Psychology 205: Research Methods in Psychology Review

William Revelle

Department of Psychology
Northwestern University
Evanston, Illinois USA

November, 2016
Outline

Goals
Theory
Validity
 Internal Validity
 External Validity
Measurement
 Correlation
 Reliability
Pitfalls in Research
 Inference
 Ethics
Scholarship
 The IPIP for item selection
 Qualtrics for item presentation
The psychology major at NU
Goals

1. Introduce you to fundamental skills in psychological research.
2. To facilitate your understanding of substantive courses in psychology.
3. To make you a better consumer of scientific information.
4. To improve your ability to write and read scientific papers.
Theory development and testing

1. Theories as organizations of observables

2. Constructs, latent variables and observables
 - Observables
 - Multiple levels of description and abstraction
 - Multiple levels of inference about observables
 - What is observed or not observed is part of theory
 - Latent Variables
 - Latent variables as the common theme of a set of observables
 - Central tendency across time, space, people, situations
 - Constructs as organizations of latent variables and observed variables
Observed Variables

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Y_1</td>
</tr>
<tr>
<td>X_2</td>
<td>Y_2</td>
</tr>
<tr>
<td>X_3</td>
<td>Y_3</td>
</tr>
<tr>
<td>X_4</td>
<td>Y_4</td>
</tr>
<tr>
<td>X_5</td>
<td>Y_5</td>
</tr>
<tr>
<td>X_6</td>
<td>Y_6</td>
</tr>
</tbody>
</table>
Latent Variables

\[\xi \quad \eta \]

\[\xi_1 \quad \eta_1 \]

\[\xi_2 \quad \eta_2 \]
Theory: A regression model of latent variables

\[\xi \quad \eta \]
A measurement model for X – Correlated factors

\[\delta \quad X \quad \xi \]

\[\delta_1 \rightarrow X_1 \]
\[\delta_2 \rightarrow X_2 \]
\[\delta_3 \rightarrow X_3 \]
\[\delta_4 \rightarrow X_4 \]
\[\delta_5 \rightarrow X_5 \]
\[\delta_6 \rightarrow X_6 \]
A measurement model for Y - uncorrelated factors

\[\eta \rightarrow Y \rightarrow \epsilon \]

\[\eta_1 \rightarrow Y_1 \rightarrow \epsilon_1 \]
\[\eta_2 \rightarrow Y_2 \rightarrow \epsilon_2 \]
\[\eta_2 \rightarrow Y_3 \rightarrow \epsilon_3 \]
\[\eta_2 \rightarrow Y_4 \rightarrow \epsilon_4 \]
\[\eta_2 \rightarrow Y_5 \rightarrow \epsilon_5 \]
\[\eta_2 \rightarrow Y_6 \rightarrow \epsilon_6 \]
A complete structural model

\[\delta \quad \chi \quad \xi \quad \eta \quad \gamma \quad \epsilon \]

\[\delta_1 \quad \delta_2 \quad \delta_3 \quad \delta_4 \quad \delta_5 \quad \delta_6 \]

\[\chi_1 \quad \chi_2 \quad \chi_3 \quad \chi_4 \quad \chi_5 \quad \chi_6 \]

\[\xi_1 \quad \xi_2 \]

\[\eta_1 \quad \eta_2 \]

\[\gamma_1 \quad \gamma_2 \]

\[\epsilon_1 \quad \epsilon_2 \quad \epsilon_3 \quad \epsilon_4 \quad \epsilon_5 \quad \epsilon_6 \]
Reasoning in Research

1. Karl Popper and the testability of theory
 - The hallmark of science is the testability of theory
 - Non-testable theories are not science
 - “it must be possible for all empirical scientific system to be refuted by experience”
 - Theories are not shown to be correct, they are shown to be incorrect

