Introduction to using R for statistics
Comparing two groups
Linear regression and correlation
Two way Analysis of Variance

Psychology 205: Research Methods

William Revelle

Department of Psychology
Northwestern University
Evanston, Illinois USA

Fall, 2013
Outline

1. Introduction to using R for statistics
 - What is R?
 - Where did it come from, why use it?
 - Installing R on your computer and adding packages

2. Comparing two groups
 - A sample problem
 - Review of variability of distributions of samples
 - The t-test
 - Using R to do t-tests
 - ANOVA as a generalized t-test.
 - Linear regression as a generalized ANOVA

3. Linear regression and correlation

4. Two way Analysis of Variance
R: Statistics for all us

1. What is it?
2. Why use it?
3. Common (mis)perceptions of R
4. Examples for psychologists
 - graphical displays
 - basic statistics
 - advanced statistics
 - Although programming is easy in R, that is beyond the scope of today
R: What is it?

1. R: An international collaboration
2. R: The open source - public domain version of S+
3. R: Written by statistician (and all of us) for statisticians (and the rest of us)
4. R: Not just a statistics system, also an extensible language.
 - This means that as new statistics are developed they tend to appear in R far sooner than elsewhere.
 - For example, the most recent issue of Psychological Methods had at least three articles with examples or supplementary work done in R
 - R facilitates asking questions that have not already been asked.
Statistical Programs for Psychologists

- General purpose programs
 - R
 - S+
 - SAS
 - SPSS
 - STATA
 - Systat

- Specialized programs
 - Mx
 - EQS
 - AMOS
 - LISREL
 - MPlus
 - Your favorite program
Statistical Programs for Psychologists

- General purpose programs
 - R
 - $+$
 - A
 - P
 - $TATA$
 - $ytat$

- Specialized programs
 - Mx (OpenMx is part of R)
 - EQ$
 - AMO$
 - LIREL
 - MPIu$
 - Your favorite program
R: A way of thinking

- “R is the lingua franca of statistical research. Work in all other languages should be discouraged.”
- “This is R. There is no if. Only how.”
- “Overall, SAS is about 11 years behind R and S-Plus in statistical capabilities (last year it was about 10 years behind) in my estimation.”

Taken from the R.-fortunes (selections from the R.-help list serve)
Q: “When you use it [R], since it is written by so many authors, how do you know that the results are trustable?”

A: “The R engine [...] is pretty well uniformly excellent code but you have to take my word for that. Actually, you don’t. The whole engine is open source so, if you wish, you can check every line of it. If people were out to push dodgy software, this is not the way they’d go about it.”
What is R?: Technically

- R is an open source implementation of S (S-Plus is a commercial implementation)
- R is available under GNU Copy-left
- The current version of R is 3.0.2
- The development version of R 3.1.0 is available to test and will be released next spring
- R is a group project run by a core group of developers (with new releases semiannually)

(Adapted from Robert Gentleman)
R: A brief history

- 1991-93: Ross Dhaka and Robert Gentleman begin work on R project at U. Auckland
- 1995: R available by ftp under the GPL
- 96-97: mailing list and R core group is formed
- 2000: John Chambers, designer of S joins the R core (wins a prize for best software from ACM for S)
- 2001-2011: Core team continues to improve base package with a new release every 6 months.
- Many others contribute “packages” to supplement the functionality for particular problems
 - 2003-04-01: 250 packages
 - 2004-10-01: 500 packages
 - 2007-04-12: 1,000 packages
 - 2009-10-04: 2,000 packages
 - 2011-05-12 3,000 packages
 - 2012-01-10 4,000 packages
Misconception: R is hard to use

1. R doesn’t have a GUI (Graphical User Interface)
 - Partly true, many use syntax
 - Partly not true, GUls exist (e.g., R Commander, R-Studio)
 - Quasi GUls for Mac and PCs make syntax writing easier

2. R syntax is hard to use
 - Not really, unless you think an iPhone is hard to use
 - Easier to give instructions of 1-4 lines of syntax rather than pictures of what menu to pull down.
 - Keep a copy of your syntax, modify it for the next analysis.

