A model for personality at three levels

William Revelle**, David M. Condon**

Northwestern University, Evanston, IL

Abstract

People differ. How and why they differ are the fundamental questions for personality psychologists. In this article we address three levels at which people differ: within individuals, between individuals, and between groups of individuals. A dynamic model of personality where traits are seen as rates of change in states in response to environmental cues is considered. Within individuals, motivational and behavioral states show inertial properties and lead to an analysis of rates of change and latencies of behavior. Between individuals, the analysis is one of frequency and duration of choices. When individuals self select into groups reflecting shared interests and abilities, the structure of these group differences reflects the consequences of the self selection. Examples of the dynamic model are given for each level of analysis.

Keywords: personality traits, dynamics of action, reinforcement sensitivity theory, multi level model, affect, behavior, cognition, desire, motivation, goals
A model for personality at three levels

William Revelle*, David M. Condon*

Northwestern University, Evanston, IL

1. Levels of individual differences

People differ. How and why they differ are the fundamental questions for personality psychologists. In this article we address three levels at which people differ: within individuals, between individuals, and between groups of individuals. Although the structure of differences at each level do not necessarily relate to the structure of differences at other levels, analysis of the temporal dynamics of differences suggests some hope for a unified model. The study of temporal dynamics in personality is not new (e.g., Atkinson and Birch, 1970, Carver, 1979, Carver and Scheier, 1982, Kuhl and Blankenship, 1979, Revelle and Michaels, 1976, Revelle, 1986) but, with few exceptions (Carver, 1979, Carver and Scheier, 1982, Read et al., 2010), has not had much impact upon personality theory. This is unfortunate, for the study of dynamics integrates aspects of choice, persistence, latency, frequency and time spent into a common framework. By understanding temporal dynamics within people, we are able to explain patterns of choice between people and, by examining the cumulative effect of these choices in terms of time spent, to understand the ways in which individuals tend to organize into groups according to personality traits.

Personality is an abstraction used to describe and explain the coherent patterning over time and space of affects, cognitions, desires and the resulting behaviors that an individual experiences and expresses. People differ from themselves on a moment to moment basis in that they do not think, feel or act the same all the time. They change in their feelings, in their thoughts, in their desires and in their actions. To not change in response to a situation is maladaptive. When others evaluate our reputation, they are evaluating our behavior in critical situations and how it changes across situations. When we think of our identity, we interpret our behavior as the result of our affects and our cognitions.

By examining patterns of change, it is possible to organize the study of personality at a second level – the analysis of differences between individuals in the coherent patterning over time and space within individuals. It is at this level that conventional trait theorists describe how people differ from each other in the frequency distribution of their actions (Fleeson, 2004, 2007a). Differences in sensitivity to the rewarding or punishing aspects of the environment are discussed at this level in terms such as reinforcement sensitivity (Corr, 2008a, Corr et al., 2013, Gray and McNaughton, 2000, Smillie, 2008, Smillie et al., 2011). We model differences at this level in terms of the rates of change in response to situational inputs and how these differences in rates of change result in differences in frequency and duration of various feelings, thoughts, and actions.
People also differ from each other in terms of important life choices; examples include choice of college major and career. As we will show, these choices reflect a dynamic interplay of abilities, interests, and temperament in response to the long term patterns of reinforcements achieved by each individual. These patterns of reinforcement, in combination with original differences achieved by each individual, are members of different groups. That analyses at different levels should not be confused has been labeled the Yule-Simpson paradox (Armistead, 2014, Kievit et al., 2013, Pearl, 2014, Simpson, 1951, Yule, 1903), the fallacy of ecological correlations (Robinson, 1950) and the within group–between group problem (Pedhazur, 1997). Indeed, to confuse the within between individuals when individuals is to mistakenly assume ergodicity (Molenaar, 2004).

