales correlate with the peer ratings?
4. Can we empirically find a better structure of the items?
5. Do these revised scales show greater independence, reliability, and validity?

## Item writing

To show the procedures, 12 students in a personality research course spent several weeks learning about each of four personality dimensions. Each student then wrote five items to assess each of four constructs.

1. Need for Achievement
2. Anxiety
3. Sociability
4. Impulsivity

As a group they examined all of the items and formed the best 80 items into one questionnaire with 20 items believed to measure each of the constructs. An additional four items were the simple stem: "I think I am ... ". They administered this questionnaire to approximately ten friends each whom they also rated on these four constructs. Thus, we have a data set of about 110 participants assessed on 89 items (the 84 self report items and the 4 peer ratings + Gender).

These four sets of items can be seen as samples from four domains.

## Initial data reading

The data, item labels, and scoring keys are saved on a web server. They may be accessed by the read.table(file.name) command. We then use the dim command to find out the dimensions of the data file as well as the names command to find out what the names are. Unfortunately, given that the server is now an https server, it is necessary to read the data using a browser and then copy to the clipboard.

```
prq.data.name <- "http://personality-project.org/revelle/syllabi/371/prq.data"
prq.dictionary <- "http://personality-project.org/revelle/syllabi/371/prq.labels"
prq.data <- read.table(prq.data.name,header=TRUE)
pro <- read.clipboard.tab()
prq.dictionary <- read.clipboard.tab()
dim(prq.data)
names(prq.data)
> dim(prq)
[1] 110 89
names(prq)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [1] & "Q1" & "Q2" & "Q3" & "Q4" & "Q5" & "Q6" & "Q7" & "Q8" & "Q9" & "Q10" & "Q11" & "Q12" & "Q13" & "Q14" & "Q15" & 'Q16" \\
\hline [17] & "Q17" & "Q18" & "Q19" & "Q20" & "Q21" & "Q22" & "Q23" & "Q24" & "Q25" & "Q26" & "Q27" & "Q28" & "Q29" & "Q30" & "Q31" & "Q32" \\
\hline [33] & "Q33" & "Q34" & "Q35" & "Q36" & "Q37" & "Q38" & "Q39" & "Q40" & "Q41" & "Q42" & "Q43" & "Q44" & "Q45" & "Q46" & "Q47" & "Q48" \\
\hline [49] & "Q49" & "Q50" & "Q51" & "Q52" & "Q53" & "Q54" & "Q55" & "Q56" & "Q57" & "Q58" & "Q59" & "Q60" & "Q61" & "Q62" & "Q63" & "Q64" \\
\hline [65] & "Q65" & "Q66" & "Q67" & "Q68" & "Q69" & "Q70" & "Q71" & "Q72" & "Q73" & "Q74" & "Q75" & "Q76" & "Q77" & "Q78" & "Q79" & "Q80" \\
\hline [81] & "Q81" & "Q82" & "Q83" & "Q84" & "N" & "A" & "S" & "I" & "G" & & & & & & & \\
\hline
\end{tabular}
```


## Data checking

Always check the data first. Use the describe function.

```
> describe(prq)
```

|  | vars |  | mean | d | median | trimmed |  |  |  | range | e skew | kurtosis se |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q1 | 1 | 110 | 2.26 | 1.16 | 2.0 | 2.14 | 1.48 | 1 | 6 |  | 50.87 | 0.490 .11 |
| Q2 | 2 | 110 | 3.94 | 1.50 | 4.0 | 4.00 | 1.48 | 1 | 6 |  | $5-0.34$ | -0.97 0.14 |
| Q3 | 3 | 110 | 4.42 | 1.28 | 5.0 | 4.55 | 1.48 | 1 | 6 |  | $5-0.65$ | -0.26 0.12 |
| Q4 | 4 | 110 | 3.85 | 1.24 | 4.0 | 3.85 | 1.48 | 1 | 6 |  | $5-0.04$ | -0.83 0.12 |
| Q5 | 5 | 110 | 4.22 | 1.30 | 4.0 | 4.32 | 1.48 | 1 | 6 |  | $5-0.43$ | -0.27 0.12 |
| Q6 | 6 | 110 | 3.19 | 1.71 | 3.0 | 3.11 | 1.48 | 1 | 6 |  | 50.20 | -1.20 0.16 |
| Q7 | 7 | 110 | 3.62 | 1.31 | 4.0 | 3.58 | 1.48 | 1 | 6 |  | $5 \quad 0.07$ | -0.79 0.13 |
| Q8 | 8 | 110 | 4.49 | 1.27 | 5.0 | 4.61 | 1.48 | 1 | 6 |  | $5-0.73$ | 0.240 .12 |
| Q78 | 78 | 110 | 4.29 | 1.29 | 4.5 | 4.42 | 0.74 | 1 | 6 |  | $5-0.75$ | 0.090 .12 |
| Q79 | 79 | 110 | 3.95 | 1.28 | 4.0 | 3.99 | 1.48 | 1 | 6 |  | 5-0.41 | -0.39 0.12 |
| Q80 | 80 | 110 | 3.01 | 1.44 | 3.0 | 2.93 | 1.48 | 1 | 6 |  | $5 \quad 0.39$ | -0.69 0.14 |
| Q81 | 81 | 110 | 4.90 | 1.10 | 5.0 | 5.05 | 1.48 | 1 | 6 |  | 5-1.03 | 0.980 .10 |
| Q82 | 82 | 110 | 3.25 | 1.53 | 3.0 | 3.23 | 1.48 | 1 | 6 |  | $5-0.02$ | -0.98 0.15 |
| Q83 | 83 | 110 | 4.27 | 1.24 | 4.0 | 4.35 | 1.48 | 1 | 6 |  | $5-0.38$ | -0.39 0.12 |
| Q84 | 84 | 110 | 3.08 | 1.40 | 3.0 | 3.02 | 1.48 | 1 | 6 |  | 50.36 | -0.67 0.13 |
| N | 85 | 110 | 6.15 | 2.09 | 6.0 | 6.23 | 1.48 | 1 | 10 |  | 9-0.29 | -0.12 0.20 |
| A | 86 | 110 | 5.15 | 2.07 | 5.0 | 5.12 | 2.22 | 1 | 10 |  | $9 \quad 0.18$ | -0.64 0.20 |
| S | 87 | 110 | 5.64 | 2.10 | 6.0 | 5.60 | 2.97 | 2 | 10 |  | $8 \quad 0.07$ | -0.93 0.20 |
| I | 88 | 110 | 4.32 | 2.00 | 4.0 | 4.16 | 1.48 | 1 | 9 |  | 80.53 | -0.36 0.19 |
| G | 89 | 110 | 1.58 | 0.50 | 2.0 | 1.60 | 0.00 | 1 | 2 |  | $1-0.33$ | -1.91 0.05 |

## Data checking

In doing this, we discovered (on the first pass through the data) that one of the variables had a range of 46 rather than the 6 that was appropriate. Correcting the data, we can start over again. Even with well meaning, careful data entry, mistakes will happen in data entry. It is recommended that data be entered twice and then compared using software that compares the two files line by line and entry by entry. In all cases, make sure to describe the data and check that the ranges are appropriate for the data.
Thus, the data were edited and the prior steps were done again until there were no incorrectly entered subjects. One error that makes data checking complicated is a blank field in Excel is read improperly. However, if we copy the data file to the clipboard and then use the read.clipboard.tab function, this solves that problem. Note that the describe output shows that some variables do not have as many subjects as others.

## Score the scales

1. Forming scale scores as linear sums (or averages) of the items is easy to do in R.
2. One technique (not recommended) is to do a series of recodings, creating new variables for each scale.
3. A simpler technique, using the scoreItems function from the psych package does this for all scales defined in a matrix of keys (the keys matrix).
4. This is essentially a matrix of $-1,0$, and 1 s where 0 means don't include the item in the scale, and a 1 means to include it. -1 means to reverse key the item.

## Making up the scoring keys

```
> nach <- c(-1, 5, 9, 13, 17, 21, 25, 29, -33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, -77, 81)
> anx <- c(2, 6, -10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, -70, -74, -78, 82)
> soc <- c( 3, 7, 11, -15, -19, 23, -27, 31, 35, 39, -43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83)
> imp <- c(4, -8, 12, -16, 20, -24, -28, 32, 36, 40, 44, 48, 52, 56, 60, 64, -68, -72, -76, 80, 84)
> prq.keys <- make.keys(prq,list(nach=nach,anx=anx,soc=soc,imp=imp,PeerNach=85,
    PeerAnx=86, PeerSoc=87,PeerImp=88,gender=89))
```

By having the scoring key information in this form, we can always reproduce it.
We can also save it using dput
But the keys.list format is easiest to use.

