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1 Introduction to using R for statistics

Problem set 1 asked for a variety of analyses. Here I show the direct answers, but also do the
analyses in a variety of ways. I use the statistical program R. For help on R, go to the short tutorial
on using R for research methods http://personality-project.org/r/r.205.tutorial.html. In
the following, I assume that you have downloaded R and installed the psych package.
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2 Comparing two groups

2.1 A sample problem

An investigator believes that caffeine facilitates performance on a simple spelling test. Two groups
of subjects are given either 200 mg of caffeine or a placebo. Although there are several ways of
testing if these two groups differ, the most conventional would be a t-test. Apply a t-test to the
data in Table 1:

Table 1: The effect of caffeine on spelling performance

placebo caffeine
24 24
25 29
27 26
26 23
26 25
22 28
21 27
22 24
23 27
25 28
25 27
25 26

2.2 Review of variability of distributions of samples

Many statistical tests may be thought of as comparing a statistic to the error of the statistic. One
of the most used tests, the t-test (developed by Gossett but published under the name of Student),
compares the difference between two means to the expected error of the difference between to means.
As we know, the standard error (se) of a single group with mean, X̄ with standard deviation, s,
and variance, s2

s2 =

∑n
i=1(Xi − X̄)2/

n− 1
(1)

is just

s.e. =

√
s2

n
=

s√
n

(2)

and the standard error of the difference of two, uncorrelated groups is

sex1−x2
=

√
s21
n1

+
s22
n2

(3)

How best can we understand the notion of a standard error? One way is to draw repeated
samples from a known population and examine their variability. Although this was the procedure
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used by Gossett, it is also possible to simulate this using random samples drawn by computer from
a known or unknown distribution. Using R it is easy to simulate distributions, either the normal
or resampled from our data. Consider 20 samples from a normal distribution of size 12 (Figure 1.
For each sample we show the mean and the confidence interval of the mean. Note how some of
the means are very far apart. That is, even though the mean for the population is known to be
zero, the means of samples vary around that. The horizontal lines in the graph represent 1.96 *
the standard error of the mean. Note how the confidence region around almost all sample means
includes the population mean. But note how some do not. The confidence intervals are shown as
“cats’ eyes” to represent the point that most of the confidence is in the middle of the region.

> x <- matrix(rnorm(240),ncol=20)

> error.bars(x, xlab="sample", main="Means and Confidence Intervals")

> abline(h=0)
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Figure 1: The mean and 95% confidence intervals for twenty randoms of size 12 from a normal
distribution.
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An alternative to sampling from the normal population is to resample from the actual data that
we collect. Figure 2 shows the mean and confidence regions for 20 samples of size 12, where each
sample was drawn with replacement from the original data. Once again, note how much variability
there is from sample to sample, even though they come from the same population.

> x <- matrix(sample(spelling[,1],240,replace=TRUE),ncol=20)

> error.bars(x, xlab="sample", main="Means and Confidence Intervals")

> abline(h=24.25)
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Figure 2: 20 random resamples (with replacement) of the spelling data. The horizontal line repre-
sents the mean of the original data.

Just as we can find the standard deviation of the data and standard error of the mean of
a sample, so we can find the standard deviation and associated standard error of the mean for
differences between two samples. The standard error of the difference of two, uncorrelated groups
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is two, uncorrelated groups is

sex1−x2 =

√
s21
n1

+
s22
n2

(4)

Given that samples from the same population differ a great deal, how much do the spelling
scores of the placebo and caffeine groups differ? Do they differ more than would be expected by
chance if in the population there was no effect of caffeine?

We can see this graphically by plotting 20 random samples from the differences between the
two sets of data (Figure 3).

> x <- matrix(sample((spelling[,1]-spelling[,2]),240,replace=TRUE),ncol=20)

> error.bars(x, xlab="sample", main="Means and Confidence Intervals of the difference between the two groups")

> abline(h=0)
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Figure 3: 20 random resamples (with replacement) of the spelling data. The horizontal line repre-
sents the mean of the original data.
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2.3 The t-test

The t-test compares the differences between the means to the standard error of the differences
between sample means.

