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Abstract
Measurement is fundamental to all research in psychology and should be accorded greater scrutiny than typically occurs. 
Among other claims, McNeish and Wolf (Thinking twice about sum scores. Behavior Research Methods, 52, 2287-2305) 
argued that use of sum scores (a) implies that a highly constrained latent variable model underlies items comprising a scale, 
and (b) may misrepresent or bias relations with other criteria. The central claim by McNeish and Wolf that use of sum scores 
requires the assumption that a parallel test model underlies item responses is incorrect and without psychometric merit. 
Instead, if a set of items is unidimensional, estimators of reliability are available even if the factor model underlying the set 
of items does not have a highly constrained form. Thus, dimensionality of a set of items is the key issue, and whether strict 
constraints on parameter estimates do or do not hold dictate the appropriate way to estimate reliability. McNeish and Wolf 
also claimed that more precise forms of scoring, such as estimating factor scores, would be preferable to sum scores. We 
provide analytic bases for reliability estimation and then provide several demonstrations of reliability estimation and the 
relative advantages of sum scores and factor scores. We contend that several claims by McNeish and Wolf are questionable 
and that, as a result, multiple recommendations they made and conclusions they drew are incorrect. The upshot is that, once 
the dimensional structure of a set of items is verified, sum scores often have a solid psychometric basis and therefore are 
frequently quite adequate for psychological research.
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Sum scores and measurement

Measurement is arguably a most basic aspect of our science, 
as results in all empirical research rest on the measurements 
we obtain. In our opinion, the field of psychology has paid 
far too little attention for far too long to important issues in 
measurement. A case could be made that the current repli-
cation crisis roiling psychology and other social sciences 
cannot be resolved without greater attention to fundamental 
aspects of the ways we measure characteristics and thereby 
obtain indicators related to the constructs in our theories 
(Fried & Flake, 2018).

Recently, McNeish and Wolf (2020) offered a wide-rang-
ing critique of the use of sum scores, arguing against use of 
sum scores1 in favor of estimated factor scores and/or latent 
variable modeling. The distinction between sum scores and 
factor scores is, at its basis, a distinction between manifest 
variable scores and latent variable scores. Manifest variables 
are those that have scores that “you can get your hands on,” 
such as the score on a single item, the sum of a set of scale 
items, a reaction time to a problem presented via computer, 
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1 By sum scores, we mean either the sum of responses to items in a 
scale or to the mean item response across the scale items. With com-
plete data, sums and means of item responses clearly are equivalent 
estimates, with sum scores confounding the number of items with 
the mean item responses. Mean scores have the advantage of being 
in the measurement units of the items. With missing data, sum scores 
conflate missingness with 0 (unless complex corrections are used), 
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for missing data. Sum scores are more common in some subdisci-
plines of psychology, mean scores in others.
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or the score on a midterm or final exam in a college course. 
Latent variables, by contrast, are more esoteric variables, 
ones that cannot be measured directly. Commonly, latent 
variables reside as placeholders in complex analytic models, 
representing theoretical mathematical or statistical entities 
such as latent factors in exploratory or confirmatory factor 
models. Ideally, latent variables correspond to the theoretical 
constructs in our theories, although the degree of alignment 
of latent variables and associated theoretical constructs is 
always open to debate. Latent variables cannot be measured 
directly, so we must use manifest variables to serve as their 
indicators. Because latent variable scores cannot be calcu-
lated directly, they must either be estimated in some fashion 
or have their distributional properties (e.g., mean, variance) 
and relations with other variables estimated within the con-
text of complex mathematical models, such as structural 
equation models.

The past decade has seen a substantial number of reviews 
of measurement practices in psychology, a refreshing trend 
given the fundamental importance of measurement. Report-
ing a reliability coefficient for each scale, although not uni-
versal, is becoming more standard (cf. Crutzen & Peters, 
2017, for review of articles in health psychology). Revelle 
and Condon (2019) recommended reporting more than one 
reliability coefficient for each scale, and various alternative 
indices of reliability have recently been debated (Bentler, 
2021; Cho, 2021; Sijtsma & Pfadt, 2021). But any reliability 
coefficient is only as good as the psychometric theory on 
which it is based. One key aspect of psychometric theory is 
the internal structure of a scale, typically investigated using 
some form of factor analysis of its items. Unfortunately, this 
issue is rarely discussed in substantive research studies, as 
investigators simply sum items in a scale if the scale meets 
a relatively low bar for adequate reliability (Flake et al., 
2017). The factor structure of a set of items is an important 
form of validity (Borsboom et al., 2004; Messick, 1995) 
and should impact the ways in which scores are legitimately 
derived from its items. McNeish and Wolf (2020) summa-
rized this research briefly, arguing that greater attention to 
various aspects of the psychometric properties of measures 
is warranted.

McNeish and Wolf (2020) then proceeded with their 
primary claims: (a) that the use of sum scores is necessar-
ily aligned with a highly constrained latent variable model, 
often not acknowledged explicitly or implicitly by research-
ers who use a scale sum score; and (b) that use of sum scores 
may lead to biased results relative to more precise scores, 
such as estimated factor scores. We disagree strongly with 
the first claim, based on more than a century of psychometric 
work on sum scores, and we feel that the second claim is 
overblown. In general, we disagree quite strongly that use 
of sum scores has all of the negative implications and all of 
the weaknesses McNeish and Wolf describe. To lay out our 

position, we turn next to what sum scores are and how they 
relate to reliability and measurement precision.

Sum scores and reliability

Sum scores

A sum score, the motivation for the extended disputation by 
McNeish and Wolf (2020), seems like a very simple opera-
tion: for a given scale, compute an equally weighted sum 
of raw scores of scale items. McNeish and Wolf warned 
researchers that this seemingly simple and straightforward 
method may compromise analytic results and, ultimately, the 
evaluation and interpretation of empirical evidence. This key 
claim deserves scrutiny.

A general equation for a weighted linear combination or 
weighted sum score is

where Y is the weighted sum of variables X1 through 
Xp, which can be differentially weighted by the weights w1 
through wp, respectively. If Y represents a scale score com-
puted as the sum of p items, X1 through Xp, the mean of the 
weighted combination, Y  , is a weighted combination of the 
means of the items, X1 through Xp , as

In addition, the variance of the weighted sum score, �2

Y
 , 

is a function of the weighted variances and covariances of 
the items, written as

where �2

j
represents the variance of item j (j = 1, …, p), 

rjj′�j�j′the covariance of items j and j’, and other terms were 
defined above.

If unit weighting is used, Eqs. 2 and 3 simplify consid-
erably, as all weights are 1 and hence drop out of the cal-
culations. Then, the scale mean Y  is simply the sum of the 
item means, and the variance of the scale �2

Y
 is the sum of 

all elements in the matrix of variances on and covariances 
among the p items. Or, if the weights are derived from a 
factor model, Y is said to be an estimate of a person’s stand-
ing on a factor (i.e., it is an estimated factor score), but is 
still simply a linear additive sum of indicators that contain 
error. The properties of sum scores—the mean and vari-
ance—prove valuable in writings on reliability and meas-
urement precision. In early work, Wilks (1938) used these 
properties to show that a differentially weighted sum score 

(1)Y = w1X1 + w2X2 +⋯ + wpXp

(2)Y = w1X1 + w2X2 +⋯ + wpXp

(3)
�2

Y
= w2

1
�2

1
+ w2

2
�2

2
+⋯ + w2

p
�2

p
+ 2w1w2r12�1�2

+2w1w3r13�1�3 +⋯ + 2wp−1wprp−1,p�p−1�p

789



1 3

Behavior Research Methods (2023) 55:788–806

and unit-weighted sum score of the same items have correla-
tions with external variables that become indistinguishable 
as the number of items increases.

More complex forms of weighting can be used, based 
on the nature of the variables to be summed. If items dif-
fer markedly in variance or if response scales differ across 
items, one might first standardize each item to M = 0, SD = 
1, prior to summing items. We note that estimation of factor 
scores, as touted by McNeish and Wolf (2020), is one of an 
infinite number of forms of differential weighting, albeit a 
post hoc and sample-specific approach.

McNeish and Wolf (2020) argued that analytic results 
and associated interpretations of data might be compromised 
by improper or injudicious use of simple sum scores. But 
they failed to mention one key strength of sum scores: If 
sum scores are computed in exactly the same fashion in dif-
ferent studies, the results of the studies will be more eas-
ily compared than if some other, sample-specific method is 
used in each study to composite item scores. Of course, this 
strength holds only if no changes are made across studies 
to item content or administration. Still, to promote greater 
replicability of results across studies, sum scores—properly 
vetted—might have certain benefits over more sophisticated 
or complex methods of arriving at scores.

Next, we present some basic psychometric ideas, outlin-
ing test theory models that have been proposed to evaluate 
qualities of measures. We then discuss relations between 
common indices of reliability and their ties to test theory 
models. In doing so, we argue that sum scores are often suf-
ficiently precise for rigorous research applications, offering 
a view that contrasts directly with the position propounded 
by McNeish and Wolf (2020).

Psychometric basics

Two general families of psychometric models are often 
contrasted: classical test theory (CTT) and item response 
theory (IRT). Here, we concentrate on CTT because it is 
what most applied researchers use in research and is the 
approach used by McNeish and Wolf (2020). But both tech-
nical (e.g., Takane & DeLeeuw, 1987) and expository pres-
entations (e.g., Reise et al., 1993) have discussed the under-
lying identity of the two approaches. Hence, much of what 
we have to say from a CTT point of view translates readily 
to applications using IRT.

