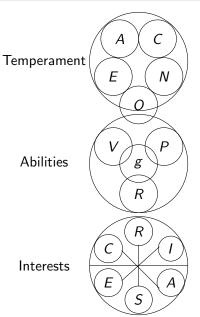
Measuring spatial ability at a distance: Who goes into STEM

William Revelle Telemetrics lab

Department of Psychology Northwestern University Evanston, Illinois USA



December, 2011

Outline

- Personality and Differential Psychology
- 2 Synthetic Aperture Personality Assessment (SAPA): An old methodology with new applications
 - SAPA methodology
 - Sample ability items
- Some structural and validity studies
 - Structural studies
 - Validity studies

Three domains: Temperament, Abilities, and Interests

Temperament

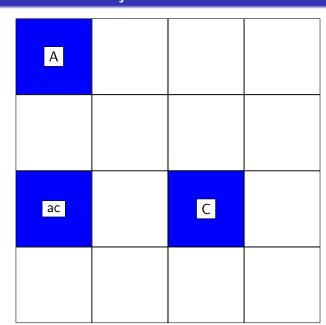
2- 5 dimensions reflecting individual differences in Affect, Behavior, Cognition, Desire

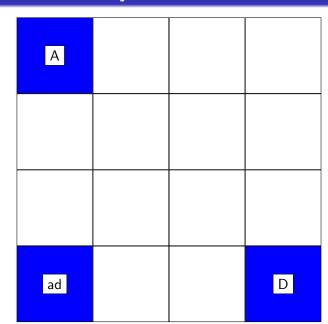
Ability

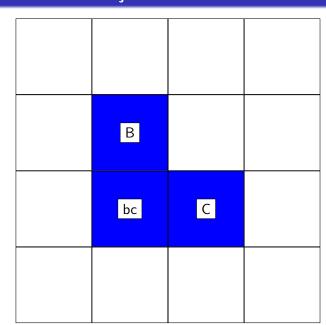
- **1** g
- $g_f g_c$

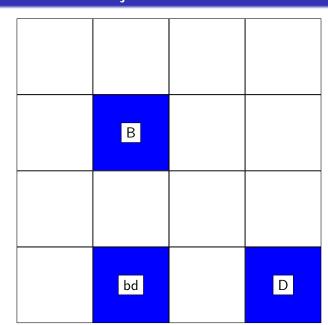
Interests

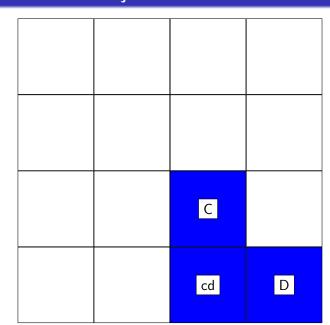
- 2 broad dimensions organizing
- 6-8 specific interests
- People vs. ThingsFacts vs Ideas

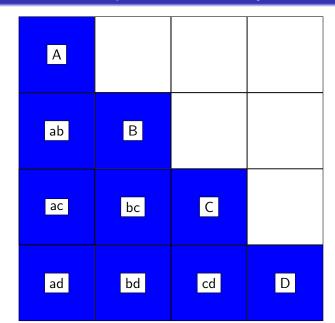

Integrating 3 domains of individual differences to predict STEM


- Two of the "Big 5" Temperament
 - Openness/Intellect
 - Conscientiousness
- Ability beyond g
 - Spatial/Rotational
 - Abstract reasoning
- Two dominant Interests
 - Analytic
 - Production
- Using Synthetic Aperture Personality Assessment to examine TAI correlates across diverse groups
 - Sampling people from web based assessment
 - Sampling items to synthetically form covariance matrices
 - Prior work studied ability, temperament, attitudes, trust, music preferences: Evans & Revelle (2008); Liebert (2006); Revelle & Laun (2004); Revelle, Wilt & Rosenthal (2010)

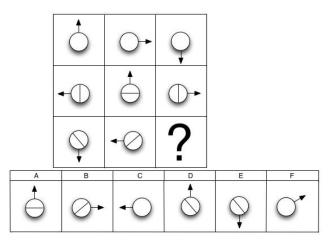

Synthetic Aperture Personality Assessment (SAPA)


- Using the web to collect data on temperament, ability and interests
 - Synthetically form large covariance matrices from smaller subsets of items
 - Each subject given ≈ 50 personality, 10 interest, and 16 ability items sampled from the larger pool.
 - Total pool of items > 600
 - pprox 400 personality items primarily from International Personality Item Pool Goldberg (1999)
 - 92 interest items for Oregon Vocational Interest Scales (Pozzebon, Visser, Ashton, Lee & Goldberg, 2010)
 - 80 ability items (home brewed at NU)
 - Demographic items include age, sex, education, race, country, college major, occupation (if appropriate)
 - Resulting sample sizes > 50,000 100,000
- \bullet College major, occupational status and interest items added in 9/10
- Data to be summarized include \approx 30,000 participants (Sept 2010-December 2011).