That is,

t =
X̄1 − X̄2

sex1−x2

=
X̄1 − X̄2√

s21
n1

+
s22
n2

(5)

This looks somewhat complicated, but because it is such a common operation, the t-test is a
basic function in R( as well as all major statistics programs).

2.4 Using R to do t-tests

From the point of view of most statistical programs, the data need to be rearranged to show the
Independent Variable (IV) and the Dependent Variable (DV). Then we try to find how much the
DV varies as a function of the IV.

In R, this is done by first loading in the psych package, then reading the clipboard using the
read.clipboard and then using the t.test function

>library(psych) #this loads the psych package into your active workspace

>spelling <- read.clipboard() #copy into your clipboard and then read the clipboard into R

It is always useful to describe the data, both numerically and graphically. Numerically we can
do this using the describe function.

> describe(spelling)

vars n mean sd median trimmed mad min max range skew kurtosis se

Placebo 1 12 24.25 1.86 25.0 24.3 1.48 21 27 6 -0.33 -1.33 0.54

Drug 2 12 26.17 1.85 26.5 26.2 2.22 23 29 6 -0.22 -1.33 0.53

We can show this effect by plotting the two distributions back to back (Figure ??). (This is a bit
complicated and the code is included as an example.) But this figure does not reflect the standard
error of the two measures.

Alternatively, (and probably better) we can do a boxplot and then add the standard errors to
the data (Figure 5). This allows us to see how much we expect the groups to differ given their
within group standard deviations and the sample size.

Now, we can do the t-test using the t.test function. The distribution of t depends upon the
degrees of freedom. Figure 6 shows the .05 rejection region (.025 on the left tail, .025 on the right
tail.))

> with(spelling, {t.test(Placebo,Drug)})

Welch Two Sample t-test

data: Placebo and Drug

t = -2.5273, df = 21.999, p-value = 0.01918
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> g1 <- spelling[,"Placebo"]

> g2 <- spelling[,"Drug"]

> t1 <- tabulate(g1-20)

> t2 <- tabulate(g2-20)

> barplot(-t1,col = color[1],horiz=TRUE,xlim=c(-4,4),ylim=c(0,10),main="Counts from

+ Placebo and Drug conditions (-20)")

> barplot(t2,col = color[2],horiz=TRUE,add=TRUE)

> axis(2)

Counts from 
       Placebo and Drug conditions (−20)

−4 −2 0 2 4−4 −2 0 2 4
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Figure 4: Compare the Placebo Condition (blue) with the Drug condition (red). At least to the
eye, these appear different.
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> boxplot(spelling,main="Spelling Performance as a function of drug")

> error.bars(spelling,add=TRUE)

Placebo Drug

22
24

26
28

Spelling Performance as a function of drug

●

●

Figure 5: Spelling performance as a function of placebo and drug. Means and 95% confidence
regions are shownin addition to the basic box plot. The boxplot shows the median, the upper and
lower quartiles, and the “hinges” of the data.
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alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.4894368 -0.3438965

sample estimates:

mean of x mean of y

24.25000 26.16667

2.4.1 ANOVA as a generalized t-test.

The t-test compares the difference between two means with respect to the standard error of the
differences. Another test, developed by Ronald Fisher, is the Analysis of Variance (ANOVA). Here
we are comparing an estimate of the population variance derived from the variance of the means
to an estimate of the population variance derived from the variability within each group. For two
groups, the variance estimate has 1 degree of freedom.

To do this, we need to reorganize the data so that we have one column of the dependent variable
and another column showing the conditions. We do this with the stack function.

We use the aov function and then ask for the summary of the results. Compare the results of this
analysis with the previous one. The F statistic for a 1 degree of freedom comparison (one between
two groups) is the same as t2. The probability of observing an F of this size or bigger is the same
as observing the t of that size or larger (in absolute value.

