A methodological critique of claims for a general factor of personality

William Revelle and Joshua Wilt

Northwestern University

Evanston, Illinois USA

Presented as part of a symposium Mapping the Personalty Sphere

Niels Waller (organizer)
European Conference on Personality
Brno, Czech Republic July, 2010

Outline

(1) Introduction

- Factor models of ability and personality analyze the personality sphere
- It has been claimed that personality inventories show a general factor analogous to that of the ability domain
(2) What is a general factor?
- General, group and specific factors
- Ability items have a positive manifold and show a general factor, g
- Evaluating the size of a general factor: Coefficients ω_{h} and β
- Expected values of ω_{h} and β as number of factors varies
(3) Claims for a general factor of personality
- Basic data sets claim to show a gfp
- These claims for a GFP reflect misunderstanding of what a general factor is
4 Further problems and Conclusion
- Methodological problems in identifying a general factor

Factor models of ability and personality analyze the personality sphere

Introduction

- Ability measures are all positively correlated (have a positive manifold) and may be represented with a hierarchical structure of lower order factors and one higher order general factor, g.

Factor models of ability and personality analyze the personality sphere

Introduction

- Ability measures are all positively correlated (have a positive manifold) and may be represented with a hierarchical structure of lower order factors and one higher order general factor, g.
- It has been claimed that such a structure is true for non-cognitive personality variables as well.

Factor models of ability and personality analyze the personality sphere

Introduction

- Ability measures are all positively correlated (have a positive manifold) and may be represented with a hierarchical structure of lower order factors and one higher order general factor, g.
- It has been claimed that such a structure is true for non-cognitive personality variables as well.
- These claims, however, reflect a fundamental misunderstanding of how to measure a general factor.

Introduction

- Ability measures are all positively correlated (have a positive manifold) and may be represented with a hierarchical structure of lower order factors and one higher order general factor, g.
- It has been claimed that such a structure is true for non-cognitive personality variables as well.
- These claims, however, reflect a fundamental misunderstanding of how to measure a general factor.
- We review the claims, discuss the problems, and suggest that there is no general factor of personality.

A general factor is analogous to test reliability.

Total test variance

3 group factors

A general factor

Specific item variance

A general factor represents variance common to all variables. Analogous to classical reliability theory of a unifactorial test.

- Total test variance may be decomposed into independent factors
- Test variance $=$ general + group + specific + error
- Test covariance can be partitioned into general + group

General factor, group factors, and tests

a weak general factor

3 group factors

No general factor, no group factors

6 variables with g

6 variables with three correlated group factors

6 variables with three group factors

6 orthogonal variables

- The shared variance of multiple personality tests can be decomposed in the same way.
- Consider four cases of six variables with general and group factors
(1) Just a general factor
(2) 3 groups with a small general factor
(3) 3 orthogonal group factors
(9) 0 group factors and no general factor
- The problem: How to estimate the general factor in these various cases?

Factor analyses show structure

1 general factor

3 uncorrelated group factors

6 orthogonal variables

- Consider these four cases of six variables with general and group factors
(1) Just general factor
(2) 3 groups with small general
(3) 3 groups
(9) 0 group factors
- The problem remains: How to estimate the general factor in these various cases?

Several ways have been proposed to estimate a general factor

(1) The proportion of variance attributed to the first factor. - NO

- This is insensitive to structure of tests
(2) The correlations between the lower level factors - NO
- Fails to examine how well the lower level factors account for the tests
(3) Factor loadings of a higher order factor on the lower order factors - NO
- Fails to examine how well the lower level factors account for the tests
(9) Amount of test variance accounted for by a 2nd or 3rd order factor - YES
- ω_{h} discussed by McDonald (1999) and others (Revelle \& Zinbarg, 2009) estimates general factor saturation.

In that hierarchical structure has been discussed in cognitive psychology for 100 years, it is worth considering that solution.