In a multilevel structure, observed correlations across individuals may be decomposed into within individual correlations and between individual correlations. Similarly, the correlations between individuals when individuals are members of different groups reflects this within and between group correlational structure:

\[r_{xy} = \eta a_{xy} + \eta a_{xy} + r_{xy} + \eta a_{xy} + \eta a_{xy} + r_{xy} \]

- \(r_{xy} \) is the within group correlation
- \(r_{xy} \) is the between group correlation
- \(\eta a_{xy} \) is correlation of the data with the within group values
- \(\eta a_{xy} \) is correlation of the data with the between group values

This distinction will be important as we consider models of coherency and differences within-individuals, between-individuals, and between groups of individuals.

2. Dynamics within individuals

Two basic concepts of individual dynamics are that (1) time is a variable, and (2) that motivations and actions have inertia properties. Inspired by the work of Lewin et al. (1935), Zeigarnik (1967), Feather (1961), and Atkinson and Cartwright (1964), Atkinson and Birch (1970) proposed that a wish persists until satisfied and a wish does not increase unless instigated. (This is, of course, analogous to Newton’s 1st law of motion that a body at rest will remain at rest, a body in motion will remain in motion.) By considering motivations and actions to have inertial properties, it became possible to model the onset, duration, and offset of activities in terms of a simple set of differential equations.

Unfortunately, the theory of the Dynamics of Action (DOA, Atkinson and Birch, 1970) was a theory before its time. Few psychologists of the 1970s were prepared to understand differential equations or develop computer models of difference equations. However, with a simple reparameterization (Revelle, 1986) and modern software and computational power, the model is much easier to simulate and examine. This article describes that reparameterization (the Cues-Tendency-Action or cta model) of the original theory and explores the power of including temporal dynamics in a theory of personality at three levels of analysis.

Recent discussions of the cta model include Revelle (2012), which applied the model to the dynamics of emotion (e.g., Frijda, 2011), and Fua et al. (2010), who analyzed social behavior in terms of the cta model. To allow the reader to explore the applications of this model, computer code simulating the revised model is written in the open source language R (R Core Team, 2014) and is included as the cta function in the psych package (Revelle, 2014) which is available for download from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org.

2.1. The original dynamics of action

The dynamics of action was a model of how instigating forces elicited action tendencies which in turn elicited actions (Atkinson and Birch, 1970). The basic concept was that action tendencies had inertia. That is, a wish (action tendency) would persist until satisfied and would not change without an instigating force. The consummatory strength of doing an action was thought in turn to reduce the action tendency. Forces could either be instigating or inhibitory (leading to negation).

The relationship between instigating forces, changes in action tendencies over time, and actions was described by a simple differential equation (reminiscent of...
that the measurement of approach and avoidance was typically considered in an achievement setting. Based upon the theory of achievement motivation (Atkinson, 1957, Atkinson and Raynor, 1974), the instigating force was thought to be a quadratic function of the subjective expectation of success (p_s), the value of that success which varied according to task difficulty ($1 - p_s$), and the need for achievement (N_{ach}):

$$F = (p_s)(1 - p_s)N_{ach}.$$

But an achievement setting is also an opportunity for failure and the change in negation induced by the task was a function of the inhibitory forces which were in turn a quadratic function of the likelihood of failing, and the pain experienced in failing, and the need to avoid failure (N_{af}). The likelihood of failure is certainly not just task difficulty, and the pain of failing is greater the easier the task. Thus:

$$I = (1 - p_s)(p_s)N_{af}$$

Early suggestions for inertial properties of motivations were found in the studies by Zeigarnik (1927) as well as by Feather (1961). An application of the inertial properties of motivation in an achievement setting was found in an analysis of the effect of task difficulty on performance as a function of the number of repeated trials (Revelle and Michaels, 1976). This application demonstrated how two seemingly contradictory models (Atkinson, 1957, Locke, 1968) could be reconciled with the addition of inertial properties. Assuming that success quenches action tendencies but that failure does not, resultant motivation should grow over successive failures. As task difficulty increases, the likelihood of failure increases and thus there should be more carryover and growth of motivation as tasks become harder. The effect of carryover may be expressed in colloquial terms as “If at first you don’t succeed, try, try again.”