3. R is not user friendly: A personological description of R
 - R is introverted: it will tell you what you want to know if you ask, but not if you don’t ask.
 - R is conscientious: it wants commands to be correct.
 - R is not agreeable: its error messages are at best cryptic.
 - R is stable: it does not break down under stress.
 - R is open: new ideas about statistics are easily developed.
Misconceptions: R is hard to learn

1. With a brief web based tutorial at http://personality-project.org/r, 2nd and 3rd year undergraduates in psychological methods and personality research courses are using R for descriptive and inferential statistics and producing publication quality graphics.

2. More and more psychology departments are using it for graduate and undergraduate instruction.

3. R is easy to learn, hard to master
 - R-help newsgroup is very supportive
 - There are multiple web based and pdf tutorials see (e.g., http://www.r-project.org/)
 - Short courses using R for many applications

4. Books and websites are available for SPSS and SAS users trying to learn R (e.g., http://oit.utk.edu/scc/RforSAS&SPSSusers.pdf by Bob Muenchen).
Ok, how do I get it? Getting started with R

- Download from R Cran (http://cran.r-project.org/)
 - Choose appropriate operating system and download compiled R
- Install R (current version is 3.0.2)
- Start R
- Add useful packages (you just need to do this once)
 - install.packages("ctv") #this downloads the task view package
 - library(ctv) #this activates the ctv package
 - install.views("Psychometrics") #among others
 - Take a 5 minute break
- Activate the package(s) you want to use today (e.g., psych)
 - library(psych) #necessary for most of today’s examples
- Use R
Introduction to using R for statistics

Comparing two groups

Linear regression and correlation

Two way Analysis of Variance

Installing R on your computer and adding packages

Go to the R.project.org

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- Download R for Linux
- Download R for (Mac) OS X
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

Source Code for all Platforms

Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

- The latest release (2012-10-26, Trick or Treat): R-2.15.2.tar.gz, read what's new in the latest version.
- Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).
- Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests or bug reports.
- Source code of older versions of R is available here.
- Contributed extension packages

Questions About R

- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.
Introduction to using R for statistics

Comparing two groups

Linear regression and correlation

Two way Analysis of Variance

Installing R on your computer and adding packages

Go to the Comprehensive R Archive Network (CRAN)

This directory contains binaries for a base distribution and packages to run on Mac OS X (release 10.6 and above). Mac OS 8.6 to 9.2 (and Mac OS X 10.1) are no longer supported but you can find the last supported release of R for these systems (which is R 1.7.1) here. Releases for old Mac OS X systems (through Mac OS X 10.5) and PowerPC Macs can be found in the old directory.

Note: CRAN does not have Mac OS X systems and cannot check these binaries for viruses. Although we take precautions when assembling binaries, please use the normal precautions with downloaded executables.

R 3.0.1 "Good Sport" released on 2013/05/16

This binary distribution of R and the GUI supports 64-bit Intel based Macs on Mac OS X 10.6 (Leopard) or higher.

Since R 3.0.0 the binary is a single-arch build and contains only the x86_64 (64-bit Intel) architecture. PowerPC Macs and 32-bit Macs are only supported by building from sources or by older binary R versions. The default package type is "open.binary" and the binary repository layout has changed accordingly.

Please check the MD5 checksum of the downloaded image to ensure that it has not been tampered with or corrupted during the mirroring process. For example:

d5s R-3.0.1.pkg

in the Terminal application to print the MD5 checksum for the R-3.0.1.pkg image. On Mac OS X 10.7 and later you can also validate the signature using pkgutil:

--check-signature R-3.0.1.pkg

Files:

R-3.0.1.pkg (latest version)

This R 3.0.1 binary for Mac OS X 10.6 (Snow Leopard) and higher, signed package. Contains R 3.0.1 framework, R app GUI 1.61 in 64-bit for Intel Macs. The above file is an Installer package which can be installed by double-clicking. Depending on your browser, you may need to press the control key and click on this link to download the file.

