Experimental Approaches to the study of Personality

Personality is an abstraction used to explain consistency and coherency in an individual’s pattern of affects, cognitions, desires and behaviors.  What one feels, thinks, wants and does changes from moment to moment and from situation to situation but shows a patterning across situations and over time that may be used to recognize, describe and even to understand a person.  The task of the personality researcher is to identify the consistencies and differences within and between individuals (what one feels, thinks, wants and does) and eventually to try to explain them in terms of set of testable hypotheses (why one feels, thinks, wants and does).  

Personality research is the last refuge of the generalist in psychology: it requires a familiarity with the mathematics of personality measurement, an understanding of genetic mechanisms and physiological systems as they interact with environmental influences to lead to development over the life span, an appreciation of how to measure and manipulate affect and cognitive states, and an ability to integrate all of this into a coherent description of normal and abnormal behavior across situations and across time.

Although the study of personality is normally associated with correlational techniques associating responses or observations in one situation or at one time with responses at in other situations and other times, it is also possible to examine causal relations through the use of experimental methods.  This chapter will outline some of the challenges facing personality researchers and suggest that an experimental approach can be combined with more traditional observational techniques to tease out the causal structure of personality.

Central to our analysis is the distinction between personality traits and personality states.  States can be thought of as the current values of one’s affects, behaviors, cognitions and desires while traits have been conceptualized as either average values of these states or alternatively the rates of change in these states.  In more cognitive terms, traits are measures of chronic accessibility or activation, and states are levels of current activation.  It is perhaps useful here to think analogically and to equate states with today’s weather and traits as long terms characteristics of weather, that is to say, climate.  On any particular day, the weather in a particular location can be hot or cold, rainy or dry.  But to describe the climate for that location is more complicated, for it includes among other aspects a description of the seasonal variation in temperature and the long term likelihood of draught or blizzards or 

hurricanes.  Extending this analogy, climatologists explain differences in climate between locations in terms of variations in solar flux and proximity to large bodies of water, and changes in climate in terms of long term trends in greenhouse gases in the atmosphere. The role of the personality researcher is analogous to the meteorologist and climatologist, trying to predict what someone’s immediate states as well as understanding and explaining long term trends in feelings, thoughts and actions. 

Integrating Two Alternative Research Approaches

Psychological research has traditionally been described in terms of two contrasting approaches: the correlational versus the experimental (viz., the influential papers by Cronbach, 1957, 1975; and Eysenck, 197x).   Francis Galton and his associate Karl Pearson introduced the correlation as a means for studying how individual differences on one variable (e.g., the height of one’s parents or one’s occupation) could be related to individual differences in another variable (e.g., one’s own height or to one’s reaction time).  Correlational approaches have been used in personality research since Galton to predict school achievement or job performance, and when combined with known family structures (e.g., parents and their offspring, monozygotic or dizgotic twins with each other, adopted and biological siblings) have allowed for an examination of the genetic basis of personality.  Applying structural techniques such as factor analysis to matrices of correlations of self and other descriptions has led to taxonomic solutions such as the Giant Three or Big Five trait dimensions.  The emphasis in correlational research is on variability, correlation, and individual differences.  Central tendencies are not important, variances and covariances are.  The primary use of correlational research is in describing how people differ and how these differences relate to other differences.  Unfortunately for theoretical inference, that two variables are correlated does not allow one to infer causality.  (e.g., that foot size and verbal skill are highly correlated among preteens does not imply that large feet lead to better verbal skills, for a third variable, age, is causally related to both.)  

A seemingly very different approach to research meant to tease out causality is the use of experimental manipulation.  The psychological experiment, introduced by Wundt and then used by his students and intellectual descendants allows one to examine how an experimental manipulation (an Independent Variable) affects some psychological observation (the Dependent Variable) which is, in turn, thought to represent a psychological construct of interest.  The emphasis is upon central tendencies, not variation, and indeed, variability not associated with an experimental manipulation is seen as a source of noise or error that needs to be controlled.  Differences of means resulting from different experimental conditions are thought to reflect the direct causal effects of the IV upon the DV.  Threats to the validity of an experiment may be due to confounding the experimental manipulation with multiple variables or poor definition of the dependent variables or an incorrect association between observation and construct.   