By separating action tendencies from negation tendencies, the dynamic theory had the advantage over earlier work that the measurement of approach and avoidance motivation did not have to be on the same ratio

Table 1: The basic elements of the dynamics of action. Adapted from Atkinson and Birch (1970)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Avoidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instigating Forces</td>
<td>F</td>
</tr>
<tr>
<td>Action Tendencies</td>
<td>T</td>
</tr>
<tr>
<td>Consummatory Value</td>
<td>c</td>
</tr>
<tr>
<td>Consummatory Forces</td>
<td>C</td>
</tr>
</tbody>
</table>

Newton’s second law:

$$dT = F - C$$ \hspace{1cm} (1)

where

$$C = cT$$ \hspace{1cm} (2)

and $c = 0$ if an action is not being done, otherwise c is a function of the type of action (eating peanuts has a smaller c than eating chocolate cake).

That is, for a set of action tendencies, $T_1\ldots T_n$, with instigating forces, $F_1\ldots F_n$,

$$dT_i = F_i - c_iT_i \quad \text{if } T_i \text{ is ongoing}$$

$$dT_i = F_i \quad \text{if } T_i \text{ is not ongoing}$$ \hspace{1cm} (3)

It is clear from equation 3 that an unexpressed but instigated action tendency will grow linearly, but once initiated will achieve an asymptotic value when the rate of growth is zero. This occurs when $F_i = c_i T_i$ and thus:

$$T_{\infty} = F_i/c_i.$$ \hspace{1cm} (4)

The strength of a single action tendency – say, the tendency to eat a pizza – will increase when instigated by the smell of the pizza but will then (begin to) diminish once the first bite of pizza is consumed. A steady state will be achieved as the effect of the instigating force is balanced out by the successful consummation. These differential equations can be simulated as difference equations with graphical output for the strength of the action tendencies (see Figure 1).

Similar to action tendencies are *negation tendencies* – tendencies to not want to do something. These grow in response to inhibitory forces, I, and are diminished by the force of resistance, R, which is, in turn, a function of the cost of resistance, r, and the strength of the negation, N.

$$dN = I - R = I - rN.$$ \hspace{1cm} (5)

In contrast to Equation 3, where action tendencies are reduced only if the action is happening, Equation 5 suggests that negation always achieves an asymptote, even if the action is not occurring. This is because effort is required to not do a task, that is to resist doing a task, thus the force of resistance is always present and negation will achieve an asymptotic level of

$$N_{\infty} = I/r.$$ \hspace{1cm} (6)

The resultant action tendencies are the difference between Action and Negation $T_r = T - N$. Atkinson and Birch (1970) assumed that action choice between competing action tendencies simply followed the maximum action tendency.
Figure 1: A single action tendency will achieve an asymptotic value of the ratio of instigating force to consummatory value as corresponding action is expressed and leads to consummation.

Figure 2: A simple reparameterization: the CTA model

To avoid the problems of instigating and consummatory lags and the need for a decision mechanism, it is possible to reparameterize the original model in terms of action tendencies and actions (Revelle, 1986). Rather than specifying inertia for action tendencies and a choice rule of always expressing the dominant action tendency, it is possible to think of actions themselves as having inertial properties. In an environment which affords cues for action (c), cues enhance action tendencies (t) which in turn strengthen actions (a). This leads to two differential equations, one describing the growth and decay of action tendencies (t), the other of the actions themselves (a).

\[dt = Sc - Ca \]
\[da = Et - Ia \]

\(c, t \) and \(a \) are vectors (perhaps of different dimensionality), one of which (c) is a function of the environment, and two of which (t and a) change dynamically. The parameters S, C, E, and I are matrices representing the connection strengths between cues and action tendencies (S), action tendencies and actions (E), the consummatory strength of actions upon action tendencies (C), and the inhibition of one action over another (I). They are specified as initial inputs but could themselves change with learning and reinforcement (Corr, 2008b, Revelle, 2008). That is, while successfully completing an action reduces the immediate tendency to do the action, the connection strengths between the cue and the tendency, and the tendency and the action are presumably increased. The model, although expressed in equations 10 and 11 may also be represented as box diagram of the flow of control (Figure 2). Not shown in Figure 2, but implied by the use of matrices for S, E, C and
and different action tendencies, and between action tendencies and different actions. Thus, cue1 can excite tendency2, and action3 can reduce the desire for another action tendency.