Reliability as the ratio of true score variance over total vari‑
ance One common CTT approach to estimating reliability 
of scores begins with total test scores (Gulliksen, 1951), 
where the score of person i (i = 1, …, N) on test Y is written 
as Yi. The test score is assumed to be a function of a person’s 
performance across a number of items, and the total score on 
the test for a person is represented as the sum of the person’s 

true score Ti and an error score Ei, as Yi = Ti + Ei. [Note: 
in the following, we usually dispense with the subscript i 
for person to avoid complicated equations, without loss of 
generality]. True scores and error scores on a measure are 
defined as being uncorrelated. As a result, the total score 
variance of a measure, �2

Y
 , is the sum of true score variance 

�2

T
 and error variance �2

E
 , or �2

Y
= �2

T
+ �2

E
 . If reliability of 

test Y is represented as rYY and defined as the ratio of true 
score variance to total score variance, then

where all terms were defined above. This is a most basic 
formulation of reliability under CTT and underscores the 
need to devise ways to separate true score variance from 
error variance.

With this ‘true score plus error score’ formulation for 
total test scores, several types of reliability can easily be 
derived. The correlation between scores on a single test 
administered at two times of measurement is termed a test-
retest reliability coefficient. The correlation between scores 
on two forms of a test, Forms A and B, administered at a 
single time of measurement is called the parallel forms relia-
bility for each form. Each of these correlations is an estimate 
of the proportion of reliable or true score variance in scores. 
Many additional examples could be provided. Importantly, 
the relatively simple ‘true score plus error score’ model ena-
bles a range of interesting ways to portray the reliability of 
total test scores, computed as sum scores.

Item‑based approaches Researchers soon realized that reli-
ability coefficients could be estimated based on a single, 
multiple-item scale administered at a single point in time. In 
this approach, items are treated as multiple indicators of the 
construct assessed. Split-half reliability could be estimated 
if items were separated into two halves by some rule (e.g., 
odd- vs. even-numbered) (Brown, 1910; Spearman, 1910). 
Kuder and Richardson (1937) provided a noted formulation, 
based on dichotomously scored items. Cronbach (1951) gen-
eralized this approach for more quantitatively scored items, 
leading to the most commonly used item-based coefficient, 
coefficient alpha, often called Cronbach’s alpha even though 
Guttman (1945) previously derived the coefficient (see 
McDonald, 1999). Coefficient alpha, or α, can be written as

where p is the number of items on the scale, �2

j
 (j = 1, …, p) 

is the variance of item j, and other terms were defined above. 

(4)rYY =
�2

T

�2

Y

=
�2

T
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T
+ �2

E

(5)
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p
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As noted earlier, the variance of a scale, , is equal to the sum 
of all elements of the matrix of variances and covariances 
among scale items, with item variances on the diagonal and 
item covariances off the diagonal. Thus, coefficient α is 
equal to the ratio of the sum of all off-diagonal elements in 
the item covariance matrix over the sum of all elements, and 
then multiplied by p/(p − 1). Cronbach is frequently cited as 
having shown that coefficient α has the attractive quality of 
being the average of all possible split-half reliability 
coefficients.

Coefficient α is often called an internal consistency 
reliability coefficient, as it is based on covariances among 
scale items and thus internal consistency among items. But 
internal consistency should not be conflated with homoge-
neity, where homogeneity implies that a single dimension 
underlies the set of items. Coefficient α is not a homogene-
ity coefficient, as α can be relatively high even if multiple 
dimensions are present in a scale (Green et al., 1977; Green 
& Yang, 2009; Revelle, 1979; Revelle & Wilt, 2013; Rev-
elle & Zinbarg, 2009; Schmitt, 1996; Zinbarg et al., 2006). 
Recognition of this issue led to the development of factor 
analytically based representations of scales, discussed next.

Psychometric models and their factor analytic 
analogs

As McNeish and Wolf (2020) noted, items comprising a 
scale should be factor analyzed to determine if the scale is 
best represented by only a single dimension. If a single fac-
tor well represents covariances among items, the scale would 
be considered a homogeneous scale, and a single score of 
some sort across all scale items is quite reasonable. Or, if 
two or more factors are required to represent relations among 
a set of items, then use of a single score may misrepresent 
what the scale assesses and distort or mask important fea-
tures of the data (see Bentler, 2021).

Under CTT, researchers distinguished several types of 
psychometric models, shown in Table 1. Parallel tests were 
defined as two or more tests that have (a) equal means, (b) 
equal true score variances, (c) equal error variances, and (d) 
equal correlations with external variables, a rather daunting 
set of requirements. Because of characteristics (b) and (c), 
parallel tests also have equal reliabilities. Converting these 
conditions to a factor analytic representation, consider a set 
of three indicators that are hypothesized to reflect a single 
latent factor. The linear model for these indicators could be 
written, closely mimicking a set of regression models, as

(6)
X1 = �1 + �1T + �1
X2 = �2 + �2T + �2
X3 = �3 + �3T + �3

where X1 through X3 are scores for an individual on the three 
manifest indicators (e.g., scale items), ν1 through ν3 are 
intercepts for manifest indicators, respectively, λ1 through 
λ3 are loadings of the three indicators on latent variable T, 
or, effectively, regression coefficients for predicting manifest 
variable scores from the latent variable T, and ε1 through ε3 
represent errors of measurement. In this model, each person 
has one score on each of the manifest variables X1 through 
X3, has a score on the single common factor T underlying 
the set of manifest variables, and has an associated error 
of measurement ε1 through ε3 for each equation, respec-
tively. If we define true score T to have M = 0, and SD = 1, 
each measurement error variate to have M = 0, and positive 
SD, and measurement errors to be mutually uncorrelated 
and uncorrelated with the latent factor T, the characteris-
tics of a set of parallel measures can be easily presented. 
Because true score T and error scores have means of zero, 
the intercepts in Eq. 6 become the means of the manifest 
variables. Because the variance of T is 1.0, the square of 
each λ provides the raw-score estimate of true-score variance 
in an indicator, and the variance of each error term reflects 
error variance.2 Modern structural equation modeling soft-
ware makes constraining parameter estimates to equality a 
simple matter. Consider a factor model with the following 
constraints: The three intercepts/means ν1 through ν3 are 
constrained to equality, the three loadings λ1 through λ3 are 
constrained to equality, and the variances of the three error 
terms ε1 through ε3 are constrained to equality. If such a 
model fits a data set well, the model would satisfy three of 

Table 1  Psychometric characteristics of different types of tests

Test type Means True Score
Variance

Error
Variance

Correlations w/
Other Variables

Strictly parallel 
tests

Equal Equal Equal Equal

Essentially parallel 
tests

-- Equal Equal Equal

Strictly tau  
equivalent

Equal Equal Vary Vary

Essentially tau 
equivalent

-- Equal Vary Vary

Congeneric -- Vary Vary Vary

2 Technically, within a common factor model, the residuals, the εjs, 
are scores on unique factors, so use of a term such as errors can be 
misleading. The variance of a unique factor is an additive combina-
tion of specific variance (i.e., reliable variance not shared with the 
common factor or latent variable) and random measurement error 
variance. Hence, to label the variance of a residual as error variance 
tends to gloss over the distinctions afforded unique factors. To main-
tain comparability in wording with McNeish and Wolf (2020) we will 
use the term error variance, but note that this error variance includes 
both reliable variance specific to the indicator plus random error.
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the key requirements of a strictly parallel test model for the 
data (cf. McDonald, 1999), notably equal means, equal true 
score variances, and equal error variances. If means of vari-
ables are not considered or are allowed to vary, even though 
factor loadings are constrained to equality as are the error 
variances, such a model can be characterized as a model for 
essentially parallel tests.

If a model with full parallel test constraints does not have 
acceptable fit to data, less constrained statistical models 
might be considered. For example, if the means ν1 through 
ν3 are constrained to equality and the loadings λ1 through λ3 
are constrained to equality, but variances of measurement 
error terms ε1 through ε3 are allowed to vary, this may be 
termed a strictly tau equivalent test model. The term tau 
equivalent is used because tau is the Greek name for T, 
the true score, and a strictly tau equivalent model retains 
equality of linear relations of the true score to each manifest 
variable, even as the variances of errors of measurement are 
allowed to vary across indicators. Although tau equivalent 
indicators have equal true score variances, they have differ-
ent reliabilities based on their different error variances. As 
with parallel tests, if the means of tau equivalent tests are 
either not part of the model or are allowed to vary across 
tests, the resulting model is identified as an essentially tau 
equivalent test model.

As a final step, if all parameter estimates in the model—
means (i.e., intercepts), factor loadings, and error vari-
ances—are allowed to vary across indicators, but the set 
of indicators is well represented by a single latent factor, 
the resulting model is termed a congeneric test model. The 
congeneric test model is clearly the least constrained of the 
test theory models. But if the single-factor congeneric test 
model provides adequate fit to a set of indicators, the indica-
tors can be considered a homogeneous set of measures, and 
a single score derived from the measures is theoretically and 
mathematically justified and interpretable.

Our reason for emphasizing psychometric models is this: 
the models have ties to indexes of reliability. As experts 
have shown (e.g., McDonald, 1970, 1999; Revelle & Zin-
barg, 2009), coefficient α will yield an accurate model-based 
estimate of reliability only if scale items conform at least to 
an essentially tau equivalent structure, such that items have 
equal factor loadings in addition to loading on a single fac-
tor. A concise set of requirements is (a) the set of items is 
unidimensional (i.e., a single factor underlies covariances 
among items), (b) measurement error terms do not covary 
(i.e., no residual covariances among residual terms are pre-
sent), (c) items are linearly related to the factor, and (d) the 
set of items has at least essential tau equivalent structure 
(i.e., equal factor loadings). If these four characteristics 
hold, then coefficient α yields an estimate of reliability 
of the equally weighted sum of items that is equal to the 

model-based coefficient omega, which is discussed imme-
diately below.

If the first three of the preceding characteristics (a) 
through (c) hold, but the last one does not—that is, factor 
loadings vary across items, then coefficient α is not a recom-
mended estimator of scale reliability. In this case, McDon-
ald (1970, 1999) derived an alternative estimator, coefficient 
ωT,3 for congeneric test models with a single factor that can 
be calculated as:

where �2
j
(j = 1, ..., p)  is the variance of measurement error 

ej , and all other symbols were defined above. Thus, to com-
pute coefficient ωT, one first sums the loadings of the p items 
and squares this sum, placing the result in the numerator, as 
this represents the total amount of true score variance across 
the set of items. The denominator consists of the sum of the 
true score variance plus the sum of the measurement error 
variances of the p items. Equation 7 therefore is one instan-
tiation of Eq. 4, that a reliability coefficient should be the 
ratio of true score variance over total scale variance, in this 
case a ratio based on a congeneric test structure.