## Saving the prq.keys so that we can use them later if we need to do

 SO.
#### Abstract

dput(prq.keys) $$
\begin{aligned} & \text { dput(prq.keys) } \\ & \text { structure }(c(-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, \\ & 1,0,00,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0, \\ & 1,0,0,0,1,0,0,0,1,00,0,0,1,0,0,0,1,0,0,0,1, \\ & 0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1, \\ & 0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0, \\ & -1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, \\ & 1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1, \\ & 0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1, \\ & 0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0, \\ & 0,1,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0, \\ & 0,1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, \\ & 0,-1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, \\ & 0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, \end{aligned}
$$


## A keys matrix

| > prq.keys |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | nach |  |  |  | PeerNach | PeerAnx | PeerSoc | Peer Imp | gender |
| Q1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| Q5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q7 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q8 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
| Q81 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q82 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q83 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Q84 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| N | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| S | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

## Score the items

We use the scoreItems function.
We first do this just for the items. The item.scores is a list of multiple values:

1. scores - the actual scores for each subject
2. missing - where there any missing values for any subject?
3. alpha - coefficient alpha for each scale
4. av.r - the average $r$ within each scale
5. n.items - how many items in each scale?
6. item.cor - the correlation of each item with each scale
7. cor - the correlation matrix of the scales (based upon the correlations of the items - with SAPA data this will differ from correlating the scales)
8. corrected - the raw correlations of the scales (below the diagonal), the alpha reliabilities (on the diagonal), and the intercorrelations corrected for unreliability (above the diagonal).

## Using scoreItems

```
> prq.scores <- scoreItems(prq.keys,prq)
> prq.scores
```

(Unstandardized) Alpha:
nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender

| alpha | 0.8 | 0.85 | 0.85 | 0.86 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Standard errors of unstandardized Alpha: nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
ASE 0.0330 .0270 .0260 .026 NaN NaN NaN NaN NaN

Average item correlation:
nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
average.r 0.160 .210 .220 .22 NaN NaN NaN NaN NaN

Guttman 6* reliability:
nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
$\begin{array}{lllllllll}\text { Lambda. } 6 & 0.98 & 0.98 & 0.98 & 0.98 & 0.85 & 0.88 & 0.9 & 0.9\end{array} 0.88$

Signal/Noise based upon av.r :
nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
Signal/Noise 4.15 .65 .85 .9 NaN NaN NaN NaN NaN

## Show more of the output

```
> item.scores
```

Scale intercorrelations corrected for attenuation raw correlations below the diagonal, alpha on the diagonal corrected correlations above the diagonal:
nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender

| nach | 0.803 | 0.178 | 0.182 | -0.43 | 0.476 | 0.033 | 0.186 | -0.041 | 0.149 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| anx | 0.146 | 0.847 | -0.231 | -0.25 | 0.105 | 0.382 | -0.192 | -0.246 | 0.456 |
| soc | 0.151 | -0.197 | 0.853 | 0.34 | -0.161 | -0.174 | 0.459 | 0.258 | 0.050 |
| imp | -0.356 | -0.217 | 0.294 | 0.86 | -0.414 | -0.331 | 0.135 | 0.477 | -0.175 |
| PeerNach | 0.427 | 0.096 | -0.149 | -0.38 | 1.000 | 0.259 | 0.315 | -0.016 | -0.096 |
| PeerAnx | 0.029 | 0.351 | -0.161 | -0.31 | 0.259 | 1.000 | -0.135 | -0.161 | 0.028 |
| PeerSoc | 0.167 | -0.176 | 0.424 | 0.12 | 0.315 | -0.135 | 1.000 | 0.542 | -0.024 |
| PeerImp | -0.037 | -0.227 | 0.238 | 0.44 | -0.016 | -0.161 | 0.542 | 1.000 | -0.198 |
| gender | 0.134 | 0.419 | 0.046 | -0.16 | -0.096 | 0.028 | -0.024 | -0.198 | 1.000 |

In order to see the item by scale loadings and frequency counts of the data print with the short option = FALSE

## Display the four self report dimensions

pairs.panels(prq.scores\$scores[,1:4]) \# note that scores is an object in prq.scores


## Show the peer rating structure

 pairs.panels(prq.scores\$scores[,5:8])

## The Multi-Trait- Multi- Method Matrix

1. Correlations within method combine trait and method variance

- What is the structure of NASI within self report
- What is the structure of NASI within peer report

2. Correlations across method show trait variance

- Do the self report dimensions match the peer ratings?
- Note the correlations of gender differ between self and peer report. What could account for this difference?

Show the MMTM matrix graphically - cor.ci(prq.scores\$scores)
PRQ correlations


## Factor Analysis

The items analysed were meant to represent four constructs. Given the previous analysis, they probably do. But what if we did not know how many separate dimensions were in the data? Is it possible to find out? Three alternative procedure address this question.

1. Principal components analysis
2. Factor analysis
3. Cluster analysis

All three of these procedures are attempting to approximate the nvar * nvar correlation matrix R with a matrix of lesser rank, one that is nvar * nf. That is, can we find a Factor (Component or Cluster) such that

$$
\begin{equation*}
R \approx F F^{\prime}+U^{2} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
R \approx C C^{\prime} \tag{2}
\end{equation*}
$$

## Factor analysis of PRQ

1. We need more people than items to make the matrix invertible
2. Can be solved in either case by using minimum residuals (OLS)
3. Can be solved by the fa function using minres option
4. How many factors to extract is a perpetual problem.

- nfactors(prq)
- Use VSS 2 ( complexity 1 ) or 3 (complexity 2 )
- Use MAPS 9
- Empirical BIC 3 factors

5. Theory says 4

## VSS of prq

Very Simple Structure


Empirical BIC


Complexity


Root Mean Residual


Find a 4 factor as well as a 4 component solution - very similar

```
f4<- fa(prq,4)
p4 <- principal(prq,4)
> factor.congruence(f4,p4)
```

|  | RC1 | RC2 | RC4 | RC3 |
| :--- | ---: | ---: | ---: | ---: |
| MR1 | 0.97 | 0.08 | -0.22 | 0.28 |
| MR2 | 0.11 | 0.99 | 0.19 | -0.17 |
| MR3 | -0.35 | 0.21 | 0.98 | -0.07 |
| MR4 | 0.02 | -0.12 | -0.15 | 0.97 |

## Summary of the 4 factor solution

```
> summary(f4)
Factor analysis with Call: fa(r = prq, nfactors = 4)
Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the model is 3566 and the objective function was 65.08
The number of observations was }110\mathrm{ with Chi Square = 4935.07 with prob < 5e-48
The root mean square of the residuals (RMSA) is 0.08
The df corrected root mean square of the residuals is 0.08
Tucker Lewis Index of factoring reliability = 0.54
RMSEA index = 0.095 and the 90 % confidence intervals are 0.055 0.063
BIC = -11826.85
    With factor correlations of
        MR1 MR2 MR3 MR4
MR1 1.00 0.11 -0.24 0.14
MR2 0.11 1.00
MR3 -0.24 0.14 1.00 -0.06
MR4 0.14 -0.15 -0.06 1.00
```


## Also try a cluster analysis

```
> ic <- iclust(prq)
> summary(ic)
ICLUST (Item Cluster Analysis)Call: iclust(r.mat = prq)
ICLUST
Purified Alpha:
    C84 C82 C81 C77 C23
0.93 0.91 0.80 0.73 0.51
    Guttman Lambda6*
    C84 C82 C81 C77 C23
0.99 0.99 0.97 0.96 0.91
Original Beta:
    C84 C82 C81 C77 C23
0.53 0.55 0.55 0.39 0.51
Cluster size:
C84 C82 C81 C77 C23
    36
Purified scale intercorrelations
    reliabilities on diagonal
    correlations corrected for attenuation above diagonal:
            C84 C82 C81 C77 C23
C84 0.925 0.18
C82 0.164 0.91
C81 0.048 0.26 0.8029 -0.0045 -0.33
C77 0.267 0.21 -0.0034 0.7271 0.10
```