Table 2: The basic elements of the eta model. The environmental input to the system (the cues) are variable as the individual interacts with the world. The strength of these cues upon action tendencies is moderated by the connection strengths in the stimulation matrix. The resulting tendencies have inertial properties (increasing when stimulated, decreasing when consummated) The action tendencies induce actions through the excitation connections. Actions also have inertial tendencies but are reduced by other actions as well doing the action (self inhibition). The connections of the matrices may change over time to reflect learning in a long term response to the reinforcement of actions.

<table>
<thead>
<tr>
<th>Dynamic Vectors</th>
<th>Stable matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cues</td>
<td>Stimulation strength</td>
</tr>
<tr>
<td>Action Tendencies</td>
<td>Excitation</td>
</tr>
<tr>
<td>Actions</td>
<td>Consummation</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
</tr>
</tbody>
</table>

If just a single action tendency and the resulting action are cued, the result is an action tendency and resulting action similar to that predicted by the dynamics of action and shown in Figure 1. Actions that are not mutually inhibitory both rise and fall independently of each other (Figure 3 upper panel). Cue strength (c) is reflected in the initial growth rate of action tendencies and of actions as well as the asymptotic level. The consumption parameter, C, affects the asymptotic level as well as the frequency and speed of dampening of the action tendencies and thus of the actions. The self inhibition parameter, I, affects the asymptotic level of action tendencies as well as the dampening of the actions themselves and indirectly, of the action tendencies (Figure 3 lower panel).

The model becomes much more interesting when we consider the case of mutually incompatible (mutually inhibitory) actions. If a person can do only one of a set of actions at a time, then, although the tendencies or desires to do the actions run off in parallel, the actual expression of action runs off serially (Figure 4). A memorable example of incompatible responses is found in the newt, which copulates under water, but breaths at the surface. By increasing the oxygen content of the atmosphere, the length of each copulatory bout is prolonged (Halliday, 1980, Halliday and Houston, 1991). Not quite as dramatic is the said inability of Gerald Ford to walk and chew gum at the same time. Similar incompatibilities involving the allocation of attention is the detrimental effect of talking on a phone while driving, or checking email while working on a manuscript.

The power of a dynamic model is that it predicts change of behavior even in a constant environment where the instigating cues are not changing. With mutually incompatible actions, action tendencies can all be instigated by the environment but only one action will occur at a time. Action tendencies resulting in actions will then be reduced while other action tendencies rise. This leads to a sequence of actions occurring in series, even though the action tendencies are in parallel.

Although somewhat similar in structure to the cybernetic control theory models of Carver and Scheier (1982), the models differ in that there is no set point or comparison level in the eta model. For, as Bolles (1980) has shown, stable rates of eating behavior and subsequent body weight can result as a balance between the taste of the food and the effort needed to be expended to get the food, with no need for positing a set point for adiposity.

2.3. Exploring within subject dynamics

When originally proposed, the Dynamics of Action was hard to study except by computer simulation and by arguments based upon aggregated behavior. But, with the introduction of daily diaries (Green et al., 2006), but more importantly, telemetric methods (Wilt et al., 2011a) and better computational methods (Bates et al., 2014, Pinheiro and Bates, 2000), it is now possible to study within subject variation in affect, behavior, and cognition (Fleeson et al., 2002, Fleeson, 2007b, Rafaeli et al., 2007, Wilt et al., 2011b). When the structure of affect is examined within individuals, the results are strikingly different from that found between individuals. The well known two dimensional structure between individuals of Energetic Arousal and Tense Arousal (Schimmack and Reisenzein, 2002, Thayer, 1989, 2000) or of Positive and Negative Affect (Watson and Tellegen, 1985, 1999) (see also Rafaeli and Revelle, 2006) shows reliable individual differences in structure within individuals (Rafaeli et al., 2007).