General, group and specific factors

The first factor \neq a general factor

S1: all equal
$\lambda=2.5 \alpha=.72 \omega=.72$

S3: $\mathrm{g}+\mathrm{two}$ groups

S2: $\mathbf{g}+$ two groups

S4: two groups

- general factor saturation

All sets of 6 items have equal average correlation (.3)

But differ in the patterning of correlations

- $\mathrm{S} 1 r_{w}=.30 \quad r_{b}=.3$
- $\mathrm{S} 2 r_{w}=.45 \quad r_{b}=.2$
- S3 $r_{w}=.60 \quad r_{b}=.1$
- S4 $r_{w}=.75 \quad r_{b}=.0$

All 1st eigen values $=2.5$

- All coefficient $\alpha=.72$

$$
\omega_{h}=.72 .49 .25 .00
$$

The between factor correlation does not index a general factor
alpha $=.85$

alpha $=.55$

alpha $=.28$

omega $=.71$

omega $=.49$

omega $=.23$

- Between factor correlation reflects ratio of between cluster to within cluster covariances

$-r_{b}=.40$	$r_{w}=.60$
- $r_{b}=.15$	$r_{w}=.225$
- $r_{b}=.05$	$r_{w}=.075$

- Identical interfactor correlations $66 \neq$ non-identical g saturation $\omega_{h}=.71 \quad .49 \quad .23$

The higher level factor loading does not index the general factor saturation

- Indeed, it is easy to create cases where varying the between factor correlations or higher level loading does not vary the g saturation
- $r_{f_{1} f_{2}}=\overline{r_{b}} / \overline{r_{w}}$
- $\omega_{h}=n^{2} \bar{r}_{b} / V_{t}$ where
- $V_{t}=n^{2} * \bar{r}_{b}+k *$ $m^{2}\left(\overline{r_{w}}-\overline{r_{b}}\right)+n\left(1-\overline{r_{w}}\right)$
- n items, k groups, and m items within each group.
- All $\omega_{h}=.63$

Hierarchical solutions are typical in the ability domain

- Cognitive ability tests have a positive manifold (are all positively correlated).
- Factor analyses of ability produce correlated lower order factors.
- These factors may, in turn, be factored.
- Example data sets available in R and discussed today include
- 9 tests from Thurstone and Thurstone (1941)
- 9 tests from Holzinger (1939)
- 14 tests from Holzinger and Swineford (1937)
- 2 sets of 17 tests from Bechtoldt (1961), taken from

Thurstone and Thurstone, (1941)

- 24 tests from Holzinger and Harman (1976)
- Example simulated set from Jensen and Weng (1994)

An example from the ability domain

A conventional way to show a correlation matrix

	V1		V2	V3	V4	V5	V6	V7	V8	V9
Sentences	1.00	0.83	0.78	0.44	0.43	0.45	0.45	0.54	0.38	
Vocabulary	0.83	1.00	0.78	0.49	0.46	0.49	0.43	0.54	0.36	
Sent. Completion	0.78	0.78	1.00	0.46	0.42	0.44	0.40	0.53	0.36	
First.Letters	0.44	0.49	0.46	1.00	0.67	0.59	0.38	0.35	0.42	
4.Letter.Words	0.43	0.46	0.42	0.67	1.00	0.54	0.40	0.37	0.45	
Suffixes	0.45	0.49	0.44	0.59	0.54	1.00	0.29	0.32	0.32	
Letter.Series	0.45	0.43	0.40	0.38	0.40	0.29	1.00	0.56	0.60	
Pedigrees	0.54	0.54	0.53	0.35	0.37	0.32	0.56	1.00	0.45	
Letter.Group	0.38	0.36	0.36	0.42	0.45	0.32	0.60	0.45	1.00	

9 cognitive variables from Thurstone and Thurstone (1941). Used by McDonald (1999) and others for demonstrations of coefficients ω_{h} and ω_{t}

Ability items have a positive manifold and show a general factor, \boldsymbol{g}

An alternative way to show correlation matrices

9 cognitive ability tests from Thurstone and Thurstone (1941) is a classic data set for showing hierarchical structure. Graphic presentations of correlations are clearer.