> prob1 <- stack(spelling)

> summary(aov(values~ind,data=prob1))

Df Sum Sq Mean Sq F value Pr(>F)

ind 1 22.04 22.042 6.387 0.0192 *

Residuals 22 75.92 3.451

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

2.4.2 Linear regression as a generalized ANOVA

Yet another way of thinking about this problem is to use linear regression. That is, if we estimate
β in the linear regression equation:

ŷ = βx+ e (6)

and we use the lm (for linear model) function

> summary(lm(values~ind,data=prob1))

Call:

lm(formula = values ~ ind, data = prob1)

Residuals:

Min 1Q Median 3Q Max

-3.250 -1.479 0.750 1.062 2.833
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> curve(dt(x,24),-3,3,xlab="t",ylab="probability of t",main="The t distribution")

> xvals <- seq(-2.07,2.07,length=50)

> dvals <- dnorm(xvals)

> polygon(c(xvals,rev(xvals)),c(rep(0,50),rev(dvals)),col="gray")
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Figure 6: Finding area under the curve for for | t values | < may be done using the qnorm function.
In this case, with df = 22, show the 5% rejection region. qt(.025,df=22) will yield the critical t
value for the lower tail. qt(.975,df=22) for the upper region.

10



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.1667 0.5362 48.796 <2e-16 ***

indPlacebo -1.9167 0.7584 -2.527 0.0192 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 1.858 on 22 degrees of freedom

Multiple R-squared: 0.225, Adjusted R-squared: 0.1898

F-statistic: 6.387 on 1 and 22 DF, p-value: 0.01918

We find that the difference between the two IV conditions is 1.917 (this is the same as the difference
between the means found in the t-test) and that the probability of this difference happening by
chance if there were no difference is .0192. This is, of course, the same probability as that found by
the t-test or the ANOVA.

3 Linear regression and correlation

Another investigator believes that introversion/extraversion has a linear relationship to spelling
ability and reports the following data (Table 2). This can be solved by finding the linear regression
of Spelling on Introversion or by finding the correlation between spelling and introversion. Do either
one (or both).

Table 2: Does introversion predict spelling ability?

Introversion Spelling
21 31
14 33
13 39
13 24
20 35
21 37
11 36
15 20
23 46
12 31
17 44
26 44

For this problem, we need to read in the data from the clipboard using the read.clipboard

function and then can use the cor function to the find the correlation, or the lm function to find
the linear regression, or use the pairs.panels function to find the correlation as well as to graph
the data.

>int_spelling <- read.clipboard()
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> round(cor(int_spelling),2)

Introversion Spelling

Introversion 1.00 0.51

Spelling 0.51 1.00

> cor.test(int_spelling$Introversion,int_spelling$Spelling)

Pearson's product-moment correlation

data: int_spelling$Introversion and int_spelling$Spelling

t = 1.8761, df = 10, p-value = 0.0901

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.09002976 0.83857967

sample estimates:

cor

0.5102348

> summary(lm(Spelling ~ Introversion,data=int_spelling))

Call:

lm(formula = Spelling ~ Introversion, data = int_spelling)

Residuals:

Min 1Q Median 3Q Max

-13.2168 -3.5376 0.4292 6.1062 9.1372

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.8717 7.8064 2.674 0.0233 *

Introversion 0.8230 0.4387 1.876 0.0901 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 7.123 on 10 degrees of freedom

Multiple R-squared: 0.2603, Adjusted R-squared: 0.1864

F-statistic: 3.52 on 1 and 10 DF, p-value: 0.0901

4 Two way Analysis of Variance

Still another investigator believes that spelling performance is a function of the interaction of caffeine
and time of day. She administors 0 or 200 mg of caffeine to subjects at 9 am and 9 pm. These data
are typically examined using an Analysis of Variance (ANOVA), although a multiple regression
using the general linear model would work as well. If the results are as below (Table 3), do the
ANOVA.