Derivations of reliability coefficients such as coefficients 
α and ωT  are based on raw scores for items, not standard-
ized item responses. If raw item scores are used to compute 
sum scores, as is common practice, then only raw score, or 
covariance metric, parameter estimates should be used in 
equations such as Eqs. 5 and 7 to estimate scale reliability.

Another issue of considerable importance is the fact 
that most prior derivations of coefficients alpha and omega 
and relations between them have considered only popula-
tion values of parameters, such as those in Eqs. 5, 6, and 7, 
and this limits certain generalizations that may be drawn. 
In any sample, sample-based estimates of variances (e.g., 
in Eq. 5) or of factor loadings and unique variances (e.g., 
in Eqs. 6 and 7) take the place of population parameters in 
those equations. All claims about alpha and omega hold only 
for strictly unidimensional data structures, such that a single 
factor accounts perfectly for all covariances among items. 

(7)�T =

�
p∑
j=1

�j

�2

�
p∑
j=1

�j

�2

+
p∑
j=1

�2
j

3 Many presentations of coefficient omega use the simple ω symbol 
for this statistic. We have chosen to use the symbol ωTto signify that 
we are presenting a coefficient that reflects the proportion of total var-
iance that is due to all common factors. If only a single factor under-
lies a set of items, ωT represents the proportion of scale variance due 
to that one factor. But, if multiple factors contribute to a set of items 
(e.g., leading to a bifactor structure), ωT represents the proportion of 
scale variance across all factors.
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In such data structures, coefficients alpha (from Eq. 5) and 
omega (from Eq. 7) will attain identical values if loadings 
of items on the single factor are equal; if item loadings on 
the factor are unequal, alpha will lead to a lower value than 
omega, although the difference is often small in magnitude. 
Strictly unidimensional data structures probably hold only 
in population structures “… in the bowels of a computer 
processor running a Monte Carlo study” (borrowing a phrase 
from Cohen, 1990), structures that exhibit no misfit in the 
population. Even there, when simulating sample data from 
such populations, a single factor will fail to fit item covari-
ances perfectly in a given sample due to sampling error 
(MacCallum & Tucker, 1991), leading to some qualifica-
tions of alpha vs. omega claims. Furthermore, most empiri-
cal data are not strictly unidimensional, but are at best only 
approximately or essentially unidimensional, so have addi-
tional small perturbations of item covariances that preclude 
perfect fit of a one-factor model even in the population (e.g., 
minor domain factors too numerous to model, as posited by 
Tucker et al., 1969; see also Nguyen & Waller, 2022). Calcu-
lation of coefficient alpha using Eq. 5 treats all off-diagonal 
covariation among items as true-score-related variance. In 
contrast, calculation of coefficient omega using Eq. 7 treats 
only the off-diagonal item covariation accounted for by the 
single factor as true-score-related variance. If the single 
factor fails to explain all off-diagonal item covariance, it is 
theoretically possible for coefficient alpha to attain a higher 
value than coefficient omega. Although not highlighted in 
their paper, Deng and Chan (2017), using empirical sample 
data, reported a small number of instances in which coef-
ficient alpha led to a higher estimate of reliability than did 
coefficient omega, almost surely due to the lack of strict 
unidimensionality of scale items in these instances.

Sum scores and factor models

McNeish and Wolf (2020) noted that an equally weighted 
sum of raw scores of manifest variables can be represented 
as a parallel test model with constrained equal factor load-
ings and constrained equal error variances. McNeish and 
Wolf proceeded to claim that a researcher who uses an 
equally weighted sum of items assumes implicitly that a 
single-factor parallel test model well represents the rela-
tions among the set of items, an assumption that should be 
acknowledged explicitly and tested. This claim is fundamen-
tally flawed.

The fundamental flaw is this: employing an equally 
weighted sum of a set of items does not imply that a parallel 
test model is the proper representation of covariances among 
items, as if the parallel test model was the justification for 
computing the sum score. Instead, the implication flows in 
the opposite direction: if a one-factor model of any form 

provides close fit to covariances among items, an equally 
weighted sum of items is a reasonable basis for estimating 
reliability, but the form of the factor model dictates how 
reliability should be estimated.

The basis for these assertions rests on Eqs. 3, 5, and 7. 
Using unit weights in the summation, Eq. 3 shows that the 
variance of the sum of a set of items is the sum of all ele-
ments of the matrix of covariances among items. If this 
covariance matrix is well explained by a one-factor model, 
Eq. 5 can be used if all factor loadings on the common factor 
are equal, because such a model is consistent with equal off-
diagonal values.4 If factor loadings vary, then Eq. 7 should 
be used to obtain an estimate of reliability. Thus, good fit of 
a one-factor model justifies use of an equally weighted sum 
of items, and the nature of the one-factor model dictates the 
formula to use when estimating reliability of the sum score.

We note that all of the foregoing relies on test theory 
approaches based on the assumption of strict homogene-
ity across a set of items, which implies the presence of a 
single dimension underlying the items. If a set of indicators 
is multidimensional, an equally weighted sum of the items 
may still be justified, but this relies on altered test theory 
approaches. Measures often have a bifactor structure, with 
one dominant, general factor on which all items load, and 
then a set of orthogonal group factors on which subsets of 
items load. Variants of Eq. 7 can be used in such situations, 
which led Zinbarg et al. (2005) to distinguish coefficient 
ωH (which estimates reliability associated only with the 

4 Both parallel test and tau equivalent test models have equal load-
ings on a single factor, so both can reproduce equal covariances 
among items and both lead to estimated factor scores that correlate 
perfectly with sum scores. But whether a parallel test or tau equiva-
lent test model provided good fit to an interitem covariance matrix 
was never discussed by Cronbach (1951). Derivations by Cron-
bach were based on the myriad ways to form split-halves of a set of 
items, where the various split-halves were sum scores of randomly 
allocated, non-overlapping sets of items, and item covariances were 
assumed to be positive, but often unequal. Cronbach stressed the 
importance for α of one major factor underlying a set of items, but 
never dealt in any detail with the issue of equality of loadings on the 
factor. Indeed, because Cronbach presented results for which coef-
ficient α varied across random split-halves, the loadings on the sin-
gle major factor were implicitly assumed to be unequal. Discussion 
of parallel tests and their characteristics predated Cronbach (1951), 
but tau equivalent tests are a more recent innovation. An APA Psy-
cInfo search (on 19 April 2021) for the terms “tau equivalent” or “tau 
equivalence” found that the first use of “tau equivalent” in a refereed 
publication appears to have been by Jöreskog (1971), who attributed 
the term to Lord and Novick (1968). Furthermore, usable statistical 
software to specify, estimate, and test the fit of parallel and tau equiv-
alent models only became available about two decades after Cron-
bach (1951), with the contribution by Jöreskog (1971). Thus, parallel 
or tau equivalent test models are not the basis for the initial deriva-
tion of coefficient α, but were recognized more than a decade later as 
the implicit assumption required so that coefficient α yields a justified 
model-based index of reliability.
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general factor) from coefficient ωT (which estimates reliabil-
ity across the total set of general and all group factors) (see, 
e.g., Revelle & Zinbarg, 2009; Revelle & Condon, 2019; 
Zinbarg et al., 2006).

Alternatively, one might design measures based on 
the theory of parallel forms. If one intended to assess 
general intelligence, a wide-ranging, heterogeneous bat-
tery of indicators might be desired. The battery would 
assess a bit of this, a bit of that, and a bit of other things, 
all within the general domain of mental ability. Such a 
battery might be quite multidimensional, but a single 
score across the entire battery could have substantial 
levels of reliability (e.g., parallel forms reliability with 
another battery with similar content specification) (cf. 
Cronbach, 1951). Extended consideration of multidi-
mensional collections of indicators is beyond the scope 
of this paper. However, we mentioned this issue here to 
emphasize that unidimensionality and homogeneity are 
not the only bases available for developing reliability 
theory.

Factor analytic population parameters and sample 
estimates

Yet another matter that deserves attention is the issue of 
factor analytic population parameters and their sample 
estimators, an issue that McNeish and Wolf (2020) failed 
to discuss. Factor scores are subject to several forms of 
indeterminacy. One form of factor score indeterminacy 
is mathematical in nature, because the number of com-
mon plus unique factors is greater than the number of 
manifest variables analyzed. Hence, factor scores can 
only be estimated, not calculated in any deterministic 
sense. Second, even in the population, multiple methods 
of factor score estimation are available, and the meth-
ods yield different estimated factor scores with differ-
ent properties (see, e.g., Grice, 2001; Tucker, 1971). 
Third, in any sample, factor loadings, which are used 
in sample-based estimation of factor scores, will vary 
from sample to sample and from their population val-
ues, leading to fluctuations in factor scoring weights and 
thus additional indeterminacy from sample to sample 
and from sample to population (MacCallum & Tucker, 
1991). Fourth, manifest variables are standardized in a 
sample to a mean of zero (and typically also a SD = 1.0) 
prior to being weighted and summed in the estimation of 
factor scores. As a result, estimated factor scores have a 
mean of zero in any sample. Because manifest variable 
means (and SDs) vary from sample to sample and from 
sample to population, this is yet another sample-specific 
form of indeterminacy built into the estimation of factor 
scores.