- Color indicates size of correlation.
- All correlations are > . 29 with a mean of .54
- Three lower level (group) factors may be seen

Correlated factor structures: Evidence for g

Three correlated factors of ability

These 9 ability tests may used to show concept of correlated structure

- Clear lower level three factor solution
- Correlations between factors represent a g factor
- Apply a second order factor analysis to these correlations

Hierarchical factor structure: Yet another way of looking at \mathbf{g}

9 cognitive variables from Thurstone
These 9 ability tests may used to show concept of hierarchical structure

- A hierarchical structure represents at least two levels of factors
- Clear lower level three factor solution
- Correlations between factors accounted for by a g factor

McDonald's omegah and the bifactor model

A bifactor solution

- A hierarchical solution
- Extract 3 factors and transform obliquely
- Factor the factor correlations
- A Bifactor solution (Holzinger and Swineford, 1937) may be found using the Schmid-Leiman transformation
- Find the general loading from hierarchical loading \times group loading
- Remove from group to find residual factor loading
- EFA analysis done in omega function with psych package in R .
- CFA analysis done with sem package in R .

Several different statistics for evaluating the size of a general factor

$$
\omega=.74
$$

9 cognitive variables from Thurstone

Coefficient ω_{h} is the ratio of general factor variance to total variance.

- General factor variance is squared sum of general factor loadings.
- Total variance is just the sum of the variance/covariance matrix.
- Can also consider the amount of each item/test variance accounted for by the general factor loading
- Examine the mean and variance of this percentage
Coefficient β is the worst split half reliability and is a cluster based estimate of general factor saturation

β also estimates general factor saturation

β is the worst split half reliability and is found using hierarchical cluster analysis (ICLUST). For Thurstone data set, the two most unrelated parts correlate . 61 and thus beta is .77 .

Apply omega to our examples

6 variables with g

6 variables with three correlated group factors

omega $=.47$

6 variables with three group factors

omega $=0$

Just group

The hierarchical structures appear similar, we need to examine the coefficients. Also can examine the loadings in the SchmidLeiman solution.

Evaluating the size of a general factor: Coefficients ω_{h} and β

Apply ICLUST to our examples

Unfortunately, ω_{h} for a 2 factor solution is underidentified in EFA

For two lower level factors, the higher level model is under-identified and depends upon external assumptions.

Although the structural models appear identical and goodness of fit statistics are identical, the general factor solution differs drastically. $.09<\omega_{h}<.41$. β, based upon a simpler model, is .09 .

Estimating a general factor for 5 tests is under-identified in EFA

- For 5 variables (e.g., the "Big 5"), only 2 lower order factors can be extracted using structural modeling software.
- The degrees of freedom for 2 factors and 5 variables is 1
- The degrees of freedom for 3 factors and 5 variables is -2
- This means that to apply CFA or SEM to "Big 5" problems is limited to 2 factor solutions
- But 2 lower level factors are not identified for a higher order solution without some additional constraints.
- The effect of these constraints may be seen by simulation

Omega and Beta vary as the number of underlying factors

Simulations of 1 .. 5 factors causing the correlations of 5 variables.

- number of (orthogonal) factors $=1$... 5
- number of tests $=5$
- replications $=100$
- ω_{h} estimated with 2 factors
- using 1st as g
- using $2 n d$ as g
- using $\sqrt{\phi}$ as g
- β found using ICLUST

Results show that ω_{h} defined by 1st or 2 nd factor is highly biased.

Omega varies as the number of underlying factors

Repeat this simulation for 5, 6, 9 and 24 variables

ω_{h} is positively biased for all cases of factors >1

Omega and Beta vary as the number of underlying factors

Include ICLUST estimates of β for 5, 6, 9 and 24 variables

Omega and Beta with 95\% error bars

- number of factors $=1 \ldots 5$
- number of tests $=5,6,9,24$
- replications $=100$
- ω_{h} estimated with 2 factors
- using 1st as g
- using $2 n d$ as g
- using $\sqrt{\phi}$ as g
- otherwise ω_{h} estimated with 3 factors
- β found using ICLUST
- β does not show the same bias.