One reason that correlational and experimental approaches are seen as so different is that they have traditionally employed different methods of statistical analysis.  The standard individual differences/correlational study reports either a regression weight or a correlation coefficient.  Regression weights are measures of how much does variable Y change as a function of a unit change in variable X.  Correlations are regressions based upon standard scores, or alternatively the geometric mean of two regression slopes (X upon Y and Y upon X). A correlation is an index of how many standardized units does Y change for a standardized unit of X. (By converting the raw Y scores into standardized scores, zy = (Y-Y.)/s.d.Y,  one removes mean level as well as the units of measurement of Y. Experimental results, on the other hand, are reported as the differences of the means of two or more groups, with respect to the amount of error within each group.  Student’s t-test and Fisher’s F test are the classic way of reporting experimental results.  Both t and Fy are also unit free, in that they are functions of the effect size (differences in means expressed in units of the within cell standard deviation) and the number of sample size of participants.

But it is easy to show that the t-test is a simple function of a correlation coefficient where one of the variables is dichotomous.  Similarly, the F statistic of an analysis of variance is directly related to the correlation between the group means and a set of contrast coefficients. The recognition that correlations, regressions, t and F statistics are all special cases of the general linear model has allowed researchers to focus on the validity of the inferences drawn from the data, rather than on the seeming differences of experimental versus correlational statistics. 

The use of meta-analysis to combine results from different studies has forced researchers to think about the size of their effects rather than the significance of the effects.  Indeed, realizing that r = sqrt(F/(F+df)) or sqrt(t2/ (t2+df)) did much to stop the complaint that personality coefficients of .3 were very small and accounted for less than 10% of the variance to be explained.  For suddenly, highly significant F statistics were found to be showing that only a small fraction of the variance of the dependent variable was accounted for by the experimental manipulation.

The realization that although the statistics seemed different but are actually just transformations of each other forces experimentalists and correlationalists to focus on the inferences they can make from their data, rather the way in which the data are analyzed.    The problems are what kind of inferences one can draw from a particular design, not whether correlations or experiments are the better way of studying the problem.   

Latent constructs, observed variables and the problems of inference

Fundamental to the problem of inference is the distinction between the variables we measure and observe and the constructs that we think about.  This distinction between latent (unobserved) constructs and measured (observed) variables has been with us at least since Plato’s Phaedra . Consider prisoners shackled in a cave and only able to see shadows (observed scores) on the cave wall of others (latent scores) walking past a fire. The prisoners attempt to make inferences about reality based upon what they can observe from the length and shape of the shadows. Individual differences in shadow length will correctly order individual differences in height, although real height can not be determined.  To make this more complicated, as people approach the fire, their shadow lengths (the observed scores) will increase, even though their size (the latent score) has not changed. So it is for personality research. We are constrained to make inferences about latent variables based upon what we measure of observed variables.  The problem may be shown diagrammatically (Figure 1) where boxes represent observed variables, circles latent constructs, and triangles experimental manipulations.  From the observed pattern of correlations or t-tests we attempt to make inferences about the relationships between the latent variables as well as between the latent and observed variables. 

	Insert Figure 1 about here


There are at least three challenges that we face when making inferences about the strength of the relationships between latent variables: the shape of the functional relationship between observed and latent variables, the strength of the functional relationship between observed and latent variables, and the proper identification of the latent variables associated with observed variables and manipulations. 