We first read in the data (but without the labels for the columns) and then add colnames to the
data
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> pairs.panels(int_spelling)

Introversion
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Figure 7: A Scatter Plot Matrix (splom) of the correlation between introversion and spelling
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Table 3: Time of day, caffeine, and spelling performance

9am 9 am 9pm 9pm
0 mg 200 mg 0 mg 200 mg

26 27 28 24
27 30 27 23
25 28 25 25
22 32 25 21
27 25 31 23
23 29 32 21
21 31 25 25
28 28 32 21
21 28 26 26
23 26 25 22
20 29 27 23
23 31 26 26

>tod.data<- read.clipboard(header=FALSE)

Unfortunately, this analysis is a bit more complicated, because we need to string the data out and
then add the conditions as additional variables. This will be discussed in more detail in subsequent
handouts.

> colnames(tod.data) <- c("AP","AC","PP","PC")

> tod.stacked <- stack(tod.data)

> tod.df <- data.frame(spelling = tod.stacked$values,drug = rep(c(rep("P",12),rep("C",12)),2),time=c(rep("AM",24),rep("PM",24)))

> anova(lm(spelling~drug*time,data=tod.df))

Analysis of Variance Table

Response: spelling

Df Sum Sq Mean Sq F value Pr(>F)

drug 1 1.688 1.688 0.2971 0.5885

time 1 9.187 9.187 1.6175 0.2101

drug:time 1 238.521 238.521 41.9937 6.633e-08 ***

Residuals 44 249.917 5.680

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

A more generic way of doing this analysis is as follows:

>raw.data <- read.clipboard(header=FALSE)

> nsub <- c(12,12)

> IV1.names <- c("Placebo","Caffeine")
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> IV2.names <- c("AM","PM")

> nvar=2

> drug <- rep(rep(IV1.names,nsub),nvar)

> time <- rep(rep(IV2.names,nsub),nvar)

> data.df <- data.frame(stack(raw.data)$value,drug = drug,time=time)

> summary(aov(spelling~drug*time,data=tod.df))

Df Sum Sq Mean Sq F value Pr(>F)

drug 1 1.69 1.69 0.297 0.588

time 1 9.19 9.19 1.618 0.210

drug:time 1 238.52 238.52 41.994 6.63e-08 ***

Residuals 44 249.92 5.68

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Table 4: A truncated version of the time of day data.frame.

stack.raw.data..value drug time

1 26 Placebo AM

2 27 Placebo AM

3 25 Placebo AM

4 22 Placebo AM

10 23 Placebo AM

11 20 Placebo AM

12 23 Placebo AM

13 27 Caffeine PM

14 30 Caffeine PM

34 25 Placebo AM

35 27 Placebo AM

36 26 Placebo AM

37 24 Caffeine PM

38 23 Caffeine PM

44 21 Caffeine PM

45 26 Caffeine PM

46 22 Caffeine PM

47 23 Caffeine PM

48 26 Caffeine PM

5 Chi Square tests of independence

Another experimenter wants to test the hypothesis that gender is related to interest in football.
100 subjects (50 male and 50 female) are asked whether or not they watched a recent football
game. The results are in Table 5 The question of whether a relationship between two dichotomous
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variables is larger than chance is typically done by using a χ2 test. Find the χ2 to determine if
there is a relationship between gender and watching the football game.

Table 5: Gender differences in football interest

Watched Did not watch
Male 30 20

Female 20 30

This is a question of the association between two categorical variables. We are given the counts
and we can enter them into a matrix and run the χ2 test directly. We have an option of correcting
for continuity. We turn off this correction for consistency with the hand done version.

> football <- matrix(c(30,20,20,30),ncol=2)

[,1] [,2]

[1,] 30 20

[2,] 20 30

> chisq.test(football,correct=FALSE)

Pearson's Chi-squared test

data: football

X-squared = 4, df = 1, p-value = 0.0455

6 Correlated and uncorrelated t-tests

A professor believes that taking statistics increases one’s ability to reason analytically. To test this
hypothesis, she develops a test of reasoning and gives it to two sets of students. Those who have
just started a statistics course and those who have just finished a statistics course. The results are
shown in Table 6

6.1 Uncorrelated t-tests

These data could be analyzed by using t-test (or by doing an ANOVA). Notice that this design is
normally not as powerful as doing a pre-post within subjects design.