Omega is positively biased if items can be reversed

- Although ω_{h} is an excellent estimate of general factor saturation when there is one factor, ω_{h} is positively biased in the case of multiple factors if items can be reversed.
- Particularly with <6 variables when we must use just 2 lower level factors.
- Need to search for solution that minimizes ω_{h}
- Not the solution that maximizes ω_{h}
- β might be preferred in case of few variables or when the real structure has >1 factor.
- That is, ω_{h} should be used for evaluating how well a unifactorial test measures one thing.
- But β should be used to determine how general factor saturation in presence of multiple factors.
- Other tests for the number of factors should be used as well.

Basic data sets claim to show a gfp

Claims for a general factor

- Musek (2007)
- using BFI (John, Donahue \& Kentle, 1991), IPIP (Goldberg, 1999) and Big 5 Observer (Caprara, Barbaranelli \& Borgogni, 1994).
- Rushton \& Irwing (2008)
- Digman (1997)
- Meta analysis of Big 5 inventories (Mount, Barrick, Scullen \& Rounds, 2005)
- Rushton, Bons \& Hur (2008)
- Rushton \& Irwing (2009a, c)
- Comrey Personality Scales (Comrey, 1995, 2008)
- MMPI2 (Helmes, 2008)
- Multicultural Personality Questionnaire (Van der Zee \& Van Oudenhoven, 2001)
- Multidimensional Personality Questionnaire (Tellegen, 1982; Tellegen \& Waller, 2008)
- Erdle, Irwing, Rushton \& Park (2010) Web based BFI
- Zawadzki \& Strelau (2010)

Different methods used in these various studies for estimating the general factor

- Musek (2007) used size of first principal component
- Rushton \& Irwing (2008) reports correlations between lower level factors
- Rushton \& Irwing (2009a,c) use Structural Equation Modeling with questionable models and emphasize factor loadings of lower level factors on g without examining the g effect on basic variables.
- Rushton \& Irwing (2009b) uses SEM and and emphasizes the fit to "reliable variance" meaning the lower level factors, but not the basic tests themselves.
- Erdle et al. (2010) uses SEM of "reliable variance"
- Zawadzki \& Strelau (2010) uses SEM (and is potentially the best of the studies, because it has structures for peer ratings as well as self ratings)

- Musek (2007)
- Big Five Inventory
- Analysis based upon 1st eigen value
- Actually agrees with ω_{h} estimate
- But this will not normally be the case

Musek BFI hierarchical

Rushton \& Irwing (2009b) and the DeYoung data

- Refers to reliable variance as if the tests themselves are not reliable
- DeYoung reliabilities are actually $>.8$

Rushton \& Irwing (2009b)

- Data from 16 studies by Colin DeYoung ($\mathrm{N}=6412$)
- Big Five Inventory "The model explains 54\% of the variance in DeYoung's factors of Stability and Plasticity, i.e. 54\% of the reliable variance. However, because there is substantial error in most of the indicators, this only translates into 16% of the scale level variance.
- SEM based ω is . 42
- EFA produces an ω of .25

EFA vs. CFA of DeYoung data

DeYoung data Hierarchical

- Rushton reports $.54=$ product of g factor loadings
- But ω_{h} from this diagram is .42
- EFA omega $=.25$

Basic data sets claim to show a gfp

Cloninger Temperament and Character Inventory

- "Gamma" factor has loading of .99 on general suggesting that the "general" factor is "gamma".
"The GFP accounted for 49% of the variance in the three first-order factors and 24% of the total reliable variance." ω_{h} from EFA is . 40 and from SEM . 38
- Great variability in "general factor" loadings
- general factor loading are -0.09-0.49 0.29 0.290 .980 .580 .22

Guilford Zimmerman Temperament Survey

Fig. 2. GZIS third-order confirmatory common factor structure.

- Rushton \& Irwing (2009b) report that "The GFP accounted for 36% of the variance in the three first-order factors and 21% of the total reliable variance.

Basic data sets claim to show a gfp

Erdle et al. (2010)

"The model explains 57\% of the variance in the factors of Stability and Plasticity, i.e. 57\% of the reliable variance. However, because there is substantial error in most of the indicators, this only translates into 15% of the scale level variance."

Table: Factor congruence coefficients for g may be found for those studies with the same variables. Generally, factor congruences $>.95$ are expected for a good match. (For instance, the two Bechtoldt data sets of ability have g-factor congruences of .99 and the two Comrey data sets have a factor congruence for g of 1.0.)