Consider the following two hypothetical experiments.  Both are field studies of the effect of education upon student outcomes.  In study 1, students from a very selective university, a less selective university, and a junior college are given a pretest exam on their writing ability and then given a post test exam at the end of the first year.  The same number of students are studied in each group and all students completed both the pretest and post test.  Although there were differences on the pretest between the three student samples, the post differences were even larger (Figure 2a). Examining figure 2a, many who see these results conclude that students at the highly selective university learn more than students at the less selective university who change more than the students at the junior college. Some (particularly faculty members) like to conclude that the high tuition and faculty salaries at the prestigious and selective university lead to this greater gain.  Others believe that the teaching methods at the more selective university are responsible for the gains, and if used at the other institutions, would also lead to better outcomes.  Yet others (particularly students) point out that the students in the prestigious university were probably smarter and thus more able to learn than the students in the junior college.  

Hypothetical study 2 was similar to study 1, in that it was done at the same three institutions during the first year, but this time the improvement on mathematics achievement was examined (Figure 2b).  Here we see that students at the most selective school, although starting with very high scores, did not improve nearly as much as the students at the less selective university, who improved even less than the students at the junior college.  Most faculty and students who see these results immediately point out that the changes for the selective university students were limited by a “ceiling effect” and that one should not conclude that the selective university faculty used less effective techniques nor that the students there were less able to learn.

The results and interpretations from these two hypothetical studies are interesting for in fact one is the inverse of the other.  Scores in study 2 are merely the scores in study 2 subtracted from 100.  The results form both study 1 and 2 can be seen as representing equal changes on underlying latent score, but using tests that differ in their difficulty.  Study 1 used a difficult test in which improvements of the students at the less selective institution were masked, study 2 used an easy test where improvements of students at the more selective institution were masked (Figure 2c). That differences in outcome are explained by ability in study 1 but scaling effects (in this case, a ceiling effect) in study 2 exemplifies the need to examine one’s inferences carefully and to avoid a confirmation bias of accepting effects that confirm one’s beliefs and searching for methodological artifacts when facing results that are disconfirming.

We will revisit this problem of scaling effects upon inferring differential effects of personality and situational manipulations when we consider the appropriate interpretation of interactions of personality and situations.

A second problem in inferring differences in latent scores based upon changes in observed score is the strength of the relationship between latent and observed.  This is the problem of reliability of measurement.  Although addressed more completely in chapter XX [note to editor- this is an assumption], the basic notion of reliability is that any particular observed score reflects some unknown fraction of the latent score as well a (typically much larger) fraction of random error.  By aggregating observations across similarl items or situations the proportion of the observed score due to the  latent score will increase asymptotically towards 1 as a function of the number of items being used and the similarity of the items.  Assuming that items are made up of a single latent score and random error, it is easy to show that the proportion of latent score variance in a test with k items and is k*r/(1+(k-1)*r) where r = the average correlation between any two items and is equal to the ratio of latent score variance in an item to total item variance.  More generally, the reliability of a measure of individual differences is a function of what we are trying to generalize across (e.g., items, people, raters,situations, etc.)

Confirmatory versus disconfirmatory designs

Although it is very tempting (and unfortunately extremely common) to test hypothesis by looking for evidence that is consistent with the hypothesis (e.g., “testing” the hypothesis “all swans are white” by looking for white swans), in fact disconfirming evidence is the only test of a hypothesis (even after seeing 1,000 white swans, seeing 1 black swan disconfirms the hypothesis.) The use of strong inference (Platt, 1964) to ask what hypothesis a finding can disconfirm should be the goal of all studies.  For science is the process of refining theories by excluding alternative hypotheses.  