Sum scores, using unit weights, circumvent certain 
aspects of indeterminacy through the use of identical 
weights in every sample, so the weights are not subject to 
sample-by-sample fluctuation. Furthermore, whether to 
transform manifest variables prior to summing them is a 
matter to be scrutinized, rather than dictated as in sample-
based standardization used in estimating factor scores. If 
manifest variables are on approximately the same scale (e.g., 
a set of items each answered on a 1-to-7 scale), researchers 
typically do not transform scores, but simply sum the raw 
scores on the variables.5

Sum scores are fallible (i.e., imperfect) estimates of 
relative standing of individuals on the dimension implied 
by the sum score and purport to be nothing more. But, in 
most respects, estimated factor scores can be described 
in similar fashion. Both sum scores and estimated factor 
scores are weighted sums of scores on manifest variables, 
so have less-than-perfect reliability. Sum scores are equally 
weighted sums of manifest variable scores that are usually 
summed in their raw score form; estimated factor scores are 
differentially weighted sums of the same manifest variables, 
using sample-specific weights applied to scores subjected to 
sample-specific standardization. McNeish and Wolf (2020) 
clearly preferred estimated factor scores over sum scores. 
But whether the various forms of sample specificity involved 
in the estimation of factor scores lead to scores with notice-
ably superior properties relative to sum scores is a matter for 
empirical investigation, not a priori decree.

Estimating reliability in empirical data

Holzinger‑Swineford (Holzinger & Swineford, 1939) 
data

To serve as the empirical basis for their demonstrations, 
McNeish and Wolf (2020) introduced a set of six manifest 
variables derived from the classic study by Holzinger and 
Swineford (1939). McNeish and Wolf referred to the vari-
ables as “six items from a cognitive ability assessment …,” 
implied they were items for a single cognitive dimension, 
and stated that item scores varied from 0 to 10. These claims 
are incorrect in at least three important ways. First, the six 
“items” were not single items, but were six tests of cognitive 
ability, with scores on each test being a sum score across 
many items. Second, the variables were not developed to 
be indicators for a single dimension. Instead, the first three 

5 All properties of sum scores, including reliability, are also true of 
mean item scores (or the average score across a set of items). The 
mean item score is a simple linear transformation of a sum score, 
obtained by dividing the sum score by the number of items, and has 
the interpretive advantage of falling on a scale with the same units as 
that on which each item was rated.
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variables—paragraph comprehension, sentence completion, 
and word meaning—were indicators for a Verbal factor, 
and the last three variables—addition, counting dots, and 
straight-curved capitals—were designed to be indicators for 
a Speed factor. Third, score ranges were not strictly com-
parable across tests, as McNeish and Wolf (2020) stated. 
The original raw scores on the six variables were quite dif-
ferent across variables in terms of their Ms, SDs, and score 
ranges, and the scaled scores for these variables (linearly 
rescaled versions of the raw scores available through the 
lavaan (Rosseel, 2012, 2021) and psychTools (Rev-
elle, 2021b) packages in R) have more similar means but 
score ranges that vary across tests. Finally, in a paper with a 
goal of promoting precision in measurement and analyses, 
we are unsure why McNeish and Wolf decided to degrade 
information in the scaled scores by rounding the scores to 
integer values. Rounding of scores led to less information 
in the rounded scores, as decimal places in the scaled scores 

provided useful individual difference information. Addi-
tional details on the nature of the six tests and the various 
ways in which they were scored and transformed are pro-
vided in Supplemental Material.6

In our analyses reported below, we used the more precise 
scaled scores, and we have provided analytic results using 
the rounded scores in Supplemental Material for complete-
ness and comparison with our results. As shown in Table 2, 
the skewness and kurtosis values for the six tests are not 
extreme, implying that each of the six variables was approxi-
mately normally distributed. In addition, as hypothesized by 
Holzinger and Swineford (1939), the three verbal tests (x06, 
x07, and x09) were relatively highly correlated, the three 
speed tests (x10, x12, and x13) were also relatively highly 
correlated, and the three speed tests correlated at relatively 
low levels with the three verbal tests (see Table 2).

Factor scores versus sum scores

McNeish and Wolf (2020) devoted considerable attention 
to the contrast between estimated factor scores from a one-
factor congeneric test model fit to the six manifest variables 
with the simple sum score across the six variables. They 
emphasized that estimated factor scores from the congeneric 
test model correlated at the rather low level of r = .87 with 
sum scores. McNeish and Wolf highlighted the rather dif-
ferent estimated factor scores for two particular individuals, 
even though the individuals had identical sum scores across 
the six tests. Thus, estimated factor scores suggested the two 
individuals differed substantially in level of cognitive ability, 
whereas sum scores implied the individuals had equal levels 
of ability. Unfortunately, this section of the McNeish and 

Table 2  Descriptive statistics and correlations for scaled test scores from Holzinger and Swineford (1939)

Elements in the Test column identify manifest variables, where “x”’ stands for the scaled (or transformed) versions as provided by the lavaan 
program, and the numbers (06, 07, etc.) refer to the ordinal position of tests in the Holzinger and Swineford (1939) protocol and monograph.

Test Description M SD Skew Kurt Min Max

Descriptive statistics
   x06 Paragraph comprehension 3.06 1.16  0.27  0.08 0.00   6.33
   x07 Sentence completion 4.34 1.29 -0.35 -0.55 1.00   7.00
   x09 Word meaning 2.19 1.10  0.86  0.82 0.14   6.14
   x10 Addition 4.19 1.09  0.25 -0.31 1.30   7.43
   x12 Counting dots 5.53 1.01  0.53  1.17 3.05 10.00
   x13 Straight-curved capitals 5.37 1.01  0.20  0.29 2.78   9.25 

Correlations  x06  x07   x09   x10  x12    x13
   x06 Paragraph comprehension 1.00
   x07 Sentence completion   .73 1.00
   x09 Word meaning   .70   .72  1.00
   x10 Addition   .17   .10    .12  1.00
   x12 Counting dots   .11   .14    .15    .49 1.00
   x13 Straight-curved capitals   .21   .23    .21    .34   .45   1.00

6 As discussed in Supplemental Material, we used the letter ‘t’ to 
designate scores on the six tests in their raw score form, the letter “x” 
to designate linearly rescaled or transformed scores on the tests, and 
the letter “r” to indicate rounded versions of the rescaled (or trans-
formed) scores on the tests. We also used numbers to indicate the 
position of a given test in the Holzinger and Swineford (1939) bat-
tery. Thus, t06, x06, and r06 refers to paragraph comprehension test 
scores in raw, scaled, and rounded form, respectively; t07, x07, and 
r07 to raw, scaled, and rounded scores, respectively, on sentence com-
prehension, etc. In the current manuscript, we present analyses of 
the scaled scores, to maintain score accuracy consistent with analy-
ses reported by Holzinger and Swineford. In Supplemental Material, 
we compared analytic results using scaled scores with results based 
on rounded scores (used by McNeish & Wolf, 2020) to identify any 
notable differences that arose from rounding of scores.
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Wolf paper is based on theoretical and empirical mistakes 
and misapprehensions.

One theoretical misapprehension is the presumption that 
estimated factor scores are the best scores to be obtained 
from a set of indicators, decidedly better than sum scores. 
If factor scores reveal large differences between certain per-
sons who have identical sum scores, the factor scores were 
presumed to be more optimal and sum scores suspect. But, 
given variation in factor loadings and their factor scoring 
weights across samples, estimated factor scores in one sam-
ple will be based on one set of scoring weights in one sample 
and a different set of scoring weights in other samples. As 
a result, comparisons across samples of relations of factor 
scores with other variables will have a bit of an “apples ver-
sus oranges” flavor. In contrast, although sum scores may not 
be ideal in all ways, the use of the same, unit compositing 
weights across samples helps ensure that apples are com-
pared to apples, even if they have some blemishes.

A second issue involves a bit of sleight of hand by 
McNeish and Wolf (2020), who branded the different char-
acterizations of individuals as a demonstration that seem-
ingly more precise estimated factor scores yield more use-
ful and insightful information about the relative standing 
of individuals on an underlying dimension than do stodgy 
sum scores. The sleight of hand is this: earlier in their paper, 
McNeish and Wolf had argued that estimated factor scores 
from a parallel test model correlate perfectly (i.e., r = 1.0) 
with simple sum scores, so sum scores represent (implic-
itly) the estimated factor scores from a parallel test model. 
Thus, rather than a “contest between estimated factor scores 
versus sum scores” (to the detriment of sum scores), one 
could characterize their discussion, in all relevant respects, 
as a “contest between estimated factor scores from a con-
generic factor model versus estimated factor scores from 
a parallel test model.” That is, both sets of scores are the 
seemingly more precise way to score manifest variables (i.e., 
both are estimated factor scores, according to McNeish and 
Wolf), but the two sets of factor scores yield very different 

information at the individual level. The key issue becomes 
the relative fit and interpretability of alternative factor mod-
els, and sum scores have only a tangential relation to this 
contrast.

This issue of the fit of different one-factor models high-
lights a signal empirical mistake by McNeish and Wolf 
(2020)—they failed to follow their own advice and the 
advice of other recent commentators to base scores on the 
internal structure of the six manifest variables. If they had, 
McNeish and Wolf would have had to confront several trou-
bling issues. At various points, McNeish and Wolf reported 
fitting one-factor parallel test and one-factor congeneric test 
models to the six variables and also fit a two-factor conge-
neric model to the data. For completeness, we fit six models 
to the data—one-factor parallel, tau equivalent, and conge-
neric test models, and two-factor versions of each model. Fit 
indices for these models are shown in Table 3. To evaluate 
fit, we used the standard χ2 test of model misfit, whereby a 
significant χ2 value provides a statistical basis for rejecting 
a model. The χ2 value is directly related to sample size, so 
indices of practical fit are often recommended. We used sev-
eral practical fit indices. One was the root mean square error 
of approximation (RMSEA) with its 90% confidence interval 
(CI). Values of RMSEA of .05 or lower index close fit of a 
model to data, .05 to .08 adequate fit, .08 to .10 poor fit, and 
above .10 unacceptable fit. The comparative fit index (CFI) 
and Tucker–Lewis index (TLI) are measures of off-diagonal 
covariation explained by a model, and values of .95 or higher 
reflect close model fit. The standardized root mean square 
residual correlation (SRMR) is a measure of the average 
residual correlation, and values below .08 are desirable. The 
preceding criteria for close model fit are not hard-and-fast 
cutoffs, but should be considered approximate indicators of 
close fit, and their use is buttressed by simulation results 
(e.g., Hu & Bentler, 1999).