Study	BFI	IPIP	Digman	Erdle	DeYoung
Musek BFI	1.00				
Musek IPIP	.88	1.00			
Digman	.95	.96	1.00		
Erdle	.88	.94	.98	1.00	
DeYoung	.98	.82	.89	.79	1.00

Method 1	Method 2	Method 3			
C_{1} / N	Λ_{1} / N	r_{Λ}	Λ_{g} / N	ω_{h}	R^{2}

Rushton's Analyses							
Digman's Medians	.40	.27	.33	.14	.35	.35	.45
Mount's Meta Analysis	.44	.31	.41	.17	.40	.37	.44
Comrey Scales	.29	.19	.26	.08	.27	.31	.41
MMPI	.39	.35	.15	.16	.37	.41	.49
MPQ	.46	.33	.25	.15	.31	.35	.33
Musek's Analyses							
Big Five Inventory	.50	.39	.38	.23	.50	.52	.50
IPIP	.42	.29	.30	.17	.40	.46	.40
Big Five Observer	.45	.32	.42	.20	.45	.45	.45
Cognitive Ability Data Sets							
Thurstone's 9	.54	.48	.55	.40	.74	.74	
Thurstone and Bechtoldt's 17	.37	.34	.29	.28	.72	.78	
Holzinger's 14	.37	.32	.29	.28	.71	.69	
Brigham and Thurstone's 9	.56	.51	.56	.49	.85	.89	
Holzinger and Harman's 24	.34	.31	.38	.22	.65	.66	
Means							
Rushton \& Musek	.42	.31	.31	.16	.38	.40	.43
Cognitive Ability	.44	.39	.41	.33	.73	.75	

Graphic representation of these data sets

- Musek
- $\mathrm{BFI} \omega=.50$
- IPIP $\omega=.40$
- BFO $\omega=.45$
- Rushton
- Digman medians $\omega=.35$
- Digman $\omega=.32$
- Mount $\omega=.40$
- Erdle $\omega=.31$
- DeYoung $\omega=.25$
- Comrey. 95
$\omega=.27$

Compare with correlations of ability

6 cognitive data sets available in R

- Six data sets from R
- Thurstone and Thurstone (1941)
- Holzinger (1939)
- Bechtoldt (1 and 2) (1961)
- Holzinger and Swineford (1937)
- Harman (1976) 24 mental tests
- The results
- Generally larger background (general) level.
- Some obvious clumping \equiv

These claims for a GFP reflect misunderstanding of what a general factor is

Compare Cognitive to Personality

Bechtoldt. 1
$\omega=.64 \beta=.43$

Holzinger 14 $\omega=.64 \beta=.49$

Holzinger. 9
$\omega=.53 \beta=.54$

Bechtoldt. 2 $\omega=.68 \quad \beta=.47$

Harman

$$
\omega=.64 \quad \beta=.63
$$

Musek BFI
$\lambda / \mathrm{N}=.50 \rho=.39 \omega=.50$

e o a c

Digman medians
$\lambda / \mathrm{N}=.40 \rho=.34 \omega=.35$

Erdle
$\lambda / \mathrm{N}=.36 \rho=.29 \omega=.31$

Musek IPIP
$\lambda / N=.42 \rho=.30 \omega=.40$

e o a c

Digman
$\lambda / N=.41 \rho=.22 \omega=.32$

Deyoung
$\lambda / \mathrm{N}=.38 \rho=.22 \omega=.25$

Musek BFO
$\lambda / \mathrm{N}=.45 \rho=.42 \omega=.4$

e o a c

Mount
$\lambda / N=.44 \rho=41 \omega=.4 \mathrm{C}$

Comrey. 95
$\lambda / \mathrm{N}=.29 \rho=.26 \omega=.2$

- Compare 6 cognitive data sets to 9 personality data sets
- Cognitive are columns 1-2
- Personality are 3-5

Methodologial problems with a identifying a general factor

- The problem of factor indeterminacy
- Factor score estimates are compatible with many different factor solutions
- Indeterminacy varies inversely as factor saturation
- Most personality data sets have an indeterminate general factor
- The problem of item reversals
- General factor implies positive manifold and unipolar items
- Personality items tend to be bipolar