Alternatives
Show the items
Empirical

## The cluster solution ICLUST



## Compare the solutions

|  | MR1 | MR2 | MR3 | MR4 | RC1 | RC2 | RC4 | RC3 | C84 | C82 | C81 | C77 | C23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR1 | 1.00 | 0.05 | -0.17 | 0.07 | 0.97 | 0.08 | -0.22 | 0.28 | -0.86 | 0.01 | 0.07 | -0.34 | 0.43 |
| MR2 | 0.05 | 1.00 | 0.11 | -0.07 | 0.11 | 0.99 | 0.19 | -0.17 | 0.01 | 0.87 | 0.32 | 0.20 | 0.39 |
| MR3 | -0.17 | 0.11 | 1.00 | -0.06 | -0.35 | 0.21 | 0.98 | -0.07 | 0.60 | 0.52 | 0.03 | 0.63 | -0.08 |
| MR4 | 0.07 | -0.07 | -0.06 | 1.00 | 0.02 | -0.12 | -0.15 | 0.97 | -0.28 | -0.31 | -0.93 | 0.04 | 0.54 |
| RC1 | 0.97 | 0.11 | -0.35 | 0.02 | 1.00 | 0.12 | -0.36 | 0.22 | -0.91 | 0.00 | 0.12 | -0.49 | 0.40 |
| RC2 | 0.08 | 0.99 | 0.21 | -0.12 | 0.12 | 1.00 | 0.26 | -0.19 | 0.03 | 0.91 | 0.37 | 0.30 | 0.41 |
| RC4 | -0.22 | 0.19 | 0.98 | -0.15 | -0.36 | 0.26 | 1.00 | -0.18 | 0.65 | 0.59 | 0.10 | 0.55 | -0.14 |
| RC3 | 0.28 | -0.17 | -0.07 | 0.97 | 0.22 | -0.19 | -0.18 | 1.00 | -0.44 | -0.36 | -0.90 | 0.00 | 0.58 |
| C84 | -0.86 | 0.01 | 0.60 | -0.28 | -0.91 | 0.03 | 0.65 | -0.44 | 1.00 | 0.27 | 0.14 | 0.52 | -0.48 |
| C82 | 0.01 | 0.87 | 0.52 | -0.31 | 0.00 | 0.91 | 0.59 | -0.36 | 0.27 | 1.00 | 0.47 | 0.38 | 0.19 |
| C81 | 0.07 | 0.32 | 0.03 | -0.93 | 0.12 | 0.37 | 0.10 | -0.90 | 0.14 | 0.47 | 1.00 | 0.04 | -0.31 |
| C77 | -0.34 | 0.20 | 0.63 | 0.04 | -0.49 | 0.30 | 0.55 | 0.00 | 0.52 | 0.38 | 0.04 | 1.00 | 0.00 |
| C23 | 0.43 | 0.39 | -0.08 | 0.54 | 0.40 | 0.41 | -0.14 | 0.58 | -0.48 | 0.19 | -0.31 | 0.00 | 1.00 |

## Combine the factor scores with the empirical scores

> scores.df <- data.frame(f4\$scores,prq.scores\$scores)
> lowerCor (scores.df)
MR1 MR2 MR3 MR4 nach anx soc imp PrNch PrAnx PerSc PrIm

| MR1 | 1.00 |  |
| :--- | :--- | :--- |
| MR2 | 0.11 | 1.00 |

$\begin{array}{llll}\text { MR3 } & -0.24 & 0.14 & 1.00\end{array}$
$\begin{array}{lllll}\text { MR4 } \quad 0.14-0.16-0.06 & 1.00\end{array}$
nach $\quad 0.89 \quad 0.25-0.36-0.06 \quad 1.00$
$\begin{array}{lllllll}\mathrm{anx} & 0.32 & -0.16 & -0.17 & 0.91 & 0.15 & 1.00\end{array}$
$\begin{array}{llllllll}\text { soc } & 0.06 & 0.91 & 0.27 & -0.13 & 0.15 & -0.20 & 1.00\end{array}$
imp $\begin{array}{lllllllll}-0.34 & 0.27 & 0.90 & -0.16 & -0.36 & -0.22 & 0.29 & 1.00\end{array}$
PeerNach $0.49-0.14-0.33-0.06 \quad 0.43 \quad 0.10-0.15-0.381 .00$
$\begin{array}{llllllllll}\text { PeerAnx } & 0.16 & -0.15 & -0.27 & 0.41 & 0.03 & 0.35 & -0.16 & -0.31 & 0.26\end{array} 1.00$
$\begin{array}{lllllllllll}\text { PeerSoc } & 0.19 & 0.41 & 0.17 & -0.25 & 0.17 & -0.18 & 0.42 & 0.12 & 0.32 & -0.13\end{array} 1.00$
$\begin{array}{lllllllllllll}\text { PeerImp } & 0.00 & 0.22 & 0.47 & -0.30 & -0.04 & -0.23 & 0.24 & 0.44 & -0.02 & -0.16 & 0.54 & 1.0\end{array}$
$\begin{array}{lllllllllllll}\text { gender } & 0.21 & 0.09 & -0.19 & 0.46 & 0.13 & 0.42 & 0.05 & -0.16 & -0.10 & 0.03 & -0.02 & -0.2\end{array}$

## Compare original, factors and clusters

```
> fkeys <- factor2cluster(f4)
> ckeys <- cluster2keys(ic)
> all.keys <- cbind(prq.keys,fkeys,ckeys)
> all.scores <- scoreItems(all.keys,prq)
> lowerMat(all.scores$cor)
Coefficients and bootstrapped confidence intervals
    nach anx soc imp PrNch PrAnx PerSc PrImp gendr MR1 MR2 MR3 MR4 C84
nach 1.00
anx 0.15 1.00
soc 0.15 -0.20 1.00
imp -0.36 -0.22 0.29 1.00
PeerNach 0.43 0.10 -0.15 -0.38 1.00
PeerAnx 0.03 0.35 -0.16 -0.31 0.26 1.00
PeerSoc 0.17-0.18 0.42 0.12 0. 0.32 -0.13 1.00
PeerImp -0.04 -0.23 0.24 0.44 -0.02 -0.16 0.54 1.00
gender 0. 0.13 0.42 0.05 -0.16 -0.10 0.03 -0.02 -0.20
MR1 
MR2 0
MR3 -0.40 -0.26 0.37 0.92 -0.33 -0.28 0.22 0.0.54 -0.22 -0.41 0.34 1.00
MR4 0.08 0.97 -0.16 -0.23 0.09 0.0.47 -0.18 -0.26 0.44 0.25 -0.21 -0.25 1.00
C84
C8
    -0.82-0.46
    0.13-0.28
```



```
    -0.30-0.07 0.43 0.26-0.09 0.02 0.14 0.17 -0.03 -0.24 0.21 0.50-0.01 0.26
C23 
C82 1.00
C81 0.25 1.00
C77 0.21 0.00}1.0
C23 0.24 -0.13 0.11 1.00
```


## The correlations between rational keying, peer ratings factors and clusters

## Correlation plot



## Best items sorted by factor loading Factor 1

```
> fa.lookup(f4,prq.dictionary)
```



## Show the items

## Factor 2

| Q83 | 0.06 | 0.83 | 0.00 | 0.11 | 1.05 | 0.69 |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| Q47 | -0.07 | 0.78 | 0.07 | 0.05 | 1.04 | 0.61 |
| Q55 | -0.10 | 0.76 | -0.08 | 0.01 | 1.06 | 0.56 |
| Q35 | -0.02 | 0.73 | -0.15 | 0.02 | 1.09 | 0.52 |
| Q51 | -0.01 | 0.69 | 0.27 | 0.03 | 1.30 | 0.60 |
| Q79 | 0.00 | 0.66 | -0.06 | -0.34 | 1.50 | 0.62 |
| Q31 | -0.17 | 0.65 | -0.14 | -0.25 | 1.55 | 0.54 |
| Q39 | 0.00 | 0.65 | -0.14 | -0.10 | 1.14 | 0.45 |
| Q67 | 0.13 | 0.64 | 0.19 | 0.21 | 1.49 | 0.51 |
| Q3 | 0.00 | 0.62 | -0.21 | -0.05 | 1.23 | 0.40 |
| Q11 | 0.14 | 0.59 | 0.16 | 0.03 | 1.29 | 0.42 |
| Q71 | -0.02 | 0.58 | 0.27 | 0.14 | 1.55 | 0.45 |
| Q75 | -0.16 | 0.43 | 0.17 | 0.04 | 1.63 | 0.26 |
| Q59 | 0.30 | 0.38 | 0.15 | 0.08 | 2.32 | 0.28 |
| S | 0.22 | 0.33 | 0.17 | -0.22 | 3.13 | 0.26 |
| Q60 | 0.15 | 0.30 | 0.14 | 0.21 | 2.81 | 0.17 |
| Q80 | -0.16 | 0.28 | 0.25 | -0.25 | 3.57 | 0.30 |
| Q64 | 0.01 | 0.21 | 0.06 | -0.18 | 2.16 | 0.10 |

I am a very sociable person.
I like to meet new people.
I can easily hold a conversation with a stranger.
I find it easy to make new friends.
I like to be around groups of people. I am relaxed and confident around others.

I am relaxed when meeting new people. Expressing myself to others comes naturally. I often crave interaction with other people.
I say hello to acquaintances on the street.
I am talkative.
I prefer interacting with others to spending time by myself.
I prefer working with others to working alone.
I am often the first person to speak during a conversation.
Sociability
Q60 $0.15 \quad 0.30 \quad 0.14 \quad 0.212 .810 .17$ When shopping I find my spending money on things $I$ never planned to

Q64 $0.01 \quad 0.21 \quad 0.06-0.18 \quad 2.16 \quad 0.10$
I like not knowing what comes next
Do you often switch lanes when you are driving?