“I will mention one severe but useful private test – a touchstone of strong  inference - that removes the necessity  for third-person criticism, because it is a test  that anyone can

learn to carry with him for use as needed.  It is our old friend the  Baconian “exclusion,” but I call it “The Question.” Obviously it should be applied as  much to one’s own thinking as to others’.  It consists of asking in your own mind, on  hearing any scientific explanation or theory put  forward, “But sir, what experiment  could dis prove your

hypothesis?”; or, on hearing a scientific experiment  described,  “But sir, what hypothesis does your experiment  dis prove?”  Platt, Science, 1964
Consider the following sequence of numbers that have been generated according to a certain rule:   2,  4,  8, X, Y, …   What is that rule?  How do you know that is the rule?  One can test the hypothesized rule by generating an X and then a Y and seeing if they fit the rule.  Many people, when seeing this sequence will propose X=16 and then  Y= 32.  In both cases they would be told that these numbers fit the rule generating the sequence.   Once again, most people would then say that the rule is successive powers of 2.  A few people will propose that X = 10 and then Y=12 and conclude that the rule is to produce increasing even numbers.  Few will try X = 9 and Y = 10.92, with the hypothesis that the rule is merely an increasing series of numbers.   Even fewer will propose that X = 7 or that Y = sqrt(43), terms that did not fit the rule and allow us to reject  the hypothesis that any number will work. This simple example shows the need to consider many alternative hypotheses and to narrow the range of possible hypothesis by disconfirmation.  For, as that great (but imaginary) scientist Sherlock Holmes reasoned “when you have eliminated the impossible, whatever remains, however improbable, must be the truth” (Doyle, 18xx)  

Experimental manipulations as tests of theories of causality

In the mid 1500’s, a revolutionary technique was added to the armamentarium of scientific reasoning.  Rather that using arguments based upon assumptions and logical reasoning, the process of empirical observation and more importantly, experimental manipulation was introduced (see Shadish, Cook and Campbell, 2002, for a wonderful discussion of the development of experimentation and reasoning.) By observing the results of experimental manipulations it became possible to tease apart alternative hypotheses and to address issues of causality.  Although statistically, there is little to differentiate experimental and correlational data, the importance of experimental techniques is the ability to make statements about causality and to exclude possible explanations by experimental control. When applied to personality theory, experiments allow us to test the range of generalization of the relationships between individual differences and outcome variables of interest. 

The fundamental requirement of an experiment is that there are at least two levels of a manipulated variable (the independent variable or IV). With the additional requirement that that assignment to those two (or more) levels is independent of any possible prior conditions, we have a true experiment.  Observations on some outcome measure of interest (the dependent variable or DV) are then related to the states of the IV to detect if variation in the IV caused changes in the DV. 

Subject variables or person variables (PV) reflect prior and stable characteristics of the individual and are not subject to manipulation.  That is, one can not manipulate the sex, age, intelligence or extraversion of a participant.  Although person variables are seen as nuisance variables to many cognitive and social psychologists, to personality researchers, person variables are of greatest import.  Although excellent personality research can be done using correlations rather than experimental manipulation, with the use of experimental techniques, we are able to test the range of generality of our person variables.

A correlational study examines the relationship between a (presumably stable) person 

variable (PV) and some observed outcome variable of interest (OV).  For instance, the hypothesis that trait extraversion related to positive mood is supported by positive correlation of .4 between E as measured by scales from the IPIP and positive mood as measured by items such as happy and cheerful.  What is unclear from such an observed relationship is whether some people are chronically happy and cheerful and that this leads to the outgoing and energetic behavior of extraversion, or whether the behavioral approach exhibited by the more chronically extraverted results in higher positive mood.  

With the introduction of an experimental manipulation of mood, where we find that showing a comedy increases positive affect more than a control movie, and that in both movie conditions, that extraversion is still related to positive affect, allows us to simultaneously increase the range of generalization of the E-PA relationship.  

In addition to testing the range of generalization, experimental techniques allow for tests of causal hypotheses. That is, if we believe that X causes Y and that if and only if X occurs will Y occur, we can test this by doing both X and not X and seeing when Y occurs.  To show that X leads to Y, it is not enough to merely observe that X and Y occur together, we also need to know what happens when we do not have X.