Inspection of fit indices in Table 3 will reveal that Mod-
els 1, 2, and 3—the one-factor parallel, tau equivalent, and 
congeneric models—had wholly inadequate fit, having 

Table 3  Fit of six alternative factor models to scaled scores (x06–x13)

RMSEA [CI] = root mean square error of approximation and its 90% confidence interval, CFI = comparative fit index, TLI = Tucker–Lewis 
index, SRMR = standardized root mean square residual. a In the SRMR column, the value before the slash is from output based on analysis with 
Mplus, and the value after the slash is from output after analysis using lavaan package in R.

Model No. of Statistical fit Practical fit

number factors Psychometric model χ2 df Prob RMSEA [CI] CFI TLI SRMR

1 1 Essentially parallel 398.72 19 <.0001 .258 [.236, .280] .430 .550 .254/.195
2 1 Essentially tau equivalent 383.48 14 <.0001 .296 [.271, .322] .446 .406 .251/.198
3 1 Congeneric 149.79 9 <.0001 .228 [.197, .261] .789 .648 .130/.130
4 2 Essentially parallel 40.62 16 .0006 .072 [.045, .099] .963 .965 .104/.063
5 2 Essentially tau equivalent 29.10 12 .004 .069 [.037, .101] .974 .968 .071/.049
6 2 Congeneric 14.35 8 .073 .051 [.000, .093] .990 .982 .034/.034
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rejectable statistical fit and extremely poor practical fit. 
Thus, the entire presentation by McNeish and Wolf (2020) 
of the differences between congeneric factor scores and sum 
scores—favoring estimated factor scores over sum scores—
is moot. The estimated factor scores from a one-factor con-
generic test model and the sum scores across all six tests 
(which correlate perfectly with parallel test estimated factor 
scores) have no empirical justification or valid interpretation.

The fit indices for Models 4, 5, and 6—the two-factor 
parallel, tau equivalent, and congeneric models—have much 
better fit. We consider the parallel and tau equivalent mod-
els to be improper when fit to the six tests, because mod-
els with factor loadings constrained to equality should be 
entertained only if indicators were carefully designed to 
have equal or approximately equal measurement scales and, 
thus, variances. Test descriptions provided by Holzinger and 
Swineford (1939) and descriptive statistics for raw scores 
shown in Supplemental Material Table S1 demonstrate this 
was not the case for these six variables. The transforma-
tions resulting in scaled scores led to more similar means 
and SDs across tests, but the transformations were never 
explicitly justified. An infinite number of alternative, arbi-
trary, linear transformations are allowable, and these would 
affect measures of the fit of factor models with constraints 
on loadings, but would leave the fit of congeneric factor 
models unchanged. Thus, only congeneric factor models are 
psychometrically legitimate contenders for the six HS data 
variables, and the two-factor congeneric model had very 
close fit to the data, as shown in Table 3.

In Table 4, parameter estimates from the two congeneric 
factor models are shown. In the one-factor model, the three 
verbal tests had rather high loadings (0.91 and higher), and 
the three speed tests had very low loadings (0.28 or lower). 
This pattern of loadings implies that the factor was very 

closely aligned with verbal ability, and thus accounted for 
very little variance in speed variables. Not surprisingly, error 
variances for the three verbal tests were relatively small, 
and error variances for the speed tests were extremely large. 
In the two-factor model, loadings on the Verbal factor and 
error variance estimates for the three verbal tests were quite 
similar to those in the one-factor model. But loadings on 
the Speed factor and error variance estimates for the three 
speed variables were dramatically altered, with much higher 
loadings and much reduced error variances, as the two-factor 
model was able to represent well the speed variables with the 
additional latent variable. The correlation between the two 
factors, r = .26, indicates that the two factors were not highly 
correlated. The very good fit indices for the two-factor con-
generic model indicate that it is the optimal model for the 
six scaled variables.

Demonstration #1: reliability estimates

The six scaled test scores derived from the Holzinger and 
Swineford (1939) study are quite useful for demonstrating 
various ways of estimating reliability in empirical studies.

Alpha and omega Because the two-factor congeneric test 
model shown in Table 4 is a reasonable representation of 
data, we can contrast coefficient α and ωT values separately 
for the three verbal tests and the three speed tests. In the 
top half of Table 5, the covariances among the three verbal 
tests are shown, along with the factor loadings and error (or 
unique) variances from a one-factor congeneric model fit to 
the (3 × 3) covariance matrix. Equation 5 illustrates that the 
sum of all elements of the covariance matrix and the sum 
of the diagonal values are needed to calculate coefficient 

Table 4  Raw score parameter estimates for two congeneric CFA models fit to scaled scores

Tabled values in the top section of the table are estimated factor loadings and error variances (or unique factor variances); in the bottom section, 
factor variances and covariances are reported. Asterisked parameters were fixed to reported values to identify the solution.

One-factor model Two-factor model

Loading

Variable Test Description Loading Error variance Verbal Speed Error 
variance

  x06 Paragraph comprehension 0.98 0.38 0.98 0* 0.38
  x07 Sentence completion 1.11 0.42 1.11 0* 0.42
  x09 Word meaning 0.91 0.37 0.91 0* 0.37
  x10 Addition 0.19 1.15 0* 0.67 0.73
  x12 Counting dots 0.18 0.99 0* 0.78 0.42
  x13 Straight-curved capitals 0.28 0.94 0* 0.59 0.67 

Factor 1 1.0* 1.0*
Factor 2 0.26 1.0*
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α, and Eq. 7 shows that the sum of factor loadings and the 
sum of unique variances are required to calculate coefficient 
ωT. Simple calculations show that α = .883 and ωT = .886, 
very similar values given the similarity of loadings on the 
Verbal factor.

In the bottom half of Table 5, comparable values for 
speed tests are shown, with the (3 × 3) covariance matrix 
and factor loadings and unique variances from a congeneric 
model fit to the covariance matrix. For speed tests, reliability 
coefficients were noticeably lower, with α = .689 and ωT = 
.696, but still rather similar values despite apparent vari-
ability in loadings on the Speed factor. The upshot of these 
analyses is that a verbal sum score had relatively high levels 
of homogeneity reliability, and a speed sum score had lower 
and borderline levels of reliability.

Correlations among estimated and true factor scores and 
sum scores Recently, Nicewander (2020) proposed ways of 
estimating the correlation of estimated factor scores with 
true factor scores and extended this to estimating the cor-
relations of sum scores with true factor scores and with fac-
tor score estimates. Because reliability is the proportion of 
variance in a score associated with a true score, the squares 
of correlations of factor score estimates and sum scores with 
true factor scores yield estimates of reliability. Notably, all 
of these correlations can be estimated from factor analytic 
results without the actual estimation of factor or sum scores.

Restricting attention to single-factored applications, let 
Cxx stand for the (p × p) matrix of covariances among p 
manifest variables, a superscript (-1) for the inverse opera-
tion, λ for the (p × 1) column vector of factor loadings, x for 
the (p × 1) column vector of scores on p manifest variables, 
f̂ and f  for estimated and true factor scores, respectively, 
and 1 for the (p × 1) column vector of ones (to be used for 
summing, such that 1′x is the sum of manifest variable scores 
for an individual). Nicewander (2020) showed that ρ, the 

population correlation of regression estimate factor scores 
with true factor scores, can be represented as

and the square of this value

is the reliability of the estimated factor scores. Similarly, 
the squared correlation between the sum score and true fac-
tor scores, and thus reliability of sum scores, can be written 
as

and the correlation of estimated factor scores with sum 
scores can be written as

where symbols were defined above. Replacing all vectors 
and matrices in Eqs. 8 through 11 with their sample esti-
mates leads to sample estimates of associated values. Addi-
tional details and programs for estimating these values are 
presented in Supplemental Material.

Based on the above, estimated factor scores on the Verbal 
factor have a reliability of .886, sum scores a reliability of 
.886, and sum scores and estimated factor scores correlate 
very highly, r = .9999. Results for the Speed factor are 
noticeably lower. Estimated factor scores on the Speed 
factor have a reliability of .739, sum scores a reliability of 
.696, and sum scores and estimated factor scores correlate 
fairly highly, r = .970. Thus, reliabilities for estimated factor 
scores using the Nicewander (2020) approach tend to be 
slightly or moderately higher than coefficient ωT reliabilities 
for sum scores.
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Table 5  Coefficients α and ωT for verbal and speed sum scores based on scaled scores from Holzinger and Swineford (1939)

For variable names, Compr = comprehension, Compl = completion, S-C Caps = straight-curved capitals. In the Factor model columns, λ = fac-
tor loading, and θ = error/unique variance.

Variable names Covariance matrix Factor model Reliability

Verbal tests x06 x07 x09 λ θ α ωT

  x06 Paragraph Compr 1.355 1.101 0.899 .984 .382
  x07 Sentence Compl 1.101 1.665 1.018 1.115 .416
  x09 Word meaning 0.899 1.018 1.200 .910 .369 .883 .886 

Speed tests x10 x12 x13 λ θ α ωT

   x10 Addition 1.187 0.537 0.375 .661 .746
   x12 Counting Dots 0.537 1.025 0.459 .801 .366
   x13 S-C Caps 0.375 0.459 1.018 .565 .696 .689 .696
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Composite reliability If manifest variables are single items 
or are test scores for which reliability estimates are unavail-
able, the preceding methods are perhaps the only usable way 
to estimate reliability. However, still another alternative is 
possible. Cronbach (1951) outlined how to estimate reli-
ability of what he called a lumpy test. In a similar vein, Rae 
(2007) provided a readable account of estimating reliability 
of a composite that is formed as the sum of several com-
ponents, if each component is accompanied by an estimate 
of reliability. Fortunately, Holzinger and Swineford (1939) 
reported reliability coefficients for each test in their battery.