This package contains the R framework, 64-bit GUI (R app) and Tcl/Tk 8.6.0 X11 libraries. The latter component is optional and can be omitted when choosing "custom install", it is only needed if you want to use the teTeX R package. GNU Fortran is NOT included (needed if you want to compile packages from sources that contain FORTRAN code) please see the tools directory.

Mac-GUI-1.61.tar.gz

Sources for the R app GUI 1.61 for Mac OS X. This file is only needed if you want to join the development of the GUI, it is not intended for regular users. Read the INSTALL file for further instructions.

NEWS (for Mac GUI)

The new R app Cocoa GUI has been written by Simon Urbanek and Stefano Iacus with contributions from many developers and translators worldwide, see "About R" in the GUI.

Subdirectories:

tools

Additional tools necessary for building R for Mac OS X:

Universal GNU Fortran compiler for Mac OS X (see R for Mac tools page for details).

contrib

Binaries of package builds for Mac OS X 10.6 or higher (Snow Leopard build)

leopard

Legacy binaries of universal (32-bit and 64-bit) package builds for Mac OS X 10.5 or higher (Leopard build)

universal

Legacy binaries of universal (32-bit) package builds for Mac OS X 10.4 (Tiger build)

old

Previously released R versions for Mac OS X
Download and install the appropriate version – PC

Download R 3.0.1 for Windows (52 megabytes, 32/64 bit)
Installation and other instructions
New features in this version

If you want to double-check that the package you have downloaded exactly matches the package distributed by R, you can compare the md5sum of the .exe to the true fingerprint. You will need a version of md5sum for windows: both graphical and command line versions are available.

Frequently asked questions
- How do I install R when using Windows Vista?
- How do I update packages in my previous version of R?
- Should I run 32-bit or 64-bit R?

Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information.

Other builds
- Patches to this release are incorporated in the r-patched snapshot build.
- A build of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot build.
- Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is <CRAN MIRRORS>-bin\windows\base\release.htm.

Last change: 2013-05-16, by Duncan Murdoch
Download and install the appropriate version – Mac

This directory contains binaries for a base distribution and packages to run on Mac OS X (release 10.5 and above). Mac OS 8.6 to 9.2 (and Mac OS X 10.1) are no longer supported but you can find the last supported release of R for these systems (which is R 1.7.1) [here]. Releases for old Mac OS X systems (through Mac OS X 10.4) and PowerPC Macs can be found in the old directory.

Note: CRAN does not have Mac OS X systems and cannot check these binaries for viruses. Although we take precautions when assembling binaries, please use the normal precautions with downloaded executables.

R 2.15.2 "Trick or Treat" released on 2012/10/26

This binary distribution of R and the GUI supports Intel (32-bit and 64-bit) based Macs on Mac OS X 10.5 (Leopard) or higher.

Please check the MD5 checksum of the downloaded image to ensure that it has not been tampered with or corrupted during the mirroring process. For example type

```
md5 R-2.15.2.pkg
```

in the Terminal application to print the MD5 checksum for the R-2.15.2.pkg image.

Files:

```
R-2.15.2.pkg (latest version)
```

MD5-hash: 8935a6c6e522c747a6f7839d33b5c
(ca. 64MB)

```
R 2.15.2 binary for Mac OS X 10.5 (Leopard) and higher, signed package.
Contains R 2.15.2 framework, R.app GUI 1.53 in 32-bit and 64-bit for Intel Macs. The above file is an installer package which can be installed by double-clicking. Depending on your browser, you may need to press the control key and click on this link to download the file.

This package only contains the R framework, 32-bit GUI (R.app) and 64-bit GUI (R64.app). For Tk/Tk libraries (needed if you want to use tcltk) and GNU Fortran (needed if you want to compile packages from sources that contain FORTRAN code) please see the tools directory.