Consider the following table of possible outcomes for X and Y and consider which observations are necessary to test the hypothesis that X implies Y:

 Hypothesis:  X -> Y  (read, X implies Y)

Two states of X

Two states of Y





Y

Not Y


X


a

b


Not X


c

d

Four possible observations:  

a) Y 

b) For any X there is 

c) Not X, Y

d) For any  not Y is there a not X

Observing conditions a and c allow us to test the hypothesis, condition a is consistent with the hypothesis and c allows us to reject the hypothesis.  

(Perhaps the easiest example to understand is the relationship between sexual intercourse and pregnancy:  If some one is pregnant, she has had intercourse; if someone has not had intercourse, she will not become pregnant.)

Threats to Validity


Internal


External

The generic experimental personality study can be thought of as examining how one or more stable personality traits  (the PVs) combine  (either additively or interactively) with one or more experimental manipulations (the EVs) to affect some hypothetical (but unobserved) states, the effects of which are then observed with on at least one measure (the OV).  In some designs, measures of the intervening state are also taken and used either as manipulation checks or as part of the statistical model. 

Experiments allow one to test the range of generality of a particular personality variable.  In the most basic design of a single PV and a single EV, if the EV has an effect but does not interact with the PV, then we are able to extend the generality of the PV across at least the conditions of the EV.  If the EV does interact with the PV, then the range of generalization of the PV is reduced.  In both cases, we have know more about the range of the PV-OV relationship.  In the more complex case of multiple PVs or multiple EVs, interactions between the  PVs or higher order interactions with several EVs constrain the limits of generalization even more.  

The range of potential person variables and potential manipulations is limited by one’s imagination, but it is possible to list a number of the more common personality variables that have been examined in an experimental context (Table 1). The variables shown in Table 1 reflect the influence of two major proponents of experimental approaches to personality research, J.W. Atkinson and H.J Eysenck.  Both of these pioneers in personality research emphasized the importance of integerating studies of individual differences with experimental procedures.  

Table 1: Examples of Experimental Personality Research

	Person Variable
	Experimental Variable
	Hypothetical State
	Observed Variable

	Introversion/Extraversion
	Caffeine
	Arousal
	Cognitive performance: total correct, attention decrements over trials, reaction time, accuracy, speed accuracy tradeoffs

	
	Time of day
	Arousal
	

	
	Time limits
	
	

	
	Movies
	Positive Affect
	Cognitive Performance: reaction time to valenced words

	
	Autobiographical memory
	Positive Affect
	Mood ratings

	
	Affective pictures
	Positive Affect
	MRI activation

	Emotional Stability /Neuroticism
	Movies
	Negative Affect
	Cognitive Performance

	
	Affective Pictures
	
	MRI activation

	Impulsivity
	Cues for reward/punishment
	Behavioral Activation
	Learning 

	
	Time of day
	Arousal
	Cognitive Performance: 

	
	Caffeine
	Arousal
	Cognitive Performance: 

	Achievement motivation
	Probability of success/failure
	Achievement motive
	Persistence

Task choice

	Chronic Promotion Focus/Prevention Focus
	Cues for reward/

punishment
	Activation of Promotion Focus/Prevention Focus
	

	Anxiety
	Success vs. Failure feedback
	State anxiety
	Learning

	
	Task difficulty
	State anxiety
	Learning

	
	Memory load
	State anxiety
	Cognitive performance: speed accuracy trade off

	
	Cues for reward/punishment
	Behavioral Inhibition
	Learning

	
	Autobiographical memory
	State anxiety

Negative Affect
	Emotional  “Stroop” task

	Conscientiousness
	Forest vs. trees
	
	Reaction time

	
	
	
	


Arousal based models of the Introversion/Extraversion dimension (Eysenck, 1967) made two strong theoretical statements: Introverts were chronically more aroused than were extraverts and arousal was curvilinearly related (with an inverted U shaped function) to cognitive performance.  Thus, typical tests of the model would involve manipulations of arousal by giving stimulant or depressant drugs (e.g, amphetamine, caffeine, barbiturates), putting participants in arousing situations (e.g., under time pressure, noise, large groups) or varying the time of day.  