First, copy the data to a spreadsheet (with no extra lines) and then copy that to the clipboard.
We then read the clipboard into R.

reasoning <- read.clipboard()

> t.test(reasoning$before,reasoning$after,equal.var=TRUE)

Welch Two Sample t-test
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Table 6: The effect of taking a statistics course on reasoning analytically.

before after
12 15
11 23
15 17
14 22
11 18
10 17
11 21
12 21
18 16
17 17
13 23
16 18

data: reasoning$before and reasoning$after

t = -5.0735, df = 21.896, p-value = 4.47e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-7.983620 -3.349713

sample estimates:

mean of x mean of y

13.33333 19.00000

6.2 Correlated t-tests

Another professor has the same hypothesis, but decides to use a pre-post design. That is, each
student takes the reasoning test twice, once before and once after the class. The data can now be
analyzed by using a t-test for correlated scores, or a t-test comparing the difference scores to 0.

> t.test(reasoning$before,reasoning$after,equal.var=TRUE,paired=TRUE)

Paired t-test

data: reasoning$before and reasoning$after

t = -4.363, df = 11, p-value = 0.001131

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.525295 -2.808038

sample estimates:

mean of the differences

-5.666667
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When examining these results, we notice that the assumption of independence between the pre
and post scores yields a larger t value than when we allow them to be correlated. Examining this
more closely, we discover that the correlation between the pre and post scores is actually negative!

> round(cor(reasoning),2)

before after

before 1.00 -0.35

after -0.35 1.00

If the numbers are the same as in problem 6, what test should be applied?
There are advantages and disadvantages of the designs used in questions 6 and 6.2. What are

some of them?

7 Using the normal distribution

If a test is normally distributed and has a mean of 100 and a standard deviation of 15, then what
percentage of students would you expect to have scores of 100 or greater?

Convert the observed score (in this 100) to a standard score by subtracting the mean and
dividing the by the standard deviation:

zx = (X − X̄)/sx (7)

Thus, zx = (100-100) / 15 = 0.0. Then, using the pnorm function (probability of a normal) we
find that
pnorm(0) = 0.5

This, of course, requires knowing how to think about the normal distribution. This one should
be easy, the next one is also fairly easy.

With the same assumptions, what percentage of students would you expect to have scores greater
than 115? That is to say, the number of people to the right of the value.

zx = (115-100)/ 15 = 1
1- pnorm(1) = .16

8 The binomial distribution

If you flip a fair coin 10 times, how often would you expect to observe at least 8 heads?

This requires thinking about the binomial distribution and using the dbinom to help us. We
create a vector, x, with 11 values, find the binomial probabilties of each value of x, and add them
up for the cases of 8, 9, and 10. To better understand where these probabilities are coming from, we
can multiply them by 1024 (210) to get the number of outcomes out of the 1024 different outcomes
that match what we want:

> x <- 0:10

[1] 0 1 2 3 4 5 6 7 8 9 10
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> curve(dnorm(x),-3,3,xlab="z = standard score units",ylab="probability of z",

+ main="The normal curve")

> xvals <- seq(-3,1,length=50)

> dvals <- dnorm(xvals)

> polygon(c(xvals,rev(xvals)),c(rep(0,50),rev(dvals)),col="gray")
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Figure 8: Finding area under the normal curve for for values < z may be done using the pnorm
function. In this case, z = 1 and we want to find the shaded area. pnorm(1) will yield the area to
the left of 1.
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> round(dbinom(x,10,.5),3)

[1] 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001

> dbinom(x,10,.5) * 1024

[1] 1 10 45 120 210 252 210 120 45 10 1

> (1 + 10 + 45)/1024

[1] 0.0546875

Thus, the answer to our question of getting at least 8 is (1 + 10 + 45)/1024 or .0547
We can plot the binomial distribution using the plot function.
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> barplot(dbinom(x,10,.5),main="The binomial distribution")

The binomial distribution
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Figure 9: The binomial distribution for 10 coins (equal probability of a coin flip)
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