```
Mac-GUI-1.53.tar.gz
```

MD5-hash: 03e6285386a4f0d2032e612862b13a0

Sources for the R.app GUI 1.51 for Mac OS X. This file is only needed if you want to join the development of the GUI, it is not intended for regular users. Read the INSTALL file for further instructions.
Starting R on a PC

R version 2.13.0 (2011-04-13)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i386-pc-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>
Introduction to using R for statistics

Comparing two groups
Linear regression and correlation
Two way Analysis of Variance

Installing R on your computer and adding packages

Start up R and get ready to play (Mac version)

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin10.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.62 (6558) x86_64-apple-darwin10.8.0]
>    # > is the prompt for all commands    #is for comments
**Annotated installation guide: don’t type the >**

```r
> install.packages("ctv")
> library(ctv)
> install.views("Psychometrics")

#or just install a few packages
> install.packages("psych")
> install.packages("GPArotation")
> install.packages("MASS")
> install.packages("mvtnorm")
> install.packages("lavaan")
```

- Install the task view installer package. You might have to choose a “mirror” site.
- Make it active
- Install all the packages in the “Psychometrics” task view. This will take a few minutes.
- Or, just install one package (e.g., psych)
- as well as a few suggested packages that add functionality for factor rotation, multivariate normal distributions, etc.
Installing just the psych package

R version 2.13.0 (2011-04-13)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i386-pc-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> install.packages("psych")
--- Please select a CRAN mirror for use in this session ---
trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.13/psych_1.0-97.zip'
Content type 'application/zip' length 1952216 bytes (1.9 Mb)
opened URL
downloaded 1.9 Mb
Or, install and use ctv package to load a task view on a PC

```
> install.packages("ctv")
--- Please select a CRAN mirror for use in this session ---
trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.13/ctv_0.7-2.zip'
Content type 'application/zip' length 298753 bytes (291 Kb)
opened URL downloaded 291 Kb
package 'ctv' successfully unpacked and MD5 sums checked

The downloaded packages are in
 C:\users\revelle\Temp\RtmpWnZnUtt\downloaded_packages
> library(ctv)
> |
```
Check the version number for R (should be $\geq 3.02$) and for psych ($\geq 1.3.2$)

```r
> library(psych)
> sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] psych_1.3.10
```
Problem set 1 asked for a variety of analyses. Here I show the direct answers, but also do the analyses in a variety of ways.

I use the statistical program R.

For help on R, go to the short tutorial on using R for research methods:

http://personality-project.org/r/r.205.tutorial.html.

In the following, I assume that you have downloaded R and installed the `psych` package.

These notes are also available as a pdf from the syllabus.
Comparing two groups

An investigator believes that caffeine facilitates performance on a simple spelling test. Two groups of subjects are given either 200 mg of caffeine or a placebo. Although there are several ways of testing if these two groups differ, the most conventional would be a t-test. Apply a t-test to the data in Table 1:

Table: The effect of caffeine on spelling performance

<table>
<thead>
<tr>
<th>placebo</th>
<th>caffeine</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>
The t-test

Many statistical tests may be thought of as comparing a statistic to the error of the statistic. One of the most used tests, the t-test (developed by Gossett but published under the name of Student), compares the difference between two means to the expected error of the difference between two means. As we know, the standard error (se) of a single group with mean, $\bar{X}$ with standard deviation, $s$, and variance, $s^2$

$$s^2 = \frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{n-1}$$  \hspace{1cm} (1)

is just

$$s.e. = \sqrt{\frac{s^2}{n}} = \frac{s}{\sqrt{n}}$$  \hspace{1cm} (2)

and the standard error of the difference of two, uncorrelated groups is

$$se_{x_1-x_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$  \hspace{1cm} (3)
How best can we understand the notion of a standard error? One way is to draw repeated samples from a known population and examine their variability. Although this was the procedure used by Gossett, it is also possible to simulate this using random samples drawn by computer from a known or unknown distribution. Using R it is easy to simulate distributions, either the normal or resampled from our data. Consider 20 samples from a normal distribution of size 12 (Figure 28). For each sample we show the mean and the confidence interval of the mean. Note how some of the means are very far apart. That is, even though the mean for the population is known to be zero, the means of samples vary around that. The vertical lines in the graph represent 1.96 * the standard error of the mean. Note how the confidence region around almost all sample means includes the population mean. But note how some do not.
Confidence intervals of 20 samples