2. Science is the process of asking questions that have answers (Rep. Rush Holt)

3. All models (theories) are wrong, but some are useful
Reasoning in research

- **Observation**
- **Prediction**
- **Data**
- **Theory**
Reasoning in research

Observation → Data

Prediction → Theory
Reasoning in research

Observation → Data

Prediction

Induction

Theory
Reasoning in research

Observation → Data

Induction

Prediction ← Deduction

Theory
Reasoning in research

Observation → Data

Prediction → Theory

Induction → Deduction
Reasoning in research

- **Observation** → **Data**
- **Prediction** → **Theory**
- **Induction** → **Correction**
- **Deduction**
Deduction from Theory

1. Data \rightarrow Induction \rightarrow Theory
2. Theory \rightarrow Deduction \rightarrow Prediction/confirmation
3. Logical reasoning: Consider theory

If P, then Q

1. Appropriate Logical deductions
 - P \rightarrow Q Affirm the Antecedent
 - Not Q \rightarrow Not P Deny the Consequent

2. Incorrect logical deductions
 - Not P \rightarrow Not Q deny the antecedent
 - Q \rightarrow P affirming the consequent
J. Platt and Strong Inference (Science, 1964)

4 signs of strong science

1. Devising alternative hypotheses;
2. Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses;
3. Carrying out the experiment so as to get a clean result;
4. Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
Platt and Strong Inference

“...I will mention one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed.

It is our old friend the Baconian “exclusion,” but I call it “The Question.”

Obviously it should be applied as much to one’s own thinking as to others’. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, “But sir, what experiment could disprove your hypothesis?”; or, on hearing a scientific experiment described, “But sir, what hypothesis does your experiment disprove?” Platt, Science, 1964
Reasoning in Research

1. Observe, Induce, Deduce, Predict, Observe
2. Disconfirm, don’t confirm
3. Prune the tree of alternative explanations
Theory and Theory Testing

Types of Designs

1. Experimental
 - Manipulation of at least one variable - Independent Variable (IV)
 - Can be subject variables (SV) if randomly assigned to conditions
 - Effect on (at least one) other variable - Dependent Variable (DV)

2. Correlational
 - Observation of the relationship between two variables
 - Typically with subject variables
 - Inability to determine causality

3. Quasi experimental
 - Field studies Direct relevance
 - Difficult to have appropriate controls
Goals | Theory | Validity | Measurement | Pitfalls | Scholarship | NU

Theory and Theory Testing

Experimental Manipulations

\[\text{Construct}_1 \xrightarrow{\rho_{c_1c_2}} \text{Construct}_2 \]

\[\text{Manipulation}_1 \xrightarrow{r_{m_1o_1}} \text{Observation}_1 \]

\[F_{m_1o_1} \]
Theory and Theory Testing
Correlational Observations: Directional causality?

\[\text{Construct}_1 \leftrightarrow \rho_{c_1c_2} \rightarrow \text{Construct}_2 \]

\[\text{Observation}_1 \leftrightarrow r_{m_1o_1} \rightarrow \text{Observation}_2 \]
Theory and Theory Testing

Correlational Observations–The third variable problem

Construct_3

\[\rho_{c_3c_1} \]

\[\rho_{c_3c_2} \]

Construct_1

Construct_2

Observation_1

Observation_2

\[r_{m_1o_1} \]
The effect of scaling upon the latent variable - observed variable relationship

[Graph showing the effect of scaling upon the latent variable - observed variable relationship]
Two classes of validity

1. Internal Validity: Is systematic error (bias) minimized
 - Have we controlled for confounds?
2. External Validity: Does the study actually study what is reported?
 - Will the results generalize?
Internal Validity

1. Are the results of the experiment/study due to the variables considered
 - What are the constructs
 - Do the measured variables measures those constructs

2. Are confounding variables controlled for?
 - What alternative explanations for the effect of the variables can you come up with
 - How do you control for them
Major Threats to internal validity

1. Within subject experiments
 - Fatigue
 - Practice
 - Boredom
 - Order effect

2. Between subject experiments
 - Subject differences
 - Many ways subjects can differ
Controlling for threats to internal validity within subjects

1. What are the obvious sources of error, and how to control them?
2. Order effects may be controlled by counterbalancing
 - But some order effects need long delays between trials (e.g., drug studies)
Practical problems and threats to internal validity

3. Manipulations affect more than the construct of interest
 - caffeine induces alertness and motor tremor
 - failure induces anxiety, depression, anger
 - practice leads to motivational changes as well as changes in skill

2. Observable variables reflect more than the construct of interest
 - self report of alertness reflects base line differences
 - cognitive performance—ability, motivation, training, practice
 - slowness of responding reflects caution as well as process speed
External Validity: Does the study actually study what is reported?