Rafaeli et al. (2007) found that the correlation over time between positive and negative affect (and between tense and energetic arousal within subjects) showed reliable individual differences in affective synchrony. In other words, individuals were reliably synchronous (showed positive correlations), asynchronous (no correlation) or de-synchronous (negative correlations). Further, “[n]euroticism, extraversion, sociability, and impulsivity – major personality dimensions often associated with affective experience – were not associated with synchrony” (Rafaeli et al., 2007, p 921). In
\[dt = Sc - Ca \]
\[dA = Et - Ia \]

Figure 2: A simplified model of the cues, tendency, action (cta) model. Cues stimulate action tendencies which in turn excite actions. Actions may be mutually inhibitory and also reduce action tendencies. Extensions of this model allow for learning by changing the stimulation, excitation, and inhibition weights. These longer term learning paths are shown as reinforcement paths and reflect the reinforcing effects of successful actions upon the \(S \) and \(E \) matrices. Mutually compatible activities do not inhibit each other, and thus have inhibition strength of 0. The inhibition effect of an action upon itself reflects the cost of doing the action. Not shown in the figure, but implied by the use of matrices, are cross connections between cues and tendencies, and similar cross connections between tendencies and actions, and consummations of actions on different tendencies.

Figure 3: Three action tendencies representing three compatible actions. Because all three actions are mutually compatible, they each achieve their asymptotic value.
Figure 4: Three mutually incompatible activities inhibit each other and thus their respective action tendencies rise and fall over time. The flow of action tendencies run off in parallel, but because of inhibition, the actions occur sequentially.
a subsequent study examining the cognitive interpretation of situations, although the between individual correlation of energetic and tense arousal was the prototypical null, the correlation between energetic and tense arousal within subjects was a reliable individual difference that reflected the level of challenge vs. threat perceived by the subjects (Wilt et al., 2011b).

What occurs within individuals is the complex interplay of affects, behaviors, cognitions, and desires rising and falling over time and we observe the correlations of levels of these measures within individuals over time. Within individuals, the basic parameters are rates of change: how rapidly do action tendencies grow, how rapidly do they decay, and how do some actions inhibit others? The speed of growth in action tendencies presumably reflects differential sensitivities to the environmental contingencies of reward and punishment while the speed at which action tendencies decay reflects differential rates of habituation/adaptation/consummation. That is, what is stable within an individual is the rate at which he or she adapts to the environment. Stable traits are the derivatives of states.

Most importantly, the predictions of the cta or DOA models is that motivation carries over from trial to trial, and that effort will increase following failure but be quenched by success. This observation is one of the more compelling predictions of the cta/DOA models. Contrary to simple reinforcement theories, the immediate effect of success is to reduce effort on the subsequent trial, while the immediate effect of failure is to increase effort on the subsequent trial (Revelle and Michaels, 1976). This is clearly an adaptive response, because success signals that less effort is required, but failure signals that more effort is required. A somewhat similar prediction follows from the model of passive goal guidance (PGG) which considers the unconscious effect on goal seeking behavior of prior outcomes (Laran and Janiszewski, 2009). The longer term effect of reinforcement is to modify the S, E, C, and I matrices to reflect the pattern of successes and failures.

3. Between Individual differences

Dynamic models can be applied to differences between individuals, not to predict trial to trial dynamics, but rather to model relative rates of growth and decay. Between individuals, we notice differences in time spent doing various activities. We do not observe growth rates, but we do observe frequencies, latencies, and persistence. Perhaps most notably, we learn to recognize the patterning of behaviors, feelings, thoughts, and desires within ourselves and others.

Whether one focuses on the behavioral dimensions of approach, avoidance, and inhibition (Gray and McNaughton, 2000, Corr, 2008a, Smillie, 2014, Eysenck, 1990), the five/six dimensions reflecting individual differences in self description examined by Ashton et al. (2007), Digman (1990), Goldberg (1990), McCrae and Costa (1997) and numerous others, one is taking average levels of affects, behaviors, cognitions, and desires (Hilgard, 1980, Ortony et al., 2005, Scherer, 1995, Wilt and Revelle, 2009).