The composite reliability method from Rae (2007) is 
conceptually simple to calculate. The sum of all elements 
of the matrix of raw covariances among manifest variables 
is the total variance of the composite. Given an estimate of 
reliability of each manifest variable, what we term a reduced 
covariance matrix is identical to the raw covariance matrix 
except that each diagonal value is replaced by the variance 
of the variable multiplied by its reliability. Thus, the diago-
nal values of this matrix contain an estimate of true score 
variance in each variable, and the sum of all values in the 
reduced covariance matrix yields an estimate of true score 
variance in the composite. The ratio of true score variance of 
the composite over the total score variance of the composite 
is therefore an estimate of the reliability of the composite, 
or composite reliability.

Calculations for composite reliability are shown in 
Table 6. In the top half of Table 6, results for the verbal 
tests are shown, specifically, the raw covariance matrix, the 
reliability of each test, and the associated reduced covariance 
matrix. Comparable values for the speed tests are shown in 
the bottom half of Table 6. The fairly simply calculations 
lead to estimated composite reliabilities of .910 and .959 

for the verbal and speed sum scores, respectively. Of con-
siderable interest, the composite reliabilities are reversed in 
magnitude for the verbal and speed sum scores—relative 
to values of coefficients α and ωT—due to the substantially 
higher reliabilities of the three speed tests in comparison to 
those for the three verbal tests.

Using scores in subsequent analyses

Sum scores versus factor scores: does it matter?

Another major argument by McNeish and Wolf (2020) was 
that use of sum scores versus presumably more precise fac-
tor scores can have unacknowledged differential impact 
when these scores are used in later analyses. In framing this 
argument, they distinguished multistage and simultaneous 
analytic approaches. In a multistage approach, the first step 
involves (a) performing a factor analysis and estimating fac-
tor scores or (b) calculating sum scores for individuals. In a 
second stage, the estimated factor scores or sum scores are 
used as predictors or as criteria in analyses with one or more 
external variables or covariates.

The other, simultaneous analytic approach is often con-
ducted with structural equation modeling methods. Here, 
multiple items or indicators for each latent variable are spec-
ified, and relations among latent variables can be estimated 
within the context of a single-step analysis. Manifest (i.e., 
non-latent) covariates can also easily be incorporated in such 
models. In a simultaneous method, factor scores need not 
be separately estimated. That is, the means, variances, and 
covariances of latent variables and their relations with other 

Table 6  Reliabilities of verbal and speed composite scores based on scaled scores (x06–x13)

For variable names, Compr = comprehension; Compl = completion, S-C Caps = straight-curved capitals. rxx = reliability, calculated as the aver-
age of reliability estimates for the Pasteur and Grant-White schools (Holzinger & Swineford, 1939). Reduced covariance matrix is identical to 
raw covariance matrix, except that error variance has been subtracted from each variance on the diagonal. Composite reliability = (sum of ele-
ments of reduced covariance matrix) / (sum of elements of raw covariance matrix).

Variable names Raw covariance matrix Reduced covariance matrix Composite
Verbal tests x06 x07 x09 rxx x06 x07 x09 Reliability
x06 Paragraph Compr 1.355 1.101 0.899 .700 0.949 1.101 0.899
x07 Sentence Compl 1.101 1.665 1.018 .790 1.101 1.316 1.108
x09 Word meaning 0.899 1.018 1.200 .860 0.899 1.018 1.032

Sum = 10.256 Sum = 9.332 .910 

Raw covariance matrix Reduced covariance matrix
Speed tests x10 x12 x13 rxx x10 x12 x13
x10 Addition 1.187 0.537 0.375 .955 1.134 0.537 0.375
x12 Counting dots 0.537 1.025 0.459 .930 0.537 0.954 0.459
x13 S-C Caps 0.375 0.459 1.018 .885 0.375 0.459 0.901

Sum = 5.972 Sum = 5.729 .959
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variables can all be estimated within the simultaneously esti-
mated structural model.

McNeish and Wolf (2020) noted that researchers should 
be wary of using sum scores, which might be relatively 
imprecise, rather than more precise factor scores, as alter-
nate methods of scoring might lead to different conclusions 
in analyses of data. This is a serious concern and deserves 
considerable attention, which we illustrate with two empiri-
cal demonstrations.

Demonstration #2: personality data and comparison 
of estimated factor and sum scores

Here, we compare two multistage analytic approaches, con-
trasting the correlations of estimated factor scores and sum 
scores with a set of criteria. We used an empirical data set, 
the spi data set (adapted from Condon, 2017), accessible 
through the psychTools package (Revelle, 2021b) in R 
(R Core Team, 2021). The data set contains responses by a 
sample of 4000 participants to a 135-item pool of personal-
ity items, and 10 criterion variables are also available. All 
personality items were answered on a 6-point scale, from 
1 = “strongly disagree” to 6 = “strongly agree.” The 135 
items consist of 27 narrow five-item scales, which can also 
be configured into five broader 14-item scales for the Big 5 
dimensions of Extraversion, Agreeableness, Conscientious-
ness, Neuroticism, and Openness. The 10 criterion variables 
and their scoring/codes are:

(a) health, on a scale from 1 = “poor” to 5 = “excellent”;
(b) sex, coded 1 = male, 2 = female;
(c) exercise, scale from 1 = “very rarely” to 6 = “more than 

5 times per week”;
(d) age, in years;

(e) education, from 1 = “less than 12 years” to 8 = “gradu-
ate or professional degree”;

(f) emergency room visits, from 1 = “none” to 4 = “3 or 
more times”;

(g) smoke, from 1 = “never” to 9 = “over 20 times per 
day”;

(h) parent 1 education, same scale as education (e);
(i) parent 2 education, same scale as education (e); and
(j) wellness, self-rated as 1 = “poor,” 2 = “good.”

Using the 14 items for the Neuroticism scale, we ran-
domly selected 200 participants, extracted one factor from 
the 14 items, and used the factor scoring coefficients to esti-
mate factor scores for the remaining 3800 participants. We 
also computed the simple unit-weighted sum of 14 Neu-
roticism items for the remaining 3800 participants. We then 
computed correlations of the estimated factor scores and 
the unit-weighted composite scores with the 10 criteria, and 
repeated this process 100 times. The resulting correlations 
are cross-validated validity correlations.

The cross-validated validity correlations for the 10 cri-
teria are shown in Table 7. The mean correlation and the 
range of correlations (i.e., minimum and maximum) across 
the 100 samples are shown for the estimated factor scores in 
the first three data columns, and the corresponding values for 
the unit-weighted composites are shown in the last three data 
columns. Inspection of Table 7 reveals that, for each crite-
rion, the mean correlation for estimated factor scores is vir-
tually indistinguishable from the mean correlation for unit-
weighted composites, and the same is true for the minimum 
and maximum correlation values. The largest difference was 
the correlation with sex, with a mean r = .25 for estimated 
factor scores and r = .24 for unit-weighted composites, a 
difference favoring estimated factor scores, but a difference 

Table 7  Cross-validated correlations of criteria with factor score estimates and unit-weighted composites for the neuroticism scale, across 100 
random samples of 3800 participants

Factor score estimates Unit-weighted composites

Range Range

Criterion Mean Min Max Mean Min Max

Health .34 .32 .35 .34 .33 .35
Sex .25 .24 .27 .24 .23 .25
Exercise .18 .17 .19 .18 .17 .19
Age .18 .16 .19 .17 .16 .18
Education .17 .16 .18 .17 .16 .19
Emergency room visits .12 .11 .13 .12 .11 .13
Smoke .05 .04 .06 .05 .05 .06
Parent 1 education .05 .04 .06 .05 .04 .06
Parent 2 education .04 .03 .06 .04 .03 .06
Wellness .01 .00 .02 .02 .01 .03
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of relatively small magnitude. The differences in mean and 
range of cross-validated correlations across the remaining 
nine criteria were extremely small. These results support the 
conclusion that little is to be gained from the use of factor 
score estimates rather than use of simpler unit-weighted sum 
scores when cross-validating results across samples.

Demonstration #3: ability data and alternate 
methods of scoring

For our third and final demonstration, we return to the six 
manifest variables from Holzinger and Swineford (1939), 
comparing multistage and simultaneous analytic results 
using the same basic approach as McNeish and Wolf (2020). 
Given our concerns about precision of rounded scores, 
which McNeish and Wolf used, we conducted all analyses 
twice, once with rounded scores (r06–r13) and once with 
the more precise scaled scores (x06–x13). Results of the 
two sets of analyses exhibited minor differences but gener-
ally led to similar conclusions, so we reported here only 
results based on unrounded scaled scores. Relevant results 
using rounded scores are available in online Supplementary 
Material. All analyses were performed using the lavaan 
(version 0.6-9; Rosseel, 2021), psych (Revelle, 2021a), and 
psychTools (Revelle, 2021b) packages in R, and, where 
possible, replicated using Mplus 8.7 (Muthén & Muthén, 
1998-2019).

The analyses reported by McNeish and Wolf (2020) 
involved using four methods for predicting performance on 
the six ability tests from School Membership, to contrast the 
use of sum scores versus more sophisticated factor scores in 
analyses. To save space, we refer readers to McNeish and 
Wolf (2020) for most details regarding the four methods, 
as we followed their lead in model fitting. In each of the 
four methods, School Membership (coded 0 = Pasteur, 1 = 
Grant-White) was the sole predictor variable. Briefly, the 
four methods were

Method 1: Use an equally weighted sum of all six tests as 
the sole outcome variable.
Method 2: Use equally weighted sums of the three Verbal 
tests and the three Speed tests as two separate outcome 
variables.
Method 3: Perform a multistage factor score regression. 
Stage 1 involved fitting a two-factor congeneric factor 
model to the six variables and estimating factor scores. 
Stage 2 used School Membership as predictor of the esti-
mated scores on the Verbal and Speed factors.
Method 4: Perform a simultaneously estimated latent 
variable regression model, with a two-factor congeneric 
factor model fit to the six tests, and School Membership 
used as predictor of the two latent outcome variables, 
Verbal and Speed.