More recent conceptualizations of Introversion/Extraversion have focused on the relationship with positive affect and have examined the effects of positive mood inducing stimuli (e.g., movies, pictures, autobiographical memories) on subsequent performance measures.

Avoiding confounds through experimental control,  randomization and counterbalancing

Many seemingly different designs (one IV with two levels, one IV with multiple levels, two IVs, etc.) all have similar requirements, the need to assign subjects to Experimental conditions with no relationship to other existing condition.  That is, the only expected variation between participants in the different conditions should be due to those conditions and not some other, confounded variable.  

Perhaps the clearest way of thinking of the problem is consider a hypothetical data matrix where the rows are the participants, the columns include the Person Variables, Experimental Variables, and Observed Variables of interest, as well as other, extraneous Person and context variables. The inferential problem for the researcher is to know that the observed relationship between the PV, EV and OV is not due to any other source of variance.  That is, that the effect is not due to the extraneous Person Variables or Context Variables (CVs).  These extraneous variables, if correlated with either the PV or the EV are confounded with the variables of interest and invalidate any causal inferences we try to make.

There is, of course, an infinite number of such possible confounding variables.  Confounding person variables include individual differences in intelligence, SES,  broad personality trait dimensions such as the Big 5, narrow trait dimensions such as impulsivity or anxiety or achievement motivation, or prior experience with the task.  Confounding context variables range from the obvious effects of time of day, time of week, time of year, to effects of experimenter characteristics including gender, formality of clothing, friendliness, ethnicity, and age, as well as possible participant by experimenter interactions, of which among college students important ones to consider are participant gender and ethnicity by experimenter gender and ethnicity.

Our challenge as researchers is to eliminate the effect of these potential confounds.  Unfortunately, we can not control for the effect of extraneous PVs by experimental design, but rather need to worry about them when trying to make inferences about the specific PVs of interest.  We can, however, eliminate the effect of CVs by ensuring that their correlation with the EVs is 0. 

It is possible to control explicitly for some confounding variables by making them part of the design.  Thus, it is possible avoid time of day and experimenter characteristics as sources of variation by having the same experimenter run all participants at the same time of day.  While avoiding confounds with time of day and experimenter characteristics, and reducing the amount of variation with experimental conditions, this procedure also reduces the generalizability of the findings to that particular combination of time of day and experimenter.  Explicit control for confounds by restricting the experimental conditions thus increases the power of the design at the cost of reducing the generalization of the findings.

A statistically less powerful but much more generalizable control for confounds is to use random assignment. The technique of random assignment of participants to conditions will, on average, yield no correlation between the experimental conditions and extraneous, confounding variables. It is important to note that although randomization has an expected value of no relationship it does not guarantee no relationship in any particular study.  I once observed a significant interaction on cognitive performance between impulsivity and caffeine on a pretest, before the caffeine was administered.  Either we had confirmed precognition, or had observed a failure of randomization to equate the groups. 

Random assignment of participants to conditions is easier to say than to do, for there are problems that will arise with randomization.  For a given number of participants, statistical analysis will have the greatest power when an equal number of participants are assigned to each condition.  But simple randomization (e.g., flipping a coin or rolling a die) will normally not achieve this goal, for there is random variation in the outcome. (Assume you want 10 participants in each of two cells, there is only about a 18%  chance that a coin flip will result in equal size samples, and about a 26% chance that there will be 7 or fewer in one group.  Indeed, as the sample size increases the probability of exact equal numbers per condition decreases, even though the  chance of large variations from equality also decreases.)  