```r
> x <- matrix(rnorm(240), ncol=20)
> error.bars(x, xlab="sample", main="Means and Confidence Intervals")
> abline(h=0)
```

Means and Confidence Intervals
An alternative to sampling from the normal population is to resample from the actual data that we collect. Figure 1 shows the mean and confidence regions for 20 samples of size 12, where each sample was drawn with replacement from the original data. Once again, note how much variability there is from sample to sample, even though they come from the same population.
Resampling

```r
> x <- matrix(sample(spelling[,1], 240, replace=TRUE), ncol=20)
> error.bars(x, xlab="sample", main="Means and Confidence Intervals")
> abline(h=24.25)
```

Means and Confidence Intervals

![Means and Confidence Intervals diagram](image-url)
Just as we can find the standard deviation of the data and standard error of the mean of a sample, so we can find the standard deviation and associated standard error of the mean for differences between two samples. The standard error of the difference of two, uncorrelated groups is

$$se_{x_1-x_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Given that samples from the same population differ a great deal, how much do the spelling scores of the placebo and caffeine groups differ? Do they differ more than would be expected by chance if in the population there was no effect of caffeine?
The t-test

The t-test compares the differences between the means to the standard error of the differences between sample means. That is,

$$t = \frac{\bar{X}_1 - \bar{X}_2}{se_{\bar{X}_1 - \bar{X}_2}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

This looks somewhat complicated, but because it is such a common operation, the t-test is a basic function in R (as well as all major statistics programs).
A minor inconvenience—stacking the data

From the point of view of most statistical programs, the data need to be rearranged to show the Independent Variable (IV) and the Dependent Variable (DV). Then we try to find how much the DV varies as a function of the IV.

In R, this is done by first loading in the `psych` package, then reading the clipboard using the `read.clipboard` function and then using the `stack` function to convert from the way the data look in Table 1 to the way the data look in Table 2.

```r
> library(psych) # this loads the psych package into your active workspace
> spelling <- read.clipboard() # copy into your clipboard and then read the clipboard into R
```
### Using R to do t-tests

#### The t-test:

```r
spelling # show the data
with(spelling, t.test(Placebo, Drug))
```

```r
> spelling # show the data
 Placebo Drug
1 24 24
2 25 29
3 27 26
...
10 25 28
11 25 27
12 25 26

> with(spelling, t.test(Placebo, Drug))
Welch Two Sample t-test
data: Placebo and Drug
t = -2.5273, df = 21.999, p-value = 0.01918
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.489437 -0.343897
sample estimates:
mean of x mean of y
24.25000 26.16667
```
Describe the data

```
describe(spelling)
```

```
 var n mean sd median trimmed mad min max range skew kurtosis se
Placebo 1 12 24.25 1.86 25.0 24.3 1.48 21 27 6 -0.33 -1.33 0.54
Drug 2 12 26.17 1.85 26.5 26.2 2.22 23 29 6 -0.22 -1.33 0.53
```
Another way of doing it: Stacking the data

Table: The data have been read and stacked

```r
> prob1 <- stack(spelling) # convert the data into an array with DV and IV
> prob1
values ind
1 24 Placebo
2 25 Placebo
3 27 Placebo
4 26 Placebo
5 26 Placebo
6 22 Placebo
7 21 Placebo
8 22 Placebo
9 23 Placebo
10 25 Placebo
11 25 Placebo
12 25 Placebo
13 24 Drug
14 29 Drug
15 26 Drug
16 23 Drug
17 25 Drug
18 28 Drug
19 27 Drug
20 24 Drug
21 27 Drug
22 28 Drug
23 27 Drug
24 26 Drug
```
Describe the data using `describe.by`

It is always useful to describe the data, both numerically and graphically. Numerically we can do this using the `describe.by` function.