1. Do the effects generalize across other subjects
 - Are the effects true only for the type of subjects studied?
 - The case of WEIRD subjects?

2. Do the effects generalize across other conditions?
 - Are the effects true only for the specific situation studied?
 - How limited is the domain of generalization?
 - How do you know?
The many forms of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with particular assumptions. If \(r = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}} \), then depending upon the type of data being analyzed, a variety of correlations are found.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>symbol</th>
<th>X</th>
<th>Y</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>(r)</td>
<td>continuous</td>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>(\text{rho (} \rho \text{)})</td>
<td>ranks</td>
<td>ranks</td>
<td></td>
</tr>
<tr>
<td>Point bi-serial</td>
<td>(r_{pb})</td>
<td>dichotomous</td>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>Phi</td>
<td>(\phi)</td>
<td>dichotomous</td>
<td>dichotomous</td>
<td></td>
</tr>
<tr>
<td>Bi-serial</td>
<td>(r_{bis})</td>
<td>dichotomous</td>
<td>continuous</td>
<td>normality</td>
</tr>
<tr>
<td>Tetrachoric</td>
<td>(r_{tet})</td>
<td>dichotomous</td>
<td>dichotomous</td>
<td>bivariate normality</td>
</tr>
<tr>
<td>Polychoric</td>
<td>(r_{pc})</td>
<td>categorical</td>
<td>categorical</td>
<td>bivariate normality</td>
</tr>
</tbody>
</table>
Many other statistics (F, d, b) may be expressed in terms of r

Table: Alternative Estimates of effect size. Using the correlation as a scale free estimate of effect size allows for combining experimental and correlational data in a metric that is directly interpretable as the effect of a standardized unit change in x leads to r change in standardized y.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Estimate</th>
<th>r equivalent</th>
<th>as a function of r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson correlation</td>
<td>$r_{xy} = \frac{C_{xy}}{\sigma_x \sigma_y}$</td>
<td>r_{xy}</td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>$b_{y,x} = \frac{C_{xy}}{\sigma_y^2}$</td>
<td>$r = b_{y,x} \frac{\sigma_y}{\sigma_x}$</td>
<td>$b_{y,x} = r \frac{\sigma_x}{\sigma_y}$</td>
</tr>
<tr>
<td>Cohen’s d</td>
<td>$d = \frac{X_1 - X_2}{\sigma_x}$</td>
<td>$r = \frac{d}{\sqrt{d^2 + 4}}$</td>
<td>$d = \frac{2r}{\sqrt{1 - r^2}}$</td>
</tr>
<tr>
<td>Hedge’s g</td>
<td>$g = \frac{X_1 - X_2}{s_x}$</td>
<td>$r = \frac{g}{\sqrt{g^2 + 4(df/N)}}$</td>
<td>$g = \frac{2r \sqrt{df/N}}{\sqrt{1 - r^2}}$</td>
</tr>
<tr>
<td>t-test</td>
<td>$t = \frac{d \sqrt{df}}{2}$</td>
<td>$r = \sqrt{t^2/(t^2 + df)}$</td>
<td>$t = \sqrt{\frac{r^2 df}{1 - r^2}}$</td>
</tr>
<tr>
<td>F-test</td>
<td>$F = \frac{d^2 df}{4}$</td>
<td>$r = \sqrt{F/(F + df)}$</td>
<td>$F = \frac{r^2 df}{1 - r^2}$</td>
</tr>
<tr>
<td>Chi Square</td>
<td>$\chi^2 = \frac{r^2 n}{1 - r^2}$</td>
<td>$r = \sqrt{\chi^2/n}$</td>
<td>$\chi^2 = r^2 n$</td>
</tr>
<tr>
<td>Odds ratio</td>
<td>$d = \frac{\ln(OR)}{1.81}$</td>
<td>$r = \frac{\ln(OR)}{1.81 \sqrt{(\ln(OR)/1.81)^2 + 4}}$</td>
<td>$\ln(OR) = \frac{3.62r}{\sqrt{1 - r^2}}$</td>
</tr>
<tr>
<td>r_equivalent</td>
<td>r with probability p</td>
<td>$r = r_{equivalent}$</td>
<td></td>
</tr>
</tbody>
</table>
Always plot your data!