The problem of factor indeterminacy

- Factor loadings are beta weights that predict the tests from the factors.
- To estimate factor scores we need to find weights to predict factors from tests.
- $\mathbf{W}=\mathbf{F C}^{-1}$ and the multiple R^{2} between the factors and their estimate is $\mathbf{R}^{2}=\operatorname{diag}(\mathbf{W F})$.
- Different latent factors can provide equally good fits to factor score estimates.
- The minimum correlation between two factors that would produce the factor score estimates is $R_{\min }=2-R^{2}$.
- If this minimum <0 then the factor is completely indeterminate for two different factors could be negatively correlated but still produce the same factor score estimate.
- This is particularly a problem if the factor loadings are not very big.

The general factor of personality is indeterminate.

Factor indeterminancy and omega

- All cognitive batteries have $\omega>.5$ and $R_{\text {min }}>.0$
- All personality battery have $\omega<.5$
- 11 have
$R_{\text {min }}<.5$ and are completely indeterminate

$1 \neq 2 \neq 3$: The problem of item reversals

A two dimensional circumplex clearly has no general factor.

A 24 item circumplex

- Two orthogonal bipolar dimensions show no general factor.
- omegah $=0.0$
- But, what happens if we reverse key some items?

A "general" factor created by item reversals

A 24 item circumplex with item reversals

- items 6 ... 17 reversed keyed.
- There appears to be a general factor!
- $\omega_{h}=.72$
- This is a problem for personality variables in which direction is arbitrary. Allowing sign reversals will falsely indicate a general factor.

Simulation of 5 orthogonal factors (+ noise)

30 simulated variables with 5 orthogonal factors

- Simulate 30 variables with 5 major bipolar and 15 trivial noise factors.
- ω_{h} found by exploratory factor analysis for 5 factor solution is .25
- General Factor saturation from SEM is . 25
- β from cluster analysis is .12
- What is the right answer? 0
- Why does this happen? Items may be reversed.

Estimates of omega are positively biased if items may be reversed

What about Structural Equation Models?

Do confirmatory models work better?

- Our analyses were done using Exploratory Factor Analysis (EFA).
- Do confirmatory models work better?
- Confirmatory Factor Analysis (CFA)
- Structural Equation Modeling (SEM)
- No. Not if the same mistakes in logic are applied.
- Goodness of fit \neq confirmation of gfp adequacy
- Can not just find g loadings on higher level factors
- Nor are the g loadings on lower order factor appropriate
- Need to estimate ω_{h}
- Sometimes. If care is not applied in the EFA.
- Too few lower level factors for identification
- One lower order factor equated with g inflates estimate of ω_{h}

What would a general factor look like?

- All correlations should be positive
- Loadings of all items on the g factor should be roughly the same
- General factor score estimates should have $R^{2}>.5$ with g factor
- g factor saturations should be greater than expected by chance!

Conclusions

- Are scales measuring the Big 5 orthogonal? No
- Are there higher order factors of the Big 5 scales? Yes.
- Although the "Big 5" might represent orthogonal factors, the representative scales certainly do not.
- A substantive interpretation has not been offered by us, but has by others.
- Is there a general factor of personality?
- Not one that is worth talking about.
- If there is a general general factor, it is indeterminate.

Conclusion

- Claims for a general factor of personality are not supported by appropriate analysis.
- The reported "general factors" of personality are not general.
- "general factors" with ω_{h} of .2-. 5 may be obtained even when the basic data are formed from nearly orthogonal factors.
- GFP results more likely reflect 2-3 broad factors of personality.
- Appropriate psychometrics may be done with free, but powerful software. e.g., all analyses and graphics were done in the open source statistical program R using the psych and sem packages.
- For more information, visit the Personality Project website http://personality-project.org

Further information

(5) Finding ω_{h} using EFA
(6) Determining the number of factors

- Ability tests
- Personality inventories
(7) Various statistics associated with estimating ω_{h}
(8) References