## Factor 3

| Q84 | 0.17 | 0.12 | 0.73 | 0.00 | 1.17 | 0.55 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Q72 | 0.19 | 0.19 | -0.64 | -0.07 | 1.40 | 0.51 |
| Q41 | 0.18 | 0.16 | -0.63 | -0.03 | 1.31 | 0.48 |
| Q32 | -0.22 | -0.01 | 0.62 | 0.13 | 1.34 | 0.50 |
| Q4 | 0.16 | 0.37 | 0.62 | -0.06 | 1.79 | 0.58 |
| Q44 | 0.29 | -0.10 | 0.57 | -0.17 | 1.77 | 0.35 |
| Q16 | 0.14 | 0.20 | -0.56 | 0.02 | 1.38 | 0.38 |
| Q20 | 0.10 | 0.34 | 0.52 | -0.04 | 1.82 | 0.44 |
| Q34 | 0.21 | -0.07 | -0.51 | 0.30 | 2.08 | 0.50 |
| Q48 | 0.02 | 0.24 | 0.50 | -0.05 | 1.47 | 0.35 |
| Q24 | 0.27 | 0.24 | -0.50 | 0.02 | 2.05 | 0.43 |
| Q40 | 0.09 | 0.25 | 0.49 | -0.22 | 2.00 | 0.40 |
| Q56 | -0.17 | 0.21 | 0.49 | 0.03 | 1.65 | 0.36 |
| I | 0.13 | 0.10 | 0.47 | -0.27 | 1.89 | 0.32 |
| Q8 | 0.30 | 0.07 | -0.45 | -0.06 | 1.84 | 0.36 |
| Q28 | 0.00 | -0.05 | -0.42 | 0.02 | 1.03 | 0.19 |
| Q63 | -0.05 | 0.38 | 0.41 | 0.06 | 2.07 | 0.36 |
| Q52 | 0.08 | 0.26 | 0.39 | -0.18 | 2.28 | 0.30 |
| Q69 | -0.09 | -0.12 | 0.39 | -0.04 | 1.32 | 0.19 |
| Q12 | -0.31 | -0.17 | 0.39 | -0.10 | 2.51 | 0.35 |
| Q43 | -0.12 | 0.17 | 0.39 | 0.21 | 2.21 | 0.25 |
| Q23 | 0.12 | 0.00 | 0.32 | -0.01 | 1.29 | 0.10 |
| Q1 | -0.26 | 0.01 | 0.31 | 0.20 | 2.71 | 0.22 |
| Q15 | 0.14 | -0.04 | -0.21 | -0.14 | 2.65 | 0.09 |
| Q27 | 0.17 | -0.15 | -0.19 | 0.12 | 3.62 | 0.13 |

I am an impulsive person.
I think before I act
I consider myself to be a perfectionist
I often act without thinking
I like to do things spur of the moment
I want to try sky-diving
I plan out my actions in detail
I like making decisions on the spur of the moment
Others would describe me as uptight or high strung
I find myself doing things I had not planned to do that day
I consider all of my options before making a decision
I like to take risks
Do you go on unplanned trips or excursions
Impulsivity
I like to plan out my day
I analyze my thoughts before saying them out loud?
I enjoy being in a crowded area.
I enjoy surprises?
I frequently cheat to succeed
I rarely plan for the future
I would prefer to have many friends rather than a few close ones.
I like to be the center of attention.
I give up easily
I like quiet time alone.
I need time to recharge after spending time with others.

## Factor 4

| Q2 | 0.08 | 0.13 | -0.06 | 0.70 | 1.11 | 0.52 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Q22 | 0.14 | -0.03 | -0.03 | 0.68 | 1.09 | 0.52 |
| Q30 | 0.03 | 0.10 | -0.15 | 0.63 | 1.18 | 0.42 |
| Q6 | -0.05 | 0.05 | 0.21 | 0.53 | 1.34 | 0.30 |
| Q54 | 0.06 | -0.05 | -0.06 | 0.51 | 1.08 | 0.30 |
| Q70 | 0.31 | 0.27 | 0.08 | -0.50 | 2.37 | 0.44 |
| Q50 | -0.21 | 0.17 | 0.19 | 0.48 | 2.00 | 0.30 |
| G | 0.09 | 0.18 | -0.16 | 0.47 | 1.64 | 0.28 |
| Q26 | 0.38 | -0.09 | 0.15 | 0.44 | 2.30 | 0.38 |
| Q18 | 0.39 | 0.05 | -0.37 | 0.42 | 3.00 | 0.60 |
| Q14 | 0.17 | -0.10 | 0.21 | 0.42 | 1.97 | 0.26 |
| Q78 | 0.19 | 0.14 | 0.02 | -0.42 | 1.63 | 0.23 |
| Q58 | 0.21 | 0.25 | -0.34 | 0.42 | 3.16 | 0.43 |
| Q74 | 0.20 | 0.05 | -0.09 | -0.40 | 1.66 | 0.20 |
| Q77 | 0.34 | -0.12 | -0.09 | 0.38 | 2.32 | 0.35 |
| Q82 | -0.16 | 0.31 | 0.07 | 0.38 | 2.43 | 0.22 |
| A | 0.07 | -0.07 | -0.22 | 0.37 | 1.81 | 0.23 |
| Q10 | -0.31 | 0.19 | 0.17 | -0.35 | 3.08 | 0.36 |
| Q46 | -0.04 | -0.05 | -0.20 | 0.32 | 1.75 | 0.15 |
| Q49 | 0.15 | 0.25 | -0.06 | -0.31 | 2.49 | 0.20 |
| Q38 | 0.22 | -0.06 | -0.02 | 0.27 | 2.03 | 0.15 |
| Q7 | 0.12 | 0.16 | 0.12 | 0.25 | 2.69 | 0.11 |

I have difficulty stopping myself from worrying
I often feel nervous or on edge
Sometimes, I am so worried, I can not focus
I often fidget or bite my nails
I often feel threatened or judged by other people
I am confident in my abilities
I have trouble concentrating on difficult tasks
Gender
I often worry that my life will not turn out as planned
I often fret over details for future plans
I anticipate the worst outcome of a situation
I usually think things will work out
I overthink details
I work well under pressure
Avoiding failure motivates me
I am more emotional than my friends
Anxiety
It is easy for me to relax
I get nervous before speaking in public
Failure is a sign to try again
I often feel restlessness or insomnia
Many of my goals involve other people.

## Show the items for the clusters

fa.lookup(ic,prq.dictonary)

|  | C84 | C82 | C81 | C77 | C23 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Q25 | -0.77 | -0.01 | 0.09 | -0.13 | 0.19 |
| Q61 | -0.75 | -0.06 | -0.04 | -0.14 | 0.24 |
| Q73 | -0.71 | 0.05 | 0.06 | -0.23 | 0.24 |
| Q18 | -0.70 | -0.20 | -0.34 | -0.21 | 0.33 |
| Q17 | -0.66 | 0.07 | 0.10 | -0.02 | 0.18 |
| Q57 | -0.63 | -0.02 | 0.14 | -0.20 | 0.13 |
| Q37 | -0.63 | 0.05 | 0.07 | -0.27 | 0.01 |
| Q76 | -0.61 | 0.00 | 0.22 | -0.03 | 0.13 |
| Q34 | -0.58 | -0.37 | -0.20 | -0.07 | 0.32 |
| Q62 | -0.58 | -0.05 | -0.21 | -0.02 | 0.26 |
| Q33 | -0.55 | -0.22 | -0.28 | -0.03 | 0.22 |
| Q12 | 0.54 | 0.02 | 0.00 | 0.19 | -0.25 |
| Q81 | -0.54 | 0.08 | 0.02 | -0.39 | 0.16 |
| Q72 | -0.54 | -0.11 | 0.06 | -0.20 | 0.07 |
| Q32 | 0.54 | 0.27 | -0.12 | 0.33 | 0.09 |
| Q24 | -0.53 | -0.03 | 0.07 | -0.26 | 0.08 |
| Q8 | -0.53 | -0.09 | 0.10 | -0.18 | 0.29 |
| Q41 | -0.53 | -0.14 | 0.12 | -0.18 | 0.24 |
| N | -0.52 | -0.18 | 0.12 | -0.09 | -0.13 |
| Q58 | -0.51 | -0.05 | -0.28 | -0.36 | 0.25 |
| Q68 | -0.51 | 0.01 | 0.15 | -0.13 | 0.17 |
| Q10 | 0.50 | 0.33 | 0.35 | -0.04 | -0.15 |
| Q42 | -0.50 | -0.18 | -0.28 | -0.09 | 0.08 |
| Q16 | -0.49 | -0.07 | 0.03 | -0.29 | 0.13 |
| Q65 | -0.48 | 0.13 | 0.05 | -0.07 | 0.32 |
| Q77 | -0.48 | -0.26 | -0.22 | -0.02 | 0.20 |
| Q29 | -0.47 | -0.21 | -0.19 | -0.01 | 0.13 |
| Q36 | 0.46 | 0.20 | -0.08 | 0.11 | 0.00 |
| Q56 | 0.46 | 0.37 | 0.01 | 0.21 | -0.06 |
| n- | 0.0 | $n$ | $n$ | $n$ | $n$ |

content sca
I am goal oriented
I set goals for myself
Success motivates me
I often fret over details for future plans
I strive to be the best
I am a motivated person
I push myself to succeed
When I start a task I always finish it
Others would describe me as uptight or high strung
I feel uncomfortable when I do not have control over a situation
I am afraid of failure
I rarely plan for the future
I believe that if something is worth doing, it is worth doing well.
I think before I act
I often act without thinking
I consider all of my options before making a decision
I like to plan out my day
I consider myself to be a perfectionist
Nach
I overthink details
I know what $I$ am doing next week
It is easy for me to relax
I have trouble letting go of things
I plan out my actions in detail
The reward often justifies the effort.
Avoiding failure motivates me
I get upset when I lose or do poorly
I sometimes switch goals with no real reason
Do you go on unplanned trips or excursigñ 64