```r
> describe.by(prob1$values,prob1$ind)

group: Drug
 var n mean sd median trimmed mad min max range skew kurtosis se
1 1 12 26.17 1.85 26.5 26.2 2.22 23 29 6 -0.22 -1.33 0.53

group: Placebo
 var n mean sd median trimmed mad min max range skew kurtosis se
1 1 12 24.25 1.86 25.0 24.3 1.48 21 27 6 -0.33 -1.33 0.54
```
Graphically: show a box plot

Graphically, we can do a boxplot and then add the standard errors to the data (Figure 2).

```r
> boxplot(spelling, main="Spelling Performance as a function of drug")
> error.bars(spelling, add=TRUE)
```

![Box plot showing spelling performance as a function of drug and placebo](image)
The t-test using R

Now, we can do the t-test using the \texttt{t.test} function. The distribution of \( t \) depends upon the degrees of freedom. Figure 3 shows the .05 rejection region (.025 on the left tail, .025 on the right tail.)

\begin{verbatim}
> t.test(values~ind,data=prob1)

Welch Two Sample t-test

data: values by ind
t = 2.5273, df = 21.999, p-value = 0.01918
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3438965 3.4894368
sample estimates:
mean in group Drug mean in group Placebo
 26.16667     24.25000
\end{verbatim}
The t-test as a distribution

\[
\text{\texttt{curve(dt(x,24),-3,3,xlab=\"t\",ylab=\"probability of t\",main=\"The t distribution\")}}
\]

\[
\text{\texttt{xvals <- seq(-2.07,2.07,length=50)}}
\]

\[
\text{\texttt{dvals <- dnorm(xvals)}}
\]

\[
\text{\texttt{polygon(c(xvals,rev(xvals)),c(rep(0,50),rev(dvals)),col=\"gray\")}}
\]
Using R to do t-tests

Analysis of Variance (ANOVA)

The t-test compares the difference between two means with respect to the standard error of the differences. Another test, developed by Ronald Fisher, is the Analysis of Variance (ANOVA). Here we are comparing an estimate of the population variance derived from the variance of the means to an estimate of the population variance derived from the variability within each group. For two groups, the variance estimate has 1 degree of freedom. We use the `aov` function and then ask for the `summary` of the results. Compare the results of this analysis with the previous one. The F statistic for a 1 degree of freedom comparison (one between two groups) is the same as $t^2$. The probability of observing an F of this size or bigger is the same as observing the t of that size or larger (in absolute value).
Using R to do t-tests

**ANOVA**

```r
> summary(aov(values~ind,data=prob1))

 Df Sum Sq Mean Sq F value Pr(>F)
ind 1 22.042 22.0417 6.3875 0.01918 *
Residuals 22 75.917 3.4508

Signif. codes: 0 â¬¥***â¬Ž 0.001 â¬¥**â¬Ž 0.01 â¬¥*â¬Ž 0.05 â¬¥ 1
```
Yet another way of thinking about this problem is to use linear regression. That is, if we estimate $\beta$ in the linear regression equation:

$$\hat{y} = \beta x + e$$

and we use the `lm` (for linear model) function
> summary(lm(values~ind, data=prob1))

Call:
lm(formula = values ~ ind, data = prob1)

Residuals:
   Min     1Q   Median     3Q    Max
-3.2500 -1.4790  0.7500  1.0620  2.8333

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 26.1667    0.5362  48.796  <2e-16 ***
indPlacebo -1.9167    0.7584  -2.527   0.0192 *
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1  1

Residual standard error: 1.858 on 22 degrees of freedom
We find that the difference between the two IV conditions is 1.917 (this is the same as the difference between the means found in the t-test) and that the probability of this difference happening by chance if there were no difference is .0192. This is, of course, the same probability as that found by the t-test or the ANOVA.
Correlation and regression

Another investigator believes that introversion/extraversion has a linear relationship to spelling ability and reports the following data (Table 3). This can be solved by finding the linear regression of Spelling on Introversion or by finding the correlation between spelling and introversion. Do either one (or both).

Table: Does introversion predict spelling ability?

<table>
<thead>
<tr>
<th>Introversion</th>
<th>Spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>44</td>
</tr>
<tr>
<td>26</td>
<td>44</td>
</tr>
</tbody>
</table>
A correlation problem

For this problem, we need to read in the data from the clipboard using the `read.clipboard` function and then can use the `cor` function to find the correlation, or the `lm` function to find the linear regression, or use the `pairs.panels` function to find the correlation as well as to graph the data.