Anscombe's 4 Regression data sets
A Scatter Plot Matrix (SPLOM) plot

pairs.panels(my.data[,c(4,7,9)]) # include selected variables

![SPLOM plot](image-url)
Spearman’s parallell test theory
Types of reliability

- Internal consistency
 - α
 - $\omega_{\text{hierarchical}}$
 - ω_{total}
 - β
- Intraclass
- Agreement
- Test-retest, alternate form
- Generalizability

- Internal consistency
 - alpha, score.items
 - omega
 - iclust
- icc
- wkappa, cohen.kappa
- cor
- aov
Reliability and Validity

invalid, high reliability

valid, high reliability

valid, low reliability

invalid, low reliability
Statistical Description and Inference

1. **Sampling theory**: generalizing from a sample to a population
 - Sample estimates have sampling error
 - Need to consider both the sample estimate and the error of the estimate

2. **Comparisons of group differences** reflect real difference and sampling error

3. **Data = Theory + Residual**

4. **Observed Variance = Explained Variance + Residual Variance**
Generalization of results and threats to external validity-I

1. Limitations of generalization for subjects
2. Limits of generalization for conditions - interactions with other variables
3. Limits of generalization for conditions – interactions with other variables
 - problems and benefits of interactions xy relationship depends upon z
 - interactions limit generalization
 - interactions test theoretical limits
Types of relationships and research designs

1. One Factor designs
 - Linear, monotonic, with or without inflection
 - Non-monotonic effects

2. Two factor designs
 - Simple additive effects
 - Additive and ordinal interactions
 - Disordinal interactions
Experimental Designs

1. Within Subjects
 - Controls for subject variability
 - Sensitive to within subject changes such as fatigue, learning, differential transfer

2. Between subjects
 - Controls for within subject changes
 - Sensitive to between subject variability
 - Effects due to subject selection, attrition, randomization

3. Mixed designs
Between Subject designs

1. Subject variables as threat to external validity
2. Confounded effects that can lead to subject variability
3. Randomization as a control
 • but does not guarantee control in any one study, just guarantees that the confounded variables have zero correlation in the long run.
Between Subject designs

Subject variables as threat to external validity

1. Ability
2. Practice
3. Motivation
4. Interest
5. Gender
6. Age
7. Culture
Between Subject designs

Confounded effects that can lead to subject variability

1. Time of day
 - Naturally occurring rhythms of alertness
 - Classroom effects
 - Fatigue

2. Time of week, month, season, year

3. Class schedules
 - Mid terms
 - Papers
 - Weather

4. Volunteer effects

5. Experimenter-Subject interactions
Randomization as a control

Only the *expected* values of groups are equal not the *observed* values

1. In any particular experiment, groups are not equivalent
2. Expected value of the (signed) group difference=0
3. Randomization does not introduce systematic bias
Types of Randomization

1. Subjects matched on variable of interest and then assigned to condition
2. Blocking to control for order effects
 - Ignores stable subject effects
 - Eliminates subject effects associated with time of appearance
3. Complete randomization
 - “failures” of randomization
 - Problems at the end of the experiment
4. Power is maximized with equal cell sizes
5. Randomization will tend not to produce equal size groups
Overview of the problem of inference

1. Theoretical problem: understanding the relationship between latent variables (constructs)
 - relationships among latent variables
 - relationships between latent variables and observed variables

2. Generalization of results and threats to external validity

3. Proper design maximizes internal validity
Types of Measures

1. Direct
 - Self report measures of desires, beliefs, knowledge
 - Peer and other ratings of behavior

2. Indirect
 - Reaction time as measures of:
 - implicit attitudes
 - cognitive availability
 - Psychophysiological measures of processing
 - EEG, MRI, SPEC, SC, HR, BP, etc.