## Cluster 2

| IQ83 | -0.12 | 0.71 | 0.08 | 0.07 | 0.24 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| Q47 | 0.05 | 0.70 | 0.15 | 0.17 | 0.15 |
| Q51 | 0.16 | 0.70 | 0.13 | 0.30 | 0.25 |
| Q4 | 0.25 | 0.66 | 0.08 | 0.02 | 0.02 |
| Q79 | 0.04 | 0.66 | 0.40 | -0.08 | 0.03 |
| Q55 | 0.02 | 0.65 | 0.10 | 0.00 | 0.13 |
| Q31 | 0.09 | 0.62 | 0.31 | 0.14 | 0.01 |
| Q11 | -0.04 | 0.62 | 0.17 | 0.21 | 0.27 |
| Q35 | -0.08 | 0.59 | 0.09 | -0.03 | 0.03 |
| Q20 | 0.22 | 0.58 | 0.06 | 0.10 | 0.08 |
| Q71 | 0.10 | 0.58 | 0.08 | 0.45 | 0.13 |
| Q40 | 0.24 | 0.58 | 0.15 | 0.23 | -0.06 |
| Q67 | -0.08 | 0.56 | 0.05 | 0.18 | 0.29 |
| Q39 | -0.07 | 0.55 | 0.25 | 0.02 | 0.04 |
| Q84 | 0.28 | 0.53 | -0.04 | 0.16 | 0.16 |
| Q52 | 0.17 | 0.53 | 0.13 | 0.00 | -0.13 |
| Q63 | 0.23 | 0.52 | 0.06 | 0.38 | 0.07 |
| S | -0.07 | 0.50 | 0.20 | 0.14 | 0.05 |
| Q48 | 0.28 | 0.49 | 0.05 | 0.09 | 0.05 |
| Q3 | -0.12 | 0.48 | 0.17 | -0.12 | 0.10 |
| Q80 | 0.36 | 0.47 | 0.19 | 0.01 | -0.13 |
| I | 0.21 | 0.46 | 0.15 | 0.18 | -0.01 |
| Q75 | 0.22 | 0.46 | 0.07 | 0.25 | 0.18 |
| Q59 | -0.23 | 0.44 | 0.07 | 0.35 | 0.19 |
| Q64 | 0.06 | 0.36 | 0.14 | 0.04 | 0.15 |
| Q49 | -0.08 | 0.34 | 0.28 | -0.12 | 0.10 |
| A | -0.28 | -0.34 | -0.27 | 0.02 | -0.03 |
| Q44 | 0.12 | 0.30 | 0.10 | 0.06 | 0.03 |

I am a very sociable person.
I like to meet new people.
I like to be around groups of people.
I like to do things spur of the moment
I am relaxed and confident around others.
I can easily hold a conversation with a stranger.
I am relaxed when meeting new people.
I am talkative.
I find it easy to make new friends.
I like making decisions on the spur of the moment
I prefer interacting with others to spending time by myself.
I like to take risks
I often crave interaction with other people. Expressing myself to others comes naturally.

I am an impulsive person.
I enjoy surprises?
I enjoy being in a crowded area.
Sociability
I find myself doing things I had not planned to do that day
I say hello to acquaintances on the street.
I like not knowing what comes next
Impulsivity
I prefer working with others to working alone.
I am often the first person to speak during a conversation. Do you often switch lanes when you are driving?

Failure is a sign to try again
Anxiety
I want to try sky-diving

## Cluster 3

| Q2 | -0.31 | -0.11 | -0.66 | -0.06 | 0.24 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Q22 | -0.32 | -0.21 | -0.65 | 0.05 | 0.19 |
| Q30 | -0.31 | -0.14 | -0.63 | -0.10 | 0.27 |
| Q70 | -0.10 | 0.39 | 0.62 | 0.03 | -0.16 |
| Q78 | -0.02 | 0.22 | 0.56 | 0.01 | 0.10 |
| Q6 | 0.03 | -0.01 | -0.52 | 0.01 | 0.22 |
| Q21 | -0.30 | 0.26 | 0.51 | 0.00 | 0.00 |
| Q54 | -0.24 | -0.23 | -0.49 | -0.04 | 0.14 |
| Q74 | -0.11 | 0.10 | 0.48 | -0.23 | -0.07 |
| Q14 | -0.13 | -0.07 | -0.47 | -0.07 | -0.09 |
| Q50 | 0.15 | 0.14 | -0.47 | 0.14 | 0.39 |
| Q66 | -0.30 | 0.14 | 0.45 | -0.01 | 0.03 |
| Q46 | -0.14 | -0.20 | -0.41 | -0.17 | 0.26 |
| Q13 | -0.24 | 0.20 | 0.38 | -0.08 | 0.13 |
| Q38 | -0.28 | -0.09 | -0.34 | -0.05 | 0.14 |
| Q82 | 0.09 | 0.16 | -0.29 | 0.03 | 0.07 |

I have difficulty stopping myself from worrying
I often feel nervous or on edge
Sometimes, I am so worried, I can not focus
I am confident in my abilities
I usually think things will work out
I often fidget or bite my nails
I am not afraid of difficult tasks
I often feel threatened or judged by other people
I work well under pressure
I anticipate the worst outcome of a situation
I have trouble concentrating on difficult tasks I feel like I have control over my life I get nervous before speaking in public

I like challenging tasks
I often feel restlessness or insomnia I am more emotional than my friends

## 10 Steps The Problem Preliminaries Scoring How many? Alternatives Show the items Empirical Conclusion

## Cluster 4

| Q15 | -0.17 | -0.08 | 0.00 | -0.72 | -0.06 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Q43 | 0.26 | 0.23 | -0.08 | 0.69 | 0.16 |
| Q19 | -0.21 | 0.04 | 0.04 | -0.68 | -0.07 |
| Q27 | -0.27 | -0.25 | -0.17 | -0.65 | 0.10 |
| Q69 | 0.31 | 0.09 | 0.01 | 0.55 | -0.06 |
| Q23 | 0.06 | 0.15 | 0.06 | 0.53 | 0.00 |
| Q7 | -0.12 | 0.12 | -0.15 | 0.39 | 0.14 |

[^0]Cluster 5

G $\quad-0.28-0.04-0.32-0.03 \quad 0.78$
Q60 -0.10 $0.29-0.030 .13$ 0.78 When shopping I find my spending money on things I never planned to

## Empirical scale construction

1. Identify those items that most correlate with the criteria

- Form item composites based upon those items

2. best.scales will do this

- bs <-
best.scales(prq,c("N","A",'"',"S"),dictionary=prq.dictionary)


## Empirical 1

The items most correlated with the criteria yield r's of
correlation $n$ n.items
N
A
I

The best items, their correlations and content are \$N


## Empirical 2

| \$A |  |  |
| :---: | :---: | :---: |
| A | content | scale |
| Q22 0.35 | I often feel nervous or on edge | A |
| Q40 -0.33 | I like to take risks | I |
| Q34 0.33 | Others would describe me as uptight or high strung | A |
| Q58 0.32 | I overthink details | A |
| Q18 0.31 | I often fret over details for future plans | A |
| Q2 0.31 | I have difficulty stopping myself from worrying | A |
| Q84 -0.31 | I am an impulsive person. | I |
| Q33 0.30 | I am afraid of failure | N |
| Q49 -0.29 | Failure is a sign to try again | N |
| Q62 0.29 | rtable when I do not have control over a situation | A |

## Empirical 3



## Empirical 4

|  | S content scale |  |
| ---: | ---: | ---: |
| Q79 | 0.42 | I am relaxed and confident around others. |
| Q31 | 0.36 | I am relaxed when meeting new people. |
| Q47 | 0.34 | S |
| Q11 | 0.33 | I like to meet new people. | S

## Multiple ways to construct scales

1. Rational/Theoretical

- Learn Theory
- Write good items

2. Homogeneous keying

- Write good items
- Factor/Cluster analyze

3. Empirical Keys

- Write good items
- Select those items that correlate with the criteria


## Reliability of various ways of scoring

```
> mixed.key <- cbind(bs$key,prq.keys)
> mixed <- scoreItems(mixed.key,prq)
> mixed
> mixed
Call: scoreItems(keys = mixed.key, items = prq)
(Unstandardized) Alpha:
    N A S I nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
alpha 0.8 0.77 0.86 0.82 0.8 0.85 0.85 0.86 
Standard errors of unstandardized Alpha:
```



```
Average item correlation:
    N A S I nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
average.r 0.3 0.25 0.42 0.34 0.16 0.21 0.22 0.22 NaN NaN NaN NaN NaN
Guttman 6* reliability:
Signal/Noise based upon av.r :
    N A S I nach anx soc imp PeerNach PeerAnx PeerSoc PeerImp gender
Signal/Noise 3.9 3.4 5.9 4.5 4.1 5.6 5.8 5.9 NaN NaN NaN NaN NaN
```