```r
> int_spelling <- read.clipboard()

> round(cor(int_spelling),2)

 Introversion Spelling
Introversion 1.00 0.51
Spelling 0.51 1.00

> cor.test(int_spelling$Introversion,int_spelling$Spelling)

Pearson's product-moment correlation

data: int_spelling$Introversion and int_spelling$Spelling

 t = 1.8761, df = 10, p-value = 0.0901
```


Another way to do it

Or, use the `corr.test` function in *psych*

```r
corr.test(ie)
```

Call: `corr.test(x = ie)`

Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>Introversion</th>
<th>Spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introversion</td>
<td>1.00</td>
<td>0.51</td>
</tr>
<tr>
<td>Spelling</td>
<td>0.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Sample Size

<table>
<thead>
<tr>
<th></th>
<th>Introversion</th>
<th>Spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introversion</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Spelling</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Probability values (Entries above the diagonal are adjusted for multiple tests.)

<table>
<thead>
<tr>
<th></th>
<th>Introversion</th>
<th>Spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introversion</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Spelling</td>
<td>0.09</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Better yet, graph it

![Graphs showing introversion and spelling](image)

- **Introversion**: Correlation coefficient = 0.51
- **Spelling**
A two way ANOVA

Still another investigator believes that spelling performance is a function of the interaction of caffeine and time of day. She administers 0 or 200 mg of caffeine to subjects at 9 am and 9 pm. These data are typically examined using an Analysis of Variance (ANOVA), although a multiple regression using the general linear model would work as well. If the results are as below (Table 4), do the ANOVA.

**Table:** Time of day, caffeine, and spelling performance

<table>
<thead>
<tr>
<th>9am</th>
<th>9 am</th>
<th>9pm</th>
<th>9pm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 mg</td>
<td>200 mg</td>
<td>0 mg</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>32</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>29</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>26</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>31</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>
2 way ANOVA – reading the data

We first read in the data (but without the labels for the columns) and then add colnames to the data

> tod.data <- read.clipboard(header=FALSE)

Unfortunately, this analysis is a bit more complicated, because we need to string the data out and then add the conditions as additional variables. This will be discussed in more detail in subsequent handouts.

> colnames(tod.data) <- c("AP","AC","PP","PC")
> tod.stacked <- stack(tod.data)
> tod.df <- data.frame(spelling = tod.stacked$values,
  drug = rep(c(rep("P",12),rep("C",12)),2),
  time=c(rep("AM",24),rep("PM",24)))
> anova(lm(spelling~drug*time,data=tod.df))
## 2 way ANOVA – the results

### Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
<th>Signif. codes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug</td>
<td>1</td>
<td>1.688</td>
<td>1.688</td>
<td>0.2971</td>
<td>0.5885</td>
<td>0.5885</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>9.187</td>
<td>9.187</td>
<td>1.6175</td>
<td>0.2101</td>
<td>0.2101</td>
</tr>
<tr>
<td>drug:time</td>
<td>1</td>
<td>238.521</td>
<td>238.521</td>
<td>41.9937</td>
<td>6.633e-08 ***</td>
<td>0.001***</td>
</tr>
</tbody>
</table>

---

Residuals | 44  | 249.917 | 5.680

---

Signif. codes:  0 **â®â®** 0.001 â®â®*â®* 0.01 â®â®*â®* 0.05 â®â®*â®* 0.1 â®â®*â®* 1