McNeish and Wolf (2020) conducted these analyses to 
contrast results and conclusions based on sum scores (Meth-
ods 1 and 2) versus more precise and rigorous scoring meth-
ods (Methods 3 and 4). If method of scoring moderates find-
ings and affects conclusions drawn from analyses, use of 
simple sum scores should be scrutinized much more than 
is typically done.

Prior to presenting results, we note three issues. First, 
without explanation, McNeish and Wolf (2020) switched 
from ML estimation (used in their confirmatory factor analy-
ses) to MLR estimation in these prediction models. MLR 
estimation is used to enable more robust estimation of cer-
tain parameters, notably standard errors (SEs) of parameter 
estimates, in the presence of non-normality of manifest vari-
ables. But skewness and kurtosis values listed for all ability 
variables in Table 2 were relatively small in size, suggesting 
that manifest variables were approximately normally distrib-
uted, implying that ML estimation would be an appropriate 
method of estimation. Hence, we decided to compare results 
under both MLR and ML estimation, to determine whether 
method of estimation might moderate findings.

A second issue is the evaluation of statistical significance. 
McNeish and Wolf (2020) relied solely on p-values. That is, 
if the p-level for a test statistic was .05 or less, a statistically 
significant finding was announced, whereas a finding with a 
p-level greater than .05 was rendered as indicating “no differ-
ence.” We prefer a more nuanced approach, more in line with 
Rosnow and Rosenthal (1989) who observed wryly that “… 
surely, God loves the .06 nearly as much as the .05.” Thus, 
we emphasize parameter estimates, SEs, and 95% CIs, rather 
than relying solely on whether a result falls on one side or the 
other of the .05 level of significance. To aid in evaluation of 
magnitude of effects, we report two forms of standardized 
estimates. If only dependent variables are standardized, stand-
ardized estimates are in the metric of Cohen’s d values, which 
convey group differences in mean performance in SD units. 
Thus, a d = 0.50 indicates that one group scores, on average, 
one-half a SD higher than the other group. If both outcomes 
and predictors are standardized, coefficients are in the metric 
of standardized regression coefficients, or β weights. Because 
School Membership is the only predictor in these analyses, the 
β weight is equal to the correlation (r) of School Membership 
with the outcome variable, and correlation is a recommended 
index of effect size (Funder & Ozer, 2019).

Third, Methods 1, 2, and 4 are routinely used in any 
structural modeling package, but Method 3 is implemented 
in easily usable form in only a few packages. We used the 
sam (or “Structural-After-Measurement”) fitting function 
in lavaan (Rosseel, 2021; Rosseel & Loh, 2021), which 
implements factor score regression. Skrondal and Laake 
(2001) gave an improved foundation for factor score regres-
sion, and Croon (2002) showed how to correct for bias in 
parameter estimates. More recently, Rosseel and associates 
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(Devlieger et al., 2016: Devlieger & Rosseel, 2017; Dev-
lieger et al., 2019; Rosseel & Loh, 2021) extended the 
Croon approach in multiple ways, by deriving SEs for 
parameter estimates, developing model fit indices and 
model comparison tests, and explicating various options in 
estimation. We used the “local” option with the default 
ML mapping matrix in the sam fitting function (see Ros-
seel & Loh, 2021), which is equivalent to the Skrondal and 
Laake approach with Croon’s correction and the recently 
derived SEs of parameter estimates. The sam approach has 
proven less susceptible to certain problems, such as lack 
of convergence and bias due to model misspecification, 
relative to simultaneous model estimation (i.e., Method 4), 
particularly when sample size is small, so is a worthy alter-
native to fully simultaneous model fitting. We also note 
that Method 3 shares with Method 2 the two-step analytic 
approach albeit with differential weighting of indicators 
and shares with Method 4 the use of sample-based differ-
ential weights. Thus, one might expect Method 3 to provide 
results that fall between those for Methods 2 and 4.

Results from our analyses are shown in Table 8, with 
results using MLR estimation in the top half of the table 
and results using ML in the bottom half. McNeish and 
Wolf (2020) argued that their results demonstrated that 
sum scores, under Methods 1 and 2, led to rather different 
results than more rigorous latent variable methods, Methods 
3 and 4. Method 1 implied that Grant-White students scored 

higher in general, and Method 2 supported the contention 
that Grant-White students scored significantly higher on 
the Verbal factor and significantly lower on the Speed fac-
tor relative to Pasteur students. Methods 3 and 4 supported 
superior performance of Grant-White students on the Ver-
bal factor, but McNeish and Wolf (2020) argued that results 
for Methods 3 and 4 supported a finding of “no difference” 
between schools on the Speed factor.

Contrary to McNeish and Wolf (2020), we argue that 
results under Method 1 offer no useful information at 
all in connection with their claims. As noted above, all 
one-factor models fit the data very poorly. Therefore, 
results under Method 1 are impossible to justify psycho-
metrically, and all results under this method defy rational 
interpretation.

The remaining three methods—Methods 2, 3, and 4—
each contained Verbal and Speed outcome variables, so 
were, at least on the surface, more similar in form. Each 
method identified a statistically significant advantage in 
favor of Grant-White students on the Verbal factor. Across 
Methods 2 - 4 and across estimators (MLR and ML), the 
mean difference on the Verbal dimension ranged between 
Cohen’s d values of about +0.55 and +0.60, so Grant-White 
students scored, on average, a little over one-half SD unit 
higher relative to Pasteur students.

Each of the three methods also identified a mean differ-
ence of more modest magnitude favoring Pasteur students 

Table 8  Results of predicting ability outcomes from school membership using scaled scores (x06–x13)

Tabled values are parameter estimates with SEs and 95% CIs. B = raw score regression coefficient; d = estimate in Cohen’s d metric; β = stand-
ardized regression weight. Boldfaced coefficients had 95% CIs that did not include zero, so were significant at p < .05.

Standardized estimates

Estimator and 
method

Outcome 
variable

Raw score estimates Outcome variables Outcomes and predictor

B (SE) 95% CI d (SE) 95% CI β (SE) 95% CI

MLR estimation
Method 1 General   1.08 (0.51) [  0.08,   2.08]   0.24 (0.12) [  0.02,   0.47]   0.12 (0.06) [  0.01,   0.23]
Method 2 Verbal   1.76 (0.35) [  1.06,   2.45]   0.55 (0.10) [  0.35,   0.76]   0.28 (0.05) [  0.17,   0.38]

Speed –0.68 (0.28) [–1.23, –0.13] –0.28 (0.11) [–0.50, –0.06] –0.14 (0.06) [–0.25, –0.03]
Method 3 Verbal   0.58 (0.12) [  0.35,   0.81]   0.59 (0.11) [  0.37,   0.80]   0.29 (0.06) [  0.18,   0.40]

Speed –0.16 (0.09) [–0.34,   0.01] –0.24 (0.13) [–0.50,   0.02] –0.12 (0.07) [–0.25,   0.01]
Method 4 Verbal   0.57 (0.12) [  0.34,   0.80]   0.59 (0.11) [  0.37,   0.80]   0.29 (0.06) [  0.19,   0.40]

Speed –0.22 (0.12) [–0.46,   0.01] –0.31 (0.15) [–0.60, –0.02] –0.16 (0.07) [–0.30, –0.01]
ML estimation
Method 1 General   1.08 (0.51) [  0.09,   2.08]   0.24 (0.11) [  0.02,   0.47]   0.12 (0.06) [  0.01,   0.23]
Method 2 Verbal   1.76 (0.36) [  1.06,   2.45]   0.55 (0.11) [  0.35,   0.76]   0.28 (0.05) [  0.17,   0.38]

Speed –0.68 (0.28) [–1.22, –0.13] –0.28 (0.11) [–0.50, –0.06] –0.14 (0.06) [–0.25, –0.03]
Method 3 Verbal   0.58 (0.12) [  0.35,   0.81]   0.59 (0.11) [  0.37,   0.80]   0.29 (0.06) [  0.18,   0.40]

Speed –0.16 (0.09) [–0.34,   0.02] –0.24 (0.13) [–0.50,   0.02] –0.12 (0.07) [–0.25,   0.01]
Method 4 Verbal   0.54 (0.12) [  0.34,   0.80]   0.59 (0.11) [  0.37,   0.80]   0.29 (0.06) [  0.19,   0.40]

Speed –0.22 (0.10) [–0.42, –0.03] –0.31 (0.13) [–0.57, –0.05] –0.16 (0.07) [–0.29, –0.02]
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on the Speed factor, and the standardized estimates across 
Methods 2, 3, and 4 were quite similar. Across methods, d 
values ranged from –0.24 to –0.31, or about a 0.3 SD advan-
tage for Pasteur students, and the associated 95% CIs some-
times included zero, and sometimes did not, even though the 
magnitudes of the d values differed little across methods.

Hence, contrasts among methods do not support a simple 
conclusion that the raw score method (Method 2) led to 
notably different results than latent variable methods (Meth-
ods 3 and 4). Indeed, the multistage sum score method, 
Method 2, produced results that were very similar to the 
simultaneously estimated latent variable approach, Method 
4. Point estimates under Method 4 were slightly larger than 
those under Method 2, which might be expected, given that 
Method 4 was a latent variable method testing school effects 
at an error-free level, whereas Method 2 tested school 
effects at a manifest variable level. Regardless, the point 
and interval estimates for standardized d and β estimates 
for both the Verbal and Speed dimensions were very similar 
in magnitude across Methods 2 and 4, especially under ML 
estimation.

The method that appeared to provide the most different 
results was Method 3. The factor score regression approach 
produced slightly smaller raw and standardized point esti-
mates for the Speed factor than did its simultaneously esti-
mated, latent variable cousin, Method 4. Given the smaller 
point estimates, the 95% CIs for Speed factor parameter esti-
mates included zero, so the point estimates did not depart 
from zero at p = .05. Thus, the most striking difference 
among the three methods was that between Method 3 versus 
Methods 2 and 4.