## Show the MMTM matrix graphically - cor.ci(mixed\$scores)

Empirical, rational and peer ratings


## 10 steps: Reprise

1. Specify your theory of relevant constructs
2. Define the population of interest
3. Give items to engaged subjects
4. Enter the data (carefully)
5. Descriptives to double check data entry and subject engagement
6. Find the variance/covariance matrix
7. Reduce its dimensionality through FA, PC, or clustering
8. Score composites (classical or IRT based)
9. Discriminant validity versus other constructs
10. Convergent validity with similar constructs and different methods

## Methods of scale construction

1. Empirical

- MMPI
- Strong Vocational Interest Blank

2. Rational

- California Psychological Inventory

3. Theoretical

- Measures of Need Achievement (e.g., Jackson PI)

4. Homegeneous keying

- Eysenck Personality Inventory
- NEO
- BFI
- TIPI


## Empirical

1. Ask items that discriminate known groups

- People in general versus specific group
- Choose items that are maximally independent and that have highest validities

2. Example:

- MMPI
- Strong-Campbell
- sex and ethnic differences in personality and music

3. Problem:

- What is the meaning of the scale?
- Need to develop new scale for every new group


## Sex differences at item level

| Item | effect size |
| :--- | :---: |
| Get overwhelmed by emotions. | 0.59 |
| Sympathize with others' feelings. | 0.45 |
| Worry about things. | 0.43 |
| Feel others' emotions. | 0.51 |
| Get stressed out easily. | 0.38 |
| Have a soft heart. | 0.50 |
| Panic easily | 0.41 |
| Inquire about others' well-being. | 0.38 |
| Get upset by unpleasant thoughts that come into my mind. | 0.37 |
| Get upset easily. | -0.33 |
| Am indifferent to the feelings of others. | -0.35 |
| Am not interested in other people's problems. | -0.35 |
| Feel little concern for others. | 0.34 |
| Am not easily bothered by things | -0.32 |
| Love to help others. | 0.30 |
| Am not really interested in others. | 0.29 |
| Think of others first. | 0.33 |
| Take offense easily. | 0.3 |

## Sex differences and music preference

| effect size | Item |
| :--- | :--- |
| 0.9 | Broadway Musicals (e.g. Rent, Cats, Phantom of the Opera) |
| 0.68 | Top 40/Pop Vocal Music (e.g. Kelly Clarkson, Madonna, The Black Eyed Peas) |
| 0.65 | Broadway, Movie and TV Soundtrack Music in General |
| 0.59 | Contemporary Rhythm and Blues (e. g. Whitney Houston, Usher, Alicia Keys) |
| 0.59 | Modern Country Music (e.g. Garth Brooks, Dixie Chicks, Tim McGraw) |
| 0.37 | Country Music in General |
| 0.37 | Movie Soundtracks (e.g. Starwars, Good Will Hunting, Garden State) |
| 0.36 | Top 40 Music/Pop in General |
| 0.32 | Pop Rock (e.g. Maroon 5, Counting Crows, John Mayer) |
| 0.31 | Modern Religious Music (e.g. 4Him, Casting Crowns) |
| 0.3 | Soul Rock (e.g. Stevie Wonder, Earth Wind and Fire) |
| -0.3 | Acid Rock (e.g. Pink Floyd, The Doors, Jefferson Airplane) |
| -0.4 | Heavy Metal (e.g. Metallica, Marilyn Manson, System of a Down) |

## Ethnic differences and music preference

| effect size | Item |
| :--- | :---: |
| 1.26 | Acid Rock (e.g. Pink Floyd, The Doors, Jefferson Airplane) |
| 1 | Alternative (e.g. Pearl Jam, Incubus, Radiohead) |
| 0.97 | Electronic Music in General |
| 0.91 | Rock Music In General |
| 0.87 | Jam Bands (e.g. The Grateful Dead, Phish, String Cheese Incident) |
| 0.87 | Classic Rock (e.g. The Beatles, The Rolling Stones, Led Zeppelin) |
| 0.85 | Country Rock (e.g. The Allman Brothers, Lynyrd Skynyrd) |
| 0.61 | Electronic Dance Music (e.g. DJ Tiesto, Paul Van Dyk, Keoki) |
| 0.59 | Folk Music in General (e.g. Bob Dylan, Iron and Wine, Simon and Garfunkel) |
| 0.57 | Pop Rock (e.g. Maroon 5, Counting Crows, John Mayer) |
| 0.56 | Country Music in General |
| 0.51 | Bluegrass (e.g. Alison Krauss, Lester Flatt, Nickel Creek) |
| -0.56 | Contemporary Rhythm and Blues (e. g. Whitney Houston, Usher, Alicia Keys) |
| -0.6 | Blues in General (e.g. Ray Charles, Stevie Ray Vaughn, B.B. King) |
| -0.63 | Instrumental Hip-Hop (e.g. DJ Hi-Tek, RJD2, Prefuse 73) |
| -0.64 | Gospel Soul (e.g. Aretha Franklin, Solomon Burke) |
| -0.67 | Soul in General (e.g. Otis Redding, Marvin Gaye) |
| -0.84 | Religious Music in General |
| -1.04 | Soul Rock (e.g. Stevie Wonder, Earth Wind and Fire) |
| -1.11 | Rhythm and Blues in General |
| -1.43 | Religious Gospel (e.g. Andre Crouch, Gospel Quartet) |

## Rational Keying

1. Ask items with direct content relevance
2. Example: California Psychological Inventory
3. Problems

- Not all items predict in obvious way
- Need evidence for validity
- Easy to fake


## Theoretical Keying

1. Ask items with theoretical relevance
2. Example: Jackson Personality Research Form
3. Problems:

- Theoretical circularity
- Need evidence for validity


## Homogeneous Keying

1. Select items to represent single domain
2. Exclude items based upon internal consistency
3. Examples:

- 16PF
- EPI/EPQ,
- NEO/NEO-PIR

4. Problems

- Garbage In, Garbage Out
- Need evidence for validity


## Methods of Homogeneous keying

1. Cluster analysis (e.g. iclust)
2. Principal Components analysis (e.g., pca)
3. Factor analysis (e.g., fa)

## The Hase and Goldberg and Goldberg studies

1. Hase and Goldberg: a direct comparison of different techniques

- Differential validity of scale construction
- Factor analytic
- Empirical Group discrimination
- Intuitive theoretical
- Intuitive rational
- Stylistic-psychometric
- Random

2. 200 University Freshman women
3. CPI items and 13 criteria

## Hase and Goldberg: 13 criteria

1. Sorority Membership
2. An experimental measure of conformity
3. Peer ratings of

- Dominance
- Sociability
- Responsibility
- Psychological Mindedness
- Femininity

4. Peer ratings of how well known the person is
5. Average number of dates per month
6. College Grade Point Average
7. College Achievement relative to ability
8. College Major
9. College Droput

## Does it make a difference?

1. Hase and Goldberg (Hase \& Goldberg, 1967) No 2. Goldberg (1972) YES

## Hase and Goldberg; mean values)

Original Hase and Goldberg showed no difference between methods, except that stylistic and random were much worse.

|  | $v a r$ | n mean | sd median | trimmed | mad | min | max | range | se |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Factor | 1 | 13 | 0.25 | 0.18 | 0.27 | 0.25 | 0.13 | -0.05 | 0.57 | 0.62 | 0.05 |
| Theoretical | 2 | 13 | 0.25 | 0.16 | 0.26 | 0.25 | 0.18 | 0.01 | 0.52 | 0.51 | 0.04 |
| Rational | 3 | 13 | 0.26 | 0.16 | 0.32 | 0.27 | 0.09 | -0.08 | 0.49 | 0.57 | 0.04 |
| Empirical | 4 | 13 | 0.26 | 0.11 | 0.30 | 0.26 | 0.06 | 0.04 | 0.44 | 0.40 | 0.03 |
| Stylistic | 5 | 13 | 0.13 | 0.12 | 0.11 | 0.13 | 0.12 | -0.07 | 0.35 | 0.42 | 0.03 |
| Random | 6 | 13 | 0.10 | 0.12 | 0.11 | 0.10 | 0.13 | -0.08 | 0.30 | 0.38 | 0.03 |

## Prediction depends upon criteria: Goldberg: 72

Hase and Goldberg


## What is a cluster?



## Clustering rules

- Distance:
- Nearest neighbor
- Farthest neighbor
- Centroid distance
- Methods
- Hierarchical
- Agglomerative
- Divisive
- non-hierarchical


## Hierarchical Clustering



## More clustering

Original Tree

dist(USArrests)
hclust ( ${ }^{*}$, "centroid")

Re-start from 10 clusters

hclust (*, "centroid")

## Clusters of voting behavior

$$
\text { Dendrogram of diana( } x=\text { votes.repub, metric = "manhattan", stand = TRUE) }
$$



## Clustering Issues

- Cluster Objects/people
- similarities or distances?
- what distance metric
- can objects be reversed? (not usually)
- Cluster items (unusual, but see ICLUST)
- items can be reversed (-happy)
- results are similar to factor analysis
- Stopping rules for cluster
- number of cluster problem


## Measuring similarity

## Profile Similarity



## Similarity and distance

Questions:
Given a set of scores on multiple tests (a subject profile), how should we measure the similarity between different profiles? What does it mean to have a similar profile?