These average levels of what one tends to do may be distinguished from maximum levels of what one can do. That is to say, from ability. We have known since Spearman (1904) that it is almost impossible to find a cognitive task that does not correlate with other cognitive tasks. The dominant models in cognitive abilities research (Carroll, 1993, Horn and Cattell, 1966, Johnson and Bouchard, 2005, McGrew, 2009) both support the notion of general cognitive ability ("g") though the manner in which they organize the abilities below this highest level varies considerably. But ability is not just a high score on an ability test, it is succeeding on many daily tasks and even leads to survival, for life is an intelligence test with many subtests (Gottfredson, 1997). Not only does ability relate to the risk of mortality throughout one’s life (Deary, 2008) it is stable: ability measured at age 11 correlates .67 with ability measured 79 years later (Deary et al., 2013).

If temperament is what you usually do, and ability is what you can do, interests are what you like to do. Just as the dimensions of temperament may be analyzed through factor analysis, so can the dimensions of interest. At a very high level, interests can be grouped into the dimensions of people vs. things and of facts versus ideas (Prediger and Vansickle, 1992). These high level dimensions themselves can be decomposed into the lower level facets of specific interests known as the RIASEC (Holland, 1959, 1996).

3.1. Categorization of Differences as Temperaments, Abilities, and Interests

Until the mid-1950s, it was the tradition in personality research to integrate ability, temperament, and interests (Cattell, 1946, Eysenck and Himmelweft, 1947, Kelly and Fiske, 1950). While this has continued among many European psychologists, there has been a tendency among American personality psychologists to focus on dimensions of temperament at the exclusion of ability or interests. Thus, there has been an emphasis upon the Giant 3/Big 5/Big 6 dimensions of temperament without considering how these relate to dimensions of ability or interests. Exceptions to this general
ties. It should also be noted that individual differences encompass individual differences in research among modern personality psychologists, and Revelle, 2009). No matter how many dimensions (DeYoung, 2010, Costa and McCrae, 1992b) or fewer dimensions (DeYoung et al., 2007, Ashton et al., 2007, Costa and Saucier, 2009, Digman, 1997). No matter how many dimensions are deemed most appropriate for a given context, it is generally the case that these individual differences can also be evaluated according to the degree to which they describe an individual’s stable tendencies in terms of affect, cognition, desire, and behavior (Wilt and Revelle, 2009).

The ability domain, which is perhaps the oldest line of research among modern personality psychologists, encompasses individual differences in cognitive abilities ranging from executive functioning and attention to more traditional measures of intelligence. Unlike the temperamental differences, cognitive abilities are typically measured with “maximal performance” tasks that incorporate items or tests that span a range of difficulties. It should also be noted that individual differences in cognitive ability are not only a function of the narrowly defined abilities which relate to specific tasks (e.g., spatial navigation or verbal reasoning) but also differential contributions between crystallized and fluid ability.

Research on conative individual differences (i.e., differences in desires, motivations, volition and striving) is most frequently conducted through the assessment of interests, especially vocational interests. The dominant interests framework, known as the RIASEC model of vocational interests (Holland, 1959, 1996), organizes both interests and jobs according to six categories (and related scales) – Realistic, Investigative, Artistic, Social, Enterprising, and Conventional. The framework itself allows for hierarchical organization of specific occupations which can be grouped according to shared basic interest categories and these in turn can be grouped at a higher level of six general interest factors (Armstrong et al., 2004). In other words, the basic interests may be seen as equivalent to the facet level of the Big Five in the temperament domain. It has also been suggested that the six factor structure can be further simplified to two dimensions which are known as data/ideas and people/things (Armstrong et al., 2008, Prediger and VanSickle, 1992).