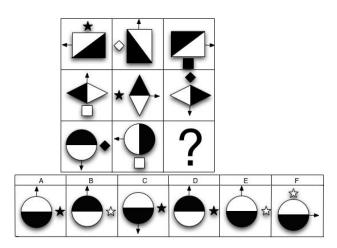

А		
<u> </u>		
ab	В	



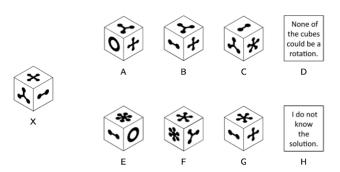
SAPA: what the experimenter sees: A Synthetic matrix

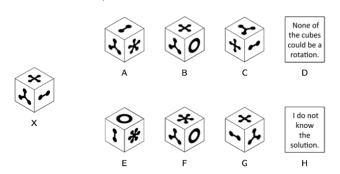

SAPA: Technical overview

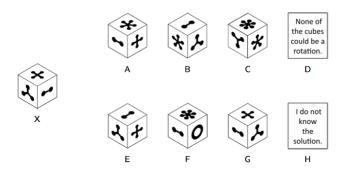
- n x n synthetic covariance matrices are formed by giving p items to Np subjects
 - N Total number of subjects
 - n Total number of items in synthetic matrix
 - p Probability of any item being given
 - pN Number of subjects taking any one item
 - p^2N Number of subjects for any pair of items
- Basic statistics
 - Data are Massively Missing at Random
 - Means and Variances are based upon pN subjects
 - Covariances are based upon p^2N subjects
- Open Power of large samples and sampling of items
 - 100-150 people per day => 40,000 subjects per year
 - 700-1000 subjects/week
 - By varying p, one can prototype items rapidly.


Types of ability items

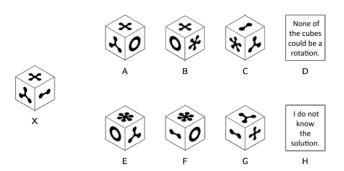
- **1** Alpha/Numeric reasoning (\approx 14)
- 2 General knowledge (\approx 14)
- Abstract matrix reasoning (14 of varying characteristics)
- Unclassified (\approx 14)
- Spatial (cube) rotation (24 underdevelopment)


Matrix reasoning


Matrix reasoning


All the cubes below have a different image on each side. Select the choice that represents a rotation of the cube labeled X.

All the cubes below have a different image on each side. Select the choice that represents a rotation of the cube labeled X.

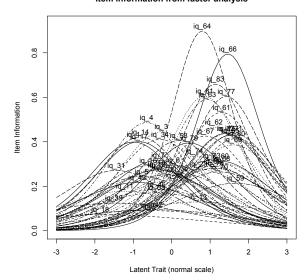


All the cubes below have a different image on each side. Select the choice that represents a rotation of the cube labeled X.

All the cubes below have a different image on each side.

Select the choice that represents a rotation of the cube labeled X.

Item generation techniques

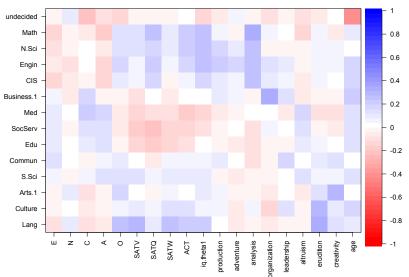

- 1 The challenge: to generate new items algorithmically
 - To make many items so items can be open source/shared for research
 - To make items smarter (harder) than we are
- 2 Two components of a problem
 - Incidentals that do not affect difficulty
 - Radicals that affect difficulty
- Oharacteristics of matrix reasoning items
 - Difficulty on matrix reasoning varies by memory load Embretson (1998); Mulholland, Pellegrino & Glaser (1980)
 - Number of transformations across rows and colums
- Oharacteristics of spatial rotation items
 - Difficulty varies by number of rotations
 - Difficulty varies by number of axes of rotation

Structural studies

- Item structure based upon tetrachoric and polychoric correlations from synthetic correlation matrices.
- Classical Test theory
 - Exploratory Factor Analysis of structure
 - Hierarchical Factor Structure
- Item Response Theory
 - To identify item location (difficulty) and discrimination
 - This has led to some item pruning
 - Ability to construct parallel tests based upon item and test information

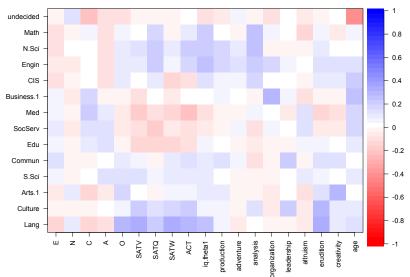
Item Information analysis of 28 best old + 24 rotation items

