Validity

Face, Concurrent, Predictive, Constru




Psychometric Theory: A conceptual Syllabt
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Reliability- Correction for attenuatior
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'ypes of Validity: What are we measuring

X1 Face
Y1
X2 Concurrent
. Y2
Xg}—— Predictive
Y3
X4 Construct
Y4
X5
Y5
X6
Convergen ~ Y6
X7 Discriminant
vz
X8 -3 Y8

X9




Face (Faith Validity)

¥ Representative content
¥ Seeming relevance




Concurrent Validity

T

X Y

¥ Does a measure correlate with the criterion?
¥ Need to debne the criterion.

¥ Assumes that what correlates now will have
predictive value.




Predictive Validity

¥ Does a measure correlate with the criterion?
¥ Need to debne the criterion.
¥ Requires waiting for time to pass.




Type of correlation

¥Continuous predictor, continuous criterion
PRegression, multiple regression, correlation

PSlope of regression implies how much change ft
unit change in predictor

¥Continuous predictor, dichotomous criterior
Ppoint bi-serial correlation

¥ Dichotomous predictor, dichotomous
outcome
PPhi g




Classics In Selection/Assessm

¥GideonOs selection of soldiers
¥OSS and Army Air Corps selection studies

¥Kelly and Fiske (1950) selection of
psychology students

¥Astronaut selection
¥Peace Corps selection




Gideon’s assessment technique




Percentage passing

r=.45

The power of a good graphic
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Kelly and Fiske (1950)

e Multiple predictors of graduate school
performance: Kelly and Fiske (1950), Kuncel
et al. (2001)

e Multiple predictors

e Ability, Interests, temperament (each with r
~ .2 -.25) have multiple R of 4-.5
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Predictive and Concurrent Valid
and Decision Making

Hit Rate = Valid Positive + False Negative

Selection Ratio = Valid Positive + False Positive

HR
FN | VP
VN | FP
1-HR

1-SR SR

Phi =(VP - HR*SR) /sgrt(HR*(1-HR)*(SR)*(1-SR)




Validity as decision making
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Trading off Valid positives for False Positives
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Decision Theory and Signal Detectic

Probability VP

Probability FP




Signal detection theory

¥ prime and beta
¥3I prime maps to the correlation
¥heta maps to selection ratio
Mype | and type Il error
¥\Ieed to consider utility of types of erro




Predictive Validity and
Decision Theory
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Predictive Validity, Utility
and Decision Theory

State of
world
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Hit rate
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Utility of test = VP *Usp +VN *Uyn + FN *Uen + FP* Up - Cost of test




Decisions for institutions.
advice for individuals

State of
world

FN *Urn

VP *Usp

Hit rate

VN *Uwn

FP* U
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Decision
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Ratio

Utility of test = VP *Usp +VN *Uyn + FN *Uen + FP* Up - Cost of test




Decision making and the bene
of extreme selection ratios

¥Typical traits are approximated by a normal
distribution.

¥Small differences in means or variances can leac
large differences in relative odds at the tails

¥Accuracy of decision/prediction is higher for
extreme values.

¥Do we Infer trait mean differences from observing
differences of extreme values?

¥(code for these graphs at personality-project.org/r/extréme.r




Odds ratios as f(mean difference, extremit
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The effect of group differences or

probability of x

Odds of G2>G1

likelihod of extreme scores

Difference =.5 sigma Difference =1.0 sigma

Cumulative normal density for two groups

Cumulative normal density for two groups
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The effect of differences of variar

probability of x

Odds of G2>G1

on odds ratios at the tails
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Restriction of range

¥Validity of SAT Is partially limited by range
restriction. (see Lubinski and Benbow)

¥Consider giving SATs to 12-13 year olds
PSAT M! 390 or SAV V! 370 (top 1 in 100)
PSAT M! 500 or SAV V! 430 (top 1 in 200)
DSAT M! 700 or SAV M! 430 (top 1 in 10,000)

b
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Predictions within top student gro

Percent Earning a Doctorate and Percent Earning Income Greater Than
STEM Doctorate or Equal To Median Within Sex
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Validity continues even among top 1%
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Validity over 25 years

Tenure Track Faculty

High-Income Participants

[ 1Ranks >50 [JIncome 100-249K
[ Ranks 26-50 [JIncome 250-499K
B Ranks 1-25 Bl Income 2500K
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Construct Validity: Convergent
Discriminant, Incremental
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Multi-Trait, Multi-Method Matrix

TiM1 [ T2M1 [T3M1 | T1IM2 | T2M2 [ T3M2 | T1IM3 | T2M3 | T3M3
TiM1 | TIM1
T2M1 | M1 T2M1
T3M1 | M1 M1 T3M1
TiIM2 | T1 T1M2
T2M2 T2 M2 T2M2
T3M2 T3 M2 M2 T3M2
TiM3 | T1 T1 T1M3
T2M3 T2 T2 M3 T2M3
T3M3 T3 T3 M3 M3 T3M3

Mono-Method, Mono trait = reliability
Hetero Method, Mono Trait sonvergent validity
Hetero Method, Hetero Trait&dscriminant validity
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