It should be noted that the assessment of vocational interests as a proxy for conation is practical but inadequate. It does not typically include the assessment of preferences, values, avocational interests or pastimes. More generally, the assessment of conative differences is hampered by the fact that specific activities are often idiosyncratically rooted in previous experience and are generally pursued sequentially, with varying degrees of intensity, in accordance with circumstantial factors. In other words, the use of interests to capture conative differences is problematic because (1) interest in a behavior or activity is often dependent on knowledge about that activity and (2) interest does not reflect the intensity with which an activity is pursued, the enjoyment derived from it, or the circumstantial factors which may impede or demand the pursuit of any given activity (e.g., socioeconomic status, cultural influences, etc.). Related to these issues is the fact that the various aspects of conation are seemingly quite distinct: the assessment of interests provides a means of describing one’s preferences; motivation is generally framed as a measure of intensity (Carver and White, 1994, Gray and McNaughton, 2000), goals and values are often framed as trait-like heuristics that individuals use to navigate through the stream of choices in life (Liberman et al., 2001, Molden and Higgins, 2005, Peterson and Seligman, 2004). In essence, it seems that the conative domain is perhaps more sensitive than the temperament and ability domains to variability in the nature of action tendencies at the within individual level.

3.2. Modeling social behavior at two levels: cta and TAI

The expression of social behavior at the between individual TAI level is typically construed as an example of extraversion. Social interaction can also be modeled using the cta model. If, for example, a group of four
individuals gather together, each individual in the group will have a desire (action tendency) which reflects their interest in talking. When one person in the group is talking, the others are generally inhibited. At the between individual level, differences in the desire to talk (and the willingness to remain inhibited from talking) are a function of temperamental differences, but these might also be viewed as within individual sensitivities (growth rates) to cues for talking. When one person in the group is talking, the extent to which others are inhibited will reflect their sensitivity to other cues (e.g., the desire to listen, understand, not interrupt, etc.) Desires to talk run off in parallel, but behaviors are sequential. Differences in growth rates result in differences in latency and persistence. Figure 5 demonstrates how such an interaction might unfold by plotting the action tendencies for talking for four individuals over 5,000 arbitrary units of time. Note that, in this example, one person talks frequently while another is much less involved; these two might be viewed as extraverted and introverted, respectively.

An important point from this simulation is the recognition that both the DOA and cta models involve temporal measures (latency and persistence) which are functions of the choices available. Contexts differ in the sets of alternative activities. We simulated talking versus listening (not talking), but one could also think of each situation as offering a range of alternatives. Consider the context of a “lively party”. To some, this is an opportunity to talk to many different people, to others the chance to talk to a few special friends, to others the opportunity to put a lamp shade on their head. The choices made, and the latency and persistence of the various action tendencies, are all functions of cue strength for those activities, and inhibitory effects from other activities.

That the situation is not just the physical environment, but also the social context may be seen when we simulate four different groups of individuals (Table 3). When the group consists of all introverts, or of all extraverts, everyone shares equally in the amount of time spent talking. But when the groups differ in the range of introversion-extraversion within the group, the extraverts will tend to dominate the conversation. Data supporting this prediction were reported by Antill (1974) who examined the interactive effect of group size and introversion/extraversion upon talking behavior. The effect of group composition on the frequency distribution of extraverted behaviors also is compatible with Fleeson’s analysis of the relationships between state and trait measures of extraversion (Fleeson, 2004, 2007a).

4. Group differences as the consequence of individual choices

Dynamic models at a longer span reflect changes in interests and goals to reflect past histories of reinforcement. Over the long run, the connection strengths between cues and action tendencies S, and between action tendencies and actions E will change to reflect experience. The cta model is one of motivation and choice; it involves choice between incompatible outcomes. Students who find a topic challenging enough to be interesting, and who have the required mix of temperament and ability to do well, will become progressively more interested in the topic. Others, who do not have the temperamental or ability needed for that topic will find other topics more reinforcing. Over time, this will lead to group differences in the mean levels of temperament and ability traits in different college majors. Over a longer time period, people gravitate to certain college majors, occupations, or ways of behaving as a consequence of their histories of reinforcement. But these choices are themselves mutually incompatible. For time is a finite resource and time spent in the lab doing chemistry is time not spent socializing. Time spent in doing volunteer activities is time not spent studying business admin-
Table 3: Hypothetical amount of time spent talking and the hypothetical intensity of the talking behavior in four different groups of four individuals. The first group is composed of four introverted individuals who share equally in the conversation, but engage with low average levels of action. The second group, composed of four extraverts also share equally in the conversation, but talk with much more intensity. The third group, a mix of two introverts and two extraverts shows how the amount of time spent talking decreases for the introverts as the extraverts take 50% more than their share. Although the introverts talk less, they still talk with the same intensity as in the first group. Similarly, the talkative extraverts act with the same intensity as they did in the second group. The final case is when people cover the whole range of introversion/extraversion. Simulation done using the \texttt{cta} function in \textit{psych} with cue values as specified and running over 10,000 “time units”.