What metric to use?

Minkowski Distances $=\sqrt[r]{\Sigma\left(\mathbf{X}_{\mathbf{i}}-\mathbf{Y}_{\mathbf{i}}\right)^{\mathbf{r}}}$
$r=1$ city block metric ==> all distances equally important (no diagonals)
r=2 Euclidean metric ==> diagonals are shorter than sums
$r>2$ non-Euclidean $\quad==>$ emphasizes biggest differences
$r=\infty$ non-Euclidean $=\Rightarrow$ distance $=$ biggest difference

## Consider different metrics

| A |  |  |  |  |  | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | C |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  | D |  |  |

Euclidean

|  | $A$ | $B$ | $C$ | $D$ |
| :--- | :--- | :--- | :--- | :--- |
| $A$ |  |  |  |  |
| B | 6 |  |  |  |
| $C$ | 3.2 | 5.8 |  |  |
| $D$ | 7.2 | 6.3 | 4.2 |  |


|  | X |
| :---: | :---: |
| A | Y |
| B | 7 |
| C | 7 |
| D | 4 |
| D | 1 |

City block

|  | $A$ | $B$ | $C$ | $D$ |
| :--- | :--- | :--- | :--- | :--- |
| $A$ |  |  |  |  |
| B | 6 |  |  |  |
| $C$ | 4 | 8 |  |  |
| $D$ | 10 | 8 | 6 |  |

Min

|  | $A$ | $B$ | $C$ | $D$ |
| :--- | :--- | :--- | :--- | :--- |
| $A$ |  |  |  |  |
| $B$ | 0 |  |  |  |
| $C$ | 1 | 3 |  |  |
| $D$ | 4 | 2 | 3 |  |

Max

|  | $A$ | $B$ | $C$ | $D$ |
| :--- | :--- | :--- | :--- | :--- |
| $A$ |  |  |  |  |
| B | 6 |  |  |  |
| C | 3 | 5 |  |  |
| $D$ | 6 | 6 | 3 |  |

## A comparison of metrics



## Similarity and correlation

$$
\mathbf{D}=\sqrt{\Sigma\left(\mathbf{X}_{\mathbf{i}}-\mathbf{Y}_{\mathbf{i}}\right)^{2}}
$$

$$
\begin{aligned}
& \text { let } M_{X}=\text { mean } X \quad M_{y}=\text { mean } Y \quad L=M_{X}-M_{y} \\
& \mathbf{x}=\mathbf{X}-\mathbf{M}_{\mathbf{x}} \quad \mathbf{y}=\mathrm{Y}-\mathbf{M y}_{\mathbf{y}} \\
& \mathbf{D}=\sqrt{\Sigma\left(\mathbf{X}_{\mathbf{i}}-\mathbf{Y}_{\mathbf{i}}\right)^{2}}=\sqrt{\Sigma\left\{\left(\mathbf{X}_{\mathbf{i}}-\mathbf{M}_{\mathbf{x}}\right)-\left(\mathbf{Y}_{\mathbf{i}}-\mathbf{M} \mathbf{y}\right)+\mathbf{L}\right\}^{2}} \\
& \mathrm{D}=\sqrt{\Sigma(\mathrm{x}-\mathrm{y}+\mathrm{L})^{2}}=\Rightarrow \mathrm{D}=\sqrt{\operatorname{Var}_{\mathrm{x}}+\operatorname{Var}_{\mathrm{y}} \mathrm{CPO}_{\mathrm{xy}}+\mathrm{L}^{2}}
\end{aligned}
$$

Distance is a function of differences of Level, Scatter, and Pattern Level $==>$ differences of means $\quad L^{2}=\left(\mathbf{M}_{\mathbf{x}}-\mathbf{M}_{\mathbf{y}}\right)^{2}$
Scatter $\Longrightarrow \quad$ Variances $\quad$ Var $_{\mathbf{x}}+$ Vary $_{\mathbf{y}}$ Pattern $==\quad$ Covariance $\quad 2 \operatorname{Cov}_{x y}$

If variables are standardized (means set to zero and variances to 1) then distance is a function of the correlation between the two profiles.

$$
D^{2}=2\left(1-r_{x y}\right)
$$

## Similarity

## Profile Similarity



## City blocks vs. Euclid

| MATRIX | OF | CITY BLOCK | DISTANCES |  |
| :---: | :---: | :---: | :---: | :---: |
| X | 0.000 | Y | Z | W |
| Y | 3.778 | 0.000 |  |  |
| Z | 5.000 | 5.000 | 0.000 |  |
| W | 5.000 | 5.000 | 1.000 |  |

(W and $Z$ are most similar, followed by $X$ and $Y$ ) MATRIX OF NORMALIZED EUCLIDEAN DISTANCES

|  | $X$ | $Y$ | $Z$ |
| :--- | :--- | :--- | :--- |
| $X$ | 0.000 |  |  |
| Y | 4.028 | 0.000 |  |
| Z | 5.000 | 6.420 | 0.000 |
| W | 5.115 | 5.855 | 1.080 |

0.000
(W and $Z$ are most similar, followed by $X$ and $Y$ )

## Covariance and Correlation

| COVARIANCE MATRIX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | W |
| X | 5.250 |  |  |  |
| Y -3. | -3.875 | 5.250 |  |  |
| Z | 5.250 | -3.875 | 5.250 |  |
| W | 2.625 | -1.938 | 2.625 | 1.313 |
| (X and W | are most | imilar, | negati | lated |


| PEARSON | CORRELATION X | MATRIX <br> Y | Z | W |
| :---: | :---: | :---: | :---: | :---: |
| X | 1.000 |  |  |  |
| Y | -0.738 | 1.000 |  |  |
| Z | 1.000 | -0.738 | 1.000 |  |
| W | 1.000 | -0.738 | 1.000 | 1.000 |

## Similarity of Profiles: Level,

 scatter, pattern Profile Similarity

## Sources of Data

## Self Report

Direct subjective
empirical scales: MMPI/Strong-Campbell
factorial scales: EPI/16PF/NEOPI-R
rational scales: PRF
Indirect/projective (access to subconscious?)
TAT
Rorschach
Indirect/objective
Cattell objective test battery
Implicit Attitudes Test (RT measures)
Emotional "Stroop"
Indirect/other
a) Kelly Construct Repetory Grid
a) Carroll INDSCAL

## George Kelly and the theory of Personal Constructs

-Man as scientist:
-"each man contemplates in his own personal way the stream of events upon which he finds himself so swiftly borne"
-"Man looks at his world through transparent patterns or templates which he creates and then attempts to fit over the realities of which the world is composed. The fit is not always very good. Yet without such patterns the world appears to be such an undifferentiated homogeneity that man is unable to make any sense out of it. Even a poor fit is more helpful to him than nothing at all.

## George Kelly and the theory of Personal Constructs

-Fundamental postulate:
-"A person's processes are psychological channelized by the ways in which he anticipates events."
-Measurement:
-The role construct repertory test (REP test).
-Analysis:
-What are the fundamental constructs with which one views the world? This can be the entire set of constructs elicited by the REP test, or some clustering or grouping of these constructs.

## Kelly Rep Test

| self | O |  | O |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| lover | O |  |  |  |  |  |  |
| mother |  | O |  |  |  |  |  |
| father |  |  |  | O |  |  |  |
| sib | O |  |  |  |  |  |  |
| teacher |  |  | O |  |  |  |  |
| Best friend |  | O |  | O |  |  |  |
| Boss |  |  | O |  |  |  |  |
| coworker |  | O |  | O |  |  |  |
| construct |  |  |  |  |  |  |  |

## REP test: complications

-Completely idiosyncratic. There is no concern with any fundamental dimensions. However, it is possible to apply same group space and still detect individual construct dimensions

- But consider a similar model: individuals as having unique distortions of shared space. The INDSCAL and ALSCAL algorithms are available to solve for joint and individual spaces.