3. Unobtrusive
 - Archival
 - Observational
Steps in correlational inference

1. Estimate the reliability of the variables
 - Magnitude of correlation is influenced by the reliability of the correlation
 - Varieties of reliability
 - (can you measure the same thing twice?)

2. Estimate the construct validity of the measures
 - Are you measuring what you think you are measuring?
 - Convergent, Discriminantant, Incremental validity

3. Consider alternative explanatory variables
Pitfalls in Research

1. Investigator Effects
 - Investigator Paradigm effect
 - Investigator design effects
 - Investigator loose procedures effects
 - Investigator analysis effects
 - Investigator fraud effects

2. Experimenter Effects
 - Experimenter characteristics effects
 - Experimenter procedural effects
 - Experimenter data recording effects
 - Experimenter expectancy effects
 - Experimenter fraud effects

3. Recommendations
 - Tighten theory, design, execution
 - Consider statistical interpretation
Correlation and inverse probabilities

1. Does observing that B almost always happens when we do A imply that doing A almost always leads to B?

2. Examples:

<table>
<thead>
<tr>
<th>Observe</th>
<th>Cause?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Accidents</td>
<td>Drinking alcohol</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>Smoking</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Intercourse</td>
</tr>
</tbody>
</table>

3. Although strong association in one direction, how strong is the association in the other direction?

4. We need to know the base rates as well as the one cell
Correlation and inverse probabilities

1. If one has disease B, then one tests A+ with $p = .99$
2. If one tests A-, then one has disease B with probability .01
3. 99% of people do not have the disease
4. If one tests A+, what the probability that they have disease B?
Science and error

1. Type 1 errors can happen to you (or me)!
 - Experiment wide error rate is a function of the number of tests run: \(1 - (1 - \alpha)^n\)
 - Bonferoni correction sets experiment wide error rate by using a correction for the number of tests: \(\alpha/n\)
 - This is somewhat conservative but better than pretending that type 1 errors don't happen
 - Holm correction slightly more powerful

2. Type 2 errors happen due to lack of power
 - If the study is too small, important effects will probably not be detected

3. Type 3 error: asking the wrong question
As the surprisingness of the study increases, so does type I error rate.

Type I Errors: It is not the power, it is the prior likelihood dashed/dotted lines reflect alpha = .05, .01, .001 with power = 1.

1. Extreme claims require extreme probabilities
2. Given that a finding is “significant”, what is the likelihood that it is a Type I error?
3. Depends upon the prior likelihood (the 'sexiness') of the claim.
Trial by trial t-tests for true effect = 0 can lead to “significant” results.
Always describe your data

R code

describe(my.data)