<table>
<thead>
<tr>
<th>Talking behavior</th>
<th>Subject</th>
<th>Cue Strength</th>
<th>Time Spent</th>
<th>Frequency</th>
<th>Av. Tendencies</th>
<th>Av. Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four introverts</td>
<td>I1</td>
<td>0.95</td>
<td>0.24</td>
<td>16</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td>1.00</td>
<td>0.25</td>
<td>16</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>I3</td>
<td>1.05</td>
<td>0.24</td>
<td>16</td>
<td>5</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>I4</td>
<td>1.10</td>
<td>0.27</td>
<td>16</td>
<td>6</td>
<td>79</td>
</tr>
<tr>
<td>Four extraverts</td>
<td>E1</td>
<td>3.95</td>
<td>0.25</td>
<td>21</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>4.00</td>
<td>0.24</td>
<td>15</td>
<td>26</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>4.05</td>
<td>0.25</td>
<td>16</td>
<td>20</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>4.10</td>
<td>0.26</td>
<td>15</td>
<td>23</td>
<td>297</td>
</tr>
<tr>
<td>Two introverts, two extraverts</td>
<td>I1</td>
<td>0.95</td>
<td>0.11</td>
<td>8</td>
<td>14</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td>1.00</td>
<td>0.13</td>
<td>9</td>
<td>14</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>4.05</td>
<td>0.37</td>
<td>22</td>
<td>15</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>4.10</td>
<td>0.38</td>
<td>21</td>
<td>15</td>
<td>210</td>
</tr>
<tr>
<td>Full range of Introversion-Extraversion</td>
<td>IE1</td>
<td>1.00</td>
<td>0.17</td>
<td>11</td>
<td>9</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>IE2</td>
<td>2.00</td>
<td>0.21</td>
<td>14</td>
<td>12</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>IE3</td>
<td>3.00</td>
<td>0.28</td>
<td>18</td>
<td>14</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>IE4</td>
<td>4.00</td>
<td>0.34</td>
<td>19</td>
<td>16</td>
<td>230</td>
</tr>
</tbody>
</table>
istration. Such patterns of histories of different choices will lead to trait constellations that reflect these choices.

In a large scale, web based assessment of temperament and ability characteristics associated with different occupations and college majors, we have shown (Revelle and Condon, 2012) striking differences in the level of cognitive ability (as assessed by the ICAR measure of ability Condon and Revelle (2014)) and the structure of the Big Five temperament measures as a function of college major. Rather than the conventional between individual structure showing independence of the dimensions of temperament and the measure of ability, when aggregated at the level of the college major, ability was highly negatively correlated with Extraversion and Agreeableness.

5. Conclusion

We started this paper with the simple premise that people differ. They differ within themselves over time, they differ between individuals cross sectionally, and they form into groups over time that differ in their structure. We have tried to show that “how” and “why” people differ may be considered in terms of the same basic dynamic model that considers motives and behaviors to have inertial properties and that can be modeled dynamically. These dynamics are not ergodic, in that the average outcome does not reflect the basic processes at the individual, nor is the structure of group differences just the average of the structure of the individuals. We believe that personality needs to be conceived at multiple temporal durations. At the individual level, the short term dynamics over seconds to days reflect the personal signature of an individual. Over longer periods of days to months, we see the typical structure of individual differences. However, when the patterns of individual choices are accumulated over the long term, over a period of year, the structure between groups is different yet again.

The study of personality needs to be considered at multiple levels of analysis: within and between individuals, and between groups of individuals. It also needs to be considered at different temporal frequencies, from the high frequencies within individuals to the long term tides of aggregated behavior. We hope that we have shown that it is time for theorists of personality and individual differences to realize the power of formal models implemented in open source software.

Personality Psychology Compass, 7(3):158–175.