A seeming solution to this problem is to randomly assign participants to conditions until the desired number is achieved in one condition and then to assign the remaining participants to the other condition.  Unfortunately, this will normally result in an over abundance of later arriving participants in one condition rather than another.  If there is any reason (and there are many, eg., early arriving subjects are likely to be more conscientious, anxious, and introverted than late arriving subjects) to expect that participant arrival is correlated with extraneous variables, then the condition effect is confounded with arrival time (which, for studies in a single day, is confounded with time of day as well).

A solution that guarantees equal numbers of subjects per condition but also has no expected correlation with other variables is to block randomize.  That is, to divide the n participants into n/k blocks where k is the number of conditions.  Then, within each block, randomly assign participants to condition by choosing the condition for a participant by sampling without replacement from the set of all conditions.  

If observations are collected within subject across many trials, block randomization can still be used to avoid confounding condition with order.  If there are only a few (e.g. 4) observations per participant, then randomly assigning participants to one of two counterbalanced orders avoids possible order effects (e.g., half the participants are given the conditions in the order  ABBA,  while the other half are given BAAB.  With four levels of a within subject variable, the use of Latin squares removes simple order and first order sequential effects: Participants can then be blocked randomized into each of the orders:




Trial

Participant
1
2
3
4


1
A
B
C
D


2
B
D
A
C


3
C
A
B
D


4
D
C
B
A

Even the best of randomization and counterbalancing can not control for confounds introduced by the IVs.  Avoiding such confounds requires a theoretical understanding of the task rather than just a mechanical consideration of design.  Consider the interactive effect of task difficulty and anxiety on performance in list learning.  Although more than 20 studies showed that anxious subjects learn easy lists more rapidly than do less anxious subjects, but learn difficult lists more slowly than do the less anxious, (e.g., Spence, Farber and McFann, 195x)  this effect was shown to be due to a confound of task difficulty and implicit feedback (Weiner and Schneider, 197x).  The traditional list learning task used a serial anticipation procedure in which participants would be shown a cue word, recite their answer, and then be shown the correct answer.  Although no feedback was explicitly given, implicitly, participants could judge how well they were doing whenever they would make an incorrect response.  Weiner and Schneider used the same procedure, but added explicit feedback (“compared to other students you are doing very well or not very well”).  Feedback interacted with anxiety such that high anxious participants with either difficult or easy lists to learn did better when told they were doing better than average, but did less well when they were told they were doing worse than average.   As is true with most interactions, the Weiner and Schneider study may also be interpreted as limiting the generality of the anxiety by task difficulty effect to situations where no feedback is given. 

Basic experimental designs 

There are two broad classes of experimental designs used in personality research.  The first, between subjects, randomly assigns participants to conditions, where each person is in just one condition.  The second, within subjects, assigns each person to all conditions.  These two broad types of designs can be combined into mixed designs where participants are assigned to multiple but not all conditions.  Although the examples discussed below use just one PV and one EV, the generalization to multiple PVs and multiple EVs is straightforward. 

Between subject

PV X IV

Within subject

PV X IV 

Examples of experiments and data analysis

We need to distinguish between experiments, in which a variable is manipulated, from observations that require sophisticated technology (e.g., Magnetic Resonance Imaging) but do not actually manipulate the state of the subject.  That is, to show that the amygadala of subjects shows more activation following fear cues than neutral cues, and that neurotics have more amygdalar activation than more emotionally stable subjects is interesting, but is really merely a correlation between the person variable and the outcome variable.  
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Appendix 1

#R code for simulating personality x situation effects

#also available at http://personalilty-project.org/r/simulating_personality.html

set.seed(42)   
#random number seed is fixed to produce identical "random" sequences




#first set some parameters of the model

num <- 100    

#number of people to simulate

weightreward <- .4  
#an index of how strong is the effect of reward on positive affect

weightpunish <- .4
 #how strong is the effect of punishment on negative affect

weight_e<-  .0 

#how strong is the effect of extraversion on positive affect

weight_n<-  .3 

#how strong is the effect of neuroticism on negative affect?