<table>
<thead>
<tr>
<th>vars</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>trimmed</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>snum</td>
<td>1</td>
<td>198</td>
<td>99.5</td>
<td>57.30</td>
<td>99.5</td>
<td>73.39</td>
<td>198</td>
<td>197</td>
<td>1</td>
<td>-1.22</td>
<td>4.07</td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td>2</td>
<td>198</td>
<td>1.64</td>
<td>0.48</td>
<td>2.0</td>
<td>1.68</td>
<td>0.00</td>
<td>1</td>
<td>2</td>
<td>-0.59</td>
<td>-1.67</td>
<td>0.03</td>
</tr>
<tr>
<td>drug</td>
<td>3</td>
<td>198</td>
<td>0.52</td>
<td>0.50</td>
<td>1.0</td>
<td>0.52</td>
<td>0.00</td>
<td>0</td>
<td>1</td>
<td>-0.06</td>
<td>-2.01</td>
<td>0.04</td>
</tr>
<tr>
<td>time</td>
<td>4</td>
<td>198</td>
<td>15.02</td>
<td>4.46</td>
<td>15.0</td>
<td>5.93</td>
<td>14</td>
<td>22</td>
<td>14</td>
<td>-1.32</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>anxiety</td>
<td>5</td>
<td>198</td>
<td>4.00</td>
<td>1.99</td>
<td>4.0</td>
<td>3.98</td>
<td>1.48</td>
<td>-1</td>
<td>9</td>
<td>-0.30</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>impulsivity</td>
<td>6</td>
<td>198</td>
<td>4.90</td>
<td>2.04</td>
<td>5.0</td>
<td>4.91</td>
<td>1.48</td>
<td>0</td>
<td>10</td>
<td>-0.43</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>arousal</td>
<td>7</td>
<td>198</td>
<td>63.18</td>
<td>42.93</td>
<td>63.5</td>
<td>43.00</td>
<td>-65</td>
<td>174</td>
<td>239</td>
<td>-0.13</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>tension</td>
<td>8</td>
<td>198</td>
<td>23.67</td>
<td>12.95</td>
<td>21.5</td>
<td>12.60</td>
<td>4</td>
<td>61</td>
<td>57</td>
<td>-0.03</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>performance</td>
<td>9</td>
<td>198</td>
<td>63.40</td>
<td>10.96</td>
<td>65.0</td>
<td>10.38</td>
<td>33</td>
<td>86</td>
<td>53</td>
<td>-0.56</td>
<td>0.10</td>
<td>0.78</td>
</tr>
<tr>
<td>cost</td>
<td>10</td>
<td>198</td>
<td>1.00</td>
<td>0.00</td>
<td>1.0</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Ethical Principals

1. Basic summary
 - Do no harm
 - Be honest
 - Be fair (would you be willing to switch roles with subject?)

2. Specific guidelines
 - American Psychological Association
 - National Academy of Sciences
 - Institutional Review Boards
Researching the literature

1. What has gone before - Science as an accumulation of knowledge
2. Original publications in peer reviewed journals
 - Produce new results based upon prior theory
 - Include references to prior work
3. Literature searching with database tools
 - Google Scholar
Measuring Individual Differences

1. The International Personality Item Pool by Lewis Goldberg
2. http://ipip.ori.org

International Personality Item Pool: A Scientific Collaboratory for the Development of Advanced Measures of Personality and Other Individual Differences

Mission Statement This IPIP Website is intended to provide rapid access to measures of individual differences, all in the public domain, to be developed conjointly among scientists worldwide. Later, the site may include raw data available for reanalysis; in addition, it should serve as a forum for the dissemination of psychometric ideas and research findings.
Finding and labeling IPIP scales

At the link labeled "Multiple Constructs," there is a list of IPIP multi-scale inventories, including several based on either the lexically derived Big-Five factor structure or Costa and McCrae’s Five-Factor Model. As is the case with most IPIP scales, these were developed by identifying IPIP items that, when summed into a scale, correlate highly with an existing measure.

The first three inventories, under the heading "The Big-Five Factor Structure," are IPIP measures designed to correlate with five-factor scales whose items are trait adjectives. The first of these is labeled "Big-Five 5 Broad Domains." If one follows its link labeled “Comparison Table,” one will find descriptions of both 50-item and 100-item IPIP inventories designed to correlate highly with the five adjective markers described in the following article: Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. Psychological Assessment, 4, 26-42.
Finding and labeling IPIP scales

Although none of the IPIP scales have official names, one should refer to them by the scales on which they are based. Hence, these scales could be labeled “the 50-item (or 100-item) IPIP representation of the Goldberg (1992) markers for the big-five factor structure” or something like that.

At the “Multiple Constructs” page, the next set of scales are labeled “Seven-Factor Scales” which refer to IPIP scales that were developed to measure the adjective scales constructed by Saucier (1997). His scales, which include the Big 5 plus Attractiveness and Negative Valence, are described in the link labeled “Comparison Table”
Surveys using Qualtrics

1. Qualtrics Research Suite (Qualtrics) is a cloud-based service which provides a comprehensive suite of tools to create web surveys and analyze collected data.