Finding a general factor using EFA


```
With eigenvalues of:
    g F1* F2* F3*
3.58 0.96 0.74 0.71
general/max 3.71 max}/\textrm{min}=1.3
mean percent general = 0.6 with sd = 0.05 and cv of 0.09
```


Additional output

The degrees of freedom are 12 and the fit is 0.01
The number of observations was 213 with Chi Square $=2.82$ with prob < 1
The root mean square of the residuals is 0
The df corrected root mean square of the residuals is 0.01
RMSEA and the 0.1 confidence intervals are 000.023
BIC $=-61.51$

Compare this with the adequacy of just a general factor and no group factors The degrees of freedom for just the general factor are 27 and the fit is 1.48 The number of observations was 213 with Chi Square $=307.1$ with prob < 2.8 The root mean square of the residuals is 0.1 The df corrected root mean square of the residuals is 0.16

RMSEA and the 0.1 confidence intervals are 0.2240 .2230 .226 $B I C=162.35$

Measures of factor score adequacy

Correlation of scores with factors $0.86 \quad 0.730 .72 \quad 0.75$
Multiple R square of scores with factors
$0.74 \quad 0.540 .520 .56$ Minimum correlation of factor score estimates 0.490 .080 .030 .11

β estimates general factor saturation

β is the worst split half reliability and is found using hierarchical cluster analysis (ICLUST). For Thurstone data set, $\beta=.77$

ICLUST solution to Thurstone problem. Beta $=.77$

β estimates general factor saturation

β is the worst split half reliability and is found using hierarchical cluster analysis (ICLUST). For Thurstone data set, the two most unrelated parts correlate . 61 and thus beta is .77 .

Two most unrelated clusters from Thurstone

Ability tests

Determining the number of factors through parallel analysis: Case 1: Ability tests

Thurstone $=1$

Bechtoldt. $1=4$

Holzinger $=3$

Holzinger $=3$

Bechtoldt. $2=3$

Harman $=4$

- Parallel analysis compares real matrices with random data matrices of the same rank
- Plot the scree for components and for factors
- Compare real scree with random scree
- Although multiple factors are indicated, note the relative size of first factor

Determining the number of factors through parallel analysis: Case 2: Personality inventories

Digman $=2$

Comrey $=3$

IPIP = 2

Digman $=2$

$M P Q=2$

$B F O=1$

Mount $=2$

MMPI $=2$

- Musek
- BFI
- IPIP
- BFO
- Rushton and Irwing
- Digman
- Mount meta analysis
- Comrey manual
- MPQ ?
- MMPI ?

Determining the number of factors through parallel analysis: Case 1 \& 2

Bechtoldt. $1=4$

Factor Number

Holzinger $=3$

Bechtoldt. $2=3$

Factor Number

Harman $=4$

$B F I=1$

Digman $=2$

Comrey $=3$

$I P I P=2$

Digman $=2$

$M P Q=2$

$B F O=1$

Mount $=2$

$M M P I=3$

Omega for 1 or 3 factors and 6 variables

- Simulation of 6 variables with
- 1 (general) or 3 (orthogonal) factors
- ω estimated with 2 or 3 factors
- Scatter Plot Matrix (SPLOM) shows
- distribution of ω_{h}
- mean percent g saturation
- standard deviation of g saturation
- Expected value for ω for 3 underlying (orthogonal) factors when just 2 factors are extracted is .5 !

ω_{h} and β for 1 .. 5 factors and 5 variables

- Simulation of 5 variables with
- 1 (general) or 2 ... 5 (orthogonal) factors
- ω_{h} estimated with 2 factors
- Scatter Plot Matrix (SPLOM) shows
- distribution of ω_{h}
- mean percent g saturation
- standard deviation of g saturation
- $\beta=$ worst split half reliability
- Expected value for ω for 3 underlying (orthogonal) factors when just 2 factors

ω_{h} and β for 1 .. 5 factors and 6 variables

- Simulation of 6 variables with
- 1 (general) or $2 \ldots 5$ (orthogonal) factors
- ω_{h} estimated with 3 factors
- Scatter Plot Matrix (SPLOM) shows
- distribution of ω_{h}
- mean percent g saturation
- standard deviation of g saturation
- Expected value for ω for 2 underlying (orthogonal) factors when just 3 factors are extracted is 36 !