weight_er <-.4 

#how strong is the interaction of e x reward on positive affect

weight_np <- 0 
#how strong is the interactionof n * punish on negative affect

reliability_e <- .7
#the reliability of the observed extraversion score

reliability_n <-.8  
 #the reliability of the observed neuroticism score

reliability_P <-.7  
 #the reliability of observed measures of Postive Affect

reliability_N <- .8  
#the reliability of observed measures of Negative Affect

#generate the data using the random normal distribution 





#first simulate true (latent) scores

true_e <- rnorm(num)   
 #true trait extraversion is normally distributed

true_n <- rnorm(num)   
#true trait neuroticism is normally distributed

                      

  #observed E and N are a mixture of true and error scores

extraversion <- sqrt(reliability_e)*true_e + sqrt(1-reliability_e)*rnorm(num)

neuroticism <- sqrt(reliability_n)*true_n + sqrt(1-reliability_n)*rnorm(num)




#experimental conditions are block randomized

reward <- rep(c(0,1),num/2)   #reward vector of 0 or 1

punish <- rep(c(0,0,1,1),num/4) #punishment vector

block <- sort(rep(seq(1:(num/4)),4))  #block the data to allow for block randomization

condition <- data.frame(reward,punish,block,rand =rnorm(num))  #experimental conditions ordered by block

condition <- condition[order(condition$block,condition$rand),]  #conditions are now block randomized

#true affect measures are a function of a trait, a situation, and their interaction 

TruePosAffect <- 1/(1+exp(-(weight_e*true_e + weightreward*condition$reward +weight_er*true_e*condition$reward)))

TrueNegAffect <- 1/(1+exp(-(weight_n*true_n +  weightpunish*condition$punish +weight_np*true_n*condition$punish )))

TruePosAffect <- TruePosAffect/sd(TruePosAffect)    #standardize them

TrueNegAffect <- TrueNegAffect/sd(TrueNegAffect)
#standardize them

#observed affect is a function of true affect and errors in measurement

PosAffect <- sqrt(reliability_P) * TruePosAffect+sqrt(1-reliability_P)*rnorm(num)

NegAffect <- sqrt(reliability_N) * TrueNegAffect+sqrt(1-reliability_N)*rnorm(num)

#organize all the data in a data frame to allow for analysis

affect.data <- data.frame(extraversion,neuroticism,PosAffect,NegAffect,condition,true_e,true_n,TruePosAffect,TrueNegAffect)

pairs.panels(affect.data)   #show the correlations and scatter plots (function found in psych package)

round(cor(affect.data,2) 
#find the correlations, rounded off to 2 decimals

#do the analyses using  a linear model 

mod1 <- lm(PosAffect ~ extraversion+reward,data= affect.data)   #don't exam interactions

mod2 <- lm(NegAffect ~ neuroticism+punish,data = affect.data)

mod3 <- lm(PosAffect ~ extraversion*reward,data = affect.data) #look for interactions

mod4 <- lm(NegAffect ~ neuroticism*punish,data = affect.data)

mod5 <- lm(PosAffect ~ extraversion*neuroticism*reward*punish,data = affect.data)





#show the results of the analyses

summary(mod1,digits=2)

summary(mod2,digits=2)

summary(mod3,digits=2)

summary(mod4,digits=2)

summary(mod5,digits=2)

The basic experiment in personality examines the effect of some manipulated variable (the IV) on an outcome variable (the DV) while at the same time examining the effect of person variable (PV) upon the DV.  However, merely showing that both the PV and IV have an effect is not as useful for theory testing as is finding that the PV by DV relationship depends upon (interacts with) the IV. 

Broadly speaking, there are three possibles classes of personality theories:  those that describe stable trait differences that result in constant differences in behavior across situations, those that propose stable trait differences across situations  that have additive effects with environmental variations, and those that interact with the environment.
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