Item information from factor analysis

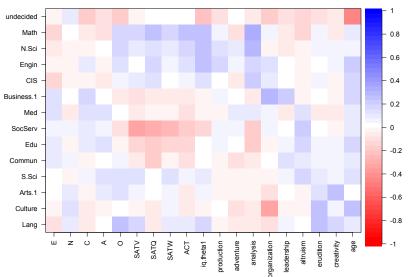


Validity studies

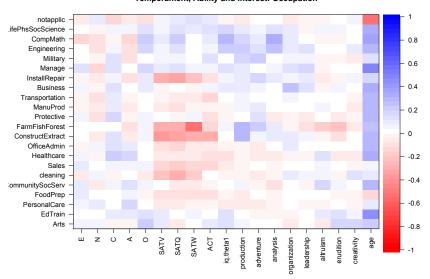
- Correlations with self reported SAT/ACT, gender, age
- Correlations with college major and occupation
 - Classification of major by large groups (Math, Engineering, ...)
 - Classification of occupation by large groups
- Use of graphical displays rather than significance of correlations (everything is significant)
 - Heat maps of correlations with majors and occupations
 - Spider plots by occupation


College major by Temperament, Ability and Interests

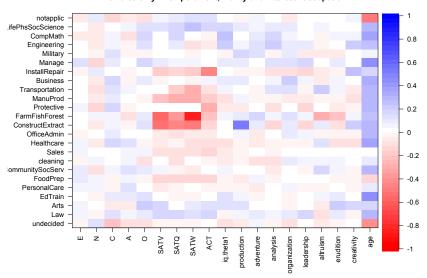
Temperament, Ability and Interest: College major


College major by Temperament, Ability and Interests- Females only

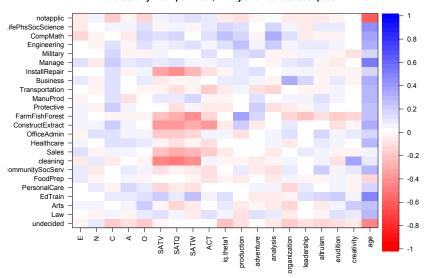
Temperament, Ability and Interest: College major -- Female only


College major by Temperament, Ability and Interests- Females only

Temperament, Ability and Interest: College major -- Male only


Occupation by Temperament, Ability and Interests - All participants

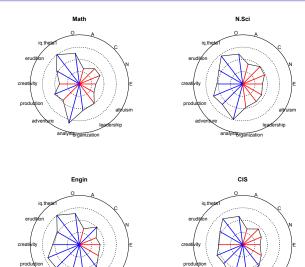
Temperament, Ability and Interest: Occupation


Occupation by Temperament, Ability and Interests- Females only

Females only -- Temperament, Ability and Interest: Occupation

Occupation by Temperament, Ability and Interests- Males only

Males only -- Temperament, Ability and Interest: Occupation


adven

analysterganization

STEM majors

adventure

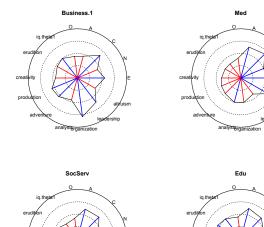
analysterganization

creativity

productio

adver

analysterganization

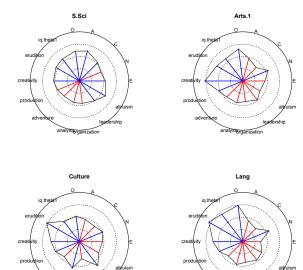

Business/Education/Social Services

creativity

production

adve

analysterganization


adver

analysterganization

Social Sciences and the Arts

adve

analysterganization

Summary and Conclusion

- Personality and Differential Psychology variables include
 - Temperament (the big 5: CANOE or OCEAN)
 - Ability (g + lower level factors)
 - Interests (People vs. Things, Facts vs. Ideas)
- These constructs may be measured in large scale, telemetric studies
 - The SAPA methodology does not make it onerous on the subject
 - SAPA techniques allow for rapid prototyping of measures
- These constructs relate to the choice of STEM majors and careers

- Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Application to abstract reasoning. *Psychological Methods*, *3*(3), 380 396.
- Evans, A. M. & Revelle, W. (2008). Survey and behavioral measurements of interpersonal trust. *Journal of Research in Personality*, 42(6), 1585–1593.
- Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. In I. Mervielde, I. Deary, F. De Fruyt, & F. Ostendorf (Eds.), *Personality psychology in Europe*, volume 7 (pp. 7–28). Tilburg, The Netherlands: Tilburg University Press.
- Liebert, M. (2006). A public-domain assessment of music preferences as a function of personality and general intelligence. Honors Thesis.
- Mulholland, T. M., Pellegrino, J. W., & Glaser, R. (1980). Components of geometric analogy solution. *Cognitive Psychology*, 12(2), 252 284.

- Pozzebon, J. A., Visser, B. A., Ashton, M. C., Lee, K., & Goldberg, L. R. (2010). Psychometric characteristics of a public-domain self-report measure of vocational interests: The oregon vocational interest scales. *Journal of Personality Assessment*, 92(2), 168–?
- Revelle, W. & Laun, G. (2004). Synthetic aperture personality assessment: A progress report and a proposal. Presented at the annual meeting of the Society of Multivariate Experimental Psychology.
- Revelle, W., Wilt, J., & Rosenthal, A. (2010). Personality and cognition: The personality-cognition link. In A. Gruszka,
 G. Matthews, & B. Szymura (Eds.), Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control chapter 2, (pp. 27–49). Springer.