Caprara, G. V., Barbaranelli, C., \& Borgogni, L. (1994). BFO - Big Five observer. Manuale. Firenze: Organizzazioni Speziali.

Comrey, A. L. (1995). Revised manual and handbook of interpretations for the Comrey Personality Scales. San Diego, CA: Educational and Industrial Testing Service.
Comrey, A. L. (2008). The Comrey Personality Scales. In G. J. Boyle, G. Matthews, \& D. H. Saklowfske (Eds.), Sage handbook of personality theory and testing: Personality measurement and assessment, volume II (pp. 113-134). London: Sage.
Digman, J. M. (1997). Higher-order factors of the big five. Journal of Personality and Social Psychology, 73, 1246-1256.
Erdle, S., Irwing, P., Rushton, J. P., \& Park, J. (2010). The general factor of personality and its relation to self-esteem in 628,640 internet respondents. Personality and Individual Differences, 48(3), 343 - 346.
Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several
five-factor models. In I. Mervielde, I. Deary, F. De Fruyt, \& F. Ostendorf (Eds.), Personality psychology in Europe, volume 7 (pp. 7-28). Tilburg, The Netherlands: Tilburg University Press. Helmes, E. (2008). Modern applications of the MMPI/MMPI-2 in assessment. In G. J. Boyle, G. Matthews, \& D. H. Saklowfske (Eds.), Sage handbook of personality theory and testing: Personality measurement and assessment, volume II (pp. 589-607). London: Sage.
John, O. P., Donahue, E. M., \& Kentle, R. L. (1991). The Big Five Inventory-Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institue of Personality and Social Research. Mount, M. K., Barrick, M. R., Scullen, S. M., \& Rounds, J. (2005). Higher-order dimensions of the big five personality traits and the big six vocational interest types. Personnel Psychology, 58(2), 447-478.
Musek, J. (2007). A general factor of personality: Evidence for the big one in the five-factor model. Journal of Research in
Personality, 41(6), 1213-1233.

Revelle, W. \& Zinbarg, R. E. (2009). Coefficients alpha, beta, omega and the glb: comments on Sijtsma. Psychometrika, 74(1), 145-154.
Rushton, J. P., Bons, T. A., \& Hur, Y.-M. (2008). The genetics and evolution of the general factor of personality. Journal of Research in Personality, 42(5), 1173-1185.
Rushton, J. P. \& Irwing, P. (2008). A general factor of personality (GFP) from two meta-analyses of the Big Five: Digman (1997) and Mount, Barrick, Scullen, and Rounds (2005). Personality and Individual Differences, 45(7), 679-683.
Rushton, J. P. \& Irwing, P. (2009a). A general factor of personality (gfp) from the multidimensional personality questionnaire. Personality and Individual Differences, 47(6), 571 - 576.
Rushton, J. P. \& Irwing, P. (2009b). A general factor of personality in 16 sets of the big five, the guilford-zimmerman temperament survey, the california psychological inventory, and the temperament and character inventory. Personality and Individual Differences, 47(6), 558 - 564.

Rushton, J. P. \& Irwing, P. (2009c). A general factor of personality in the comrey personality scales, the minnesota multiphasic personality inventory-2, and the multicultural personality questionnaire. Personality and Individual Differences, 46, 437-442.
Tellegen, A. (1982). Brief Manual for the Differential Personality Questionnaire. Minneapolis, MN: University of Minnesota Press.
Tellegen, A. \& Waller, N. (2008). Exploring personality through test construction: Development of the Multidimensional Personality Questionnaire. The Sage handbook of personality theory and assessment, 2, 261-292.
Van der Zee, K. I. \& Van Oudenhoven, J. P. (2001). The multicultural personality questionnaire: Reliability and validity of self- and other ratings of multicultural effectiveness. Journal of Research in Personality, 35(3), 278-288.
Zawadzki, B. \& Strelau, J. (2010). Structure of personality: Search for a general factor viewed from a temperament perspective.
Personality and Individual Differences, 49(2), $77-82$