2. Qualtrics has been licensed by the College and unlimited access is available at no cost to all Weinberg faculty, staff, graduate students, and undergraduate students.

3. http://www.weinberg.northwestern.edu/weinbergit/teaching-research/qualtrics/
Using Qualtrics

1. What types of questions can I ask?
Qualified supports over 100 different question types, including:
Multiple choice Matrix table heat map Slider Text entry

2. Are there tools to help create a survey?
Qualified provides a library of surveys and answers that you can modify and add to your own survey library.

3. Can my library contain anything else?
Yes, your library can contain messages and media.

4. Does Qualified lock my survey into a template with rigid formatting requirements?
No. Qualified allows you to easily change the layout, position, and answer choices. You also have freedom to modify your text in a word processor-like interface. Additionally, you can create your own survey templates with a CSS editor.

5. Can I design surveys to only show some questions?
Qualified has several mechanisms to create a survey which displays new questions based on previous answers.
Analyzing data from Qualtrics

1. Qualtrics will export as a csv file (comma separated values)
2. This can be imported directly into R
3. How do to score scales http://personality-project.org/revelle/syllabi/205/scoring.pdf is a short tutorial for how to score the scales from the Qualtrics items.
4. Subsequent analyses are done as you did for your second paper.
Writing a scientific paper

1. Purpose is to add to the accumulated knowledge base
2. Reviews prior work
3. Methods are clearly stated so that others can replicate if they choose
4. Results are appropriately analyzed so that someone else would reach similar conclusions
5. Discussion links results to prior work and suggests future directions
Final Project

1. Conceptualize an interesting problem
2. Design a study to test a hypothesis concerning this problem
 • If doing a survey, consider items from the IPIP
 • If doing a survey, use Qualtrics
3. Execute the study following the design
4. Analyze appropriately
 • R is more userfriendly than you think
 • You already know much of what to do
 • WR and LC are available for help
5. Report in a scientific manner
Possibilities for further research

1. Advanced research courses
2. Summer research projects (see http://www.psychology.northwestern.edu/undergraduate/
 and http://www.psychology.northwestern.edu/undergraduate/research/ ???)
3. 397-399 independent studies
4. Honors research projects
Summer research

Each summer the Psychology Department offers two or more undergraduates a Benton J. Underwood Summer Research Fellowship. Students who accept these fellowships spend most of the summer working on research at Northwestern with a psychology professor. The exact schedule is worked out with the professor who supervises the research. Both current juniors and current sophomores can apply for this award; priority is given to current juniors. To apply for an Underwood Fellowship, follow these steps:

Choose a faculty member to supervise your research and talk with him or her about what you will be doing and what your time commitment will be. You should also talk with the faculty member about the need for Institutional Review Board approval for your planned project.
Summer research

Prepare an application in which you include (a) a statement describing your plans for this research (this can be the same proposal you submit to the university’s grants committee); (b) a copy of your transcript (an unofficial transcript is fine); and (c) information about your general interests in psychology, your relevant course work, your previous research experience, and anything else that you think is relevant. Have the faculty member who will supervise your research write a confidential letter of support for your application.

The application and letter of support should be sent by email to Dr. Sara Broaders, s-broaders@northwestern.edu. The application deadline is always the same as the deadline for summer grants from Northwestern’s Office of Undergraduate Research.
The psychology major at NU

1. Introductory Psychology
2. Methodology Sequence
 - 201: Statistics
 - 205: Research Methods
 - 3xx: Advanced research in a substantive area
3. Substantive courses
 - Personality/Social/Clinical (“Column A’”)
 - Cognitive/Physiological (“Column B’”)
 - Other broad courses (“Column C’”)
4. Advanced research courses (“Row 2”)
5. Independent Study (399) and Honors (398)
The psychology major at NU

The Psychology Major at NU

- Intro
 - Person
 - Clinical
 - P. Res.
 - Ind Study
 - Social
 - Soc. Res
 - Stats
 - Cognitive
 - Methods
 - Percept
 - Sex.
 - Devel.
 - Physio
 - Thinking
 - Res Phys
 - Honors

NU