We encourage researchers to analyze their data using dif-
ferent approaches to determine whether alternate methods 
yield results that lead to different conclusions. If discrepant 
results are obtained using alternate methods, the researcher 
must provide a compelling justification for the choice of the 
method to emphasize and should report all results in some 
fashion.

Discussion

Basic aspects of measurement must become the subject of 
greater attention if the science of psychology is to progress 
at maximal speed. The use of equally weighted sums of 
scores on a set of items is potentially fraught with problems 
that remain implicit if unexamined. The sum of a set of items 
seems like such a simple operation, but dangers lurk below 
the surface if the sum score is not completely understood 
psychometrically. If a scale is composed of a heterogeneous 
set of items, relations of scale scores with external variables 
may depend on different subsets of items across studies. This 
may be an important problem contributing to the replication 
crisis confronting psychology and other social sciences.

As many recent commentators have noted, important 
decisions must be made when using a multiple-item scale. 
Is a single sum of the set of items justified? Should item 
scores be treated as discrete or continuous? Were scores 
on negatively worded items properly reverse-scored? Does 
the set of items represent more than one latent factor? If 
the scale is multidimensional, how should this information 
be used when deciding how to sum sets of items? If items 
have rather different variances, should item scores be stand-
ardized in some fashion before being summed? Are item 
scores approximately normally distributed? If not, should 
some kind of transformation be made prior to summing 
the items? Greater care in making decisions on these ques-
tions is warranted, researchers should be fully transparent in 
reporting exactly how they dealt with each issue (Flake & 
Fried, 2020), and this should lead to more informative and 
replicable research outcomes. If the principal aim McNeish 
and Wolf (2020) was to alert researchers to these important 
issues, we would applaud this message.

But McNeish and Wolf (2020) went much further than 
this, asserting that summing the scores of multiple items 
implies that a researcher must assume that a highly con-
strained parallel test model with equal loadings on a single 
factor provides close fit to the covariances among the items. 
Directly, McNeish and Wolf (2020) stated that the use of 
sum scores “… obliges researchers to engage with model 
constraints they are imposing (perhaps unknowingly) and 
test the assumptions associated with such constraints.” This 
assertion is simply and blatantly false. The key criterion to 
be met to justify use of a sum score—from a homogeneity 
perspective—is that a one-factor model provides an adequate 
description of the relations among the items. If a one-factor 
essentially parallel test model or a one-factor essentially tau 
equivalent test model fits the item data adequately, then a 
number of formulas can be used to estimate the reliability 
of the equally weighted sum of items, including the formula 
for coefficient α (Eq. 5), and many computer programs read-
ily report such estimates. However, if a highly constrained 
model does not achieve adequate fit, and a one-factor conge-
neric model does provide adequate fit to the data, an equally 
weighted sum of item scores is still justified, but Eq. 5 is no 
longer a recommended estimator of reliability. Instead, one 
should use a more appropriate equation, such as Eq. 7 for 
coefficient ωT, to estimate reliability of the sum score. If a 
one-factor model does not fit the data adequately and two or 
more factors are required, more complex approaches must 
be taken to estimating reliability, and much current work 
has been working out these details (e.g., Revelle & Condon, 
2019; Revelle & Zinbarg, 2009). But, to repeat, using a sum 
score across a set of items does not mean that a researcher 
assumes implicitly, usually without knowing, that a very 
highly constrained factor model must fit the data. Estimates 
from an essentially unconstrained, congeneric one-factor 
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model, if it fits the data closely, can be employed to separate 
true score variance from error variance in the set of items 
with Eq. 7, allowing estimation of reliability for the equally 
weighted sum of items (cf. Eq. 4).

If one were to use a differentially weighted sum of item 
scores, it is possible to estimate reliability of the resulting 
summary score. Moreover, reliability of a differentially 
weighted sum may be somewhat higher than the reliability 
of an equally weighted sum of item scores, especially if the 
differential weights vary considerably. However, increases in 
reliability may not be accompanied by appreciable increases 
in validity and, especially, in cross-validated validity, so this 
should be the topic for active investigation and determination.

In support of the use of sum scores, we reiterate a point 
made earlier, if sum scores are composed in exactly the 
same fashion across studies, the results of the studies will 
be more easily compared than if different weighting were 
used across studies. As noted earlier, this advantage in favor 
of sum scores holds only if no changes to item content (e.g., 
wording) and administration are made across studies. If one 
opts for a method of differential weighting of item scores 
in a given study, results of that study will be comparable to 
other studies only if an identical set of differential weights 
were used to sum items in the other studies.

To promote their arguments in favor of factor scoring meth-
ods over use of sum scores, McNeish and Wolf (2020) pre-
sented analyses of HS data using different analytic methods. 
In doing so, McNeish and Wolf engaged in what we character-
ize as questionable measurement practices and propounded 
questionable interpretations. One questionable measurement 
practice was rounding scaled scores from the HS data set 
to integer values. Whether conclusions would be altered by 
using rounded, less precise scores in analyses is a matter for 
research, but rounded scores clearly have less precision than 
scaled scores, and this practice should not be condoned. A 
second questionable practice is the sole reliance on p-values 
when evaluating mean differences across groups, rather than 
using estimates of magnitude of effects and their CIs.

Perhaps the most problematic interpretation by McNeish 
and Wolf (2020) was that their results provided clear support 
for latent variable modeling over simpler and more mun-
dane sum scoring of indicators. Under greater scrutiny, this 
claim cannot be supported. The sum score method, Method 
2, yielded results that were extremely similar to those for the 
standard SEM method using simultaneous fitting, Method 
4. The method that provided the most discrepant results was 
Method 3, using factor score regression. Still, on balance, we 
argue that all three methods—Methods 2, 3, and 4—led to 
results that were very similar, and no claim that latent vari-
able methods are superior to sum score methods is justifiable 
on the basis of these results.

The use of sum scores may not always produce results 
that are virtually indistinguishable from those based on latent 

variable modeling. If sum scores are based on a rather small 
number of scores to be summed and if those scores are single 
items, the resulting sum score might have rather low levels 
of reliability and this could lead to notable differences across 
analytic methods. In our analyses, the Verbal and Speed sum 
scores had very high levels of composite reliability, .91 and 
.96, respectively. The very high reliability of the sum scores 
used in our analyses is probably why sum scores and fully 
latent variable modeling under Method 4 led to such similar 
results. This, clearly, is an issue for further research.

One should note that Method 3 was touted by McNeish 
and Wolf (2020) as a latent variable method, but its multi-
stage nature leads to factor scores under this method that 
are, in essence, quite similar to sum scores (i.e., amalgams 
of true score and error variance) but obtained under differen-
tial (rather than equal) weighting. The Croon correction for 
bias in estimated factor scores was a notable advance, and 
the recent work by Rosseel and colleagues in providing SEs 
of parameter estimates and other enhancements and imple-
menting these methods in the open source lavaan package 
in R provide easily usable methods in furthering research on 
the relative advantages and disadvantages of sum scores and 
estimated factor scores.

In the current study, the simple equally weighted Ver-
bal and Speed sum scores in Method 2 yielded results that 
appeared to be slightly more robust across methods of esti-
mation—MLR vs. ML—than the simultaneous estimation 
of latent variable scores under Method 4. As for sensitiv-
ity, although Method 4 led to somewhat larger estimates 
of standardized effect size than did Method 2, as expected, 
differences were not large. In summary, contrary to conclu-
sions by McNeish and Wolf (2020), sum scores appear to be 
as strong a basis for analyses as are complex latent variable 
procedures in analyses of the HS data.

Note that this conclusion is fully in line with our results 
of the analyses of spi data reported in Table 7. In these 
analyses, we contrasted the magnitude of correlations of fac-
tor score estimates and simple sum scores with 10 criteria. 
The upshot of these analyses is that the correlations of the 
factor score estimates with the criteria were virtually indis-
tinguishable from the comparable correlations of the sum 
scores with those criteria. That is, factor score estimates 
and sum scores had essentially equivalent cross-validated 
validities, with no notable superiority of either method. This 
underscores our contention that sum scores may often be as 
strong a basis for psychological research as are more com-
plicated latent variable methods.7

7 Comparison of the relative strengths and weaknesses of estimated 
factor scores and sum scores when investigating mean differences 
across groups was considered beyond the scope of the present article. 
This topic is discussed in some detail in Supplemental Material, in 
connection with the R script titled “prog_02.sex diffs on factor scores 
vs. sum score.R”.
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Factor analytic methods should be used to represent the 
internal structure of items comprising a scale, and the result-
ing factor structure should be the basis for deciding how items 
are composited into scores to be used in subsequent analyses. 
Factor-based methods of estimating reliability are easy to apply 
(e.g., the omega function in the psych package) and computer 
scripts for estimating more recent proposed methods by Rae 
(2007) and Nicewander (2020) are provided in Supplemental 
Material. But, when forming scores, sum scores are decidedly 
simpler to implement than are factor score estimation methods, 
which may be a notable advantage in certain situations, such as 
when cross-validating results across independent samples. On 
the other hand, sum scores are likely to contain larger amounts 
of measurement error (or unreliability) than will estimated fac-
tor scores and certainly more than the error-free (so-called) true 
factor scores in confirmatory factor models. So, sum scores, 
estimated factor scores, and true factor scores (the latter resid-
ing in the computations in structural equation models) each 
have strengths and each have weaknesses, and none outshines 
the others in all respects. As measurement precision and, hence, 
reliability of measures increase, results using the different 
methods will tend to converge on the same answers. We urge 
researchers to measure their constructs as well as possible and 
to conduct analyses using multiple methods to help ensure that 
conclusions drawn are robust across analytic methods.

Long live sophisticated latent variable methods! But, long 
live sum scores (properly vetted)!
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