## Multidimensional Scaling

- Application of metric or non-metric scaling
- Metric scaling:
- Find dimensional representation of observed distances (e.g., latitude and longitude)
- Strong assumption of data and metric
- Non-metric scaling
- Scaling to minimize a criterion insensitive to ordinal transformations


## Distances between cities

|  | Athen | Barcelona | Brussels | Calais | Cherburg | Cologne | Copenhage Geneva | Gilbralter | Hamburg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barcelona | 3313 |  |  |  |  |  |  |  |  |
| Brussels | 2963 | 1318 |  |  |  |  |  |  |  |
| Calais | 3175 | 1326 | 204 |  |  |  |  |  |  |
| Cherbourg | 3339 | 1294 | 583 | 460 |  |  |  |  |  |
| Cologne | 2762 | 1498 | 206 | 409 | 785 |  |  |  |  |
| Copenhagen | 3276 | 2218 | 966 | 1136 | 1545 | 760 |  |  |  |
| Geneva | 2610 | 803 | 677 | 747 | 853 | 1662 | 1418 |  |  |
| Gibralta | 4485 | 1172 | 2256 | 2224 | 2047 | 2436 | 31961975 |  |  |
| Hamburg | 2977 | 2018 | 597 | 714 | 1115 | 460 | 4601118 | 2897 |  |
| Hook of Holkan | 3030 | 1490 | 172 | 330 | 731 | 269 | 269895 | 2428 | 550 |

## What is the best representation of these distances in a two dimensional space?

## Scaling of European Cities



## Individual Differences in MDS INDSCAL

- Consider individual differences in MDS
- Each individual applies a unique weighting to the MDS dimensions
- Solve for Group space as well as individual weights to be applied to the group space


## A New Yorker's View

Square root azimuthal projection, with obvious distortion



# THE GERMAN HEALTH CARE SYSTEM 



## INDSCAL

- Consider a set of points $X_{i}$ with a corresponding set of distances in K dimensional space:
$-\mathrm{D}_{\mathrm{ij}}=\left(\sum_{\left.\left(\mathrm{x}_{\mathrm{ik}}-\mathrm{x}_{\mathrm{jk}}\right)^{2}\right)^{5} \quad(\mathrm{k}=1 . . \mathrm{K})}\right.$
- Consider individuals 1 .. n who differ in the relative importance (weight) they place on the dimensions $\mathrm{w}_{\mathrm{k}}$.
- Then, the distances for individual ${ }_{l}$ are
$-\mathrm{D}_{\mathrm{ijl}}=\left(\sum\left\{\mathrm{w}_{\mathrm{lk}} *\left(\mathrm{x}_{\mathrm{ik}}-\mathrm{x}_{\mathrm{jk}}\right)\right\}^{2}\right)^{5} \quad(\mathrm{k}=1 . . \mathrm{K})$


## Carroll IndScal model

## Individual Differences in MDS



## Representation of Countries and attitudes towards Vietnam



## INDSCAL- Wish data of countries



## Weight space - Wish data



POLITICAL ALIGNHENT
Fig. 3. The one-two plane of the subject space for the Wish nation data.
$D_{n} H$ and M stand for "dove," "hawk," and "moderate" (as determined by subjects' self-report) vis -a-vis attitudes on Vietnam War. Forty-five-degree line divides "doves" from "hawks," with
"moderates" on both sides.

## Sources of Data

Structured interviews (e.g., SCID)
Other ratings
Peer ratings
supervisory ratings
subordinate ratings
archival/unobtrusive measures
unobtrusive measures
historical record
GPA
Publications
Citations
Neuropsychological
a) neurometrics
b) "lie detection"

## Sources of Data

Performance tests
OSS stress tests
New faculty job talks
Clinical graduate applicant interviews Internships
Probationary Periods
Web based instrumentation
self report
indirect (IAT)

## The data box

Multiple ways of assessment

The data box: measurement across time, situations, items, and people


## Cattell's data box

## Integrating People,Variables, and Occasions

- Person xVariables
- Variables over People, fixed Occasion (R)
- People over Variables, fixed Occasion (Q)
- Person x Occasions
- Occasions over People, fixed Variable (S)
- People over Occasions, fixed Variable (T)
- Variables x Occasions
- Variables over Occasions, fixed People (O)
- Occasions over Variables, fixed People (P)


## Traditional measures

- Individuals across items
- correlations of items taken over people to identify dimensions of items which are in turn used to describe dimensions of individual differences
- Ability
- Non-cognitive measures of individual differences
- stable: trait
- unstable: state
- INDSCAL type comparisons of differences in structure of items across people
- 3 Mode Factor Analysis


## Other ways of measurement

- Example of measurement of the structure of mood
- between subjects
- within subjects


## Introversion/Extraversion as one dimension of affect/behavior space

- Personality trait description
- Introversion/Extraversion
- Neuroticism Stability
- Affective Space
- Positive Affect
- Negative Affect
- Behavior
- Activation and Approach
- Inhibition and Avoidance


## Personality and Emotions

- Standard model
- Dimensional model of personality
- Particularly Extraversion and Neuroticism
- Dimensional model of emotions
- Positive Affect and Negative Affect
- Dimensional congruence
- Extraversion and Positive Affectivity
- Neuroticism and Negative Affectivity


## Measuring the dimensions of affect

- Motivational state questionnaire (MSQ)
- 70-72 items given as part of multiple studies on personality and cognitive performance
- Items taken from
- Thayer's Activation-Deactivation Adjective Checklist (ADACL)
- Watson and Clark Positive Affect Negative Affect Scale (PANAS)
- Larsen and Diener adjective circumplex
- MSQ given before and after various mood manipulations
- Structural data is from before
- Structural results based upon factor analyses of correlation matrix to best summarize data




## Representative MSQ items (arranged by angular location)

| Item | EA-PA | TA-NA | Angle |
| :--- | ---: | ---: | ---: |
| energetic | $\mathbf{0 . 8}$ | 0.0 | 1 |
| elated | $\mathbf{0 . 7}$ | 0.0 | 2 |
| excited | $\mathbf{0 . 8}$ | 0.1 | 6 |
| anxious | 0.2 | $\mathbf{0 . 6}$ | 70 |
| tense | 0.1 | $\mathbf{0 . 7}$ | 85 |
| distressed | 0.0 | $\mathbf{0 . 8}$ | 93 |
| frustrated | -0.1 | $\mathbf{0 . 8}$ | 98 |
| sad | -0.1 | $\mathbf{0 . 7}$ | 101 |
| irritable | -0.3 | $\mathbf{0 . 6}$ | 114 |
| sleepy | $\mathbf{- 0 . 5}$ | 0.1 | 164 |
| tired | $\mathbf{- 0 . 5}$ | 0.2 | 164 |
| inactive | $\mathbf{- 0 . 5}$ | 0.0 | 177 |
| calm | 0.2 | $\mathbf{- 0 . 4}$ | 298 |
| relaxed | 0.4 | $\mathbf{- 0 . 5}$ | 307 |
| at ease | 0.4 | $\mathbf{- 0 . 5}$ | 312 |
| attentive | $\mathbf{0 . 7}$ | 0.0 | 357 |
| enthusiastic | $\mathbf{0 . 8}$ | 0.0 | 358 |
| lively | $\mathbf{0 . 9}$ | 0.0 | 360 |

## Personality and Emotions

- Standard model
- Dimensional model of Personality
- Behavioral Activation/Approach <-> Extraversion
- Behavioral Inhibition <-> Neuroticism
- Dimensional model of Emotions
- Positive Affect
- Negative Affect
- Arousal?
- Dimensional congruence
- Extraversion, Approach, and Positive Affectivity
- Neuroticism, Inhibition, and Negative Affectivity


## Personality measurement: snapshot or movie?

- Cross sectional measurement of a person is similar to a photograph-- a snapshot of a person at an instant.
- Appropriate measurement requires the integration of affect, behavior, and cognition across time.


## Personality and affect: within subject measurements

- High frequency sampling: the example of body temperature
- Low frequency sampling: palm pilot sampling of affect


## Within subject diary studies-1

- Very High Frequency (continuous) measurements
- Physiological assays
- Cortisol
- Body temperature <--
- Core body temperature collected for $\approx 2$ weeks
- Data taken by aggregating subjects from multiple studies conducted by Eastman and Baehr on phase shifting by light and exercise


## Within subject diary studies-2

- Measures
- Check lists
- Rating scales
- High frequency sampling <--
- Multiple samples per day
- Low frequency sampling
- Once a day
- Sometimes at different times


## High frequency measures of affect

- Measures taken every 3 hours during waking day for 6-14 days
- Paper and pencil mood ratings
- Short form of the MSQ -- Visual Analog Scale
- Sampled every 3 hours
- Portable computer (Palm) mood ratings <--
- Short form of the MSQ
- Sampled every 3 hours

Goldberg, L. R. (1972). Parameters of personality inventory construction and utilization: A comparison of prediction strategies and tactics. Multivariate Behavioral Research Monographs. No 72-2, 7.
Hase, H. D. \& Goldberg, L. R. (1967). Comparative validity of different strategies of constructing personality inventory scales. Psychological Bulletin, 67(4), 231-248.


[^0]:    I like quiet time alone.
    I would prefer to have many friends rather than a few close ones. I can have fun alone.
    I need time to recharge after spending time with others.
    I frequently cheat to succeed
    I like to be the center of attention.
    Many of my goals involve other people.

